2016年考研数学高数基础知识(吐血推荐)

合集下载

2016考研数学怎么复习_考研数学各知识点复习资料.

2016考研数学怎么复习_考研数学各知识点复习资料.

2016考研数学怎么复习_考研数学各知识点复习资料2016考研数学复习资料——向量与线性方程组部分复习建议向量与线性方程组是整个线性代数部分的核心内容。

相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节,而其后两章特征值和特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。

向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。

复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。

这部分的重要考点一是线性方程组所具有的两种形式——矩阵形式和向量形式;二是线性方程组与向量以及其它章节的各种内在联系。

(1齐次线性方程组与向量线性相关、无关的联系齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立——印证了向量部分的一条性质“零向量可由任何向量线性表示”。

齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。

当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关、无关的定义也正是由这个等式出发的。

故向量与线性方程组在此又产生了联系——齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。

可以设想线性相关、无关的概念就是为了更好地讨论线性方程组问题而提出的。

(2齐次线性方程组的解与秩和极大无关组的联系同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。

秩的定义是“极大线性无关组中的向量个数”。

经过“秩→线性相关、无关→线性方程组解的判定”的逻辑链条,就可以判定列向量组线性相关时,齐次线性方程组有非零解,且齐次线性方程组的解向量可以通过r个线性无关的解向量(基础解系线性表示。

(3非齐次线性方程组与线性表出的联系非齐次线性方程组是否有解对应于向量是否可由列向量组线性表示,使等式成立的一组数就是非齐次线性方程组的解。

2016考研数学高等数学复习重点

2016考研数学高等数学复习重点

2016考研数学高等数学复习重点考研数学如何取得高分?以下老师为各位同学整理了提高考研数学成绩的三个技巧,供大家参考,希望能对大家复习备考有帮助!考研数学复习是建立在对基本的东西很深刻的理解的基础上的,单纯多做题可能会多见识一些题型,但对于一些很灵活有新意的题目就可能无法应对,这和点石成金的故事是一样的道理。

而这种能力的培养却来自于老老实实地将基础打牢,这一点上要摒弃那种急功近利的想法,不论是考研还是成就一番事业,要想成功,首先要沉得住气,有一个长远的打算,而不是做一天算一天,同时要善于控制事情发展的节奏,不论太快抑或太慢都不好,你都得去考虑为什么会这样,怎样去解决。

一个人不论处于顺风还是逆风,都要学会不断的去跟自己出难题,不断地去反省自己,自己主动把握自己的命运,他才能最后成功。

在忙碌的考研复习中,或许你正在忙于大量的复习知识,或许你已投入无尽的题海,或许你还在为一道道题而苦恼,或许你还在因为复习不见成效而沮丧。

但是,不知忙于埋头复习的你有没有发现,不是你的能力不够强,而是你对如何复习还不熟练。

我们的最终目的是提高复习效果,提高复习效果的途径大致可以分为两种:一是调整数学整体的素质和能力,更好的驾驭考研;二是理解复习的每一个环节,掌握复习方法,将自己已有的潜能和水平发挥到极致。

第一章函数、极限与连续部分。

本部分的重点内容是极限,前后交叉的地方多,综合性强。

而求极限是考研数学的一个基本题型,也是对考生基本运算能力的考查,广大考生一定要对求极限的基本方法和运算思路有一个整体的把握。

第一章当中除了求极限之外,还有无穷小的比较、等价无穷小等也都是往年考查的重点,希望大家在复习当中予以关注。

另外,关于函数间断点类型的判断,也是考查比较频繁的知识点,大家在复习当中要引起重视。

第二章一元函数微分学。

这部分考生一定要注意导数的定义,理解导数的几何意义和物理意义,包括导数概念的一些充要条件要很清楚。

在一元函数微分学当中还有导数的计算和应用,导数的计算相对来说比较简单,大家对于导数的计算只要有足够的耐心和细心,就不会出问题;导数的应用是一个比较大的内容,函数的单调性、凹凸性、极值、拐点以及不等式的证明、方程根的应用都会在这块内容中出题,这是本章的重点和难点。

