矩形、正方形和菱形的判定方法

合集下载

矩形、菱形、正方形的性质及判定(四边形)

矩形、菱形、正方形的性质及判定(四边形)

矩形、菱形、正方形的性质及判定一、知识提要1.矩形定义有一个角是直角的平行四边形叫做矩形;性质①矩形的四个角都是直角;②矩形的对角线相等.判定①有一个角是直角的平行四边形叫做矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形.2.直角三角形斜边的中线等于斜边长的一半.3.菱形定义有一组邻边相等的平行四边形叫做菱形.性质①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.判定①有一组邻边相等的平行四边形叫做菱形;②对角线互相垂直的平行四边形是菱形;③四边相等的四边形是菱形.4.菱形的面积等于对角线乘积的一半.5.正方形定义四条边都相等、四个角都是直角的四边形是正方形.性质正方形拥有平行四边形、矩形、菱形的所有性质;判定①由一个角是直角的菱形是正方形;②有一组邻边相等的矩形是正方形.二、精讲精练1.矩形ABCD的对角线AC,BD相交于点O,则边与对角线组成的直角三角形的个数是________.2.(2011浙江)如图,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOB= 60°,AC=16,则图中长度为8的线段有( ) A.2条B.4条ODC BA60°C .5条D .6条3. 矩形ABCD 中,AB =2BC ,E 为CD 上一点,且AE =AB ,则∠BEC = ___.4. 已知矩形ABCD ,若它的宽扩大2倍,且它的长缩小四分之一,那么新矩形的面积等于原矩形ABCD 面积的__________.5. (2011四川)下列关于矩形的说法中正确的是( )A .对角线相等的四边形是矩形B .对角线互相平分的四边形是矩形C .矩形的对角线互相垂直且平分D .矩形的对角线相等且互相平分6. (2011江苏)在四边形ABCD 中,AB=DC ,AD=BC .请再添加一个条件,使四边形ABCD 是矩形.你添加的条件是_______________(写出一种即可) 7. (2011山东)如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 于点D 、F ,BE ⊥DF 交DF 的延长线于点E ,已知∠A =30°,BC =2,AF =BF ,则四边形BCDE 的面积是( )A .23B .33C .4D .438. 如图,将□ABCD 的边DC 延长到点E ,使CE =DC ,连接AE ,交BC 于点F .(1)求证:△ABF ≌△ECF(2)若∠AFC =2∠D ,连接AC 、BE .求证:四边形ABEC 是矩形.9. (2011江苏)在菱形ABCD 中,AB=5cm ,则此菱形的周长为( )A. 5cmB. 15cmC. 20cmD. 25cm10. (2011河北)如图,已知菱形ABCD ,其顶点A ,B 在数轴对应的数分别为-4和1,则BC =_______.EFDCBAD CBAHFGE ADBC11. 菱形的一边与两条对角线夹角的差是20°,则菱形的各角的度数为___________.12. (2011重庆)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,且AC =8,BD =6,过点O 作OH ⊥AB ,垂足为H ,则点O 到边AB 的距离OH =_________.13. 已知菱形周长是24cm ,一个内角为60°,则菱形的面积为______.14. 菱形ABCD 中,AE ⊥BC 于E ,若S 菱形ABCD =24cm 2,则AE =6cm ,则菱形ABCD的边长为_______.15. (2011山东)已知一个菱形的周长是20cm ,两条对角线的比是4:3,则这个菱形的面积是( )A .12cm 2B . 24cm 2C . 48cm 2D . 96cm 2 16. 菱形有____条对称轴,对称轴之间具有________的位置关系. 17. 菱形具有而一般平行四边形不具有的性质是( )A .两组对边分别平行B .两组对边分别相等C .一组邻边相等D .对角线相互平分18. (2011四川)如图,点E 、F 、G 、H 分别是任意四边形ABCD 中AD 、BD 、BC 、CA 的中点,当四边形ABCD 的边至少满足__________条件时,四边形EFGH 是菱形.19. (2011浙江)如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,过点A 作AG ∥DB 交CB 的延长线于点G . (1)求证:DE ∥BF ;(2)若∠G =90°,求证:四边形DEBF 是菱形.F E B C A D 20. (2011湖州)如图,已知E 、F 分别是□ABCD 的边BC 、AD 上的点,且BE =DF . (1)求证:四边形AECF 是平行四边形;(2)若BC =10, BAC =90,且四边形AECF 是菱形,求BE 的长.21. (2011湖南)下列四边形中,对角线相等且互相垂直平分的是( ) A.平行四边形 B.正方形 C.等腰梯形 D.矩形22. 有一组邻边_______并且有一个角是________的平行四边形,叫做正方形. 23. (2010湖北)已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是 .24. 已知正方形ABCD 中,AC ,BD 交于点O ,OE ⊥BC 于E ,若OE =2,则正方形的面积为____.25. 如图,已知,正方形ABCD 的对角线交于O ,过O 点作OE ⊥OF ,分别交AB 、BC 于E 、F ,若AE =4,CF =3,则EF 等于( )A .7B .5C .4D .326. (2011贵州)如图,点E 是正方形ABCD 内一点,△CDE 是等边三角形,连接EB 、EA ,延长BE 交边AD 于点F . (1)求证: △ADE ≌△BCE ; (2)求∠AFB 的度数.FED CBA FE ODCBA三、测试提高【板块一】菱形的性质1. 若菱形两邻角的比为1:2,周长为24 cm ,则较短对角线的长为_____. 【板块二】菱形的判定2. (2011湖南)如图,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B 为圆心,大于12AB 的长为半径画弧,两弧相交于C 、D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是( ) A .矩形B .菱形C .正方形D .等腰梯形 3. (2011湖北)顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD 一定是( ) A.菱形 B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形【板块三】菱形余矩形的性质4. (2011江苏)菱形具有而矩形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补 【板块四】特殊四边形的判定5. 下列命题中,正确命题是( )A .两条对角线相等的四边形是平行四边形;B .两条对角线相等且互相垂直的四边形是矩形;C .两条对角线互相垂直平分的四边形是菱形;D .两条对角线平分且相等的四边形是正方形;四、课后作业1. 矩形ABCD 中,对角线AC ,BD 相交于点O ,∠AOB =60°,若BD =10 cm ,则AD =_____.2. 矩形周长为72cm ,一边中点与对边两个端点连线的夹角为直角,此矩形的长边为_______.3. 矩形的边长为10和15,其中一个内角平分线分长边为两部分,这两部分的长度分别为_________.4. 过矩形ABCD 的顶点D ,作对角线AC 的平行线交BA 的延长线于E ,则△DEB 是( ).A . 不等边三角形B . 等腰三角形C . 等边三角形D . 等腰直角三角形BACD5. 矩形ABCD 的对角线AC 的垂直平分线与边AD ,BC 分别交于E ,F ,则四边形AFCE 是___________.6. 菱形一个内角为120°,平分这个内角的一条对角线长12 cm ,则菱形的周长为_____.7. 若菱形两条对角线长分别为6 cm 和8 cm ,则它的周长是________,面积是_______.8. 菱形的一个角是60°,边长是8 cm ,那么菱形的两条对角线的长分别是_________.9. 已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为_____. 10. 在菱形ABCD 中,AE ⊥BC , AF ⊥CD ,且BE =EC , CF =FD ,则∠AEF 等于_______.11. 如图,小华剪了两条宽为2的纸条,交叉叠放在一起,且它们交角为45°,则它们重叠部分的面积为( ). A.22 B.1 C.332 D.2 12. (2011广东)如图,两条笔直的公路1l 、2l 相交于点O ,村庄C 的村民在公路的旁边建三个加工厂A 、B 、D ,已知AB =BC =CD =DA =5公里,村庄C 到公路1l 的距离为4公里,则村庄C 到公路2l 的距离是( ). A .3公里 B .4公里C .5公里D .6公里13. 正方形的对角线__________且_________,每条对角线平分_____. 14. 如图,AC 是菱形ABCD 的对角线,点E 、F 分别在边AB 、AD 上,且AE =AF . 求证:△ACE ≌△ACF .FE BCDA15. (2011山东)如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,过点O 作直线EF ⊥BD ,分别交AD 、BC 于点E 和点F ,求证:四边形BEDF 是菱形.OFEDCBA。

初中数学几何的5大考点矩形、菱形、正方形的判定题型

初中数学几何的5大考点矩形、菱形、正方形的判定题型

初中数学几何的5大考点矩形、菱形、正方形的判定题型
1.矩形的判定
①有一个内角是直角的平行四边形是矩形;
②对角线相等的平行四边形是矩形;
③有三个角是直角的四边形是矩形;
④还有对角线相等且互相平分的四边形是矩形。

2.菱形的判定方法
①有一组邻边相等的平行四边形是菱形;
②对角线互相垂直的平行四边形是菱形;
③四条边都相等四边形是菱形;
④对角线垂直平分的四边形是菱形。

3.正方形的判定
①菱形+矩形的一条特征;
②菱形+矩形的一条特征;
③平行四边形+一个直角+一组邻边相等。

说明一个四边形是正方形的一般思路是:先判断它是矩形,在判断这个矩形也是菱形;或先判断它是菱形,再判断这个菱形也是矩形。

例1. 如图,在△ABC中,AB=AC,点D是边BC的中点,过点A、D分别作BC与AB的平行线,并交于点E,连续EC、AD。

求证:四边形ADCE是矩形。

例2.如图,△ABC中,∠C=90°,AD平分∠BAC,ED⊥BC,DF//AB.
求证:AD与EF互相垂直平分。

例3.已知如图,在△ABC,∠ACB=900,AD是角平分线,点E、F分别在AB、AD上,且AE=AC,EF∥BC。

求证:四边形CDEF是菱形。

中考专题复习——矩形菱形正方形

中考专题复习——矩形菱形正方形

中考专题复习第二十一讲矩形菱形正方形【基础知识回顾】一、矩形:1、定义:有一个角是角的平行四边形叫做矩形2、矩形的性质:⑴矩形的四个角都⑵矩形的对角线3、矩形的判定:⑴用定义判定⑵有三个角是直角的是矩形⑶对角线相等的是矩形【名师提醒:1、矩形是对称图形,对称中心是,矩形又是对称图形,对称轴有条2、矩形被它的对角线分成四个全等的三角形和两对全等的三角形3、矩形中常见题目是对角线相交成600或1200角时,利用直角三角形、等边三角形等图形的性质解决问题】二、菱形:1、定义:有一组邻边的平行四边形叫做菱形2、菱形的性质:⑴菱形的四条边都⑵菱形的对角线且每条对角线3、菱形的判定:⑴用定义判定⑵对角线互相垂直的是菱形⑶四条边都相等的是菱形【名师提醒:1、菱形既是对称图形,也是对称图形,它有条对称轴,分别是2、菱形被对角线分成四个全等的三角形和两对全等的三角形3、菱形的面积可以用平行四边形面积公式计算,也可以用两对角线积的来计算4、菱形常见题目是内角为1200或600时,利用等边三角形或直角三角形的相关知识解决的题目】三、正方形:1、定义:有一组邻边相等的是正方形,或有一个角是直角的是正方形2、性质:⑴正方形四个角都都是角,⑵正方形四边条都⑶正方形两对角线、且每条对角线平分一组内角3、判定:⑴先证是矩形,再证⑵先证是菱形,再证【名师提醒:1、菱形、正方形具有平行四边形的所有性质,正方形具有以上特殊四边形的所有性质。

