高三数学第一轮复习二次函数(1)教案文

合集下载

高考高三数学总复习教案:二次函数

高考高三数学总复习教案:二次函数

第二章函数与导数第6课时二次函数(对应学生用书(文)、(理)18~19页)考情分析考点新知1由于二次函数与二次方程、二次不等式之间有着紧密的联系,加上三次函数的导函数是二次函数,因此对二次函数的考查一直是高考的热点问题.2以二次函数为背景的应用题也是高考的常考题型,同时借助二次函数模型考查代数推理问题是一个难点.①掌握二次函数的概念、图象特征.②掌握二次函数的对称性和单调性,会求二次函数在给定区间上的最值.3掌握二次函数、一元二次方程及一元二次不等式这“三个二次”之间的关系,提高解综合问题的能力.,1.(必修1P54测试7)函数f(x)=x2+2x—3,x∈[0,2]的值域为________.答案:[—3,5]解析:由f(x)=(x+1)2—4,知f(x)在[0,2]上单调递增,所以f(x)的值域是[—3,5].2.二次函数y=—x2+2mx—m2+3的图象的对称轴为x+2=0,则m=________,顶点坐标为________,递增区间为________,递减区间为________.答案:—2(—2,3)(—∞,—2] [—2,+∞)3.(必修1P45习题8改编)函数f(x)=(x+1)(x—a)是偶函数,则f(2)=________.答案:3解析:由f(—x)=f(x),得a=1,∴f(2)=3.4.(必修1P44习题3)函数f(x)=错误!的单调增区间是________.答案:R解析:画出函数f(x)的图象可知.5.设abc>0,二次函数f(x)=ax2+bx+c的图象可能是________.(填序号)答案:4解析:若a>0,则b、c同号,34两图中c<0,则b<0,所以—错误!>0,4正确;若a<0,则b、c异号,1中c<0,则b>0,—错误!>0,不符合,2中c>0,则b<0,—错误!<0,不符合.1.二次函数的解析式的三种形式(1)一般式:f(x)=ax2+bx+c(a≠0).(2)顶点式:若二次函数的顶点坐标为(h,k),则其解析式f(x)=a(x—h)2+k(a≠0).(3)零点式(两根式):若二次函数的图象与x轴的交点为(x1,0),(x2,0),则其解析式f(x)=a(x—x1)(x—x2)(a≠0).2.二次函数的图象及性质二次函数f(x)=ax2+bx+c(a≠0)的图象是一条抛物线,对称轴方程为x=—错误!,顶点坐标是错误!.(1)当a>0,函数图象开口向上,函数在区间(—∞,—错误!]上是单调减函数,在[—错误!,+∞)上是单调增函数,当x=—错误!时,y有最小值,y min=错误!.(2)当a<0,函数图象开口向下,函数在区间[—错误!,+∞)上是单调减函数,在(—∞,—错误!]上是单调增函数,当x=—错误!时,y有最大值,y max=错误!.3.二次函数f(x)=ax2+bx+c(a≠0),当Δ=b2—4ac>0时,图象与x轴有两个交点M1(x,0),M2(x2,0),则M1M2=错误!.1题型1求二次函数解析式例1已知二次函数f(x)满足f(2)=—1, f(—1)=—1,且f(x)的最大值为8,求二次函数f(x)的解析式.解:(解法1:利用一般式)设f(x)=ax2+bx+c(a≠0),错误!解得错误!∴所求二次函数为f(x)=—4x2+4x+7.(解法2:利用顶点式)设f(x)=a(x—m)2+n,∵f(2)=f(—1),∴抛物线对称轴为x =错误!=错误!,即m=错误!;又根据题意,函数最大值y max=8,∴n=8,∴f(x)=a错误!2+8.∵ f(2)=—1,∴a错误!错误!+8=—1,解得a=—4.∴f(x)=—4错误!2+8=—4x2+4x+7.(解法3:利用两根式)由题意知f(x)+1=0的两根为x1=2,x2=—1,故可设f(x)+1=a(x—2)(x+1),即f(x)=ax2—ax—2a—1.又函数有最大值y max=8,即错误!=8,解得a =—4或a=0(舍),∴所求函数的解析式为f(x)=—4x2—(—4)x—2×(—4)—1=—4x 2+4x+7.错误!已知二次函数f(x)=ax2+bx+c图象的顶点为(—1,10),且方程ax2+bx+c=0的两根的平方和为12,求二次函数f(x)的表达式.解:由题意可设f(x)=a(x+1)2+10,即f(x)=ax2+2ax+a+10;∴ b=2a,c=a+10,设方程ax2+bx+c=0的两根为x1、x2,则x错误!+x错误!=12,即(x1+x2)2—2x1x2=12,∴错误!错误!—2×错误!=12.又b=2a,c=a+10,∴错误!错误!—2×错误!=12,解得a=—2,∴f(x)=—2x2—4x+8.题型2含参变量二次函数的最值例2函数f(x)=2x2—2ax+3在区间[—1,1]上最小值记为g(a).(1)求g(a)的函数表达式;(2)求g(a)的最大值.解:(1)1当a<—2时,函数f(x)的对称轴x=错误!<—1,则g(a)=f(—1)=2a+5;2当—2≤a≤2时,函数f(x)的对称轴x=错误!∈[—1,1],则g(a)=f错误!=3—错误!;3当a>2时,函数f(x)的对称轴x=错误!>1,则g(a)=f(1)=5—2a.综上所述,g(a)=错误!(2)1当a<—2时,g(a)<1;2当—2≤a≤2时,g(a)∈[1,3];3当a>2时,g(a)<1.由123可得g(a)max=3.错误!求二次函数f(x)=x2—4x—1在区间[t,t+2]上的最小值g(t),其中t∈R.解:函数f(x)=(x—2)2—5的图象的对称轴方程为x=2,开口向上.当2∈[t,t+2],即t≤2≤t+2,也就是0≤t≤2时,g(t)=f(2)=—5;当2[t,t+2]时,1当t>2时,f(x)在[t,t+2]上为增函数,故g(t)=f(t)=t2—4t—1.2当t+2<2,即t<0时,f(x)在[t,t+2]上为减函数,故g(t)=f(t+2)=(t+2)2—4(t+2)—1=t2—5.故g(t)的解析式为g(t)=错误!题型3二次函数的综合应用例3已知函数g(x)=ax2—2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设函数f(x)=错误!.(1)求a、b的值及函数f(x)的解析式;(2)若不等式f(2x)—k·2x≥0在x∈[—1,1]时有解,求实数k的取值范围.解:(1)g(x)=ax2—2ax+1+b,由题意得1错误!得错误!2错误!得错误!(舍).∴a=1,b=0,g(x)=x2—2x+1,f(x)=x+错误!—2.(2)不等式f(2x)—k·2x≥0,即2x+错误!—2≥k·2x,∴k≤错误!错误!—2·错误!+1.设t=错误!,则k≤t2—2t+1,∵x∈[—1,1],故t∈错误!.记h(t)=t2—2t+1,∵t∈错误!,∴h(t)max=1,故所求k的取值范围是(—∞,1].错误!已知函数f(x)=x2+mx+n的图象过点(1,3),且f(—1+x)=f(—1—x)对任意实数都成立,函数y=g(x)与y=f(x)的图象关于原点对称.(1)求f(x)与g(x)的解析式;(2)若F(x)=g(x)—λf(x)在(—1,1]上是增函数,求实数λ的取值范围.解:(1)因为函数f(x)满足f(—1+x)=f(—1—x)对任意实数都成立,所以图象关于x=—1对称,即—错误!=—1,即m=2.又f(1)=1+m+n=3,所以n=0,所以f(x)=x2+2x.又y=g(x)与y=f(x)的图象关于原点对称,所以—g(x)=(—x)2+2(—x),所以g(x)=—x2+2x.(2)由(1)知,F(x)=(—x2+2x)—λ(x2+2x)=—(λ+1)x2+(2—2λ)x.当λ+1≠0时,F(x)的对称轴为x=错误!=错误!,因为F(x)在(—1,1]上是增函数,所以错误!或错误!所以λ<—1或—1<λ≤0.当λ+1=0,即λ=—1时,F(x)=4x显然成立.综上所述,实数λ的取值范围是(—∞,0].1.若函数f(x)=ax2—3x+4在区间(—∞,6)上单调递减,则实数a的取值范围是________.答案:0≤a≤错误!解析:当a=0时,f(x)=—3x+4,符合;当a≠0时,则错误!解得0<a≤错误!.综上,实数a 的取值范围是0≤a≤错误!.2.已知函数f(x)=x2—3x+m,g(x)=2x2—4x,若f(x)≥g(x)恰在x∈[—1,2]上成立,则实数m的值为________.答案:2解析:由题意,x2—3x+m≥2x2—4x,即x2—x—m≤0的解集是[—1,2],所以m=2.3.(2013·南通三模)已知函数f(x)=错误!是偶函数,直线y=t与函数y=f(x)的图象自左向右依次交于四个不同点A、B、C、D.若AB=BC,则实数t的值为________.答案:—错误!解析:根据偶函数的定义得a=1,b=2,c=—1,f(x)=错误!错误!所以x C=错误!,则t=错误!错误!—2×错误!—1=—错误!.4.(2013·新课标)若函数f(x)=(1—x2)(x2+ax+b)的图象关于直线x=—2对称,则f(x)的最大值为________.答案:16解析:因为点(1,0),(—1,0)在f(x)的图象上,且图象关于直线x=—2对称,所以点(—5,0),(—3,0)必在f(x)的图象上,所以f(—5)=(1—25)(25—5a+b)=0,f(—3)=(1—9)(9—3a+b)=0,联立,解得a=8,b=15,所以f(x)=(1—x2)(x2+8x+15),即f(x)=—(x+1)(x—1)(x+3)(x+5)=—(x2+4x+3)(x2+4x—5).令t =x2+4x=(x+2)2—4≥—4,则f(x)=—(t+3)(t—5)=—(t—1)2+16,当t=1时,f(x)max=16.1.已知函数f(x)=e x—1,g(x)=—x2+4x—3,若有f(a)=g(b),则b的取值范围为________.答案:(2—错误!,2+错误!)解析:易知,f(a)=e a—1>—1,由f(a)=g(b),得g(b)=—b2+4b—3>—1,解得2—错误!<b<2+错误!.2.已知函数f(x)=x2+ax+b(a、b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为________.答案:9解析:根据函数f(x)=x2+ax+b的值域为[0,+∞),得到a2—4b=0.又关于x的不等式f(x)<c,可化为x2+ax+b—c<0,它的解集为(m,m+6),设函数f(x)=x2+ax+b—c的图象与x轴的交点的横坐标分别为x1、x2,则|x2—x1|=m+6—m=6,从而(x2—x1)2=36,即(x1+x2)2—4x1x2=36.又x1x2=b—c,x1+x2=—a,代入得到c=9.3.设函数f(x)=x2—1,对任意x∈错误!,f错误!—4m2f(x)≤f(x—1)+4f(m)恒成立,则实数m的取值范围是________.答案:错误!∪错误!解析:由题意知错误!—1—4m2(x2—1)≤(x—1)2—1+4(m2—1)在x∈错误!上恒成立,错误!—4m2≤—错误!—错误!+1在x∈错误!上恒成立,当x=错误!时,函数y=—错误!—错误!+1取得最小值—错误!,所以错误!—4m2≤—错误!,即(3m2+1)(4m2—3)≥0,解得m≤—错误!或m≥错误!.4.已知函数f(x)=mx+3,g(x)=x2+2x+m.(1)求证:函数f(x)—g(x)必有零点;(2)设函数G(x)=f(x)—g(x)—1,若|G(x)|在[—1,0]上是减函数,求实数m的取值范围.(1)证明:f(x)—g(x)=(mx+3)—(x2+2x+m)=—x2+(m—2)x+(3—m).由Δ1=(m—2)2+4(3—m)=m2—8m+16=(m—4)2≥0,知函数f(x)—g(x)必有零点.(2)解:|G(x)|=|—x2+(m—2)x+(2—m)|=|x2—(m—2)x+(m—2)|,Δ2=(m—2)2—4(m—2)=(m—2)(m—6),1当Δ2≤0,即2≤m≤6时,|G(x)|=x2—(m—2)x+(m—2),若|G(x)|在[—1,0]上是减函数,则错误!≥0,即m≥2,所以2≤m≤6时,符合条件.2当Δ2>0,即m<2或m>6时,若m<2,则错误!<0,要使|G(x)|在[—1,0]上是减函数,则错误!≤—1且G(0)≤0,所以m≤0;若m>6,则错误!>2,要使|G(x)|在[—1,0]上是减函数,则G(0)≥0,所以m>6.综上,m≤0或m≥2.1.二次函数有三种形式的解析式,要根据具体情况选用:如和对称轴、最值有关,可选用顶点式;和二次函数的零点有关,可选用零点式;一般式可作为二次函数的最终结果.2.二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,需要按照“三点一轴”来分类讨论(三点即区间的端点和中点,一轴即对称轴),此类问题是考查的重点.3.二次函数、一元二次方程与一元二次不等式统称为“三个二次”,它们常结合在一起,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.错误![备课札记]。