2016考研数学:高数重要定理汇总

2016考研数学:高数重要定理汇总

2016考研数学:高数重要定理汇总导数与微分1、导数存在的充分必要条件函数f(x)在点x0处可导的充分必要条件是在点x0处的左极限lim(h→-0)[f(x0+h)-f(x0)]/h及右极限lim(h→+0)[f(x0+h)-f(x0)]/h都存在且相等,即左导数f-′(x0)右导数f+′(x0)存在相等。

2、函数f(x)在点x0处可导=>函数在该点处连续;函数f(x)在点x0处连续≠>在该点可导。

即函数在某点连续是函数在该点可导的必要条件而不是充分条件。

3、原函数可导则反函数也可导,且反函数的导数是原函数导数的倒数。

4、函数f(x)在点x0处可微=>函数在该点处可导;函数f(x)在点x0处可微的充分必要条件是函数在该点处可导。

函数与极限1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。

函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。

2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。

定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。

如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。

定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。

3、函数的极限函数极限的定义中0定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A0(或f(x)>0),反之也成立。

2016考研数学:不得不背的8个高等数学概念

2016考研数学:不得不背的8个高等数学概念

2016考研数学:不得不背的8个高等数学概念2015考研进入冲刺阶段,鉴于今年的考研数学大纲较往年而言没有变动,所以大家在复习高数时对其重难点的复习有所侧重,下面列出了高数的重难点,希望大家在掌握重难点概念的同时在习题上也加大练习。

1、函数极限连续①正确理解函数的概念,了解函数的奇偶性、单调性、周期性和有界性,理解复合函数、反函数及隐函数的概念。

②理解极限的概念,理解函数左、右极限的概念以及极限存在与左右极限之间的关系。

掌握利用两个重要极限求极限的方法。

理解无穷小、无穷大以及无穷小阶的概念,会用等价无穷小求极限。

③理解函数连续性的概念,会判别函数间断点的类型。

了解初等函数的连续性和闭区间上连续函数的性质(最大值、最小值定理和介值定理),并会应用这些性质。

重点是数列极限与函数极限的概念,两个重要的极限:limsinx/x=1,lim(1+1/x)=e,连续函数的概念及闭区间上连续函数的性质。

难点是分段函,复合函数,极限的概念及用定义证明极限的等式。

2、一元函数微分学①理解导数和微分的概念,导数的几何意义,会求平面曲线的切线方程,理解函数可导性与连续性之间的关系。

②掌握导数的四则运算法则和一阶微分的形式不变性。

了解高阶导数的概念,会求简单函数的n阶导数,分段函数的一阶、二阶导数。

会求隐函数和由参数方程所确定的函数的一阶、二阶导数及反函数的导数。

③理解并会用罗尔中值定理,拉格朗日中值定理,了解并会用柯西中值定理。

④理解函数极值的概念,掌握函数最大值和最小值的求法及简单应用,会用导数判断函数的凹凸性和拐点,会求函数图形水平铅直和斜渐近线。

⑤了解曲率和曲率半径的概念,会计算曲率和曲率半径及两曲线的交角。

⑥掌握用罗必塔法则求未定式极限的方法,重点是导数和微分的概念,平面曲线的切线和法线方程函数的可导性与连续性之间的关系,一阶微分形式的不变性,分段函数的导数。

罗必塔法则函数的极值和最大值、最小值的概念及其求法,函数的凹凸性判别和拐点的求法。

2016年考研数学一各题考点分析

2016年考研数学一各题考点分析

2016年考研数学一各题考点分析一、选择题部分:前四题是高等数学部分,第1题是关于一元函数积分学中的反常积分判别收敛问题,这部分是要求我们会计算反常积分和判别其收敛性的。

第2题是有关原函数的问题,这部分是要知道原函数的概念的,别切要求我们知道哪些函数一定有原函数(连续函数),哪些函数一定没有原函数的(含有可去、跳跃、无穷间断点的函数)。

第3题是有关一阶微分方程解的性质的问题,关于常微分方程问题是我们常考的内容,在考试前我们已经做了大量的相关练习,因此这块内容相信同学们已经比较了解,做的也应该不错。