这四者之间的关系可表示为:2、正方形也既是对称图形,又是对称图形,有条对称轴3、几种特殊四边形的性质和判定都是从、、三个方面来看的,要注意它们的区别和联系】【重点考点例析】考点一:与矩形有关的折叠问题例1 (2016•泸州)如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=105cm,且tan∠EFC=34,那么该矩形的周长为()A.72cm B.36cm C.20cmD.16cm对应训练1.(2016•湖州)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则ADAB的值为()A.12B.33C.23D.22考点二:和菱形有关的对角线、周长、面积的计算问题例2 (2016•泉州)如图,菱形ABCD的周长为85,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO= ,菱形ABCD的面积S= .对应训练2.(2016•凉山州)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14B.15C.1 D.17考点三:和正方形有关的证明题例3 (2016•湘潭)在数学活动课中,小辉将边长为2和3的两个正方形放置在直线l 上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.思路分析:(1)根据正方形的性质可得AO=CO ,OD=OF ,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF ,再利用“边角边”证明△AOD 和△COF 全等,根据全等三角形对应边相等即可得证;(2)与(1)同理求出CF=AD ,连接DF 交OE 于G ,根据正方形的对角线互相垂直平分可得DF ⊥OE ,DG=OG=12OE ,再求出AG ,然后利用勾股定理列式计算即可求出AD . 解:(1)AD=CF .理由如下:在正方形ABCO 和正方形ODEF 中,AO=CO ,OD=OF ,∠AOC=∠DOF=90°, ∴∠AOC+∠COD=∠DOF+∠COD ,即∠AOD=∠COF ,在△AOD 和△COF 中,AO CO AOD COF OD OF =⎧⎪∠=∠⎨⎪=⎩,∴△AOD ≌△COF (SAS ), ∴AD=CF ;(2)与(1)同理求出CF=AD ,如图,连接DF 交OE 于G ,则DF ⊥OE ,DG=OG=12OE ,∵正方形ODEF 的边长为2,∴OE=2×2=2,∴DG=OG=12OE=12×2=1, ∴AG=AO+OG=3+1=4,在Rt △ADG 中,AD=22224117AG DG +=+=,∴CF=AD=17.点评:本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的应用,(1)熟练掌握正方形的四条边都相等,四个角都是直角,对角线相等且互相垂直平分是解题的关键,(2)作辅助线构造出直角三角形是解题的关键.对应训练3.(2016•三明)如图①,在正方形ABCD 中,P 是对角线AC 上的一点,点E 在BC 的延长线上,且PE=PB .(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 度.3.(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,∵在△BCP和△DCP中,BC DCBCP DCPPC PC=⎧⎪∠=∠⎨⎪=⎩,∴△BCP≌△DCP(SAS);(2)证明:由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP,∵PE=PB,∴∠CBP=∠E,∴∠DPE=∠DCE,∵∠1=∠2(对顶角相等),∴180°-∠1-∠CDP=180°-∠2-∠E,即∠DPE=∠DCE,∵AB∥CD,∴∠DCE=∠ABC,∴∠DPE=∠ABC;(3)解:与(2)同理可得:∠DPE=∠ABC,∵∠ABC=58°,∴∠DPE=58°.故答案为:58.考点四:四边形综合性题目例4 (2016•资阳)在一个边长为a(单位:cm)的正方形ABCD中,点E、M分别是线段AC,CD上的动点,连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.(1)如图1,当点M与点C重合,求证:DF=MN;(2)如图2,假设点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以2cm/s速度沿AC向点C运动,运动时间为t(t>0);①判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由.②连结FM、FN,△MNF能否为等腰三角形?若能,请写出a,t之间的关系;若不能,请说明理由.思路分析:(1)证明△ADF≌△DNC,即可得到DF=MN;易证△MND ∽△DFA,∴ND DMAF AD=,即ND a tat aa t-=-,得ND=t.∴ND=CM=t,AN=DM=a-t.若△MNF为等腰三角形,则可能有三种情形:(I)若FN=MN,则由AN=DM知△FAN≌△NDM,∴AF=DM,即ata t-=t,得t=0,不合题意.∴此种情形不存在;(II)若FN=FM,由MN⊥DF知,HN=HM,∴DN=DM=MC,∴t=12a,此时点F与点B重合;(III)若FM=MN,显然此时点F在BC边上,如下图所示:易得△MFC≌△NMD,∴FC=DM=a-t;又由△NDM∽△DCF,∴DN DCDM FC=,即t aa t FC=-,∴FC=()a a tt-.∴()a a tt-=a-t,∴t=a,此时点F与点C重合.综上所述,当t=a或t=12a时,△MNF能够成为等腰三角形.点评:本题是运动型几何综合题,考查了相似三角形、全等三角形、正方形、等腰三角形、命题证明等知识点.解题要点是:(1)明确动点的运动过程;(2)明确运动过程中,各组成线段、三角形之间的关系;(3)运用分类讨论的数学思想,避免漏解.对应训练4.(2016•营口)如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD=43,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值.4.解:(1)①BF=AD ,BF ⊥AD ;②BF=AD ,BF ⊥AD 仍然成立,证明:∵△ABC 是等腰直角三角形,∠ACB=90°,∴AC=BC ,∵四边形CDEF 是正方形,∴CD=CF ,∠FCD=90°,∴∠ACB+∠ACF=∠FCD+∠ACF ,即∠BCF=∠ACD ,在△BCF 和△ACD 中BC ACBCF ACD CF CD=⎧⎪∠=∠⎨⎪=⎩,∴△BCF ≌△ACD (SAS ),∴BF=AD ,∠CBF=∠CAD ,又∵∠BHC=∠AHO ,∠CBH+∠BHC=90°,∴∠CAD+∠AHO=90°,∴∠AOH=90°,∴BF ⊥AD ;(2)证明:连接DF ,∵四边形CDEF 是矩形,∴∠FCD=90°,又∵∠ACB=90°,∴∠ACB=∠FCD∴∠ACB+∠ACF=∠FCD+∠ACF ,即∠BCF=∠ACD ,∵AC=4,BC=3,CD=43,CF=1,∴34BC CF AC CD ==,∴△BCF ∽△ACD ,∴∠CBF=∠CAD ,又∵∠BHC=∠AHO ,∠CBH+∠BHC=90°∴∠CAD+∠AHO=90°,∴∠AOH=90°,∴BF⊥AD,∴∠BOD=∠AOB=90°,∴BD2=OB2+OD2,AF2=OA2+OF2,AB2=OA2+OB2,DF2=OF2+OD2,∴BD2+AF2=OB2+OD2+OA2+OF2=AB2+DF2,∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB2=AC2+BC2=32+42=25,∵在Rt△FCD中,∠FCD=90°,CD=43,CF=1,∴DF2=CD2+CF2=(43)2+12=259,∴BD2+AF2=AB2+DF2=25+259=2509.【聚焦山东中考】1.(2016•威海)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF2.(2016•枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.3-1B.3-5C.5+1D.5-13.(2016•临沂)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是.4.(2016•烟台)如图,正方形ABCD的边长为4,点E在BC上,四边形EFGB也是正方形,以B为圆心,BA长为半径画AC,连结AF,CF,则图中阴影部分面积为.5.(2016•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+3.其中正确的序号是(把你认为正确的都填上).6.(2016•济宁)如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.6.(1)证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,ABE DAFAB ADBAE D∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE≌△DAF(ASA),∴AF=BE;(2)解:MP与NQ相等.理由如下:如图,过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,则与(1)的情况完全相同.7.(2016•青岛)已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM ≌△DCM ;(2)判断四边形MENF 是什么特殊四边形,并证明你的结论;(3)当AD :AB= 时,四边形MENF 是正方形(只写结论,不需证明)8.(2016•淄博)矩形纸片ABCD 中,AB=5,AD=4.(1)如图1,四边形MNEF 是在矩形纸片ABCD 中裁剪出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由;(2)请用矩形纸片ABCD 剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD 中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).8.解:(1)正方形的最大面积是16.设AM =x (0≤x ≤4),则MD =4-x .∵四边形MNEF 是正方形,∴MN =MF ,∠AMN +∠FMD =90°.∵∠AMN +∠ANM =90°,∴∠ANM =∠FMD .∵在△ANM 和△DMF 中A D ANM FMD MN FM ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ANM ≌△DMF (AAS ).∴DM =AN .∴S 正方形MNEF =MN 2=AM 2+AN 2,=x2+(4-x)2,=2(x-2)2+8∵函数S正方形MNEF=2(x-2)2+8的开口向上,对称轴是x=2,在对称轴的左侧S随x的增大而减小,在对称轴的右侧S随x的增大而增大,∵0≤x≤4,∴当x=0或x=4时,正方形MNEF的面积最大.最大值是16.(2)先将矩形纸片ABCD分割成4个全等的直角三角形和两个矩形如图1,然后拼成如图2的正方形.9.(2016•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.9.解:(1)完成图形,如图所示:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,【备考真题过关】一、选择题1.(2016•铜仁地区)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形2.(2016•宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等3.(2013•随州)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是()A.25B.20C.15D.104.(2016•重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.2cm D.1cm 5.(2016•南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12B.24C.123D.1636.(2016•巴中)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD 的周长是()A.24B.16C.43D.237(2016•茂名)如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC 的长是()A.2B.4C.2 3D.438.(2016•成都)如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为()A.1B.2C.3D.4 9.(2016•包头)如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.3S1=2S210.(2016•扬州)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC 于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°11.(2016•绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()A.2825cm B.2120cm C.2815cm D.2521cm12.(2016•雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.A.2B.3C.4D.5二、填空题13.(2016•宿迁)如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α为------度时,两条对角线长度相等.14.(2016•淮安)若菱形的两条对角线分别为2和3,则此菱形的面积是.15.(2013•无锡)如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE的长等于.16.(2016•黔西南州)如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为.17.(2016•攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=35,BE=4,则tan ∠DBE的值是.18.(2016•南充)如图,正方形ABCD的边长为2,过点A作AE⊥AC,AE=1,连接BE,则tanE= .19.(2016•苏州)如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若1CGGB k=,则ADAB=用含k的代数式表示).20.(2016•哈尔滨)如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于E,若BC=4,△AOE的面积为5,则sin∠BOE的值为.21.(2016•北京)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.22.(2016•南京)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF= cm.23.(2016•舟山)如图,正方形ABCD的边长为3,点E,F分别在边AB、BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P所经过的路程为.24.(2016•桂林)如图,已知线段AB=10,AC=BD=2,点P是CD 上一动点,分别以AP 、PB 为边向上、向下作正方形APEF 和PHKB ,设正方形对角线的交点分别为O 1、O 2,当点P 从点C 运动到点D 时,线段O 1O 2中点G 的运动路径的长是 .25.(2016•荆州)如图,将矩形ABCD 沿对角线AC 剪开,再把△ACD 沿CA 方向平移得到△A 1C 1D 1,连结AD 1、BC 1.若∠ACB=30°,AB=1,CC 1=x ,△ACD 与△A 1C 1D 1重叠部分的面积为s ,则下列结论:①△A 1AD 1≌△CC 1B ;②当x=1时,四边形ABC 1D 1是菱形;③当x=2时,△BDD 1为等边三角形;④s=38(x -2)2 (0<x <2); 其中正确的是 (填序号).三、解答题26.(2016•南通)如图,AB=AC ,AD=AE ,DE=BC ,且∠BAD=∠CAE .求证:四边形BCDE 是矩形.26.证明:∵∠BAD=∠CAE ,∴∠BAD -∠BAC=∠CAE -∠BAC ,∴∠BAE=∠CAD ,∵在△BAE 和△CAD 中AE AD BAE CAD AB AC =⎧⎪∠=∠⎨⎪=⎩∴△BAE ≌△CAD (SAS ), ∴∠BEA=∠CDA ,BE=CD ,∵DE=BC ,∴四边形BCDE 是平行四边形,∵AE=AD ,∴∠AED=∠ADE ,∵∠BEA=∠CDA ,∴∠BED=∠CDE ,∵四边形BCDE 是平行四边形,∴BE ∥CD ,∴∠CDE+∠BED=180°,∴∠BED=∠CDE=90°,∴四边形BCDE 是矩形.27.(2016•广州)如图,四边形ABCD 是菱形,对角线AC 与BD相交于O ,AB=5,AO=4,求BD 的长.27.解:∵四边形ABCD 是菱形,对角线AC 与BD 相交于O ,∴AC ⊥BD ,DO=BO ,∵AB=5,AO=4,∴BO=2254-=3,∴BD=2BO=2×3=6.28.(2013•厦门)如图所示,在正方形ABCD 中,点G 是边BC 上任意一点,DE ⊥AG ,垂足为E ,延长DE 交AB 于点F .在线段AG 上取点H ,使得AG=DE+HG ,连接BH .求证:∠ABH=∠CDE .28.证明:如图,在正方形ABCD 中,AB=AD ,∠ABG=∠DAF=90°,∵DE ⊥AG ,∴∠2+∠EAD=90°,又∵∠1+∠EAD=90°,∴∠1=∠2,在△ABG 和△DAF 中, 1 290AB AD ABG DAF =⎧⎪=⎨⎪∠=∠=︒⎩,∴△ABG ≌△DAF (ASA ),∴AF=BG ,AG=DF ,∠AFD=∠BGA ,∵AG=DE+HG ,AG=DE+EF ,∴EF=HG ,在△AEF 和△BHG 中,AF BG AFD BGA EF HG =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BHG (SAS ),∴∠1=∠3,∴∠2=∠3,∵∠2+∠CDE=∠ADC=90°,∠3+∠ABH=∠ABC=90°,∴∠ABH=∠CDE .29.(2013•黔东南州)如图,在正方形ABCD 中,点M 是对角线BD 上的一点,过点M 作ME ∥CD 交BC 于点E ,作MF ∥BC 交CD 于点F .求证:AM=EF .29.证明:过M 点作MQ ⊥AD ,垂足为Q ,作MP 垂足AB ,垂足为P ,∵四边形ABCD 是正方形,∴四边形MFDQ 和四边形PBEM 是正方形,四边形APMQ 是矩形,∴AP=QM=DF=MF ,PM=PB=ME ,∵在△APM 和△FME 中,AP MF APM FME PM ME =⎧⎪∠=∠⎨⎪=⎩, ∴△APM ≌△FME (SAS ), ∴AM=EF .30.(2016•铁岭)如图,△ABC 中,AB=AC ,AD 是△ABC 的角平分线,点O 为AB 的中点,连接DO 并延长到点E ,使OE=OD ,连接AE ,BE .(1)求证:四边形AEBD 是矩形;(2)当△ABC 满足什么条件时,矩形AEBD 是正方形,并说明理由.30.(1)证明:∵点O 为AB 的中点,连接DO 并延长到点E ,使OE=OD ,∴四边形AEBD 是平行四边形,∵AB=AC ,AD 是△ABC 的角平分线,∴AD ⊥BC ,∴∠ADB=90°,∴平行四边形AEBD 是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC ,AD 是△ABC 的角平分线,∴AD=BD=CD ,∵由(1)得四边形AEBD 是矩形,∴矩形AEBD 是正方形.31.(2016•南宁)如图,在菱形ABCD 中,AC 为对角线,点E 、F 分别是边BC 、AD 的中点.(1)求证:△ABE ≌△CDF ;(2)若∠B=60°,AB=4,求线段AE 的长.31.解:(1)∵四边形ABCD 是菱形,∴AB=BC=AD=CD ,∠B=∠D ,∵点E 、F 分别是边BC 、AD 的中点,∴BE=DF ,在△ABE 和△CDF 中,∵AB CD B D BE DF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△CDF (SAS );(2)∵∠B=60°,∴△ABC 是等边三角形,∵点E 是边BC 的中点,∴AE ⊥BC ,在Rt △AEB 中,∠B=60°,AB=4,sin60°=4AE AE AB =, 解得AE=23.32.(2016•贵阳)已知:如图,在菱形ABCD 中,F 是BC 上任意一点,连接AF 交对角线BD 于点E ,连接EC .(1)求证:AE=EC ;(2)当∠ABC=60°,∠CEF=60°时,点F 在线段BC 上的什么位置?说明理由.32.(1)证明:如图,连接AC ,∵BD 也是菱形ABCD 的对角线,∴BD 垂直平分AC ,∴AE=EC ;(2)解:点F 是线段BC 的中点.理由如下:在菱形ABCD 中,AB=BC ,又∵∠ABC=60°,∴△ABC 是等边三角形,∴∠BAC=60°,∵AE=EC ,∠CEF=60°,∴∠EAC=12∠BAC=30°, ∴AF 是△ABC 的角平分线,∵AF 交BC 于F ,∴AF 是△ABC 的BC 边上的中线,∴点F 是线段BC 的中点.33.(2016•曲靖)如图,点E 在正方形ABCD 的边AB 上,连接DE ,过点C 作CF ⊥DE 于F ,过点A 作AG ∥CF 交DE 于点G .(1)求证:△DCF ≌△ADG .(2)若点E 是AB 的中点,设∠DCF=α,求sinα的值.33.(1)证明:在正方形ABCD 中,AD=DC ,∠ADC=90°,∵CF ⊥DE ,∴∠CFD=∠CFG=90°,35.(2016•绥化)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为22,对角线AE,DF相交于点O,连接OC.求OC的长度.35.证明:(1)∵∠BAC=90°,∠ABC=45°,线段PA绕点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E在BC同侧,连接EF,CF.(1)如图 ,当点P在CB延长线上时,求证:四边形PCFE是平行四边形;(2)如图 ,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由;(3)在(2)的条件下,四边形PCFE的面积是否有最大值?若有,请求出面积的最大值及此时BP长;若没有,请说明理由.36.解:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠PBA=90°∵在△PBA和△FBC中,AB BCPBA ABCBP BF=⎧⎪∠=∠⎨⎪=⎩,∴△PBA≌△FBC(SAS),∴PA=FC,∠PAB=∠FCB.∵PA=PE,∴PE=FC.∵∠PAB+∠APB=90°,∴∠FCB+∠APB=90°.∵∠EPA=90°,∴∠APB+∠EPA+∠FPC=180°,即∠EPC+∠PCF=180°,∴EP∥FC,∴四边形EPCF是平行四边形;(2)结论:四边形EPCF是平行四边形,∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠CBF=90°∵在△PBA和△FBC中,AB BCPBA ABCBP BF=⎧⎪∠=∠⎨⎪=⎩,∴△PBA≌△FBC(SAS),∴PA=FC,∠PAB=∠FCB.∵PA=PE,。