高三数学一轮复习 二次函数教学案

高三数学一轮复习  二次函数教学案

城东蜊市阳光实验学校德宏州潞西中学2021届高三数学一轮复习二次函数教学案一、教学目的1、掌握二次函数的三种解析式;2、掌握二次函数根的分布;3、掌握二次函数的最值问题;4、掌握二次函数、一元二次方程及一元二次不等式之间的关系。

二、考点分析二次函数是函数这一章的重点内容,本身二次函数在初中时学生已经接触过,并对函数的顶点坐标、对称轴以及图像有了一定的认识,而二次函数根的分布是高考的一个重点和难点,常和函数的单调性、最值联络在一起,属于中、高档题。

三、根底知识回忆1、二次函数c bx ax y ++=2的图像的对称轴方程是,顶点坐标是。

2、二次函数的解析式有三种形式:一般式:;两点式:;顶点式:。

3、对于含有字母的一元二次方程的实数根的分布问题,有如下结论:令)0(2>++=a c bx ax y〔1〕a x x <<21,那么;〔2〕a x x >>21,那么; 〔3〕b x a b x a<<<<21,,那么; 〔4〕a x <1,b x >2,那么;〔5〕假设0)(=x f 在区间),(b a 内只有一个实数根,那么有。

4、最值问题:二次函数c bx ax y ++=2在区间],[b a 上的最值问题一般分三类讨论: 〔1〕对称轴ab x 2-=在区间左边,函数在此区间上具有单调性; 〔2〕对称轴ab x 2-=在区间内; 〔3〕对称轴a b x 2-=在区间右边。

要注意系数a 的符号对抛物线开口的影响。

5、二次函数、一元二次方程及一元二次不等式之间的关系:〔1〕c bx ax x f ++=⇔<∆2)(0的图像与x 轴交点02=++⇔c bx ax 实根)0(02<>++⇔c bx ax 的解集为;〔2〕c bx ax x f ++=⇔=∆2)(0的图像与x 轴02=++⇔c bx ax 实根)0(02<>++⇔c bx ax 的解集为;〔3〕c bx ax x f ++=⇔>∆2)(0的图像与x 轴交点02=++⇔c bx ax 实根)0(02<>++⇔c bx ax 的解集为;四、典型例题例1:二次函数的对称轴2-=x ,截x 轴上的弦长为4,且过点)1,0(-,求函数的解析式。

高考数学一轮复习教学案二次函数与幂函数(含解析)

高考数学一轮复习教学案二次函数与幂函数(含解析)