第4题是我们高等数学上册第一章节间断点的知识点。

关于间断点这一块,我们知道,它是常考内容,作为小题,其考察的也比较频繁的。

对于这一块内容,我们在找间断点前,首先要考虑的就是其间断点的嫌疑点问题,一是其无定义的点,一定是间断点,二是分段函数的分段点(有可能是间断点)。

选择题的5、6两题是线性代数部分的:第5题,是有关矩阵相似的问题,这题我们利用相似定义很快便可得出答案选C,关于矩阵相似的问题我们已经做过很多练习了,相对而言本题还是容易判别的。

第6题是关于二次型与空间解析几何中的双叶双曲面结合起来的。

其实对于这一部分数一单一的内容,我们在暑假的时候的二阶强化课讲义上就有类似的题,我们是要求考数一的同学一定要注意这些小的边角问题的。

记的在考前一周时,有数一的同学还特地问了我关于空间解析几何会考哪些东西,会与线代怎么结合,我是说了有关双曲面的问题的。

后面7、8两题是关于概率统计的:第7题是关于正态分布的题,这一题与我们之前做练习时所讲的题型,其实是没什么区别的,因此这题应该会做的,主要考察正态分布的知识内容。

第8题是关于相关系数的内容,此题的灵活性是比较大的,与10年考的拿到大题是差不多的,所以同学们在做这题时可能会有些难度。

关于数字特征这一章节我们讲的也比较多了,也讲了其也可能会与分布函数问题结合处大题的。

二、填空题部分:前四题是高数部分的内容,第9题是和往年差不多,也是考查了极限的计算问题,其是与变限积分相结合的,这里就要求同学们要掌握变限积分的求导方法,带有变限积分问题的极限往往要用洛必达法则来求解。

2016考研数学:高数中的难点

2016考研数学:高数中的难点

2016考研数学:高数中的难点高等数学是考研数学的重中之重,所占的比重较大,在数学一、三中占56%,数学二中占78%,重点难点较多。

在这一阶段的主要目标是针对高数中的重点考点做强化复习,对一般难度和常见题型要做到熟练掌握。

为了帮助提高大家高效复习,本文为大家梳理了考研数学的难重点,希望大家不要盲目复习。

1.函数、极限与连续。

求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。

这一部分更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,复习的关键是要对这些概念有本质的理解,在此基础上找习题强化。

2.一元函数微分学。

求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。

3.一元函数积分学。

计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。

这一部分主要以计算应用题出现,只需多加练习即可。

4.向量代数和空间解析几何。

计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。

这一部分的难度在考研数学中应该是相对简单的,找辅导书上的习题练习,需要做到快速正确的求解。

考研数学之高等数学讲义第一章(考点知识点概念定理总结)

考研数学之高等数学讲义第一章(考点知识点概念定理总结)

高等数学讲义目录第一章函数、极限、连续 (1)第二章一元函数微分学 (24)第三章一元函数积分学 (49)第四章常微分方程 (70)第五章向量代数与空间解析几何 (82)第六章多元函数微分学 (92)第七章多元函数积分学 (107)第八章无穷级数(数一和数三) (129)第一章 函数、极限、连续§1.1 函数(甲) 内容要点一、函数的概念1.函数的定义 2.分段函数3.反函数 4.隐函数二、基本初等函数的概念、性质和图象三、复合函数与初等函数四、考研数学中常出现的非初等函数1.用极限表示的函数(1) )(lim x f y n n ∞→= (2) ),(lim x t f y xt →= 2.用变上、下限积分表示的函数(1) ⎰=x a dt t f y )( 其中)(t f 连续,则)(x f dx dy = (2) ⎰=)()(21)(x x dt t f y ϕϕ 其中)(),(21x x ϕϕ可导,)(t f 连续, 则2211[()]()[()]()dy f x x f x x dxϕϕϕϕ''=- 五、函数的几种性质1. 有界性:设函数)(x f y =在X 内有定义,若存在正数M ,使X x ∈都有M x f ≤)(,则称)(x f 在X 上是有界的。