矩形、菱形、正方形课件

矩形、菱形、正方形课件

(3)菱形、矩形与正方形的联系:正方形的判定可简记为:菱形+矩形 =正方形,其证明思路有两个:①先证四边形是菱形,再证明它有 一个角是直角或对角线相等(即矩形);②先证四边形是矩形,再证 明它有一组邻边相等或对角线互相垂直(即菱形).
2
诊断自测
1.(2016·益阳)下列判断错误的是( D ) A.两组对边分别相等的四边形是平行四边形 B.四个内角都相等的四边形是矩形 C.四条边都相等的四边形是菱形 D.两条对角线垂直且平分的四边形是正方形 解析 两条对角线互相垂直、平分且相等的四边形才是正方形.
12345
5.(2016·聊城)如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的
点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为( A )
A.115°
B.120°
C.130°
D.140°
解析 ∵把一张矩形纸片ABCD沿EF折叠后,点A
落在CD边上的点A′处,点B落在点B′处,
D.邻边互相垂直是矩形具有的性质,菱形不一定具有.
12345
4.(2015·梧州)如图,在菱形ABCD中,∠B=60°,AB=1,延长AD到点E, 使DE=AD,延长CD到点F,使DF=CD,连接AC、CE、EF、AF,则 下列描述正确的是( B ) A.四边形 ACEF 是平行四边形,它的周长是 4 B.四边形 ACEF 是矩形,它的周长是 2+2 3 C.四边形 ACEF 是平行四边形,它的周长是 4 3 D.四边形 ACEF 是矩形,它的周长是 4+4 3
∴AC= 32+42=5,故①②④正确,③不正确.
12345
3.(2016·无锡)下列性质中,菱形具有而矩形不一定具有的是( C )
A.对角线相等

第22讲 菱形、矩形、正方形

第22讲  菱形、矩形、正方形

一半.
菱形的性质和判别
◆中考指数:★★☆☆☆
1.菱形的性质: (1)菱形的对角线将菱形分成四个全等的直角三角形,可将 菱形的问题转化为直角三角形去解决. (2)有一个内角为60°(或120°)的菱形,连结对角线可构成 等边三角形,可将菱形问题转化到等边三角形中去解决. (3)巧用菱形的对称性可解决一些求线段和最小值的问题. 2.菱形的判别的两个思路: (1)若四边形为(或可证明为)平行四边形,则再证一组邻边 相等或对角线互相垂直. (2)若相等的边较多(或容易证出)时,可证四条边相等.
形的对角线相等且互相平分.
6.(2012·盐城中考)如图,在四边形ABCD中,已知AB∥DC,AB=DC. 在不添加任何辅助线的前提下,要想该四边形成为矩形,只需再
加上的一个条件是_______.(填上你认为正确的一个答案即可)
【解析】由题知四边形ABCD为平行四边形,再根据有一角为 90°的平行四边形为矩形可得结论. 答案:∠A=90°(或∠A=∠B或∠A+∠C=180°,答案不惟一)
1.(2012·长沙中考)如图,菱形ABCD中, 对角线AC与BD相交于点O,OE∥DC且交 BC于E,AD=6 cm,则OE的长为( (A)6 cm (C)3 cm (B)4 cm (D)2 cm )
【解析】选C.由于四边形ABCD为菱形, 所以AD=AB=6 cm, OC 1 .
AC 2 由于OE∥AB,所以 OC OE , AC AB
知 识 点 睛
特 别 提 醒
当已知中出现对角线的相关条件时,常用“对角线相等且
互相垂直平分的四边形是正方形”来证.
【例3】(2012·黄冈中考)如图,在 正方形ABCD中,对角线AC,BD相交于 点O,E,F分别在OD,OC上,且DE=CF, 连结DF,AE,AE的延长线交DF于点M. 求证:AM⊥DF. 【思路点拨】正方形的性质→△AOE≌△DOF→