第六节二次函数与幂函数[知识能否忆起]一、常用幂函数的图象与性质函数特征性质y=x y=x2y=x3y=x12y=x-1图象定义域R R R{x|x≥0}{x|x≠0} 值域R{y|y≥0}R{y|y≥0}{y|y≠0} 奇偶性奇偶奇非奇非偶奇单调性增(-∞,0]减(0,+∞)增增增(-∞,0)和(0,+∞)减公共点(1,1)二、二次函数1.二次函数的定义形如f(x)=ax2+bx+c(a≠0)的函数叫做二次函数.2.二次函数解析式的三种形式(1)一般式:f(x)=ax2+bx+c(a≠0);(2)顶点式:f(x)=a(x-m)2+n(a≠0);(3)零点式:f(x)=a(x-x1)(x-x2)(a≠0).3.二次函数的图象和性质a>0a<0 图象图象特点①对称轴:x=-b2a;②顶点:⎝⎛⎭⎫-b2a,4ac-b24a性质定义域 x ∈R值域y ∈⎣⎡4ac -b 24a ,+∞y ∈⎝⎛⎦⎤-∞,4ac -b 24a 奇偶性b =0时为偶函数,b ≠0时既非奇函数也非偶函数单调性x ∈-∞,⎦⎤-b 2a 时递减,x ∈-b2a,+∞时递增x ∈⎝⎛⎦⎤-∞,-b2a 时递增,x ∈⎣⎡⎭⎫-b 2a ,+∞时递减[小题能否全取]1.若f (x )既是幂函数又是二次函数,则f (x )可以是( ) A .f (x )=x 2-1 B .f (x )=5x 2 C .f (x )=-x 2D .f (x )=x 2解析:选D 形如f (x )=x α的函数是幂函数,其中α是常数.2.(教材习题改编)设α∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x α的定义域为R 且为奇函数的所有α值为( )A .1,3B .-1,1C .-1,3D .-1,1,3解析:选A 在函数y =x -1,y =x ,y =x 12,y =x 3中,只有函数y =x 和y =x 3的定义域是R ,且是奇函数,故α=1,3.3.(教材习题改编)已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是( )A.⎝⎛⎭⎫0,120B.⎝⎛⎭⎫-∞,-120 C.⎝⎛⎭⎫120,+∞D.⎝⎛⎭⎫-120,0 解析:选C 由题意知⎩⎪⎨⎪⎧ a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,1-20a <0得a >120.4.(教材习题改编)已知点M ⎝⎛⎭⎫33,3在幂函数f (x )的图象上,则f (x )的表达式为________.解析:设幂函数的解析式为y =x α,则3=⎝⎛⎭⎫33α,得α=-2.故y =x -2. 答案:y =x -25.如果函数f (x )=x 2+(a +2)x +b (x ∈[a ,b ])的图象关于直线x =1对称,则函数f (x )的最小值为________.解析:由题意知⎩⎨⎧-a +22=1,a +b =2,得⎩⎪⎨⎪⎧a =-4,b =6.则f (x )=x 2-2x +6=(x -1)2+5≥5. 答案:51.幂函数图象的特点(1)幂函数的图象一定会经过第一象限,一定不会经过第四象限,是否经过第二、三象限,要看函数的奇偶性;(2)幂函数的图象最多只能经过两个象限内;(3)如果幂函数的图象与坐标轴相交,则交点一定是原点. 2.与二次函数有关的不等式恒成立问题 (1)ax 2+bx +c >0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a >0,b 2-4ac <0.(2)ax 2+bx +c <0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a <0,b 2-4ac <0.[注意] 当题目条件中未说明a ≠0时,就要讨论a =0和a ≠0两种情况.幂函数的图象与性质典题导入[例1] 已知幂函数f (x )=(m 2-m -1)x-5m -3在(0,+∞)上是增函数,则m =________.[自主解答] ∵函数f (x )=(m 2-m -1)x -5m -3是幂函数, ∴m 2-m -1=1,解得m =2或m =-1.当m =2时,-5m -3=-13,函数y =x -13在(0,+∞)上是减函数; 当m =-1时,-5m -3=2,函数y =x 2在(0,+∞)上是增函数. ∴m =-1. [答案] -1由题悟法1.幂函数y =x α的图象与性质由于α的值不同而比较复杂,一般从两个方面考查: (1)α的正负:α>0时,图象过原点和(1,1),在第一象限的图象上升;α<0时,图象不过原点,在第一象限的图象下降.(2)曲线在第一象限的凹凸性:α>1时,曲线下凸; 0<α<1时,曲线上凸;α<0时,曲线下凸.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数.借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.以题试法1.(1)如图给出4个幂函数大致的图象,则图象与函数对应正确的是( )A .①y =x 13,②y =x 2,③y =x 12,④y =x -1B .①y =x 3,②y =x 2,③y =x 12,④y =x -1C .①y =x 2,②y =x 3,③y =x 12,④y =x -1D .①y =x 13,②y =x 12,③y =x 2,④y =x -1解析:选B 由图①知,该图象对应的函数为奇函数且定义域为R ,当x >0时,图象是向下凸的,结合选项知选B.(2)(·淄博模拟)若a <0,则下列不等式成立的是( ) A .2a >⎝⎛⎭⎫12a>(0.2)aB .(0.2)a >⎝⎛⎭⎫12a>2aC.⎝⎛⎭⎫12a>(0.2)a>2aD .2a >(0.2)a >⎝⎛⎭⎫12a解析:选B 若a <0,则幂函数y =x a 在(0,+∞)上是减函数,所以(0.2)a >⎝⎛⎭⎫12a>0.所以(0.2)a >⎝⎛⎭⎫12a>2a .求二次函数的解析式典题导入[例2] 已知二次函数f (x )有两个零点0和-2,且它有最小值-1. (1)求f (x )解析式;(2)若g (x )与f (x )图象关于原点对称,求g (x )解析式. [自主解答] (1)由于f (x )有两个零点0和-2, 所以可设f (x )=ax (x +2)(a ≠0), 这时f (x )=ax (x +2)=a (x +1)2-a , 由于f (x )有最小值-1,所以必有⎩⎪⎨⎪⎧a >0,-a =-1,解得a =1.因此f (x )的解析式是f (x )=x (x +2)=x 2+2x .(2)设点P (x ,y )是函数g (x )图象上任一点,它关于原点对称的点P ′(-x ,-y )必在f (x )图象上,所以-y =(-x )2+2(-x ), 即-y =x 2-2x , y =-x 2+2x , 故g (x )=-x 2+2x .由题悟法求二次函数的解析式常用待定系数法.合理选择解析式的形式,并根据已知条件正确地列出含有待定系数的等式,把问题转化为方程(组)求解是解决此类问题的基本方法.以题试法2.设f (x )是定义在R 上的偶函数,当0≤x ≤2时,y =x ,当x >2时,y =f (x )的图象是顶点为P (3,4),且过点A (2,2)的抛物线的一部分.(1)求函数f (x )在(-∞,-2)上的解析式;(2)在下面的直角坐标系中直接画出函数f (x )的草图; (3)写出函数f (x )的值域.解:(1)设顶点为P(3,4)且过点A(2,2)的抛物线的方程为y=a(x-3)2+4,将(2,2)代入可得a=-2,则y=-2(x-3)2+4,即x>2时,f(x)=-2x2+12x-14.当x<-2时,即-x>2.又f(x)为偶函数,f(x)=f(-x)=-2×(-x)2-12x-14,即f(x)=-2x2-12x-14.所以函数f(x)在(-∞,-2)上的解析式为f(x)=-2x2-12x-14.(2)函数f(x)的图象如图,(3)由图象可知,函数f(x)的值域为(-∞,4].二次函数的图象与性质典题导入[例3]已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数.[自主解答](1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6].所以f(x)在[-4,2]上单调递减,在[2,6]上单调递增,故f(x)的最小值是f(2)=-1,又f(-4)=35,f(6)=15,故f(x)的最大值是35.(2)由于函数f(x)的图象开口向上,对称轴是x=-a,所以要使f(x)在[-4,6]上是单调函数,应有-a≤-4或-a≥6,即a≤-6或a≥4.故a 的取值范围为(-∞,-6]∪[4,+∞).本例条件不变,求当a =1时,f (|x |)的单调区间. 解:当a =1时,f (x )=x 2+2x +3,则f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=⎩⎪⎨⎪⎧x 2+2x +3,x ∈(0,6],x 2-2x +3,x ∈[-6,0],故f (|x |)的单调递增区间是(0,6], 单调递减区间是[-6,0].由题悟法解决二次函数图象与性质问题时要注意:(1)抛物线的开口,对称轴位置,定义区间三者相互制约,常见的题型中这三者有两定一不定,要注意分类讨论.(2)要注意数形结合思想的应用,尤其是给定区间上二次函数最值问题的求法.以题试法3.(·泰安调研)已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,则a 的值为________.解析:f (x )=-(x -a )2+a 2-a +1, 当a >1时,y max =a ;当0≤a ≤1时,y max =a 2-a +1; 当a <0时,y max =1-a .根据已知条件⎩⎪⎨⎪⎧ a >1,a =2或⎩⎪⎨⎪⎧ 0≤a ≤1,a 2-a +1=2或⎩⎪⎨⎪⎧a <0,1-a =2,解得a =2或a =-1. 答案:2或-1二次函数的综合问题[例4] (·衡水月考)已知函数f (x )=x 2,g (x )=x -1. (1)若存在x ∈R 使f (x )<b ·g (x ),求实数b 的取值范围;(2)设F (x )=f (x )-mg (x )+1-m -m 2,且|F (x )|在[0,1]上单调递增,求实数m 的取值范围.[自主解答] (1)∃x ∈R ,f (x )<bg (x )⇒∃x ∈R , x 2-bx +b <0⇒(-b )2-4b >0⇒b <0或b >4. 故b 的取值范围为(-∞,0)∪(4,+∞). (2)F (x )=x 2-mx +1-m 2, Δ=m 2-4(1-m 2)=5m 2-4. ①当Δ≤0,即-255≤m ≤255时,则必需⎩⎨⎧m2≤0,-255≤m ≤255⇒-255≤m ≤0.②当Δ>0,即m <-255或m >255时,设方程F (x )=0的根为x 1,x 2(x 1<x 2).若m2≥1,则x 1≤0, 即⎩⎪⎨⎪⎧ m 2≥1,F (0)=1-m 2≤0⇒m ≥2; 若m2≤0,则x 2≤0, 即⎩⎪⎨⎪⎧m 2≤0,F (0)=1-m 2≥0⇒-1≤m ≤-255.综上所述,m 的取值范围为[-1,0]∪[2,+∞).由题悟法二次函数与二次方程、二次不等式统称“三个二次”,它们之间有着密切的联系,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.因此,有关“三个二次”的问题,数形结合,密切联系图象是探求解题思路的有效方法.4.若二次函数f (x )=ax 2+bx +c (a ≠0)满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;(2)若在区间[-1,1]上,不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 解:(1)由f (0)=1,得c =1.即f (x )=ax 2+bx +1. 又f (x +1)-f (x )=2x ,则a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x , 即2ax +a +b =2x ,所以⎩⎪⎨⎪⎧ 2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1.因此,f (x )=x 2-x +1.(2)f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0,要使此不等式在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可.∵g (x )=x 2-3x +1-m 在[-1,1]上单调递减, ∴g (x )min =g (1)=-m -1, 由-m -1>0得,m <-1.因此满足条件的实数m 的取值范围是(-∞,-1).1.已知幂函数f (x )=x α的部分对应值如下表:x 1 12 f (x )122则不等式f (|x |)≤2的解集是(A .{x |0<x ≤2} B .{x |0≤x ≤4} C .{x |-2≤x ≤2}D .{x |-4≤x ≤4}解析:选D 由f ⎝⎛⎭⎫12=22⇒α=12,即f (x )=x 12,故f (|x |)≤2⇒|x |12≤2⇒|x |≤4,故其解集为{x |-4≤x ≤4}.2.已知函数y =ax 2+bx +c ,如果a >b >c 且a +b +c =0,则它的图象可能是( )解析:选D ∵a >b >c ,且a +b +c =0, ∴a >0,c <0.∴图象开口向上与y 轴交于负半轴.3.已知f (x )=x 12,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b B .f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b <f (b )<f (a ) C .f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a D .f ⎝⎛⎭⎫1a <f (a )<f ⎝⎛⎭⎫1b <f (b ) 解析:选C 因为函数f (x )=x 12在(0,+∞)上是增函数,又0<a <b <1b <1a ,故f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a .4.已知f (x )=x 2+bx +c 且f (-1)=f (3),则( ) A .f (-3)<c <f ⎝⎛⎭⎫52 B .f ⎝⎛⎭⎫52<c <f (-3) C .f ⎝⎛⎭⎫52<f (-3)<cD .c <f ⎝⎛⎭⎫52<f (-3)解析:选D 由已知可得二次函数图象关于直线x =1对称,则f (-3)=f (5),c =f (0)=f (2),二次函数在区间(1,+∞)上单调递增,故有f (-3)=f (5)>f ⎝⎛⎭⎫52>f (2)=f (0)=c .5.设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是( )A .(-∞,0]B .[2,+∞)C .(-∞,0]∪[2,+∞)D .[0,2]解析:选D 二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0,f ′(x )=2a (x -1)≤0,x ∈[0,1],所以a >0,即函数图象的开口向上,对称轴是直线x =1. 所以f (0)=f (2),则当f (m )≤f (0)时,有0≤m ≤2.6.若方程x 2-2mx +4=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A.⎝⎛⎭⎫-∞,-52B.⎝⎛⎭⎫52,+∞ C .(-∞,-2)∪(2,+∞)D.⎝⎛⎭⎫-52,+∞ 解析:选B 设f (x )=x 2-2mx +4,则题设条件等价于f (1)<0,即1-2m +4<0,解得m >52. 7.对于函数y =x 2,y =x 12有下列说法:①两个函数都是幂函数;②两个函数在第一象限内都单调递增; ③它们的图象关于直线y =x 对称; ④两个函数都是偶函数; ⑤两个函数都经过点(0,0)、(1,1); ⑥两个函数的图象都是抛物线型. 其中正确的有________.解析:从两个函数的定义域、奇偶性、单调性等性质去进行比较. 答案:①②⑤⑥8.(·北京西城二模)已知函数f (x )=x 2+bx +1是R 上的偶函数,则实数b =________,不等式f (x -1)<x 的解集为________.解析:因为f (x )=x 2+bx +1是R 上的偶函数,所以b =0,则f (x )=x 2+1,解不等式(x -1)2+1<x ,即x 2-3x +2<0得1<x <2.答案:0 {x |1<x <2}9.若x ≥0,y ≥0,且x +2y =1,那么2x +3y 2的最小值为________. 解析:由x ≥0,y ≥0,x =1-2y ≥0知0≤y ≤12,令t =2x +3y 2=3y 2-4y +2, 则t =3⎝⎛⎭⎫y -232+23. 在⎣⎡⎦⎤0,12上递减,当y =12时,t 取到最小值,t min =34.答案:3410.如果幂函数f (x )=x -12p 2+p +32(p ∈Z)是偶函数,且在(0,+∞)上是增函数.求p的值,并写出相应的函数f (x )的解析式.解:∵f (x )在(0,+∞)上是增函数, ∴-12p 2+p +32>0,即p 2-2p -3<0.∴-1<p <3.又∵f (x )是偶函数且p ∈Z , ∴p =1,故f (x )=x 2.11.已知二次函数f (x )的图象过点A (-1,0)、B (3,0)、C (1,-8). (1)求f (x )的解析式;(2)求f (x )在x ∈[0,3]上的最值; (3)求不等式f (x )≥0的解集.解:(1)由题意可设f (x )=a (x +1)(x -3), 将C (1,-8)代入得-8=a (1+1)(1-3),得a =2. 即f (x )=2(x +1)(x -3)=2x 2-4x -6. (2)f (x )=2(x -1)2-8,当x ∈[0,3]时,由二次函数图象知, f (x )min =f (1)=-8,f (x )max =f (3)=0. (3)f (x )≥0的解集为{x |x ≤-1,或x ≥3}.12.已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2. (1)求a ,b 的值;(2)若b <1,g (x )=f (x )-m ·x 在[2,4]上单调,求m 的取值范围. 解:(1)f (x )=a (x -1)2+2+b -a . 当a >0时,f (x )在[2,3]上为增函数,故⎩⎪⎨⎪⎧ f (3)=5,f (2)=2,⇒⎩⎪⎨⎪⎧ 9a -6a +2+b =5,4a -4a +2+b =2,⇒⎩⎪⎨⎪⎧a =1,b =0. 当a <0时,f (x )在[2,3]上为减函数,故⎩⎪⎨⎪⎧ f (3)=2,f (2)=5,⇒⎩⎪⎨⎪⎧ 9a -6a +2+b =2,4a -4a +2+b =5,⇒⎩⎪⎨⎪⎧a =-1,b =3.(2)∵b <1,∴a =1,b =0,即f (x )=x 2-2x +2. g (x )=x 2-2x +2-mx =x 2-(2+m )x +2, ∵g (x )在[2,4]上单调,∴2+m 2≤2或m +22≥4.∴m ≤2或m ≥6.1.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎡⎦⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( )A.13 B.12 C.34D .1解析:选D 当x <0时,-x >0,f (x )=f (-x )=(x +1)2, ∵x ∈⎣⎡⎦⎤-2,-12, ∴f (x )min =f (-1)=0,f (x )max =f (-2)=1, ∴m ≥1,n ≤0,m -n ≥1.2.(·青岛质检)设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.解析:由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象如图所示,结合图象可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎡⎦⎤-94,-2,故当m ∈⎝⎛⎦⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象有两个交点.答案:⎝⎛⎦⎤-94,-2 3.(·滨州模拟)已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知得c =1,a -b +c =0,-b2a =-1,解得a =1,b =2.则f (x )=(x +1)2.则F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.故F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意得f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x且b ≥-1x-x 在(0,1]上恒成立.又当x ∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2,故-2≤b ≤0.1.比较下列各组中数值的大小. (1)30.8,30.7;(2)0.213,0.233;(3)4.125,3.8-25,(-1.4)35;(4)0.20.5,0.40.3.解:(1)函数y =3x 是增函数,故30.8>30.7. (2)y =x 3是增函数,故0.213<0.233.(3)4.125>1,0<3.8-25<1,而(-1.4)35<0,故4.125>3.8-25>(-1.4)35.(4)先比较0.20.5与0.20.3,再比较0.20.3与0.40.3,y =0.2x 是减函数,故0.20.5<0.20.3;y =x 0.3在(0,+∞)上是增函数,故0.20.3<0.40.3.则0.20.5<0.40.3.2.设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )解析:选D 当-b2a <0时,ab >0,从而c >0,可排除A ,C ;当-b2a >0时,ab <0,从而c <0,可排除B ,选D.3.已知函数f (x )=ax 2-2x +1. (1)试讨论函数f (x )的单调性;(2)若13≤a ≤1,且f (x )在[1,3]上的最大值为M (a ),最小值为N (a ),令g (a )=M (a )-N (a ),求g (a )的表达式;(3)在(2)的条件下,求证:g (a )≥12.解:(1)当a =0时,函数f (x )=-2x +1在(-∞,+∞)上为减函数; 当a >0时,抛物线f (x )=ax 2-2x +1开口向上,对称轴为x =1a ,故函数f (x )在⎝⎛⎦⎤-∞,1a 上为减函数,在⎣⎡⎭⎫1a ,+∞上为增函数; 当a <0时,抛物线f (x )=ax 2-2x +1开口向下,对称轴为x =1a ,故函数f (x )在⎝⎛⎦⎤-∞,1a 上为增函数,在⎣⎡⎭⎫1a ,+∞上为减函数. (2)∵f (x )=a ⎝⎛⎭⎫x -1a 2+1-1a, 由13≤a ≤1得1≤1a ≤3,∴N (a )=f ⎝⎛⎭⎫1a =1-1a . 当1≤1a <2,即12<a ≤1时,M (a )=f (3)=9a -5,故g (a )=9a +1a-6;当2≤1a ≤3,即13≤a ≤12时,M (a )=f (1)=a -1,故g (a )=a +1a-2.∴g (a )=⎩⎨⎧a +1a-2,a ∈⎣⎡⎦⎤13,12,9a +1a -6,a ∈⎝⎛⎦⎤12,1.(3)证明:当a ∈⎣⎡⎦⎤13,12时,g ′(a )=1-1a 2<0, ∴函数g (a )在⎣⎡⎦⎤13,12上为减函数; 当a ∈⎝⎛⎦⎤12,1时,g ′(a )=9-1a 2>0, ∴函数g (a )在⎝⎛⎦⎤12,1上为增函数,∴当a =12时,g (a )取最小值,g (a )min =g ⎝⎛⎭⎫12=12. 故g (a )≥12.。

高考数学大一轮总复习 第二章 函数、导数及其应用 2.4 二次函数与幂函数名师课件 文 北师大版

高考数学大一轮总复习 第二章 函数、导数及其应用 2.4 二次函数与幂函数名师课件 文 北师大版

_奇__函__数____
__非__奇__非__偶_ __函__数_____
__奇__函__数___
函数
单调 性
y=x
y=x2
y=x3
在__(_-__∞__,__0_) _
_在__R_上__单___ 上__单__调__递__减__,_ _在__R__上__单__ 调__递__增___ 在__(_0_,__+__∞__)上_ _调__递__增____
2


D.