2. 奇偶性:设区间X 关于原点对称,若对X x ∈,都有)()(x f x f -=-,则称)(x f 在X 上是奇函数。

若对X x ∈,都有()()f x f x -=,则称)(x f 在X 上是偶函数,奇函数的图象关于原点对称;偶函数图象关于y 轴对称。

3. 单调性:设)(x f 在X 上有定义,若对任意X x X x ∈∈21,,21x x <都有)()(21x f x f <)]()([21x f x f >则称)(x f 在X 上是单调增加的[单调减少的];若对任意1x X ∈,2,x X ∈12x x <都有1212()()[()()]f x f x f x f x ≤≥,则称)(x f 在X 上是单调不减[单调不增](注意:有些书上把这里单调增加称为严格单调增加;把这里单调不减称为单调增加。

2016考研数学:数学三知识点归纳

2016考研数学:数学三知识点归纳

2016考研数学:数学三知识点归纳大家在做近几年的考研数学真题的时候要注意,发现自己的薄弱环节,抓紧时间补上才是最后提分关键。

从考研数学题目来看,虽然千变万化,有各种延伸或变式,数学三的考查都是常规题型与常考知识点的再现。

接下来凯程考研小编就考研数学三常考知识点做了整理归纳,希望对大家有所帮助!1.曲线的渐近线;2.某点处的高阶导数;3.化极坐标系下的二次积分为直角坐标系下的二次积分;4.数项级数敛散性的判定;5.向量组的线性相关性;6.初等变换与初等矩阵;7.二维均匀分布;8.统计量的常见分布;9.未定式的极限;10.分段函数的复合函数的导数;11.二元函数全微分的定义;12.平面图形的面积;13.初等变换、伴随矩阵、抽象行列式的计算;14.随机事件的概率;15.未定式的极限;16.无界区域上的二重积分;17.多元函数微分学的经济应用,条件极值;18.函数不等式的证明;19.微分方程、变限积分函数、拐点;20.含参数的方程组;21.利用正交变换化二次型为标准形;22.二维离散型随机变量的概率、数字特征;23.二维常见分布的随机变量函数的分布、数字特征所谓思维定势,就是按照积累的思维活动经验教训和已有的思维规律,在反复使用中所形成的比较稳定的、定型化了的思维思维定势路线、方式、程序、模式。

第一部分《高数解题的四种思维定势》1.在题设条件中给出一个函数f(x)二阶和二阶以上可导,"不管三七二十一",把f(x)在指定点展成泰勒公式再说。

2.在题设条件或欲证结论中有定积分表达式时,则"不管三七二十一"先用积分中值定理对该积分式处理一下再说。

3.在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则"不管三七二十一"先用拉格朗日中值定理处理一下再说。

4.对定限或变限积分,若被积函数或其主要部分为复合函数,则"不管三七二十一"先做变量替换使之成为简单形式f(u)再说。

2016考研数学大纲解析及复习重点--函数、极限、连续

2016考研数学大纲解析及复习重点--函数、极限、连续

2016考研数学大纲解析及复习重点--函数、极限、连续9月18日这个在中国历史上成为转折点的一天,同样也为2016年参加考研的同学带来了重磅消息—2016年考研大纲正式发布,下面凯程教育数学教研室赵睿老师就按章节来分析大纲的要求以及复习该章节的重点:一、大纲要求:函数、极限、连续1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、复习重点本部分重点是极限,前后内容交叉多,综合性强,主要有两个出题点,一个是计算极限,一个是对极限的定义的考查。

主要求极限的方法有:利用极限的四则运算法则、幂指函数运算、连续函数代入法利用两个重要极限求极限利用洛必达法则利用等价无穷小极限存在准则:夹逼准则,单调有界准则利用左右极限求分段函数分段点利用导数定义利用定积分定义利用泰勒公式求极限通过与2015年的数学一大纲比较,今年没有做任何调整,同学们按照原计划复习,夯实基础,把握重点,重视总结、归纳解题思路、方法和技巧,提高解题计算能力必能在2016的考试中创造辉煌。

最后祝同学们,金榜题名。

2016考研数学考试大纲对比—高等数学(数二)大家翘首以待的2016年考研数学大纲终于出炉,凯程教育数学教研室第一时间为各位考生权威、详尽解析大纲变化、预测命题趋势,从而有的放矢地提供备考指导,以帮助同学们快速了解、把握今年的考试方向、复习重点,选择适合的复习方法和策略,以利于同学们在今后复习中,高效学习,取得好成绩。