菱形、矩形、正方形

菱形、矩形、正方形
∠1=∠2=∠3=∠4
C
∠AOB=∠DOC=∠AOD=∠BOC =90°
∠5=∠6=∠7=∠8
等腰三角形有: △ABC △ DBC △ACD △ABD 直角三角形有:Rt△AOB Rt△BOC Rt△COD Rt△DOA
全等三角形有: Rt△AOB ≌ Rt△BOC≌ Rt△COD ≌ Rt△DOA △ABD≌△BCD △ABC≌△ACD
A
解:∵ ∴∠BAC=600 又∵ AB =B C ∴ △ BAC是等边三角形 B ∴ AC = 4cm ∴B O = 2 √ 3 ∴B D = 4√ 3 1 S AC BD= 8√ 3 2
∠BAD=1200
D O C
变式:已知菱形ABCD中,E是BC的中点,且 AE⊥BC,AB=4.
求:⑴∠ABC的度数 ⑵对角线AC的长
∴ ∠AOB=Rt∠, ∴AC⊥BD.
B
(2)∵ 四边形ABCD是平行四边形,
∵AC⊥BD ∴四边形ABCD是菱形.
例题解析:
例3、已知: ABCD的对角线AC的垂直平分线 与边AD 、BC分别交于E、F E A 求证:四边形AFCE是菱形。
O
D
分析: (1)利用定义判定 (2) 由已知可知
B
OA=OC,EF⊥AC.
X X X
(7)对角线相等,且有一个角是直角的四边形是矩形; X
(8)一组对角互补的平行四边形是矩形;
(9)对角线相等且互相垂直的四边形是矩形; (10)一组邻边垂直,一组对边平行且相等的四边形是 矩形;
例2、谁正确? 一位很有名望的木工师傅,招收了两名徒弟。一 天,师傅有事外出,两徒弟就自已在家练习用两块四 边形的废料各做了一扇矩形式的门,完事之后,两人 都说对方的门不是矩形,而自已的是矩形。 甲的理由是:“我用角尺量我的门任意三个角, 发现它们都是直角。所以我这个四边形门就是矩形” 乙的理由是:“我用直尺量这个门的两条对角线, 发现它们的长度相等,所以我这个四边形门就是矩 形”。 根据它们的对话,你能肯定谁的门一定是矩形。

第28课时 矩形、菱形、正方形

第28课时 矩形、菱形、正方形

∴△DAF≌△ABE,∴AF=BE.
全效学习中考学练测
考点管理
归类探究
易错警示
课时作业
例3答图
(2)过点A作AF∥MP交CD于点F,过点B作BE∥NQ 交AD于点E,得到▱BEQN和▱AFPM,
∴AF=MP,BE=NQ,
∵BE∥NQ,AF∥MP,MP⊥NQ, ∴BE⊥AF. 由(1)得AF=BE,∴MP=NQ.
全效学习中考学练测
考点管理
归类探究
易错警示
课时作业
∵AF∥BC,AF=BD, ∴四边形AFBD是平行四边形. ∵AB=AC,BD=CD,∴AD⊥BC. ∴∠ADB=90°.又∵四边形AFBD是平行四边形, ∴四边形AFBD是矩形.
全效学习中考学练测
考点管理
归类探究
易错警示
课时作业
[2013· 天津]如图28-7,在△ABC中,AC=BC,点 D,E分别是边AB,AC的中点,将△ADE绕点E旋转
全效学习中考学练测
考点管理
归类探究
易错警示
课时作业
∠AED=∠CFD, 在△AED 和△CFD 中,∠A=∠C, DE=DF,
∴△ADE≌△CDF(AAS).
(2)∵△ADE≌△CDF, ∴AD=CD.
∵四边形ABCD是平行四边形,
∴四边形ABCD是菱形.
全效学习中考学练测
考点管理
考点管理
归类探究
易错警示
课时作业
3 A. 2 C.1
B.3 4 D. 3
【解析】 首先利用勾股定理计算出AC的长,再根据
折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′ =AC-CD′=2,
AE=4-x,再根据勾股定理可得方程22+x2=(4-

矩形、正方形和菱形的判定方法

矩形、正方形和菱形的判定方法

FC D 一、考点分析:矩形、正方形和菱形是特殊的平行四边形,是考试中重要的考点。

二、教学目标:1. 掌握矩形、正方形和菱形的判定方法三、教学内容正方形巩固练习例题1 如图,正方形ABCD 的边长为12,点E 是BC 上的一点,BE=5,点F 是BD 上一动点.(1)AF 与FC 相等吗?试说明理由.(2)设折线EFC 的长为y ,试求y 的最小值,并说明点F 此时的位置.【解】(1)AF 与FC 相等,其理由如下:可证:△ABF ≌△CBF ,∴AF=CF(2)连接AE,则AE 与BD 的交点就是此时F 点的位置 此时y 有最小值,13=.例题2 如图,正方形ABCD 中,P 是对角线AC 上一动点,PE ⊥AB ,PF ⊥BC ,垂足分别为E 、F 小红同学发现:PD ⊥EF ,且PD=EF ,且矩形PEBF 的周长不变.不知小红的发现是否正确,请说说你的看法.【解】小红的发现是正确,其理由如下:连接BP,延长DP 交EF 于Q.(1)∵四边形ABCD 是正方形∴CB=CD,∠BCP=∠DCP=45°∴△BCP ≌△DCP ,∴PD=PB又∵PE ⊥AB ,PF ⊥BC , ∴∠BEP=∠BFP=∠EBF=90°,∴四边形BEPF 是矩形∴PB=EF,∴PD=EF(2)∵PE ⊥AB ,PF ⊥BC ,∴△AEP 和△CFP 均为等腰直角三角形∴AE=PE,CF=PF∴矩形PEBF 的周长=AB+BC=2AB (为定值)(3)∵PF ∥CD ,∴∠FPQ=∠PDC∵△BCP ≌△DCP ,∴∠PDC=∠PBF A B C D 第28题图 FE∵四边形PEBF 是矩形,∴∠PBF=∠PEF∴∠PEF=∠FPQ又∵∠PEF+∠PFE=90°,∴∠FPQ+∠PFE=90°∴∠PQF=90°,∴PD ⊥EF.【另证】延长EP 交CD 于点R,则CFPR 为正方形∴可证△PEF ≌△RDF∴∠PEF=∠PDR又∵∠DPR=∠EPQ而∠PDR+∠DPR=90°,∴∠PEF+∠EPQ=90°∴∠EQP=90°,∴PD ⊥EF.课堂练习1 如图1,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =(1)如图2,延长EF 交正方形外角平分线CP P 于点,试判断AE EP 与的大小关系,并说明理由;(2)在图2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.梯形回顾梯形性质及判断定理 梯形 一组对边平行而另一组对边不平行的四边形叫做梯形. (1)一些基本概念(如图):底、腰、高.底:平行的一组对边叫做梯形的底.(较短的底叫做上底,较长的底叫做下 底)腰:不平行的一组对边叫做梯形的腰.高:两底间的距离叫做梯形的高.直角梯形:一腰垂直于底的梯形叫做直角梯形.等腰梯形:两腰相等的梯形叫做等腰梯形.(2)等腰梯形:两腰相等的梯形叫做等腰梯形. (3)直角梯形:有一个角是直角的梯形叫做直角梯形.结论:①等腰梯形是轴对称图形,上下底的中点连线是对称轴.②等腰梯形同一底上的两个角相等.③等腰梯形的两条对角线相等.解决梯形问题常用的方法:图1A D CB E 图2 BC ED A F P F(1)“平移腰”:把梯形分成一个平行四边形和一个三角形;(2)“作高”:使两腰在两个直角三角形中(3)“平移对角线”:使两条对角线在同一个三角形中(4)“延腰”:构造具有公共角的两个等腰三角形(5)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形(图5).图1 图2 图3 图4 图5 综上所述:解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决.例1.如图,梯形ABC D中,AD∥BC,∠B=70°,∠C=40°,AD=6cm,BC=15cm.求CD的长.分析:设法把已知中所给的条件都移到一个三角形中,便可以解决问题.其方法是:平移一腰,过点A作AE∥DC交BC于E,因此四边形AECD是平行四边形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.解(略).例2 (补充)已知:如图,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB =∠ABC, BE⊥AC于E.求证:BE=C D.分析:要证BE=CD,需添加适当的辅助线,构造全等三角形,其方法是:平移一腰,过点D作DF∥AB交BC于F,因此四边形ABFD是平行四边形,则DF=AB,由已知可导出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.证明(略)另证:如图,根据题意可构造等腰梯形ABFD,证明△ABE≌△FDC即可.例3:如图 4.9-4,梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,AD=6cm,BC=15cm,求CD的长.练习1已知等腰梯形的锐角等于60°它的两底分别为15cm和49cm,求它的腰长.练习2 已知:如图4.9-5,梯形ABCD中,AD∥BC,E是AB的中点,DE⊥CE,求证:AD+BC=DC.练习3:1、填空(1)在梯形ABCD中,已知AD∥BC,∠B=50°,∠C=80°,AD=a,BC=b,,则DC= .(2)直角梯形的高为6cm,有一个角是30°,则这个梯形的两腰分别是和 .(3)等腰梯形 ABCD中,AB∥DC,A C平分∠DAB,∠DAB=60°,若梯形周长为8cm,则AD= .4,(1)求梯形2、如图4.9-6,等腰梯形ABCD中,AB=2CD,AC平分∠DAB,A B=3的各角.(2)求梯形的面积.3、(1)在梯形ABCD中,已知AD∥BC,∠B=50°,∠C=80°,AD=a,BC=b,,则DC= .(2)直角梯形的高为6cm,有一个角是30°,则这个梯形的两腰分别是和.(3)等腰梯形ABCD中,AB∥DC,A C平分∠DAB,∠DAB=60°,若梯形周长为8cm,则AD= .4.已知:如图,在等腰梯形ABCD中,A B∥CD,AB>CD,AD=BC,BD平分∠ABC,∠A=60°,梯形周长是20cm,求梯形的各边的长.(AD=DC=BC=4,AB=8)课堂小结1、梯形的定义及分类2、等腰梯形的性质:(1)具有一般梯形的性质:AD∥BC.(2)两腰相等:AB=CD.(3)两底角相等:∠B=∠C,∠A=∠D.(4)是轴对称图形,对称轴是通过上、下底中点的直线.(5)两条对角线相等:AC=BD.两条对角线的交点在对称轴上.两腰延长线的交点在对称轴上.等腰梯形的判断例2(补充)证明:对角线相等的梯形是等腰梯形.已知:如图,梯形ABCD中,对角线AC=BD.求证:梯形ABCD是等腰梯形.分析:证明本题的关键是如何利用对角线相等的条件来构造等腰三角形.在ΔABC和ΔDCB中,已有两边对应相等,要能证∠1=∠2,就可通过证ΔABC ≌ΔDCB得到AB=DC.证明:过点D作DE∥AC,交BC的延长线于点E,又AD∥BC,∴四边形ACED为平行四边形,∴DE=AC .∵ AC=BD ,∴ DE=BD ∴∠1=∠E∵∠2=∠E ,∴∠1=∠2又 AC=DB,BC=CE,∴ΔABC≌ΔDCB.∴ AB=CD.∴梯形ABCD是等腰梯形.说明:如果AC、BD交于点O,那么由∠1=∠2可得OB=OC,OA=OD ,即等腰梯形对角线相交,可以得到以交点为顶点的两个等腰三角形,这个结论虽不能直接引用,但可以为以后解题提供思路.问:能否有其他证法,引导学生作出常见辅助线,如图,作AE⊥BC,DF⊥BC,可证RtΔABC≌RtΔCAE,得∠1=∠2.例3(补充)已知:如图,点E在正方形ABCD的对角线AC上,CF⊥BE交BD 于G,F是垂足.求证:四边形ABGE是等腰梯形.分析:先证明OE=OG,从而说明∠OEG=45°,得出EG∥AB,由AE,BG延长交于O,显然EG≠AB.得出四边形ABGE是梯形,再利用同底上的两角相等得出它为等腰梯形.例4 (补充)画一等腰梯形,使它上、下底长分别4cm、12cm,高为3cm,并计算这个等腰梯形的周长和面积.分析:梯形的画图题常常通过分析,找出需添加的辅助线,归结为三角形或平行四边形的作图,然后,再根据它们之间的联系,画出所要求的梯形.如图,先算出AB长,可画等腰三角形ABE,然后完成AECD的画图.画法:①画ΔABE,使BE=12—4=8cm..②延长BE到C使EC=4cm.③分别过A、C作AD∥BC ,CD∥AE,AD、CD交于点D.四边形ABCD就是所求的等腰梯形.解:梯形ABCD周长=4+12+5×2=26cm .cm.答:梯形周长为26cm,面积为242例5:.如图4.9-4,已知等腰梯形ABCD的腰长为5cm,上、下底长分别是6cm和12cm,求梯形的面积. (方法一,过点C作CE∥AD,再作等腰三角形BCE的高CF,可知CF=4cm.然后用梯形面积公式求解;方法二,过点C和D分别作高CF、DG,可知,从而在Rt△AGD中求出高DG=4cm. )课后练习1、填空(1)在梯形ABCD中,已知AD∥BC,∠B=50°,∠C=80°,AD=a,BC=b,,则DC= .(2)直角梯形的高为6cm,有一个角是30°,则这个梯形的两腰分别是和 .(3)等腰梯形 ABCD中,AB∥DC,A C平分∠DAB,∠DAB=60°,若梯形周长为8cm,则AD= .4,(1)求梯形2、如图4.9-6,等腰梯形ABCD中,AB=2CD,AC平分∠DAB,A B=3的各角.(2)求梯形的面积.3、(1)在梯形ABCD中,已知AD∥BC,∠B=50°,∠C=80°,AD=a,BC=b,,则DC= .(2)直角梯形的高为6cm,有一个角是30°,则这个梯形的两腰分别是和.(3)等腰梯形ABCD中,AB∥DC,A C平分∠DAB,∠DAB=60°,若梯形周长为8cm,则AD= .4.已知:如图,在等腰梯形ABCD中,A B∥CD,AB>CD,AD=BC,BD平分∠ABC,∠A=60°,梯形周长是20cm,求梯形的各边的长.(AD=DC=BC=4,AB=8)。