52-1,2
【解析】 因为函数 y=x21的定义域为[0,+∞), 且在定义域内为增函数,
所以不等式等价于 2mm2++m1≥-01,≥0, 2m+1>m2+m-1。
解 2m+1≥0,得 m≥-12;
- 解 m2+m-1≥0,得 m≤
25-1或 m≥
52-1。
解 2m+1>m2+m-1,得-1<m<2,
1
(2)幂函数 y=x,y=x2,y=x3,y=x2,y=x-1 的图像与性质
函数
y=x
定义域
R
值域
R
奇偶性 _奇__函__数____
y=x2 R
_{_y_|y_≥__0_}_
_偶__函__数Biblioteka __y=x3y=x-1
R
__{x_|_x_≥__0_}_ _{_x_|x_≠__0_}__
R
__{_y|_y_≥__0_} __{_y_|y_≠__0_}_
解析 正确。由幂函数的图像可知。
(6)关于
x
的不等式
ax2+bx+c>0
a>0, 恒成立的充要条件是b2-4ac<0。
( × )解析 错误。当 a=0,b=0,c>0 时也恒成立。ax2+bx+c>0(a≠0)恒

高考数学第一轮复习教案-专题2函数概念与基本初等函数

高考数学第一轮复习教案-专题2函数概念与基本初等函数
函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因 为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数 才是同一函数. (3)反函数
反函数的定义
设函数 y f (x)(x A) 的值域是 C,根据这个函数中 x,y 的关系,用 y 把 x 表
高考数学第一轮复习教案汇总【精华】
专题二 函数概念与基本初等函数
一、考试内容: 映射、函数、函数的单调性、奇偶性. 反函数.互为反函数的函数图像间的关系. 指数概念的扩充.有理指数幂的运算性质.指数函数. 对数.对数的运算性质.对数函数. 函数的应用. 二、考试要求: (1)了解映射的概念,理解函数的概念. (2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法. (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数. (4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像 和 性质. (5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 三、命题热点
y f 1(x)
(二)函数的性质 函数的单调性
定义:对于函数 f(x)的定义域 I 内某个区间上的任意两个自变量的值 x1,x2, ⑴若当 x1<x2 时,都有 f(x1)<f(x2),则说 f(x)在这个区间上是增函数; ⑵若当 x1<x2 时,都有 f(x1)>f(x2),则说 f(x) 在这个区间上是减函数.
奇函 数的定 义:如果 对于函 数f(x)的定 义域内 任意一 个x,都有 f(-x)=-f(x),那么 函数f(x)就叫 做奇函 数.

2022高考数学一轮总复习第二章函数概念与基本初等函数第1讲函数及其表示学案文(含答案)

2022高考数学一轮总复习第二章函数概念与基本初等函数第1讲函数及其表示学案文(含答案)