考研高数知识点总结

考研高数知识点总结

考研高数知识点总结高等数学是考研数学中的重要一部分,对于考研学生来说,掌握高等数学的知识点是非常重要的。

下面是对高等数学知识点的总结,希望对考研学生有所帮助。

一、函数与极限1. 函数的概念:函数的定义域、值域和图像2. 函数的性质:奇偶性、周期性等3. 极限的概念:数列极限和函数极限4. 极限的性质:极限的四则运算、夹逼定理等5. 单调性与有界性:单调递增、单调递减、有界二、导数与微分1. 导数的概念:导数的定义、几何意义、物理意义2. 导数的运算法则:加法减法法则、乘法法则、复合函数法则等3. 高阶导数与隐函数求导4. 微分与微分近似三、高阶导数与泰勒公式1. 高阶导数的定义与运算法则2. 泰勒展开式与泰勒公式四、不定积分与定积分1. 不定积分的概念与运算法则2. 反常积分:可积性、柯西准则、比较判别法等3. 定积分的概念与性质:函数积分的线性性、可加性、区间可加性等4. 牛顿-莱布尼茨公式与定积分的应用五、多元函数与偏导数1. 多元函数的定义与性质:定义域、值域、图像等2. 偏导数的概念:一阶偏导数、高阶偏导数3. 隐函数求导与全微分的概念4. 多元函数的极值与条件极值六、重积分与曲线曲面积分1. 二重积分的概念与计算方法:极坐标法、换元法、直角坐标系下的积分法2. 三重积分的概念与计算方法:柱面坐标法、球面坐标法、直角坐标系下的积分法3. 曲线积分与曲面积分的概念与计算方法七、常微分方程1. 常微分方程的基本概念:初值问题、解的存在唯一性2. 高阶线性常微分方程与常系数齐次线性方程3. 常微分方程的解法:分离变量法、齐次方程法、一阶线性非齐次方程法等4. 常微分方程的应用:动力学模型、电路网络分析等八、级数1. 级数的概念与基本性质:收敛、发散、极限、级数的四则运算等2. 正项级数与比较判别法、比值判别法、根值判别法等3. 幂级数与泰勒级数展开高等数学知识点总结完毕,以上知识点对考研的高等数学考试来说是基础中的基础。

2016考研数学笔记高数版

2016考研数学笔记高数版
x0
1 1 2 ) 2 sin x x cos2 x
= lim
( x cos x sin x)( x cos x sin x) ( x cos x sin x)( x cos x sin x) = lim 4 2 x 0 x 0 x cos x x4 ( x cos x sin x) ( x cos x sin x) . x 0 x x3
0 0
1
1
n
lim
x
0
1
n
f ( x)dx =0.
x 2 n 1 ax 2 bx *4.设 f ( x) = lim 。 (1)若 f ( x) 处处连续,求 a、b.(2)若 (a, b) 不是求 n x 2n 1
出的值,判断 f ( x) 有何间断点。 分析:当 x=0 时, f ( x) =0;当 x 0 时我们可以看到分子分母实际上差 1 次,为了看得更
1
M x f ( x)dx nlim 解: ( 1 )记 M 为 f ( x) 在 [0,1] 上的最大值,则 nlim

0
1
n
x
0
n
dx
=
1 x n 1 1 M lim lim M = =0. | n n 1 n 1 0 n
x n f ( x)dx lim N x n dx =0.由夹逼定理知 (2)记 N 为 f ( x) 在 [0,1] 上的最小值,则 nlim n
1
1
x 联想到“ e x 1 ”结构成“ a 1 ”结构。实际上, n n 1( n )= e n
ln n
1 ~
1 ln n . n
解:根据上述分析,原式= lim

2016考研数学考前必看知识点汇总

2016考研数学考前必看知识点汇总

2016考研数学考前必看知识点汇总第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)总之:相信大家只要能够深刻的理解基本概念,熟悉的掌握基本理论,综合的扩展基本方法,那么成功一定属于大家。