菱形矩形正方形的判定

菱形矩形正方形的判定

问题:
判断矩形、菱形、正方形有 什么作用?
Байду номын сангаас
1、一组对边相等的四边形是平行四边形. 2、有两个角是直角的四边形是矩形.
3、有一个角是直角的菱形是正方形.
4、有一个角是60º 的平行四边形是菱形.
5、有两边相等的矩形是菱形.
6、有一组邻边相等的四边形是菱形. 7、两条对角线相等的四边形是矩形. 8、两条对角线相等的平行四边形是正方形. 9、有三个角相等的四边形是正方形.
的四边形是矩形. 的四边形是矩形.
菱形的判定 一、平行四边形 1、 2、 菱形 的平行四边形是菱形. 的平行四边形是菱形.
二、四边形
1、 2、
菱形
的四边形是菱形. 的四边形是菱形.
正方形的判定
一、矩形 二、菱形
三、平行四边形 四、四边形
正方形 正方形
正方形 正方形
特殊四边形的判定应注意层次
判断
特殊四边形的判定
正方形
矩形
菱形
平行四边形
四边形
一般到特殊的演变
矩形
有一个角 是直角
有一组 邻边相等
平行四边形
有一个角是直角 且有一组邻边相等 正方形
有一组 邻边相等
菱形
有一个 角是直角
矩形的判定 一、平行四边形 1、 2、 矩形 的平行四边形是矩形. 的平行四边形是矩形.
二、四边形
1、 2、
矩形
判断
10、一条对角线平分另一条对角线的四边形是 平行四边形.
11、两条对角线互相垂直的四边形是菱形.
12、一组对边平行、一组对角相等的四边形是 平行四边形. 13、有两条边相等的平行四边形是菱形. 14、一组对角的两边分别垂直的四边形是 平行四边形. 15、一组邻边相等、另一组邻边也相等的四边形 是菱形.

矩形、菱形的性质定理和判定定理及其证明

矩形、菱形的性质定理和判定定理及其证明

矩形、菱形和正方形的性质定理和判定定理及其证明一、知识概述1、矩形的性质定理定理1:矩形的四个角都是直角.说明:(1)矩形具有平行四边形的一切性质.(2)矩形的这一特性可用来证明两条线段互相垂直.定理2:矩形的对角线相等.说明:矩形的这一特性可用来证明两条线段相等.推论:直角三角形斜边上的中线等于斜边的一半.说明:与中位线定理及在直角三角形中,30°角所对的直角边等于斜边的一半一样,这一推论可用来证明线段之间的倍数关系.2、矩形的判定定理定理1:对角线相等的平行四边形是矩形.定理2:有三个角是直角的四边形是矩形.3、菱形的性质定理定理:菱形的四条边都相等.说明:(1)菱形具有平行四边形的一切性质,并且具有它特殊的性质.(2)利用该特性可以证明线段相等.定理2:菱形的对角线互相垂直.并且每条对角线平分一组对角.说明:根据菱形的特性可知,其对角线将它分成四个全等的直角三角形,再由直角三角形的相关性质,证明线段或角的关系,这样就将四边形问题转化为三角形问题来处理.4、菱形的判定定理定理1:对角线互相垂直的平行四边形是菱形.定理2:四条边都相等的四边形是菱形.说明:菱形的两个判定定理起点不同,一个是平行四边形,一个是四边形,判定时的条件不同,一个是对角线互相垂直,一个是四条边都相等.5、正方形的性质普通性质:正方形有四边形、平行四边形、矩形、菱形的一切性质.特有性质:(1)边:四条边都相等,邻边垂直,对边平行;(2)角:四个角都是直角;(3)对角线:①相等,②互相垂直平分,③每条对角线平分一组对角.说明:正方形这些性质根据定义可直接得出.特殊性质——正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°,正方形的两条对角线把正方形分成四个全等的等腰直角三角形.6、正方形的判定(1)判定一个四边形为正方形的主要依据是定义,途径有两种:①先证它是矩形,再证有一组邻边相等;②先证它是菱形,再证有一个角为直角.(2)判定正方形的一般顺序;①先证明是平行四边形;②再证有一组邻边相等(有一个角是直角);③最后证明有一个角是直角(有一组邻边相等).说明:证明一个四边形是正方形的方法很多,但一定注意不要缺少条件.二、重难点知识归纳1、特殊的平行四边形知识结构三、典型例题讲解例1、如图所示,M,N分别是平行四边形ABCD的对边AD,BC的中点,且AD=2AB,求证四边形PMQN为矩形.错解:连接MN.∵四边形ABCD是平行四边形,∴AD BC.又∵M,N分别为AD,BC的中点,∴AM BN.∴四边形AMNB是平行四边形.又∵AB=AD,∴AB=AM,∴口AMNB是菱形.∴AN⊥BM,∴∠MPN=90°.同理∠MQN=90°,∴四边形PMQN为矩形.分析:错在由∠MPN=∠MQN=90°,就证得四边形PMQN是矩形这一步,还需证一个角是直角或证四边形PMQN是平行四边形,证四边形PMQN是平行四边形这种方法比较好.正解:连接MN,∵四边形ABCD是平行四边形,∴AD BC.又∵DM=AD,BN=BC(线段中点定义),∴四边形BNDM为平行四边形.∴BM DN,同理AN MC.∴四边形PMQN是平行四边形.∵AM BN,∴四边形ABNM是平行四边形.又∵AD=2AB,AD=2AM,∴AB=AM,∴四边形ABNM是菱形.∴AN⊥BM,即∠MPN=90°,∴四边形PMQN是矩形.例2、如图所示,4个动点P,Q,E,F分别从正方形ABCD四个顶点同时出发,沿着AB,BC,CD,DA以同样的速度向B,C,D,A各点移动.(1)试判断四边形PQEF的形状,并证明;(2)PE是否总过某一定点?并说明理由;(3)四边形PQEF的顶点位于何处时,其面积有最大值和最小值?最大值和最小值各是多少?分析:(1)猜想四边形PQEF为正方形,先证它为菱形,再证有一直角即可;(2)此问是动态问题,紧紧抓住运动过程中的不变量,即AP CE,四边形APCE为平行四边形,易知PE与AC平分于点O;(3)此问中显然当点P,Q,E,F分别运动至与正方形ABCD各顶点重合时面积最大,分析最小值时的情形可根据S正=PE2,而PE最小时是PE⊥AB,此时PE=BC.解:(1)四边形PQEF为正方形,证明如下:在正方形ABCD中,∵AB=BC=CD=DA,AP=BQ=CE=DF,∴BP=QC=ED=FA.又∵∠BAD=∠B=∠BCD=∠D=90°,∴△AFP≌△BPQ≌△CQE≌△DEF.∴FP=PQ=QE=EF,∠APF=∠PQB,∴∠FPQ=90°.∴四边形PQEF为正方形.(2)连接AC交PE于点O.∵AP EC,∴四边形APCE为平行四边形.又∵O为对角线AC的中点,∴对角线PE总过AC的中点.(3)当P运动至与B重合时,四边形PQEF面积最大,等于原正方形面积,当PE⊥AB时,四边形PQEF的面积最小,等于原正方形面积的一半.小结:探索动态问题,解答的关键是抓住它不动的一瞬间和运动中的不变量,即动中求静,这类题目是中考的热点考题.例3、如图所示,在△ABC中,∠ACB=90°,AC=2,BC=3,D是BC边上一点,直线DE⊥BC于D,交AB于E,CF//AB,交直线DE于F,设CD=x.(1)当x取何值时,四边形EACF是菱形?请说明理由;(2)当x取何值时,四边形EACD的面积等于2?分析:本题考查菱形的判定、解直角三角形等知识的综合运用,有一定的探究性.解:(1)∵∠ACB=90°∴AC⊥BC.又∵DE⊥BC,∴EF//AC.∵AE//CF,∴四边形EACF是平行四边形.当CF=AC时,四边形ACFE是菱形.此时CF=AC=2,BD=3-x,tan B=,∴ED=BD·tan B=(3-x).∴DF=EF-ED=2-(3-x)=x.在Rt△CDF中,CD2+DF2=CF2,∴x2+(x)2=22,∴(负值不合题意,舍去).即当时,四边形ACFE是菱形.(2)由已知条件可知四边形EACD是直角梯形,例4、如图所示,在等腰梯形ABCD中,AD//BC,M、N分别是AD,BC的中点,E,F分别是BM,CM的中点.(1)求证四边形MENF是菱形;(2)若四边形MENF是正方形,请探索等腰梯形ABCD的高和底边BC的数量关系,并证明你的结论.分析:由题中条件根据三角形中位线的性质可证明四边形MENF的四边相等.当四边形MENF是正方形时,则有NE⊥MB,NF⊥MC,所以需连接MN(梯形的高)进行探究.证明:(1)∵四边形ABCD是等腰梯形,∴AB=CD,∠A=∠D.∵M为AD中点,∴AM=DM,∴△ABM≌△DCM,∴BM=CM.∵E,F,N分别为MB,MC,BC的中点,∴EN=MC,FN=MB,ME=MB,MF=MC,∴EN=FN=MF=ME,∴四边形ENFM是菱形.解:(2)结论:等腰梯形ABCD的高等于底边BC的一半.理由如下:连接MN,∵BM=CM.BN=CN,∴MN⊥BC.∵AD//BC,∴MN⊥AD,即MN为梯形ABCD的高,又∵四边形MENF是正方形,∴△BMC为等腰直角三角形,∵N为BC中点,∴MN=BC.小结:梯形的高是指端点在两底上并且与两底垂直的线段.例5、如图所示,在梯形ABCD中,AD//BC,AB=CD,M,N分别是AD,BC的中点,AC平分∠DCB,AB⊥AC,P为MN上的一个动点.若AD=3,则PD+PC的最小值为_________.分析:本题综合考查等腰梯形的性质、轴对称图形和解直角三角形等知识.由M,N为AD,BC中点可知,直线MN为等腰梯形的对称轴,故点A与点D,点B与点C关于直线MN对称.所以连接BD,交MN于点P′,则PC+PD的最小值为线段BD的长(由三角形三边的关系说明).因为AC平分∠DCB,且AD//BC,所以AD=DC=AB=3,易知∠ACB=∠DCB=30°.又∠BAC=90°,所以BC=2AB=6,因此.答案:例6、用反证法证明:一个梯形中不能有三个角是钝角.分析:要用反证法证明文字叙述的命题,需写出已知、求证,根据命题要求画出图形,再经过推理论证,得出与所学过的知识相矛盾的结论.从而否定原来的假设.如图所示,已知梯形ABCD,AD//BC.求证:∠A,∠B,∠C,∠D中不能有三个角是钝角.证明:假设∠A,∠B,∠C,∠D中有三个角是钝角,不妨设∠A>90°,∠B>90°,∠C>90°.∴∠A+∠B>180°,∠B+∠C>180°,∠A+∠C>180°.又∵AD∥BC,∴∠A+∠B=180°.∴“∠A+∠B>180°”与“∠A+∠B=180°”矛盾.∴∠A+∠B>180°不成立,即假设∠A>90°,∠B>90°不成立.∴梯形中不能有三个角是钝角.。