高考数学一轮总复习学案:第1讲函数及其表示1.函数与映射的概念函数映射两集合A,B 设A,B是两个非空的数集设A,B是两个非空的集合对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的一个映射记法y=f(x)(x∈A)对应f:A→B是一个映射(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.[注意] 分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.常用结论1.直线x =a (a 是常数)与函数y =f (x )的图象有0个或1个交点. 2.几个常用函数的定义域(1)分式型函数,分母不为零的实数集合. (2)偶次方根型函数,被开方式非负的实数集合.(3)f (x )为对数式时,函数的定义域是真数为正数、底数为正且不为1的实数集合. (4)若f (x )=x 0,则定义域为{x |x ≠0}.(5)正切函数y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z .一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)函数f (x )=x 2-2x 与g (t )=t 2-2t 是相等函数.( )(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.( )(3)若集合A =R ,B ={x |x >0},f :x →y =|x |,则对应关系f 是从A 到B 的映射.( ) (4)分段函数是由两个或几个函数组成的.( )(5)分段函数的定义域等于各段定义域的并集,值域等于各段值域的并集.( ) 答案:(1)√ (2)× (3)× (4)× (5)√ 二、易错纠偏常见误区| (1)对函数概念理解不透彻; (2)解分段函数不等式时忘记范围; (3)用换元法求解析式,反解时忽视范围.1.已知集合P ={x |0≤x ≤4},Q ={y |0≤y ≤2},下列从P 到Q 的各对应关系f 中不是函数的是________.(填序号)①f :x →y =12x ;②f :x →y =13x ;③f :x →y =23x ;④f :x →y =x .解析:对于③,因为当x =4时,y =23×4=83∉Q ,所以③不是函数.答案:③2.设函数f (x )=⎩⎨⎧(x +1)2,x <1,4-x -1,x ≥1,则使得f (x )≥1的自变量x 的取值范围为________.解析:因为f (x )是分段函数,所以f (x )≥1应分段求解.当x <1时,f (x )≥1⇒(x +1)2≥1⇒x ≤-2或x ≥0,所以x ≤-2或0≤x <1;当x ≥1时,f (x )≥1⇒4-x -1≥1,即x -1≤3,所以1≤x ≤10.综上所述,x ≤-2或0≤x ≤10,即x ∈(-∞,-2]∪[0,10].答案:(-∞,-2]∪[0,10]3.已知f (x )=x -1,则f (x )=________.解析:令t =x ,则t ≥0,x =t 2,所以f (t )=t 2-1(t ≥0),即f (x )=x 2-1(x ≥0). 答案:x 2-1(x ≥0)函数的定义域(多维探究) 角度一 求函数的定义域(1)已知函数f (x )的定义域是[-1,1],则函数g (x )=f (2x -1)ln (1-x )的定义域是( )A .[0,1]B .(0,1)C .[0,1)D .(0,1](2)(2020·高考北京卷)函数f (x )=1x +1+ln x 的定义域是________. 【解析】 (1)由函数f (x )的定义域为[-1,1],得-1≤x ≤1,令-1≤2x -1≤1,解得0≤x ≤1,又由1-x >0且1-x ≠1,解得x <1且x ≠0,所以函数g (x )的定义域为(0,1),故选B .(2)函数f (x )=1x +1+ln x 的自变量满足⎩⎪⎨⎪⎧x +1≠0,x >0,所以x >0,即定义域为(0,+∞).【答案】 (1)B (2)(0,+∞)求解函数定义域的策略(1)求给定函数的定义域往往转化为解不等式(组)的问题.在解不等式组取交集时可借助于数轴,要特别注意端点值的取舍.(2)求抽象函数的定义域:①若y =f (x )的定义域为(a ,b ),则解不等式a <g (x )<b 即可求出y =f [g (x )]的定义域;②若y =f [g (x )]的定义域为(a ,b ),则求出g (x )在(a ,b )上的值域即得y =f (x )的定义域.(3)已知函数定义域求参数范围,可将问题转化成含参数的不等式(组),然后求解. [提醒] (1)求函数定义域时,对函数解析式先不要化简. (2)求出定义域后,一定要将其写成集合或区间的形式. 角度二 已知函数的定义域求参数(1)如果函数f (x )=ln(-2x +a )的定义域为(-∞,1),那么实数a 的值为( )A .-2B .-1C .1D .2(2)若函数y =ax +1ax 2-4ax +2的定义域为R ,则实数a 的取值范围是( )A .⎝ ⎛⎦⎥⎤0,12B .⎝ ⎛⎭⎪⎫0,12C . ⎣⎢⎡⎦⎥⎤0,12 D .⎣⎢⎡⎭⎪⎫0,12 【解析】 (1)因为-2x +a >0, 所以x <a2,所以a2=1,所以a =2.(2)由ax 2-4ax +2>0恒成立, 得a =0或⎩⎪⎨⎪⎧a >0,Δ=(-4a )2-4×a ×2<0,解得0≤a <12. 【答案】 (1)D (2)D已知函数定义域求参数的取值范围,通常是根据已知的定义域将问题转化为方程或不等式恒成立的问题,然后求得参数的值或范围.1.函数f (x )=3xx -1+ln(2x -x 2)的定义域为( )A .(2,+∞)B .(1,2)C .(0,2)D .[1,2]解析:选B .要使函数有意义,则⎩⎪⎨⎪⎧x -1>0,2x -x 2>0, 解得1<x <2. 所以函数f (x )=3xx -1+ln(2x -x 2)的定义域为(1,2).2.已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________. 解析:因为y =f (x 2-1)的定义域为[-3,3],所以x ∈[-3,3],x 2-1∈[-1,2],所以y =f (x )的定义域为[-1,2].答案:[-1,2] 3.若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是________.解析:因为函数y =mx -1mx 2+4mx +3的定义域为R ,所以mx 2+4mx +3≠0,所以m =0或⎩⎪⎨⎪⎧m ≠0,Δ=16m 2-12m <0,即m =0或0<m <34, 所以实数m 的取值范围是⎣⎢⎡⎭⎪⎫0,34.答案:⎣⎢⎡⎭⎪⎫0,34求函数的解析式(师生共研)(1)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,则f (x )的解析式为________________.(2)已知f ⎝⎛⎭⎪⎫x 2+1x2=x 4+1x4,则f (x )的解析式为________________.(3)若f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2,则f (x )的解析式为________________.(4)已知函数f (x )满足f (-x )+2f (x )=2x ,则f (x )的解析式为______________. 【解析】 (1)(换元法)令2x+1=t ,由于x >0,所以t >1且x =2t -1, 所以f (t )=lg2t -1, 即f (x )的解析式是f (x )=lg2x -1(x >1). (2)(配凑法)因为f ⎝⎛⎭⎪⎫x 2+1x 2=⎝ ⎛⎭⎪⎫x 2+1x 22-2,所以f (x )=x 2-2,x ∈[2,+∞).(3)(待定系数法)设f (x )=ax 2+bx +c (a ≠0), 又f (0)=c =3.所以f (x )=ax 2+bx +3,所以f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.所以⎩⎪⎨⎪⎧4a =4,4a +2b =2,所以⎩⎪⎨⎪⎧a =1,b =-1,所以函数f (x )的解析式为f (x )=x 2-x +3. (4)(解方程组法)因为2f (x )+f (-x )=2x ,① 将x 换成-x 得2f (-x )+f (x )=-2x ,② 由①②消去f (-x ),得3f (x )=6x , 所以f (x )=2x . 【答案】 (1)f (x )=lg 2x -1(x >1) (2)f (x )=x 2-2,x ∈[2,+∞) (3)f (x )=x 2-x +3 (4)f (x )=2x求函数解析式的4种方法(1)配凑法:由已知条件f [g (x )]=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),得f (x )的表达式.(2)换元法:已知复合函数f [g (x )]的解析式,可用换元法,此时要注意新元的取值范围.(3)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法.(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 求解析式时要注意新元的取值范围.1.(一题多解)已知二次函数f (2x +1)=4x 2-6x +5,则f (x )=_______. 解析:方法一(换元法):令2x +1=t (t ∈R ),则x =t -12,所以f (t )=4⎝ ⎛⎭⎪⎫t -122-6·t -12+5=t 2-5t +9(t ∈R ),所以f (x )=x 2-5x +9(x ∈R ).方法二(配凑法):因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9,所以f (x )=x 2-5x +9(x ∈R ).方法三(待定系数法):因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R ). 答案:x 2-5x +9(x ∈R )2.已知函数f (x )满足2f (x )+f ⎝ ⎛⎭⎪⎫1x=3x ,则f (x )=________________. 解析:因为2f (x )+f ⎝ ⎛⎭⎪⎫1x=3x ,① 把①中的x 换成1x,得2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x.②联立①②可得⎩⎪⎨⎪⎧2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ,2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x ,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x(x ≠0)3.已知函数f (x +1)=x +2x ,则f (x )的解析式为________________. 解析:方法一(换元法):设t =x +1,则x =(t -1)2,t ≥1,代入原式得f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1.故f (x )=x 2-1,x ≥1.方法二(配凑法):因为x +2x =(x )2+2x +1-1=(x +1)2-1, 所以f (x +1)=(x +1)2-1,x +1≥1, 即f (x )=x 2-1,x ≥1. 答案:f (x )=x 2-1(x ≥1)分段函数(多维探究) 角度一 分段函数求值(1)设函数f (x )=⎩⎪⎨⎪⎧x 2-2x,x ≤0,f (x -3),x >0,则f (5)的值为( )A .-7B .-1C .0D .12(2)若函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,则f [f (-9)]=________.(3)(2021·广东省七校联考)已知函数f (x )=⎩⎪⎨⎪⎧log 2(3-x ),x ≤02x -1,x >0,若f (a -1)=12,则实数a =________.【解析】 (1)f (5)=f (5-3)=f (2)=f (2-3)=f (-1)=(-1)2-2-1=12.故选D .(2)因为函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,所以f (-9)=lg 10=1,所以f [f (-9)]=f (1)=-2.(3)当a -1≤0,即a ≤1时,log 2(4-a )=12,4-a =212,故a =4-212,不满足a ≤1,舍去.当a -1>0,即a >1时,2a -1-1=12,2a -1=32,解得a =log 23,满足a >1.综上可得a =log 23.【答案】 (1)D (2)-2 (3)log 23分段函数的求值问题的解题思路(1)求函数值:先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f [f (a )]的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.角度二 分段函数与方程(1)已知函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <0,3x ,x ≥0,若f [f (-1)]=9,则实数a =( )A .2B .4C .133D .4或133(2)已知函数f (x )=⎩⎨⎧x +1,-1<x <0,2x ,x ≥0,若实数a 满足f (a )=f (a -1),则f ⎝ ⎛⎭⎪⎫1a =( )A .2B .4C .6D .8【解析】 (1)因为-1<0,所以f (-1)=a -2, 所以f (a -2)=9. 当a -2≥0,即a ≥2时, 3a -2=9,解得a =4.当a -2<0,即a <2时,2(a -2)+a =9,解得a =133(舍去).综上可知a =4.故选B . (2)由题意得a >0.当0<a <1时,由f (a )=f (a -1),即2a =a ,解得a =14,则f ⎝ ⎛⎭⎪⎫1a =f (4)=8.当a ≥1时,由f (a )=f (a -1),得2a =2(a -1),不成立.故选D .【答案】 (1)B (2)D(1)若分段函数中含有参数,则直接根据条件选择相应区间上的解析式代入求参; (2)若是求自变量的值,则需要结合分段区间的范围对自变量进行分类讨论,再求值. 角度三 分段函数与不等式(一题多解)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)【解析】 方法一:①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x )即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1.所以不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x )即为1<2-2x ,解得x <0.所以不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 故选D .方法二:因为f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,所以函数f (x )的图象如图所示.由图可知,只有当⎩⎪⎨⎪⎧2x <0,x +1≥0或2x <x +1<0时,满足f (x +1)<f (2x ),故x <0,所以不等式f (x +1)<f (2x )的解集为(-∞,0).【答案】 D涉及与分段函数有关的不等式问题,主要表现为解不等式,当自变量取值不确定时,往往要分类讨论求解;当自变量取值确定,但分段函数中含有参数时,只需依据自变量的情况,直接代入相应解析式求解.1.(2021·长沙市统一模拟考试)已知函数f (x )=⎩⎪⎨⎪⎧log 3 x ,x >0,x 2,x ≤0,则f [f (-3)]=( )A .-2B .2C .-1D .1解析:选D .f (-3)=3,则f [f (-3)]=f (3)=log 33=1.故选D .2.设f (x )=⎩⎪⎨⎪⎧3-x+a ,x ≤2,f (x -1),x >2,若f (3)=-89,则实数a =( )A .1B .-1C .19D .0解析:选B .f (3)=f (3-1)=f (2)=3-2+a =-89,解得a =-1.3.(2021·六校联盟第二次联考)已知函数f (x )=⎩⎪⎨⎪⎧1+x 2,x ≤0,1,x >0,若f (x -4)>f (2x -3),则实数x 的取值范围是( )A .(-1,+∞)B .(-∞,-1)C .(-1,4)D .(-∞,1)解析:选C .函数f (x )=⎩⎪⎨⎪⎧1+x 2,x ≤0,1,x >0在(-∞,0]上是减函数,在(0,+∞)上函数值保持不变,若f (x -4)>f (2x -3),则⎩⎪⎨⎪⎧x -4<0,2x -3≥0或x -4<2x -3≤0,解得x ∈(-1,4).故选C .4.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:由题可知,1-a 与1+a 异号,当a >0时,1-a <1,1+a >1, 所以2(1-a )+a =-1-a -2a ,解得a =-32(舍去).当a <0时,1-a >1,1+a <1, 所以-1+a -2a =2+2a +a , 解得a =-34.答案:-34核心素养系列2 数学抽象——函数的新定义问题定义函数问题是指给出阅读材料,设计一个陌生的数学情境,定义一个新函数,并给出新函数所满足的条件或具备的性质;或者给出函数,再定义一个新概念(如不动点),把数学知识与方法迁移到这段阅读材料,考生需捕捉相关信息,通过归纳、探索,发现解题方法,然后解决问题.若函数f (x )满足:在定义域D 内存在实数x 0,使得f (x 0+1)=f (x 0)+f (1)成立,则称函数f (x )为“1的饱和函数”.给出下列四个函数:①f (x )=1x;②f (x )=2x ;③f (x )=lg(x 2+2);④f (x )=cos (πx ).其中是“1的饱和函数”的所有函数的序号为( ) A .①③ B .②④ C .①②D .③④【解析】 对于①,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则1x 0+1=1x 0+1,所以x 20+x 0+1=0(x 0≠0,且x 0≠-1),显然该方程无实根,所以①不是“1的饱和函数”;对于②,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则2x 0+1=2x 0+2,解得x 0=1,所以②是“1的饱和函数”;对于③,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则lg[(x 0+1)2+2]=lg(x 20+2)+lg(12+2),化简得2x 20-2x 0+3=0,显然该方程无实根,所以③不是“1的饱和函数”;对于④,注意到f ⎝ ⎛⎭⎪⎫13+1=cos 4π3=-12,f ⎝ ⎛⎭⎪⎫13+f (1)=cos π3+cos π=-12,即f ⎝ ⎛⎭⎪⎫13+1=f ⎝ ⎛⎭⎪⎫13+f (1),所以④是“1的饱和函数”.综上可知,其中是“1的饱和函数”的所有函数的序号是②④.【答案】 B处理新定义函数问题的常用方法(1)联想背景:有些题目给出的新函数是以熟知的初等函数(如一次函数、二次函数、指数函数、对数函数、三角函数等)为背景定义的,可以通过阅读材料,分析有关信息,联想背景函数及其性质,进行类比,捕捉解题灵感,然后解决问题.(2)紧扣定义:对于题目定义的新函数,通过仔细阅读,分析定义以及新函数所满足的条件,围绕定义与条件来确定解题的方向,然后准确作答.(3)巧妙赋值:如果题目所定义的新函数满足的条件是函数方程,可采用赋值法,即令x ,y 取特殊值,或为某一范围内的值,求得特殊函数值或函数解析式,再结合掌握的数学知识与方程思想来解决问题.(4)构造函数:有些定义型函数可看成是由两个已知函数构造而成的.1.对于函数f (x ),若存在常数a ≠0,使得x 取定义域内的每一个值,都有f (x )=f (2a -x ),则称f (x )为准偶函数,下列函数中是准偶函数的是( )A .f (x )=xB .f (x )=x 2C .f (x )=tan xD .f (x )=cos (x +1)解析:选D .由题意可得准偶函数的图象关于直线x =a (a ≠0)对称,即准偶函数的图象存在不是y 轴的对称轴.选项A ,C 中函数的图象不存在对称轴,选项B 中函数的图象的对称轴为y 轴,只有选项D 中的函数满足题意.2.在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,若函数f (x )的图象恰好经过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数.给出下列函数:①f (x )=sin 2x ;②g (x )=x 3;③h (x )=⎝ ⎛⎭⎪⎫13x;④φ(x )=ln x .其中是一阶整点函数的是( ) A .①②③④ B .①③④ C .①④D .④解析:选C .对于函数f (x )=sin 2x ,它的图象(图略)只经过一个整点(0,0),所以它是一阶整点函数,排除D ;对于函数g (x )=x 3,它的图象(图略)经过整点(0,0),(1,1),…,所以它不是一阶整点函数,排除A ;对于函数h (x )=⎝ ⎛⎭⎪⎫13x,它的图象(图略)经过整点(0,1),(-1,3),…,所以它不是一阶整点函数,排除B .故选C .。

[精]高三第一轮复习全套课件2函数二次函数

[精]高三第一轮复习全套课件2函数二次函数

b 2
(0, )
b 0 故选 A
新疆 源头学子小屋 特级教师 王新敞
wxckt@ /wxc/
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
新疆 源头学子小屋 特级教师 王新敞
1 b c 8 , 由 1 b c 0 .
) c(
2
) ,
2
解得
b 4, c 3.
点评 注意: b 且 a b a b , 这是用不等式证明等式的有效方法, a 很是值得重视
例 6 设 f(x)=ax2+bx+c(a>b>c),f(1)=0,g(x)=ax+b (1)求证:函数 y=f(x)与 y=g(x)的图象有两个交点; (2) f(x)与 g(x)的图象交点 A、 在 x 轴上的射影为 A1、 1, 设 B B 求|A1B1| 的取值范围;
特级教师 王新敞
wxckt@
综上可得: a 的值为 a 2 或 a
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
3
例 4 已知函数 f ( x ) x (2 a 1) x a 2 与非负 x 轴至少有一个交
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
3 a 2 )
2
1 , a 2 时, 即 函数 y ( t
1 4
( a a 2 ) 在 [ 1,1]
2
单调递减, 由 y m ax 1 a
1 4
(a a 2) 2 , a 2 得