考研数学高数重要知识点总结

考研数学高数重要知识点总结

考研数学高数重要知识点总结职高一数学知识点总结篇一一、求导数的方法(1)基本求导公式(2)导数的四则运算(3)复合函数的导数设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即二、关于极限1、数列的极限:粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。

记作:=A。

如:2、函数的极限:当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作三、导数的概念1、在处的导数。

2、在的导数。

3、函数在点处的导数的几何意义:函数在点处的导数是曲线在处的切线的斜率,即k=,相应的切线方程是注:函数的导函数在时的函数值,就是在处的导数。

例、若=2,则=()A—1B—2C1D四、导数的综合运用(一)曲线的切线函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。

由此,可以利用导数求曲线的切线方程。

具体求法分两步:(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=(2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。

职高一数学知识点总结篇二一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性。

3、集合的表示:(1){?}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(2)。

用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}4.集合的表示方法:列举法与描述法。

常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R5、关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

考研高等数学基础知识必背

考研高等数学基础知识必背

考研高等数学基础知识必背高等数学在考研中占据着重要的地位,扎实的基础知识是取得高分的关键。

以下为大家梳理了考研高等数学中必背的基础知识。

一、函数与极限1、函数的概念函数是两个非空数集之间的一种对应关系。

设集合 D 是定义域,对于 D 中的每个 x,按照某种对应法则 f,都有唯一确定的实数 y 与之对应,记为 y = f(x)。

2、函数的性质包括单调性、奇偶性、周期性和有界性。

单调性是指函数在某个区间上的增减情况;奇偶性指的是函数关于原点或 y 轴对称的性质;周期性是指函数在一定区间内重复出现的性质;有界性则表示函数的值域有上下界。

3、极限的定义极限是指当自变量趋近于某个值或无穷大时,函数值趋近于一个确定的常数。

分为数列极限和函数极限。

4、极限的计算常用的方法有代入法、因式分解法、有理化法、等价无穷小替换、洛必达法则等。

等价无穷小替换在计算极限时经常能起到简化运算的作用,例如当x → 0 时,sin x ~ x,tan x ~ x 等。

5、两个重要极限lim(x→0) (sin x / x) = 1 和lim(x→∞)(1 + 1/x)^x = e ,这两个重要极限在极限计算中应用广泛。

二、导数与微分1、导数的定义导数表示函数在某一点处的变化率。

设函数 y = f(x),在点 x₀处的导数为 f'(x₀) =lim(Δx→0) f(x₀+Δx) f(x₀) /Δx 。

2、导数的几何意义函数在某点的导数就是该点切线的斜率。

3、基本初等函数的导数公式要牢记常见函数如幂函数、指数函数、对数函数、三角函数等的导数公式。

4、导数的四则运算包括加法、减法、乘法和除法的求导法则。

5、复合函数求导设 y = f(u),u = g(x),则复合函数 y = fg(x) 的导数为 y' = f'(u)g'(x) 。

6、隐函数求导对于由方程 F(x, y) = 0 确定的隐函数 y = y(x),通过对方程两边同时求导来求解。

高等数学2016备考题库及参考答案

高等数学2016备考题库及参考答案

高等数学2016 年备考题库一、单选题(共80 题)1.函数A.单调是()函数B.有界C.周期D.偶2. 当时,与等价的无穷小是()A. B. C. D.3.极限()A.0B.1C.3D.24. 下列函数中,表达式为基本初等函数的为()A. B. C. D.5.函数A.偶函数;是()B.奇函数;C.周期函数;D.有界函数6.()A.1B.C.D.不存在7. 函数的反函数是()A. B. C. D.8.()A.1B.C.D.不存在9.()A.0B.1C.2D.10.函数是()函数A.单调B.无界C.偶D.奇11. 当时,下列( )为无穷小量A. B. C. D.12. 极限 =()A.1B.C.D.13.设,则()A. B. C. D.14. 设和分别是同一变化过程中的无穷小量与无穷大量,则是同一变化过程中的()A.无穷大量;B.有界变量;C.常量;D.无穷小量.15.在时为()A.无穷大量;C.极限存在,但极限值不为零;B.无穷小量;D.极限不存在,但不为无穷大量;16.函数A.偶函数;是()B.奇函数;C.单调函数;D.有界函数17.若,则()A.6B.7C.-7D.-618.设则常数()A.0B.-1C.-2D.-3.19.