中考一轮复习--第21讲 矩形、菱形、正方形

中考一轮复习--第21讲 矩形、菱形、正方形

考法1
考法2
考法3
对应练1(课本习题改编)下列命题,其中是真命题的为( D )
A.一组对边平行,另一组对边相等的四边形是平行四边形
B.对角线互相垂直的四边形是菱形
C.对角线相等的四边形是矩形
D.一组邻边相等的矩形是正方形
考法1
考法2
考法3
对应练2(2019·内蒙古通辽)如图,在矩形ABCD中,AD=8,对角线
∵AD2+AB2=BD2,∴64+AB2=4AB2,
8 3
.
3
∴AB=
考法1
考法2
考法3
对应练3
(2018·甘肃白银)已知矩形ABCD中,E是AD边上一个动点,点
F,G,H分别是BC,BE,CE的中点.
(1)求证:△BGF≌△FHC;
(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.
∴OD= 2,
∴直线 l∥AC 并且到 D 的距离为 3,同理,在点 D 的另一侧还有一条
直线满足条件,
故共有 2 条符合题意的直线 l.故选 B.
考法1
考法2
考法3
矩形的性质和判定
例1(2018·合肥行知学校模拟)如图,已知▱ABCD,延长AB到E使
BE=AB,连接BD,ED,EC,若ED=AD.
AC与BD相交于点O,AE⊥BD,垂足为点E,且AE平分∠BAC,则AB的
8 3
长为 3
.
解析:∵四边形ABCD是矩形,
∴AO=CO=BO=DO,∵AE平分∠BAO,
∴∠BAE=∠EAO,且AE=AE,∠AEB=∠AEO,
∴△ABE≌△AOE(ASA),
∴AO=AB,且AO=OB,

矩形、菱形、正方形---菱形的判定

矩形、菱形、正方形---菱形的判定

§20.3.矩形、菱形、正方形----菱形的判定复习巩固1、矩形的判定定理: 从角考虑:___________________________的平行四边形是矩形。

从对角线考虑:____________________________的平行四边形是矩形。

从角考虑:____________________________的四边形是矩形。

2.矩形的性质:3.菱形的性质:4、菱形的判定方法1: 定义:有一组邻边__________的平行四边形是菱形. 几何表示:∵四边形ABCD 是平行四边形,AB=CD∴四边形ABCD 是菱形。

5、菱形的判定方法2: ________________平行四边形是菱形. 应用判定方法2时,要注意其性质包括两个条件:(1)是平行四边形;(2)两条对角线互相垂直.已知:平行四边形ABCD ,对角线AC⊥BD ,求证:四边形ABCD 是菱形证明:在ABCD 中,OB=OD∵AC ⊥BD∴∠AOB____∠AOD在△AOB 与△AOD 中,∴四边形ABCD 是菱形思考:对角线互相垂直的四边形是菱形吗?为什么?____________________________________ 画一个菱形,使它的边长为6cm 。

(草稿)通过菱形的作图,可以得到从一般四边形直接判定菱形的方法:6.菱形的判定方法3:___________的四边形是菱形.已知:四边形ABCD 中,AB=BC=CD=DA 求证:四边形ABCD 是菱形。

证明:已知:如图ABCD 的垂直平分线与边AD 、BC 分别交12(2011云南保山)如图,在平行四边形ABCD 中,点P 是对角线AC 上一点,PE ⊥AB ,PF ⊥AD ,垂足分别为E 、F ,且PE=PF ,平行四边形ABCD 是菱形吗?为什么?13.如图所示,在梯形ABCD 中,AD ∥BC ,AB=AD ,∠BAD 的平分线AE 交BC 于点E ,连接DE . (1)求证:四边形ABED 是菱形;(2)若∠ABC=60°,CE=2BE ,试判断△CDE 的形状,并说明理由.15.已知:如图,在梯形ABCD 中,AB ∥CD ,BC =CD ,AD ⊥BD ,E 为AB 中点,求证:四边形BCDE 是菱形.16. 如图,在□ABCD 中,E ,F 分别为边AB ,CD 的中点,连结DE ,BF ,BD . (1)求证:△ADE ≌△CBF .(2)若AD ⊥BD ,则四边形BFDE 是什么特殊四边形?请证明你的结论.17.(2011新疆乌鲁木齐)如图,在平行四边形ABCD 中,∠DAB =60°,AB =2AD ,点 E 、F 分别是CD 的中点,过点A 作AG ∥BD ,交CB 的延长线于点G .(1)求证:四边形DEBF 是菱形;(2)请判断四边形AGBD 是什么特殊四边形?并加以证明.18.如图,四边形ABCD 中,AB ∥CD ,AC 平分∠BAD ,CE ∥AD 交AB 于E .(1)求证:四边形AECD 是菱形;(2)若点E 是AB 的中点,试判断△ABC 的形状,并说明理由.19.如图,在四边形ABCD 中,AB =CD ,M ,N ,P ,Q 分别是AD ,BC ,BD ,AC 的中点.求证:MN 与PQ 互相垂直平分。

平行四边形;矩形,菱形,正方形的判定

平行四边形;矩形,菱形,正方形的判定

平行四边形;矩形,菱形•正方形的判定平行四边形;矩形,菱形,正方形的判定学习目标:知识与技能目标:1.拿握平行四边形、矩形、菱形、正方形的判定定理:2.能够运用判定定理进行有关的计算和证明;3.了解反证法的定义。

情感与态度目标:通过观察归纳,类比,維理,•体会数学活动中所蕴含的探索性和创造性,证明过程的严谨性和结论的确定二吏点:平行四边形、矩形、菱形、正方形判定定理三.难点:平行四边形、矩形、菱形、正方形判定在实际生活中的应用四.教学过程:(一)知识梳理:知识戌1 :平行四边形的判定(I)文字语言:方法1:两组对边分别平行的四边形是平行四边形方法2:两组对边分别相等的四边形是平行四边形方法3:—組对边平行且栢等的四边形是平行四边形方法<1 :两组对角分别相等的回边形是平行四边形方法5:对角线互相平分的四边形杲平行四边形(II)数学语言:TAB //CD, AD//BC・•・四边形ABCD是平行四边形TAB二CD, AD=BC•••四边形ABCD是平行四边形TAB〃C D, AB=CD・•・四边形ABCD是平行四边形TZABC=ZAD C, ZBAD=ZBCD・:四边形ABCD是平行四边形OA = OG OB=OD•••四边形ABCD是平行四边形知识直2:反证法(1)步骤:(1)假设命题的结论不成立(2)从这个假设出发,经推理论证,得出矛话(3)由矛JS判定假设不正确,从而青定命题的结论正确(ID说明:(1)找结论的反面要找得准确,全面(2)证题中的每一步都宴有根据,直到推出矛盾⑶雅出的矛盾有两神情况①与定义、定理、公理矛管,②与已知矛盾知识点3:矩形的判定L文字语言:方法1:有一个角是直角的平行四边形是矩形方法2:对角线相等的平行四边形是矩形平行四边形;矩形,菱形•正方形的判定方法3:有3个角是直角的四边形是矩形数学语言:方法1 :T在平行四边形ABCD中,ZA=9(T/.平行四边形A BCD是矩形方法2: I■在平行四边形ABCD中,AC = BD・•・平行四边形ABCD是矩形方法3:TZA=ZB=ZC=9 0°•••四边形ABCD是矩形知识点4:菱形的判定(I )文字语言:1.有一组邻边相等的平行四边形是菱形2.对角线互相垂宜的平行四边形是菱形3.4条边都相锌的四边形是菱形(口)数学语言:1.在平行四边形ABCD中VAB=BC•••平行四边形A BCD是菱形2.在平行四边形ABC D中TAC 丄BD.・.平行四边形ABCD是菱形3.VAB=BC=CD=DA•I四边形ABCD是菱形知识戌5:正方形的判定(I)文字语言:1 .有一组邻边相等的矩形是正方形2.有一个角是直角的菱形是正方形3.对角线相等的菱形是正方形4.对角线互相垂直的矩形是正方形(H)数学语言:1.在矩形A BCD中VAB=BC・•・矩形ABCD足正方形2.在菱形ABCD中T ZA-90 °・•・菱形ABCD是正方形3.在菱形ABCD中VAC=B D・:菱形A BCD是正方形4 .在矩形ABCD中VAC 丄BD・:矩形ABCD是正方形(二)实践探究例1.求证:一组对边平行,一组对角相等的四边形是平行四边形。

平行四边形矩形菱形正方形的判定

平行四边形矩形菱形正方形的判定

平行四边形矩形菱形正方形的判定
平行四边形、矩形、菱形、正方形都是四边形的一种,它们在几何学中有着特殊的性质和应用。

下面我们来介绍这几种四边形的判定方法。

一、平行四边形的判定
平行四边形是指两组对边分别平行的四边形。

平行四边形的判定方法如下:
方法一:如果一组对边平行且相等,则为平行四边形。

方法二:如果一组对边平行,则对边上的角相等;如果对边上的角相等,则一定是平行四边形。

二、矩形的判定
矩形是指四条边都相交于直角的四边形。

矩形的判定方法如下:
方法一:如果一组对边相等且平行,则为矩形。

方法二:如果四个角都是直角,则为矩形。

三、菱形的判定
菱形是指四个边都相等的四边形。

菱形的判定方法如下:
方法一:如果一组对边相等,则为菱形。

方法二:如果对角线相等,则为菱形。

四、正方形的判定
正方形是指四个边都相等且都是直角的四边形。

正方形的判定方法如下:
方法一:如果一组对边相等且平行,则为正方形。

方法二:如果所有边都相等且所有角都是直角,则为正方形。

以上是平行四边形、矩形、菱形、正方形的判定方法,掌握了这些方法可以帮助我们更好地理解和应用这些几何图形。

菱形、矩形、正方形

菱形、矩形、正方形

矩形、菱形、正方形、梯形一、矩形 1、矩形的定义 有一个角是直角的平行四边形叫做矩形。

2、矩形的性质 (1)矩形的对边平行且相等 (2)矩形的四个角都是直角 (3)矩形的对角线相等且互相平分 (4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形 四个顶点的距离相等) ;对称轴有两条,是对边中点连线所在的直线。