新人教A版版高考数学一轮复习第二章函数概念与基本初等函数函数与方程教案文

新人教A版版高考数学一轮复习第二章函数概念与基本初等函数函数与方程教案文

一、知识梳理1.函数的零点函数零点的概念对于函数y =f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y =f(x)(x∈D)的零点方程的根与函数零点的关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点函数零点的存在性定理函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,若f(a)·f (b)<0,则y=f(x)在(a,b)内存在零点2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象与x轴的交点(x1,0),(x2,0)(x1,0)无交点零点个数两个一个零个有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.二、习题改编1.(必修1P92A组T5改编)函数f(x)=ln x—错误!的零点所在的大致范围是()A.(1,2)B.(2,3)C.错误!和(3,4)D.(4,+∞)答案:B2.(必修1P88例1改编)f(x)=e x+3x的零点个数是()A.0 B.1C.2D.3答案:B3.(必修1P92A组T4改编)函数f(x)=x错误!—错误!错误!的零点个数为.答案:1一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)函数的零点就是函数的图象与x轴的交点.()(2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.()(3)二次函数y=ax2+bx+c(a≠0)在b2—4ac<0时没有零点.()(4)若函数f(x)在(a,b)上单调且f(a)·f(b)<0,则函数f(x)在[a,b]上有且只有一个零点.()答案:(1)×(2)×(3)√(4)√二、易错纠偏错误!(1)忽略限制条件致误;(2)错用零点存在性定理致误.1.函数f(x)=(x—1)ln(x—2)的零点个数为()A.0 B.1C.2D.3解析:选B.由x—2>0,得x>2,所以函数f(x)的定义域为(2,+∞),所以当f(x)=0,即(x—1)ln(x—2)=0时,解得x=1(舍去)或x=3.2.已知函数f(x)=2ax—a+3,若∃x0∈(—1,1),使得f(x0)=0,则实数a的取值范围是.解析:依题意可得f(—1)·f(1)<0,即(—2a—a+3)(2a—a+3)<0,解得a<—3或a>1.答案:(—∞,—3)∪(1,+∞)函数零点所在区间的判断(师生共研)(一题多解)函数f(x)=log3x+x—2的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】法一(定理法):函数f(x)=log3x+x—2的定义域为(0,+∞),并且f(x)在(0,+∞)上单调递增,图象是一条连续曲线.由题意知f(1)=—1<0,f(2)=log32>0,f(3)=2>0,根据零点存在性定理可知,函数f(x)=log3x+x—2有唯一零点,且零点在区间(1,2)内.法二(图象法):函数f(x)的零点所在的区间转化为函数g(x)=log3x,h(x)=—x+2图象交点的横坐标所在的范围.作出两个函数的图象如图所示,可知f(x)的零点所在的区间为(1,2).故选B.【答案】B错误!判断函数零点所在区间的方法方法解读适合题型定理法利用函数零点的存在性定理进行判断能够容易判断区间端点值所对应函数值的正负图象法画出函数图象,通过观察图象与x轴在给定区间上是否有交点来判断容易画出函数的图象设f(x)=3x—x2,则在下列区间中,使函数f(x)有零点的区间是()A.[0,1] B.[1,2]C.[—2,—1] D.[—1,0]解析:选D.因为f(x)=3x—x2,所以f(—1)=3—1—1=—错误!<0,f(0)=30—0=1>0,所以f(—1)·f(0)<0.函数零点个数的判断(师生共研)(一题多解)函数f(x)=错误!的零点个数为()A.3B.2C.1D.0【解析】法一(方程法):由f(x)=0,得错误!或错误!解得x=—2或x=e.因此函数f(x)共有2个零点.法二(图形法):函数f(x)的图象如图所示,由图象知函数f(x)共有2个零点.【答案】B错误!判断函数零点个数的3种方法(1)方程法:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)定理法:利用定理不仅要求函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点.(3)图形法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.已知函数f(x)=错误!则f(x)的零点个数为()A.0 B.1C.2D.3解析:选C.当x>1时,令f(x)=ln(x—1)=0,得x=2;当x≤1时,令f(x)=2x—1—1=0,得x=1.故选C.函数零点的应用(师生共研)设函数f(x)=错误!(1)若a=1,则f(x)的最小值为;(2)若f(x)恰有2个零点,则实数a的取值范围是.【解析】(1)若a=1,则f(x)=错误!作出函数f(x)的图象如图所示.由图可得f(x)的最小值为—1.(2)当a≥1时,要使f(x)恰有2个零点,需满足21—a≤0,即a≥2,所以a≥2;当a<1时,要使f(x)恰有2个零点,需满足错误!解得错误!≤a<1.综上,实数a的取值范围为错误!∪[2,+∞).【答案】(1)—1(2)错误!∪[2,+∞)错误!利用函数零点求参数取值范围的方法及步骤(1)常用方法(2)一般步骤1.函数f(x)=2x—错误!—a的一个零点在区间(1,2)内,则实数a的取值范围是()A.(1,3)B.(1,2)C.(0,3)D.(0,2)解析:选C.由题意,知函数f(x)在(1,2)上单调递增,又函数一个零点在区间(1,2)内,所以错误!即错误!解得0<a<3,故选C.2.已知函数f(x)=错误!若函数g(x)=f(x)—m有3个零点,则实数m的取值范围是.解析:画出函数f(x)=错误!的图象,如图所示.由于函数g(x)=f(x)—m有3个零点,结合图象得0<m<1,即m∈(0,1).答案:(0,1)3.若函数f(x)=4x—2x—a,x∈[—1,1]有零点,则实数a的取值范围是.解析:因为函数f(x)=4x—2x—a,x∈[—1,1]有零点,所以方程4x—2x—a=0在[—1,1]上有解,即方程a=4x—2x在[—1,1]上有解.方程a=4x—2x可变形为a=错误!错误!—错误!,因为x∈[—1,1],所以2x∈错误!,所以错误!错误!—错误!∈错误!.所以实数a的取值范围是错误!.答案:错误!核心素养系列5直观想象——用图形快速解决的常见几类题直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用空间形式特别是图形,理解和解决数学问题的素养.主要包括:借助空间形式认识事物的位置关系、形态变化与运动规律;利用图形描述分析数学问题,建立形与数的联系,构建数学问题的直观模型,探索解决问题的思路.一、利用图形研究函数的性质【解析】由已知条件得f(x+2)=f(x),则y=f(x)是以2为周期的周期函数,1正确;当—1≤x≤0时,0≤—x≤1,f(x)=f(—x)=错误!错误!,函数y=f(x)的部分图象如图所示:由图象知2正确,3不正确;当3<x<4时,—1<x—4<0,f(x)=f(x—4)=错误!错误!,因此4正确,故正确命题的序号为124.【答案】124错误!作出函数图象,由图象观察可得函数的定义域、值域、最值、单调性、奇偶性、极值点等性质,并将这些性质用于转出条件求得结论.二、利用图形解不等式使log2(—x)<x+1成立的x的取值范围是.【解析】在同一直角坐标系内作出y=log2(—x),y=x+1的图象,知满足条件的x∈(—1,0).【答案】(—1,0)错误!f(x),g(x)之间大小不等关系表现为图象中的上下位置关系,画出两个函数的图象,根据函数图象的交点和图象的相对位置确定所求不等式的解集.三、利用图形求解不等式中的参数范围若不等式|x—2a|≥错误!x+a—1对x∈R恒成立,则a的取值范围是.【解析】作出y=|x—2a|和y=错误!x+a—1的简图,依题意知应有2a≤2—2a,故a≤错误!.【答案】错误!错误!对含有参数的函数不等式问题,一般将不等式化简,整理、重组、构造两个函数,一个含有参数,一个不含参数,研究两个函数的性质,画出两个函数的图象,观察参数的变化如何带动含参函数图象的变化,根据两函数图象的相对位置确定参数满足的不等式,解不等式得出参数a的取值范围.四、利用图形研究零点问题已知函数f(x)=2x+x,g(x)=log3x+x,h(x)=x—错误!的零点依次为a,b,c,则()A.a<b<cB.c<b<aC.c<a<bD.b<a<c【解析】在同一直角坐标系下分别画出函数y=2x,y=log3x,y=—错误!的图象,如图,观察它们与y=—x的交点可知a<b<c,故选A.【答案】A错误!零点的个数等价于两函数图象交点的个数,零点的范围、大小可以转化为交点的横坐标的范围、大小,参数的取值范围通过图象的变化寻找建立不等式求解.1.函数f(x)=|x—2|—ln x在定义域内的零点的个数为()A.0 B.1C.2D.3解析:选C.由题意可知f(x)的定义域为(0,+∞),在同一直角坐标系中画出函数y1=|x—2|(x>0),y2=ln x(x>0)的图象,如图所示.由图可知函数f(x)在定义域内的零点个数为2.2.已知函数f(x)=错误!若f(a2)<f(2—a),则实数a的取值范围是.解析:函数f(x)的图象如图所示,由图象知函数f(x)在(—∞,+∞)上单调递增,所以a2<2—a,解得—2<a<1,故实数a的取值范围是(—2,1).答案:(—2,1)[基础题组练]1.(2020·福州期末)已知函数f(x)=错误!则函数y=f(x)+3x的零点个数是()A.0 B.1C.2D.3解析:选C.令f(x)+3x=0,则错误!或错误!解得x=0或x=—1,所以函数y=f(x)+3x 的零点个数是2.故选C.2.下列函数中,在(—1,1)内有零点且单调递增的是()A.y=log错误!xB.y=2x—1C.y=x2—错误!D.y=—x3解析:选B.函数y=log错误!x在定义域上单调递减,y=x2—错误!在(—1,1)上不是单调函数,y=—x3在定义域上单调递减,均不符合要求.对于y=2x—1,当x=0∈(—1,1)时,y=0且y=2x—1在R上单调递增.故选B.3.(2020·甘肃酒泉敦煌中学一诊)方程log4x+x=7的解所在区间是()A.(1,2)B.(3,4)C.(5,6)D.(6,7)解析:选C.令函数f(x)=log4x+x—7,则函数f(x)是(0,+∞)上的单调递增函数,且是连续函数.因为f(5)<0,f(6)>0,所以f(5)·f(6)<0,所以函数f(x)=log4x+x—7的零点所在区间为(5,6),所以方程log4x+x=7的解所在区间是(5,6).故选C.4.(2020·内蒙古月考)已知函数f(x)=x2—2|x|—m的零点有两个,则实数m的取值范围为()A.(—1,0)B.{—1}∪(0,+∞)C.[—1,0)∪(0,+∞)D.(0,1)解析:选B.在同一直角坐标系内作出函数y=x2—2|x|的图象和直线y=m,可知当m>0或m=—1时,直线y=m与函数y=x2—2|x|的图象有两个交点,即函数f(x)=x2—2|x|—m有两个零点.故选B.5.已知函数f(x)=x e x—ax—1,则关于f(x)的零点叙述正确的是()A.当a=0时,函数f(x)有两个零点B.函数f(x)必有一个零点是正数C.当a<0时,函数f(x)有两个零点D.当a>0时,函数f(x)只有一个零点解析:选B.f(x)=0⇔e x=a+错误!(x≠0),在同一直角坐标系中作出y=e x与y=错误!的图象,观察可知A,C,D选项错误,选项B正确.6.已知函数f(x)=错误!+a的零点为1,则实数a的值为.解析:由已知得f(1)=0,即错误!+a=0,解得a=—错误!.答案:—错误!7.(2020·新疆第一次适应性检测)设a∈Z,函数f(x)=e x+x—a,若x∈(—1,1)时,函数有零点,则a的取值个数为.解析:根据函数解析式得到函数f(x)是单调递增的.由零点存在性定理知若x∈(—1,1)时,函数有零点,需要满足错误!⇒错误!—1<a<e+1,因为a是整数,故可得到a的可能取值为0,1,2,3.答案:48.已知f(x)=x2+(a2—1)x+(a—2)的一个零点比1大,一个零点比1小,则实数a的取值范围是.解析:法一:设方程x2+(a2—1)x+(a—2)=0的两根分别为x1,x2(x1<x2),则(x1—1)(x2—1)<0,所以x1x2—(x1+x2)+1<0,由根与系数的关系,得(a—2)+(a2—1)+1<0,即a2+a—2<0,所以—2<a<1.故实数a的取值范围为(—2,1).法二:函数f(x)的图象大致如图,则有f(1)<0,即1+(a2—1)+a—2<0,得a2+a—2<0,所以—2<a<1.故实数a的取值范围是(—2,1).答案:(—2,1)9.设函数f(x)=ax2+bx+b—1(a≠0).(1)当a=1,b=—2时,求函数f(x)的零点;(2)若对任意b∈R,函数f(x)恒有两个不同的零点,求实数a的取值范围.解:(1)当a=1,b=—2时,f(x)=x2—2x—3,令f(x)=0,得x=3或x=—1.所以函数f(x)的零点为3或—1.(2)依题意,f(x)=ax2+bx+b—1=0有两个不同的实根,所以b2—4a(b—1)>0恒成立,即对于任意b∈R,b2—4ab+4a>0恒成立,所以有(—4a)2—4×(4a)<0⇒a2—a<0,解得0<a<1,因此实数a的取值范围是(0,1).10.已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=2,f(x+1)—f(x)=2x—1.(1)求函数f(x)的解析式;(2)若函数g(x)=f(x)—mx的两个零点分别在区间(—1,2)和(2,4)内,求m的取值范围.解:(1)由f(0)=2得c=2,又f(x+1)—f(x)=2x—1,得2ax+a+b=2x—1,故错误!解得a=1,b=—2,所以f(x)=x2—2x+2.(2)g(x)=x2—(2+m)x+2,若g(x)的两个零点分别在区间(—1,2)和(2,4)内,则满足错误!⇒错误!解得1<m<错误!.所以m的取值范围为错误!.[综合题组练]1.(一题多解)函数f(x)=2x—错误!零点的个数为()A.0 B.1C.2D.3解析:选B.法一:当x<0时,f(x)=2x—错误!>0恒成立,无零点;又易知f(x)=2x—错误!在(0,+∞)上单调递增,最多有一个零点.又f错误!=错误!—2<0,f(1)=2—1>0,所以有一个零点.故选B.法二:在同一平面直角坐标系中,作出函数y=2x和y=错误!的图象,如图所示.函数f(x)=2x—错误!的零点等价于2x=错误!的根等价于函数y=2x和y=错误!的交点.由图可知,有一个交点,所以有一个零点.故选B.2.已知命题p:“m=2”是“幂函数f(x)=(m2—m—1)x m在区间(0,+∞)上为增函数”的充要条件;命题q:已知函数f(x)=ln x+3x—8的零点x0∈[a,b],且b—a=1(a,b∈N*),则a+b=5.则下列命题为真命题的是()A.p∧qB.(﹁p)∧qC.﹁qD.p∧(﹁q)解析:选A.对于命题p,若幂函数f(x)=(m2—m—1)x m在区间(0,+∞)上为增函数,则错误!解得m=2,所以命题p是真命题,﹁p是假命题.对于命题q,函数f(x)=ln x+3x—8在(0,+∞)上单调递增,且f(2)=ln 2—2<0,f(3)=ln 3+1>0,所以零点x0∈[a,b],且b—a=1(a,b∈N*),则a=2,b=3,a+b=5,所以命题q为真命题,﹁q为假命题.所以p∧q 是真命题,(﹁p)∧q,﹁q,p∧(﹁q)都是假命题.故选A.3.设函数f(x)=错误!(x>0).(1)作出函数f(x)的图象;(2)当0<a<b,且f(a)=f(b)时,求错误!+错误!的值;(3)若方程f(x)=m有两个不相等的正根,求m的取值范围.解:(1)如图所示.(2)因为f(x)=错误!=错误!故f(x)在(0,1]上是减函数,而在(1,+∞)上是增函数,由0<a<b且f(a)=f(b),得0<a<1<b,且错误!—1=1—错误!,所以错误!+错误!=2.(3)由(1)中函数f(x)的图象可知,当0<m<1时,方程f(x)=m有两个不相等的正根.所以m的取值范围是(0,1).4.(创新型)已知函数f(x)=—x2—2x,g(x)=错误!(1)求g(f(1))的值;(2)若方程g(f(x))—a=0有4个实数根,求实数a的取值范围.解:(1)利用解析式直接求解得g(f(1))=g(—3)=—3+1=—2.(2)令f(x)=t,则原方程化为g(t)=a,易知方程f(x)=t在t∈(—∞,1)上有2个不同的解,则原方程有4个解等价于函数y=g(t)(t<1)与y=a的图象有2个不同的交点,作出函数y=g (t)(t<1)的图象,如图,由图象可知,当1≤a<错误!时,函数y=g(t)(t<1)与y=a有2个不同的交点,即所求a的取值范围是错误!.。