设,则()A.-2B.2C.D.20.()A.1B.C.D.不存在21. 下列极限中,正确的是()A. B. C. D.22. 函数的定义域是()A. B. C. D.23. 当时,与无穷小量等价的无穷小量是()A. B. C. D.24. 极限存在,且是存在的()A.充分条件,但不是必要条件;B.必要条件,但不是充分条件;C.充分必要条件;D.既不是充分条件也不是必要条件.25.()A. B. C. D.26. 极限()A.2B.C.D.27. 下列说法正确的为()A.单调数列必收敛;B.有界数列必收敛;C.收敛数列必单调;D.收敛数列必有界.28. 存在是在连续的()A.充分条件,但不是必要条件;B.必要条件,但不是充分条件;C.充分必要条件;D.既不是充分条件也不是必要条件.29. 函数的定义域为()A.(0,1);B.;C.(0,4);D.30. 设函数,,当时,则()A. 与为同价无穷小;B. 与为等价无穷小;C. 是比较高阶的无穷小;D. 是比较低阶的无穷小.31. 曲线的拐点坐标是()A.(-1,-1)B.(0,0)C.(1,1)D.(2,8)32.A. B. C. D.33.若,则()A. B. C. D.034.已知,则()A.-4B.4C.0D.135. 曲线在处切线的斜率是( )A.e4B.e2C.2e2D.236. 函数的单调增加的范围是()A. B. C. D. 或37. 函数的极大值点是,则的极大值是()A. B. C. D.38.已知,其中,则()A. B. C. D.39. 曲线上点处的切线方程是( )A. B. C. D.40. 设则A.1B.C.D.41. ,函数的微分为()A. B.C. D.42. 函数的单调增区间是( )A. B. C.(-1,1) D.以上都不对43. 当,则下列结论正确的是()A.点不是函数的极值点B.点是函数的极值点C.点不是曲线的拐点D.点是曲线的拐点44.设,则()A.0B.1C.2D.45. 函数y= 的导数是()A. B.C. D.46. 函数在定义域内()A.单调增加B.单调减少C.无单调性D.无法判断47. 函数的极大值是()A.-1B.-2C.2D.148. 一物体的运动方程为,该物体在时的瞬时速度为()A.27B.37C.19D.949. 函数的极值是()A.x=0 处有极大值7,x=2 处有极小值3.B.x=0 处有极小值3,x=2 处有极大值7C.x=0 处有极大值7,x=2 处有极小值0D.x=0 处有极小值0,x=2 处有极大值750. 函数的极值是()A.极小值B.极大值C.极大值D.极小值51. 函数在点处连续但不可导,则该点一定()A.是极值点B.不是极值点C.不是拐点D.不是驻点52.极限()A. B. C. D.53. 在上满足拉格朗日中值定理的函数的的值是()A.㏑ xB.1/㏑ 2C.2D.㏑ 254. 若在区间内恒有,A.上凹且上升B.上凹且下降,则函数的曲线为()C.下凹且上升D.下凹且下降55. 下列极限中能够使用洛必达法则求得正确结果的是()A. B. C. D.56. 设,则为在上的()A.极小值点,但不是最小值点C.极大值点,但不是最大值点B.极小值点,也是最小值点D.极大值点,也是最大值点。

考研必看考研数学基础知识点梳理(高数篇)

考研必看考研数学基础知识点梳理(高数篇)

考研数学基础知识点梳理(高数篇) 第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二)) 第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。

考研高等数学基本知识点大全

考研高等数学基本知识点大全

高等数学基本知识点一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。

集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。

比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。

如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集。

记作N+或N+。

⑶、全体整数组成的集合叫做整数集。

记作Z。

⑷、全体有理数组成的集合叫做有理数集。

记作Q。

⑸、全体实数组成的集合叫做实数集。

记作R。

集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。

集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。

⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。

⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。

⑷、空集:我们把不含任何元素的集合叫做空集。

记作,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。

即A A②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。

③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。

集合的基本运算⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档