3、矩形的判定 (1)定义:有一个角是直角的平行四边形是矩形 (2)定理 1:有三个角是直角的四边形是矩形 (3)定理 2:对角线相等的平行四边形是矩形 4、矩形的面积 S 矩形=长×宽=ab 二、菱形 1、菱形的定义 有一组邻边相等的平行四边形叫做菱形 2、菱形的性质 (1)菱形的四条边相等,对边平行 (2)菱形的相邻的角互补,对角相等 (3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角 (4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形 四条边的距离相等) ;对称轴有两条,是对角线所在的直线。

3、菱形的判定 (1)定义:有一组邻边相等的平行四边形是菱形 (2)定理 1:四边都相等的四边形是菱形 (3)定理 2:对角线互相垂直的平行四边形是菱形 4、菱形的面积 S 菱形=底边长×高=两条对角线乘积的一半 三、正方形 1、正方形的定义 有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形的性质 (1)正方形四条边都相等,对边平行 (2)正方形的四个角都是直角 (3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角 (4) 正方形既是中心对称图形又是轴对称图形; 对称中心是对角线的交点; 对称轴有四条, 是对角线所在的直线和对边中点连线所在的直线。

3、正方形的判定 判定一个四边形是正方形的主要依据是定义,途径有两种: 先证它是矩形,再证它是菱形。

1先证它是菱形,再证它是矩形。

【精品课件】八年级数学下册第章矩形菱形与正方形2菱形22菱形的判定第1课时菱形的判定定理1课件新版华

【精品课件】八年级数学下册第章矩形菱形与正方形2菱形22菱形的判定第1课时菱形的判定定理1课件新版华
类型之一 利用菱形的定义判定菱形 如图,在△ABC 中,AB=AC,∠B=60°,∠FAC、∠ECA 是△ABC 的两
个外角,AD 平分∠FAC,CD 平分∠ECA.求证:四边形 ABCD 是菱形.
课件目录
首页
末页
第1课时 菱形的判定定理1
证明:∵∠B=60°,AB=AC,∴△ABC 为等边三角形, ∴AB=BC,∠ACB=∠BAC=60°,∴∠FAC=∠ACE=120°. ∵AD 平分∠FAC,CD 平分∠ECA,
课件目录
首页
末页
第1课时 菱形的判定定理1
解: (1)如答图所示,EF 为所求直线; (2)四边形 BEDF 是菱形.理由:∵EF 垂直平分 BD, ∴BE=DE,∠DEF=∠BEF.∵AD∥BC, ∴∠DEF=∠BFE,∴∠BEF=∠BFE, ∴BE=BF.又∵BF=DF,∴BE=ED=DF=BF, ∴四边形 BEDF 是菱形.
课件目录
首页
末页
第1课时 菱形的判定定理1
知 识 管 理 [学生用书P106]
菱形的判定方法
定 义:有一组邻边相等的__平__行__四___边__形___是菱形. 定理 1:四条边相等的__四___边__形___是菱形.
课件目录
首页
末页
第1课时 菱形的判定定理1
归 类 探 究 [学生用书P106]
A∠EA==C∠F,C,
∴△AED≌△CFD(ASA);
∠AED=∠CFD,
(2)由(1)得△AED≌△CFD,∴AD=DC.∵四边形 ABCD 是平行四边形,
∴四边形 ABCD 是菱形.
课件目录
首页
末页
第1课时 菱形的判定定理1
9.如图,小刚在研究矩形性质时,把两张完全相同的矩形纸片叠放在一起(矩

平行四边形、矩形、菱形、正方形知识点总结

平行四边形、矩形、菱形、正方形知识点总结

平行四边形、矩形、菱形、正方形知识点总结一.正确理解定义(1)定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.(2”表示平行四边形,例如:平行四边形记作ABCD,读作“平行四边形ABCD”.2.熟练掌握性质平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)面积:①S=底高ah;②平行四边形的对角线将四边形=⨯分成4个面积相等的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形二、.几种特殊四边形的有关概念(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:①平行四边形;②一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:①平行四边形;②一组邻边相等,两者缺一不可.(3)正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:①一组对边平行;②一组对边不平行,同时要注意和平行四边形定义的区别,还要注意腰、底、高等概念以及梯形的分类等问题.(5)等腰梯形:是一种特殊的梯形,它是两腰相等的梯形,特殊梯形还有直角梯形.2.几种特殊四边形的有关性质(1)矩形:①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条).(2)菱形:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;④对称性:轴对称图形(对角线所在直线,2条).(3)正方形:①边:四条边都相等;②角:四角相等;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450;④对称性:轴对称图形(4条).3.几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.①有一组邻边相等且有一个直角的平行四边形②有一组邻边相等的矩形;③对角线互相垂直的矩形.④有一个角是直角的菱形⑤对角线相等的菱形;(4)等腰梯形的判定:满足下列条件之一的梯形是等腰梯形①同一底两个底角相等的梯形;②对角线相等的梯形.4.几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③ 说明四边形ABCD 的三个角是直角. (2)识别菱形的常用方法① 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的任一组邻边相等.② 先说明四边形ABCD 为平行四边形,再说明对角线互相垂直. ③ 说明四边形ABCD 的四条相等. (3)识别正方形的常用方法① 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的一个角为直角且有一组邻边相等.② 先说明四边形ABCD 为平行四边形,再说明对角线互相垂直且相等. ③ 先说明四边形ABCD 为矩形,再说明矩形的一组邻边相等. ④ 先说明四边形ABCD 为菱形,再说明菱形ABCD 的一个角为直角. (4)识别等腰梯形的常用方法① 先说明四边形ABCD 为梯形,再说明两腰相等.② 先说明四边形ABCD 为梯形,再说明同一底上的两个内角相等. ③ 先说明四边形ABCD 为梯形,再说明对角线相等. 5.几种特殊四边形的面积问题① 设矩形ABCD 的两邻边长分别为a,b ,则S 矩形=ab .② 设菱形ABCD 的一边长为a ,高为h ,则S 菱形=ah ;若菱形的两对角线的长分别为a,b ,则S 菱形=12ab .③ 设正方形ABCD 的一边长为a ,则S 正方形=2a ;若正方形的对角线的长为a ,则S 正方形=212a .④ 设梯形ABCD 的上底为a ,下底为b ,高为h ,则S 梯形=1()2a b h . 平行四边形 矩形 菱形 正方形图形性质1.对边 且 ;2.对角 ; 邻角 ;3.对角线 ;1.对边 且; 2.对角 且四个角都是; 3.对角线 ;1. 对边 且四条边都 ;2.对角 ;3.对角线 且每条对角线;1.对边 且四条边都 ;2.对角 且四个角都是 ;3.对角线 且每条对角线 ;面积。

数学菱形判定知识点总结

数学菱形判定知识点总结

数学菱形判定知识点总结一、菱形的定义菱形是一种特殊的四边形,它具有以下特点:1. 四边相等:菱形的四条边长度相等。

2. 对角线相等:菱形的对角线长度相等。

3. 对角线垂直:菱形的对角线互相垂直。

4. 相邻角互补:菱形的相邻角互补,即相邻的两个角的和为180°。

二、菱形的判定方法1. 利用对角线判定菱形:如果一个四边形的对角线相等,则这个四边形是菱形;即AC=BD,则ABCD为菱形。

2. 利用边长判定菱形:如果一个四边形的四边相等,则这个四边形是菱形;即AB=BC=CD=DA,则ABCD为菱形。

3. 利用角度判定菱形:如果一个四边形的相邻角互补且对角线相等,则这个四边形是菱形;即∠A+∠B=∠B+∠C=∠C+∠D=∠D+∠A=180°,并且AC=BD,则ABCD为菱形。

三、菱形的性质1. 对角线垂直:菱形的对角线互相垂直;即AC⊥BD。

2. 对角线平分:菱形的对角线互相平分;即AC=BD。

3. 角性质:菱形的内角为90°;即∠A=∠B=∠C=∠D=90°。

4. 边长性质:菱形的四边相等;即AB=BC=CD=DA。

四、菱形的应用1. 解题方法:在解题过程中,如果遇到了菱形的相关问题,可以根据菱形的判定方法和性质来解答。

通过判定四边形是否满足菱形的条件,再根据菱形的性质进行推理和计算,从而得出答案。

2. 几何证明:在几何证明中,菱形的性质和判定方法经常被应用。

可以利用菱形的对角线垂直、对角线平分等性质,来推导出与菱形相关的定理和结论。

3. 建模应用:菱形作为一种特殊的几何图形,在建模过程中也有着特殊的应用。

例如在建筑、设计等领域中,可以利用菱形的性质和特点来构建特定的结构和图案。

五、拓展延伸菱形是一种特殊的四边形,它的性质和应用涉及到了数学的多个知识点。

在学习菱形的基础上,可以进一步拓展延伸相关的数学知识,例如平行四边形、矩形、正方形等特殊的四边形,从而更好地理解和运用几何知识。

初中平行四边形、菱形、矩形、正方形的判定及性质

初中平行四边形、菱形、矩形、正方形的判定及性质

一、平行四边形的判定:1. 两组对边分别平行的四边形是平行四边形;2. 两组对边分别相等的四边形是平行四边形;3. 两组对角分别相等的四边形是平行四边形;4. 对角线互相平分的四边形是平行四边形;5. 一组对边平行且相等的四边形是平行四边形;6.一组对边平行一组对角相等的四边形是平行四边形。

二、平行四边形的性质:1. 平行四边形对边平行且相等;2. 平行四边形两条对角线互相平分;3. 平行四边形的对角相等,邻角互补;4. 平行四边形是中心对称图形,对称中心是两条对角线的交点;5. 过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形;6. 平行四边形对角线把平行四边形面积分成四个全等三角形;7. 平行四边形的面积等于底乘高或对角线积的一半。

三、菱形的判定:1. 一组邻边相等的平行四边形是菱形;2. 四条边都相等的四边形是菱形;3. 对角线互相垂直的平行四边形是菱形;4. 对角线互相垂直平分的四边形是菱形。

四、菱形的性质:1. 菱形具备平行四边形的一切性质;2. 对角线互相垂直且平分;3. 四条边都相等;4. 每条对角线平分一组对角;5. 菱形是轴对称图形,对称轴是两条对角线。

五、矩形的判定:1. 有一个角是直角的平行四边形是矩形;2. 有三个角是直角的四边形是矩形;3. 四个角相等的四边形是矩形4. 对角线相等的平行四边形是矩形;5. 一组对角互补的平行四边形是矩形;6. 对角线互相平分且有一个内角是直角的四边形是矩形。