(完整版)二次函数复习课教案.docx

(完整版)二次函数复习课教案.docx

二次函数复习2016.06二次函数复习课题二次函数课型复习课掌握二次函数的图象及其性质,能灵活运用抛物线的知识解一些实际问题.通过观察、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力.教学目标学生亲自经历巩固二次函数相关知识点的过程,体会解决问题策略的多样性.经历探索二次函数相关题目的过程,体会数形结合思想、化归思想在数学中的广泛应用,同时感受数学知识来源于实际生活,反之,又服务于实际生活.教学重点二次函数图象及其性质,应用二次函数分析和解决简单的实际问题.教学难点二次函数性质的灵活运用,能把相关应用问题转化为数学问题.课前准备(教具、活制作课件动准备等)教学过程教学步骤基础知识之自我构建基础知识之基础演练师生活动设计意图通过一个具体二次函数,请学生说出尽可能多的结论,x2主要让学生回忆二次函数有让学生思考函数 y4x 3 并写出相关关基础知识.同学们之间可以结论相互补充,体现团结协作精神.同时发展了学生的探究意识,培养了学生思维的广阔性.教者让学生思考 1-4题,然后让学生回答,第 1 题主要考查二次函其他同学可以补充.数图像平移知识点,二次函数1、求将二次函数y x22x 图像向右平移1图像平实质上就是点的平移.第 2,3,4 题都是开放性个单位,再向上平移 2 个单位后得到图像的函数题,答案不唯一,只要正确即表达式.可,让学生很大发挥空间,其2、请写出一个二次函数解析式,使其图像的中涉及二次函数解析式的求对称轴为 x=1,并且开口向下.法.3、请写出一个二次函数解析式,使其图象与第 5,6 题涉及二次函数x 轴的交点坐标为( 2,0)、(- 1, 0).图象性质,根据图象,正确表4、请写出一个二次函数解析式,使其图象与示解析式中字母的取值范y 轴的交点坐标为( 0, 2),且图象的对称轴在 y围.教者也可以在原图形基础轴的右侧.改变形状,让学生经历和体验教者让学生口答第5、 6 题.图形的变化过程,引导学生感悟知识的生成、发展和变化.情感态度解决问题知识技能数学思考5、如图 ,抛物线y ax2bx c ,请判断下列各式的符号:y①a0;②b0;③c0;x④ b24ac0;6、如图 ,抛物线y ax2bx c ,请判断下列各式的符号:y① abc0;② 2a-b0;?x③ a+b+c0; 1 0 1④ a-b+c0.1、二次函数y ax2bx c 的图象如下图,则方程 ax2bx c0 的解为当 x 为时, ax2bx c当 x 为时, ax2bx cy数形结合思想是一种重要的数学思想,第 1 题看似复杂,其实对照图象,很容易找;出题目答案.第 2 题考查学生二次函0 ;数与一元二次方程关系,具体为:一元二次方程无实根说明0 .相应二次函数图象与 x 轴无交点,再根据隐含条件对称轴为直线 x1,可见顶点在第301x2一象限.第 3题考查学生从图表基础知识之提炼信息的能力.灵活运用x n0 无实数根,2、关于 x 的一元二次方程x2则抛物线 y x2x n 的顶点在()A .第一象限 B.第二象限C. 第三象限D.第四象限3、根据下列表格的对应值:x 3.23 3.24 3.25 3.26y ax2 bx c-0.06-0.020.030.09不解方程,试判断方程 ax2bx c0(a0,a,b,c 为常数)一个解 x 的范围是()A 、 3 x 3.23B、 3.23x 3.24C、 3.24x 3.25D、 3.25x 3.26难点突破之思维激活1、已知抛物线y ax2bx c 的对称轴为x=2,第 1,2 题考查抛物线轴对称性.且经过点(3,0),则 a+b+c 的值为.第 3 题考查二次函数图像2、已知抛物线y ax2bx c 经过点A(-2,7),及其性质的相关知识.本部分 3 道题目不能呆板B(6,7), C(3,- 8),则该抛物线上纵坐标为地应用二次函数的基础知识,-8 的另一点坐标是 ___________.而要综合相关知识,以达到能3、下图是抛物线y ax2bx c 的一部分,且经力提升之目的.过点(- 2 , 0),则下列结论中正确的个数有()①a <0;②b<0;③c>0;④抛物线与 x 轴的另一个交点坐标可能是(1,0);⑤抛物线与 x 轴的另一个交点坐标可能是( 4,0).A.2 个B.3 个C.4 个D.5 个y20x难点突破之聚焦中考教者出示一道函数类应用题,让学生思考,本题首先读懂题意,正确教者点拨.求出二次函数解析式.二次函例题:某商场销售一批名牌衬衫,平均每天可售数的最值是体现二次函数实出 20 件,进价是每件 80 元,售价是每件 120 元,际应用价值的一种常见题型,为了扩大销售,增加盈利,减少库存,商场决定它在优选方案、减小投入、增采取适当的降价措施,经调查发现,如果每件衬大收益中意义非凡.解题时通衫降低 1 元,商场平均每天可多售出 2 件,但每常借助顶点坐标来求,但有时件最低价不得低于108 元.由于实际问题实际意义的限⑴若每件衬衫降低x 元( x 取整数),商场平制,需结合自变量的取值范围均每天盈利 y 元,试写出 y 与 x 之间的函数关系进行调整.本题由图象可知,式,并写出自变量x 的取值范围.抛物线顶点(15,1250)不在⑵每件衬衫降低多少元时,商场每天(平均)本题图象上,它不是最高点,盈利最多?最高点应该是(12,1232)或者这样理解:顶点横坐标是反思与提高1、本节课你印象最深的是什么?2、通过本节课的函数学习,你认为自己还有哪些地方是需要提高的?3、在下面的函数学习中,我们还需要注意15,不满足 0 x 12 ,因此不能理解为:当 x 15 时, y 取最大值为 1250 元.让学生自己总结一节课的得失,教者进行适当的点评.真正体现出学生是学习的主体.为今后自主学习奠定基哪些问题?础,由此达到数学教学的新境教者归纳本章知识网络图示界——提升思维品质,形成数学素养.实际问题二次函数y ax2bx c目标实际问题利用二次函数的图的答案象和性质求解。