六、矩形的性质:1. 矩形具备平行四边形的一切性质;2. 矩形对角线相等;3. 矩形的四个内角都是90°;4. 矩形既是轴对称图形,也是中心对称图形。

七、正方形的判定:1. 有一个角是直角的菱形是正方形;2. 对角线相等的菱形是正方形;3. 有一组邻边相等的矩形是正方形;4. 对角线互相垂直的矩形是正方形;5. 四边相等,有一个角是直角的平行四边形是正方形;6. 一组邻边相等,有一个角是直角的平行四边形是正方形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,、考点分析:矩形、正方形和菱形是特殊的平行四边形,是考试中重 要的考点。

二、教学目标:1.掌握矩形、正方形和菱形的判定方法三、教学内容 正方形巩固练习例题1如图,正方形ABCD 勺边长为12,点E 是BC 上的一点,BE=5,点F 是BD 上一动点•( 1) AF 与FC 相等吗?试说明理由.(2)设折线EFC 的长为y ,试求 y 的最小值,并说明点F 此时的位置.【解】(1) AF 与FC 相等,其理由如下: 可证:△ ABF ^△ CBF 二 AF=CF(2)连接AE,则AE 与BD 的交点就是此时F 点的位置 此时y 有最小值,最小值为.122 52 =13.例题2 如图,正方形ABCD 中, P 是对角线AC 上一动点,PEIAB PF ⊥ BC 垂 足分别为 E 、F 小红同学发现:PD ⊥ EF ,且PD=EF 且矩形 PEBF 的周长不 变•不知小红的发现是否正确,请说说你的看法. 【解】小红的发现是正确,其理由如下:D第28题图连接BP,延长DP交EF于Q.(1):四边形ABCD是正方形∙∙∙ CB=CD∠ BCP∠ DCP=45•••△ BCP^△DCP ∙∙∙ PD=PB又∙∙∙PEIAB PF⊥ BC,∙∙∙∠ BEP=/ BFP=Z EBF=90 ,二四边形BEPF是矩形∙∙∙PB=EF,∙∙∙ PD=EF(2):PEIAB PF⊥ BC •••△ AEP^n△ CFP^均为等腰直角三角形∙∙∙ AE=PE,CF=PF•••矩形PEBF的周长=AB+BC=2AB为定值)(3):PF// CD ∙∙∙∠ FPQ∠ PDC•••△ BCP^△ DCP ∙∠PDC∠ PBF•••四边形PEBF是矩形,∙∠PBF=/ PEF∙∠PEF=Z FPQ又τ∠ PEF+∠ PFE=90 , ∙∠ FPQ∠ PFE=90∙∠PQF=90 ,∙∙∙ PDL EF.【另证】延长EP交CD于点R,则CFPF为正方形∙可证△ PEF^△ RDF∙∠PEF=Z PDR又τ∠ DPR∠ EPQ而∠ PDR∠ DPR=90 ,∙∠ PEF+∠ EPQ=90∙∠EQP=90°,∙∙∙ PD L EF.课堂练习1如图1,在边长为5的正方形ABCD中,点E、F分别是BC、DC边上的点,且AE — EF, BE =2(1)如图2 ,延长EF交正方形外角平分线CP于点P ,试判断AE与EP的大小关系,并说明理由;(2)在图2的AB边上是否存在一点M ,使得四边形DMEP是平行四边形? 若存在,请给予证明;若不存在,请说明理由•梯形图1 图2回顾梯形性质及判断定理梯形一组对边平行而另一组对边不平行的四边形叫做梯形.(1) 一些基本概念(如图):底、腰、高.底:平行的一组对边叫做梯形的底•(较短的底叫做上底,较长的底叫做下底)腰:不平行的一组对边叫做梯形的腰•高:两底间的距离叫做梯形的高•直角梯形:一腰垂直于底的梯形叫做直角梯形• 等腰梯形:两腰相等的梯形叫做等腰梯形•(2)等腰梯形:两腰相等的梯形叫做等腰梯形.3)直角梯形:有一个角是直角的梯形叫做直角梯形.结论:①等腰梯形是轴对称图形,上下底的中点连线是对称轴.②等腰梯形同一底上的两个角相等.③等腰梯形的两条对角线相等.解决梯形问题常用的方法:(1)“平移腰;:把梯形分成一个平行四边形和一个三角形;(2)“作高”:使两腰在两个直角三角形中(3)“平移对角线”:使两条对角线在同一个三角形中(4)“延腰”:构造具有公共角的两个等腰三角形(5)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形(图5).图3 图4 图5 综上所述:解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决•例 1 •如图,梯形ABC D 中,AD // BC,∠ B=70° ,∠ C=40°, AD=6cm , BC=15cm .求CD 的长.分析:设法把已知中所给的条件都移到一个三角形中,便可以解决问题•其方法是:平移一腰,过点A作AE // DC交BC于E,因此四边形AECD是平行四边形,由已知又可以得到△ ABE是等腰三角形(EA=EB ),因此CD=EA=EB=BC —EC=BC—AD=9cm .解(略).例2 (补充)已知:如图,在梯形ABCD中,AD // BC,∠ D = 90°,∠ CAB =∠ ABC , BE ⊥AC 于E.求证:BE = CD .分析:要证BE=CD需添加适当的辅助线,构造全等三角形,其方法是:平移一腰,过点D作DF// AB交BC于F,因此四边形ABFD是平行四边形,则DF=AB由已知可导出∠ DFC∠ BAE因此Rt△ ABE^Rt△ FDC( AAS ,故可得出BE=CD 证明(略)另证:如图,根据题意可构造等腰梯形ABFD证明△ ABE^△ FDC即可.A D例 3:如图 4.9-4 ,梯形 ABCD 中,AD// BC, ∠ B=70°,∠ C=40° , AD=6cr pBC=15cm 求 CD 的长.练习1已知等腰梯形的锐角等于60°它的两底分别为15cm 和49Cm 求它的腰长.练习2已知:如图4.9-5 ,梯形ABCD 中 AD// BC E 是AB 的中点,DEL CE,求证:AD+BC=DC.练习3:1、填空(1) 在梯形 ABCD 中,已知 AD // BC ,∠ B=50 °,∠ C=80° , AD=a , BC=b ,,则8cm ,则 AD= 2、如图4.9-6,等腰梯形 ABCD 中,AB=2CD , AC 平分∠ DAB , A B = 4 3 , ( 1)求梯形 的各角•( 2)求梯形的面积.3、 ( 1)在梯形 ABCD 中,已知 AD // BC ,∠ B=50 °,∠ C=80 ° , AD=a , BC=b ,,则 DC= _.(2) 直角 梯形的高为6cm ,有一个角是30°,则这个梯形的两腰分别是 _和_.DC=(2) 直角梯形的高为 6cm ,有一个角(3) 等腰梯形 ABCD 中,AB // DC , 是30°,则这个梯形的两腰分别是A C 平分∠ DAB , / DAB=60 °札 Dfl(3)等腰梯形ABCD中,AB // DC , A C平分∠ DAB , ∠ DAB=6 0°,若梯形周长为8cm ,贝U AD= __ .4. 已知:如图,在等腰梯形ABCD中,AB // CD , AB > CD , AD=BC , BD平分∠ ABC ,∠ A=60°,梯形周长是20cm ,求梯形的各边的长. (AD=DC=BC=4 , AB=8 )课堂小结1、梯形的定义及分类2、等腰梯形的性质:(1)具有一般梯形的性质:AD// BC.(2)两腰相等:AB=CD.(3)两底角相等:∠ B=∠ C,∠ A=∠ D.(4)是轴对称图形,对称轴是通过上、下底中点的直线.(5)两条对角线相等:AC=BD.两条对角线的交点在对称轴上.两腰延长线的交点在对称轴上.等腰梯形的判断例2 (补充)证明:对角线相等的梯形是等腰梯形.已知:如图,梯形ABCD中 ,对角线AC=BD求证:梯形ABCt是等腰梯形.V AC=BD , ∙∙∙ DE=BD 二 ∠ 1=∠ E V ∠ 2=∠ E ,∙∙∙ ∠ 仁∠ 2又 AC=DB BC=CE 二 Δ ABC^ Δ DCB 二 AB=CD•••梯形ABCD 是等腰梯形.说明:如果AC BD 交于点0,那么由∠ 1 = ∠ 2可得OB=OCoA=OD 即等腰 梯形对角线相交,可以得到以交点为顶点的两个等腰三角形,这个结论虽 不能直接引用,但可以为以后解题提供思路.问:能否有其他证法,引导学生作出常见辅助线,如图,作AEI Bq DF ⊥ Bq可证Rt Δ ABC^Rt Δ CAE 得∠ 1=∠ 2.例3 (补充) 已知:如图,点 E 在正方形ABCD 勺对角线 AC 上,CF ⊥BE 交BD 于G, F 是垂足.求证:四边形 ABGE 是等腰梯形.分析:先证明Om OG 从而说明∠ OEGF 45° ,得出EG// AB,由AE BG 延 长交于O,显然EG≠AB 得出四边形ABGE 是梯形,再利用同底 上的两角相等 得出它为等腰梯形.DE=AC.又DV ,例4 (补充)画一等腰梯形,使它上、下底长分别4cm 12Cm高为3cm并计算这个等腰梯形的周长和面积•分析:梯形的画图题常常通过分析,找出需添加的辅助线,归结为三角形或平行四边形的作图,然后,再根据它们之间的联系,画出所要求的梯形.如图,先算出AB长,可画等腰三角形ABE然后完成口AECD勺画图.画法:①画Δ ABE使BE=I —4=8Cm屈"二』4币二曲.②延长BE到C使EC=4cm.③分别过A C作AD// BC,CD// AE AD CD交于点D.四边形ABCDt是所求的等腰梯形.解:梯形ABCD周长F 4+ 12+ 5×2 = 26cm .1 2(4 3 =24C m.S梯形ABCD ■22答:梯形周长为26Cm面积为24cm.例5:.如图4.9-4 ,已知等腰梯形ABCD勺腰长为5cm上、下底长分别是6cm 和12Cm求梯形的面积.(方法一,过点C作CEl AD,再作等腰三角形BCE的高CF,可知CF=4cm然后用梯形面积公式求解;方法二,过点C和D分AG = B^ = - (A£ -Cn) = 3别作高CF DG可知二•,从而在Rt△ AGD中求出高DG=4cm.)图4,9-4课后练习1、填空(1)在梯形ABCD 中,已知AD // BC, ∠ B=50 ° , ∠ C=80 ° , AD=a , BC=b ,,则DC= ___(2)直角梯形的高为6cm ,有一个角是30°,则这个梯形的两腰分别是 _和_.(3)等腰梯形ABCD中,AB // DC , A C平分∠ DAB , ∠ DAB=60 ° ,若梯形周长为8cm ,贝U AD= —I2、如图4.9-6 ,等腰梯形ABCD 中,AB=2CD , AC 平分∠ DAB , A B = 4-3, ( 1)求梯形的各角.(2)求梯形的面积.3、(1)在梯形ABCD 中,已知AD // BC , ∠ B=50 ° , ∠ C=80 ° , AD=a , BC=b ,,则DC= ___(2)直角梯形的高为6cm ,有一个角是30°,则这个梯形的两腰分别是—和—.(3)等腰梯形ABCD中,AB // DC, A C平分∠ DAB , ∠ DAB=6 0 °,若梯形周长为8cm ,贝U AD= ___4. 已知:如图,在等腰梯形ABCD中,AB // CD , AB > CD , AD=BC , BD平分∠ ABC ,∠ A=60°,梯形周长是20cm ,求梯形的各边的长. (AD=DC=BC=4 , AB=8 )。

相关文档
最新文档