第三高考数学一轮复习 二次函数幂函数教案

第三高考数学一轮复习 二次函数幂函数教案

城东蜊市阳光实验学校第三中学高考数学一轮复习二次函数幂函数教案对称轴 顶点坐标 单调区间3、二次函数在区间上的最值问题。

设()2f x ax bx c =++,那么二次函数在闭区间[]n m ,上的最大、最小值有二次函数的图像与性质 〔1〕假设[]n m a b ,2∈-,那么()()()⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛-=n f a b f m f x f ,2,max max ,()()()⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛-=n f a b f m f x f ,2,min min ;〔2〕假设[]n m ab,2∉-,那么()()(){}n f m f x f ,m ax max =,()()(){}n f m f x f ,m in min =另外,当二次函数开口向上时,自变量的取值分开对称轴越远,那么对应的函数值越大;反过来,当二次函数开口向下时,自变量的取值分开对称轴轴越远,那么对应的函数值越小. 4、一元二次方程根的非零分布——k 分布设一元二次方程ax2+bx +c =0〔a≠0〕的两实根为x1,x2,且x1≤x2。

k 为常数。

那么一元二次方程根的k 分布〔即x1、x2相对于k 的位置〕有以下假设干结论。

〔1〕k <x1≤x2xy1x 2x 0>a O•ab x 2-=0)(>k f kxy1x 2x O•a b x 2-=k<a 0)(<k f〔2〕x1≤x2<k 。

x y1x 2x 0>a O•ab x 2-=k 0)(>k f xy1x 2x O•ab x 2-=k<a 0)(<k f特殊地①x1<0<x2 ac <0。

②x1<1<x2 a(a +b +c)<0。

5、幂函数:定义域、值域、单调性、定点根底自测1、函数f(x)=x2-2x+2的单调增区间是()y x =2y x =3y x=12y x=1y x -=在第Ⅰ象限单调 在第Ⅰ象限单调 在第Ⅰ象限单调 在第Ⅰ象限单调 在第Ⅰ象限单调 〔,〕 〔,〕〔,〕〔,〕〔,〕〔4〕假设一个大于0,一个小于0求m 的取值范围;有两个实数根,那么有:∆=4(m+3)^2-4(2m+14)=4m^2+24m+36-8m-56=4m^2+16m-20>=0m^2+4m-5>=0 (m+5)(m-1)>=0m>=1或者者者m<=-5一根比4大,另一根比4小,那么有:f(4)<0 即:4^2+2(m+3)*4+2m+14<016+8m+24+2m+14<010m<-54 m<- 综上所述,m<- 例3、幂函数223()m m f x x --=()m ∈Z 是偶函数,且在区间()0,+∞上是减函数.(1)求函数()f x 的解析式;(2)讨论()()()bF x a f x xf x =-的奇偶性(,)a b ∈R . 解析:〔1〕为偶函数,那么m²-2m-3为偶数,在区间〔0,正无穷〕上是单调减函数,那么有m²-2m-3<0,即-1<m<3, m ∈Z ,m=0或者者1或者者2只有当m=1时,m²-2m-3=-4为偶数,此时f(x)=x^(-4)〔2〕由题意F(x)=a[x^(-4)]^(1/2)-b/[x*x^(-4)]=ax^(-2)+bx^3,a=0且b≠0时F(x)=bx^3,为奇函数 b=0且a≠0时F(x)=ax^(-2),为偶函数 当a*b 不等于0时,F(x)既不是奇函数又不是偶函数当堂达标1、函数f(x)=x2+bx +c 的图象的对称轴为直线x =1,那么(B)A .f(-1)<f(1)<f(2)B .f(1)<f(2)<f(-1)C .f(2)<f(-1)<f(1)D .f(1)<f(-1)<f(2) 2、函数y =-x2-10x +11在区间[-1,2]上的最小值是____-13____3、方程x2+2px+1=0有一个根大于1,有一个根小于1,那么P 的取值为p <-1。

二次函数的复习教案

二次函数的复习教案

二次函数的复习教案教案标题:二次函数的复习教案教案目标:1. 复习学生对二次函数的基本概念和性质的理解。

2. 强化学生对二次函数图像、顶点、轴对称性和零点的掌握。

3. 提高学生解决与二次函数相关的实际问题的能力。

教学时长:2个课时教学步骤:第一课时:1. 导入(5分钟)- 通过提问引起学生对二次函数的兴趣,例如:你知道什么是二次函数吗?它有哪些特点?2. 复习基本概念(15分钟)- 提醒学生二次函数的一般形式为f(x) = ax^2 + bx + c,并解释a、b、c的含义。

- 回顾二次函数的图像特点,如开口方向、顶点位置等。

- 强调二次函数的轴对称性和零点的概念。

3. 图像练习(20分钟)- 展示几个不同形态的二次函数图像,要求学生根据图像特点判断函数的开口方向、顶点和轴对称性。

- 给学生一些简单的二次函数,要求他们画出对应的图像,并标出顶点和轴对称线。

4. 零点练习(15分钟)- 提供一些二次函数的方程,要求学生解方程求出零点。

- 引导学生思考零点与图像的关系,例如:零点在图像上对应什么位置?第二课时:1. 复习顶点和轴对称线(10分钟)- 提醒学生顶点是二次函数图像的最高点或最低点,轴对称线通过顶点并将图像分为两部分。

2. 实际问题解决(20分钟)- 提供一些与实际问题相关的二次函数,要求学生解决问题。

- 引导学生将问题转化为二次函数的方程,并解方程求出答案。

3. 总结(10分钟)- 回顾本节课所学内容,强调二次函数的重要性和应用。

- 鼓励学生通过做更多的练习来巩固所学知识。

教学方法和教学资源:1. 教学方法:- 提问法:通过提问引导学生思考和回忆所学知识。

- 演示法:展示二次函数图像和实际问题,帮助学生理解和解决问题。

2. 教学资源:- PowerPoint幻灯片或白板,用于展示图像和问题。

- 二次函数练习题,包括图像练习和实际问题练习。

评估方法:1. 课堂表现评估:- 观察学生在课堂上的参与度和回答问题的准确性。

高考数学一轮复习第二章函数概念与基本初等函数第4课时二次函数与幂函数教案(1)

高考数学一轮复习第二章函数概念与基本初等函数第4课时二次函数与幂函数教案(1)

二次函数与幂函数1.二次函数(1)二次函数解析式的三种形式①一般式:f(x )=ax2+bx+c(a≠0).②顶点式:f(x)=a(x-m)2+n(a≠0)。

③零点式:f(x)=a(x-x1)(x-x2)(a≠0)。

(2)二次函数的图像和性质解析式f(x)=ax2+bx+c(a>0)f(x)=ax2+bx+c(a<0)图像定义域(-∞,+∞)(-∞,+∞)值域错误!错误!单调性在x∈错误!上单调递减;在x∈错误!上单调递增在x∈错误!上单调递增;在x∈错误!上单调递减对称性函数的图像关于x=-错误!对称2.幂函数(1)定义:形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α是常数.(2)幂函数的图像比较(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②幂函数的图像过定点(1,1);③当α>0时,幂函数的图像都过点(1,1)和(0,0),且在(0,+∞)上单调递增;④当α〈0时,幂函数的图像都过点(1,1),且在(0,+∞)上单调递减。

【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是错误!。

(×)(2)二次函数y=ax2+bx+c,x∈R,不可能是偶函数.( ×)(3)在y=ax2+bx+c(a≠0)中,a决定了图像的开口方向和在同一直角坐标系中的开口大小.(√)(4)函数y=2x 12是幂函数。

( ×)(5)如果幂函数的图像与坐标轴相交,则交点一定是原点。

( √)(6)当n〈0时,幂函数y=x n是定义域上的减函数。

(×)1.已知a,b,c∈R,函数f(x)=ax2+bx+c。

若f(0)=f(4)〉f(1),则()A.a>0,4a+b=0B.a〈0,4a+b=0C.a>0,2a+b=0 D。

a〈0,2a+b=0答案A解析因为f(0)=f(4)〉f(1),所以函数图像应开口向上,即a>0,且其对称轴为x=2,即-错误!=2,所以4a+b=0,故选A.2.已知函数f(x)=ax2+x+5的图像在x轴上方,则a的取值范围是()A.错误!B.错误!C。

2022届高考数学一轮复习第二章函数导数及其应用第四节二次函数与幂函数学案含解析新人教版 (1)

2022届高考数学一轮复习第二章函数导数及其应用第四节二次函数与幂函数学案含解析新人教版 (1)

第四节二次函数与幂函数热点命题分析学科核心素养本节在高考中很少单独命题,常与其他函数、不等式、方程等知识综合考查,是高考中的一个热点,主要考查二次函数的图象和性质,而对幂函数要求较低,常与指数函数、对数函数综合,比拟幂值的大小,题型以选择题和填空题为主,难度中等偏下.本节通过二次函数和幂函数的图象和性质考查分类讨论思想的运用和考生的逻辑推理、数学运算核心素养.授课提示:对应学生用书第20页知识点一幂函数1.幂函数的概念一般地,形如y=xα(α∈R)的函数称为幂函数,其中底数x是自变量,α为常数.2.5个简单的幂函数的图象与性质函数y=x y=x2y=x3y=y=x-1定义域R R R{x|x≥0}{x|x≠0} 值域R{y|y≥0}R{y|y≥0}{y|y≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R上单调递增在(-∞,0)上单调递减,在(0,+∞)上单调在R上单调递增在[0,+∞)上单调递增在(-∞,0)和(0,+∞)上单调递减递增图象过定点(0,0),(1,1) (1,1) •温馨提醒•由幂函数的函数值大小求参数的X围问题,一般是借助幂函数的单调性进展求解,一定要具体问题具体分析,做到考虑问题全面周到.1.(多项选择题)(2021·某某某某某某中学月考)假如幂函数y=f(x)的图象经过点(3,27),如此幂函数f(x)是( )A.奇函数B.偶函数C.增函数D.减函数解析:设幂函数为f(x)=x a(a为常数),因为其图象经过点(3,27),所以27=3a,解得a=3,所以幂函数f(x)=x3.因为f(x)的定义域为R,且f(-x)=(-x)3=-x3=-f(x),所以f(x)是奇函数,又a=3>0,所以f(x)在R上是增函数.答案:AC2.如下列图是①y=x a;②y=x b;③y=x c在第一象限内的图象,如此a,b,c的大小关系为________.答案:a<c<b3.(易错题)幂函数f(x)=,假如f(a+1)<f(10-2a),如此a的取值X围为________.解析:由题意知⎩⎪⎨⎪⎧a +1>0,10-2a >0,a +1>10-2a .解得3<a <5. 答案:(3,5) 知识点二 二次函数 二次函数的图象和性质f (x )=ax 2+bx +c (a ≠0) a >0 a <0图象定义域 R值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ ⎝ ⎛⎦⎥⎤-∞,4ac -b 24a单调性在⎝⎛⎦⎥⎤-∞,-b 2a上递减,在⎣⎢⎡⎭⎪⎫-b 2a ,+∞ 上递增在⎝⎛⎦⎥⎤-∞,-b 2a上递增,在⎣⎢⎡⎭⎪⎫-b 2a ,+∞ 上递减f (x )=ax 2+bx +c (a ≠0)a >0 a <0奇偶性 b =0时为偶函数,b ≠0时既不是奇函数也不是偶函数图象特点①对称轴:x =-b2a;②顶点:⎝ ⎛⎭⎪⎫-b 2a ,4ac -b 24a •温馨提醒•1.注意二次项系数对函数性质的影响,经常分二次项系数大于零与小于零两种情况讨论. 2.一元二次不等式恒成立的条件(1)“ax 2+bx +c >0(a ≠0)恒成立〞的充要条件是“a >0且Δ<0〞. (2)“ax 2+bx +c <0(a ≠0)恒成立〞的充要条件是“a <0且Δ<0〞.1.(易错题)假如不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,如此a 的取值X 围是( )A .(-∞,2]B .[-2,2]C .(-2,2]D .(-∞,-2) 答案:C2.函数f (x )=(m 2-m -5)x m 是幂函数,且在x ∈(0,+∞)时为增函数,如此实数m 的值是( ) A .-2B .4 C .3D .-2或3 答案:C3.函数f (x )=x 2+(a -1)x +a 在区间[2,5]上单调,如此a 的取值X 围为________. 答案:(-∞,-9]∪[-3,+∞)4.如下列图,假如a <0,b >0,如此函数y =ax 2+bx 的大致图象是________(填序号).解析:由函数的解析式可知,图象过点(0,0),故①、④不正确.又a <0,b >0,所以二次函数图象的对称轴为x=-b2a>0,故③正确.答案:③授课提示:对应学生用书第21页题型一幂函数的图象与性质自主探究1.幂函数y=f(x)的图象过点(4,2),如此y=f(x)的图象大致是( )答案:C2.假如,如此a,b,c的大小关系是( ) A.a<b<c B.c<a<bC.b<c<a D.b<a<c答案:D3.假如(a+1)-2>(3-2a)-2,如此a的取值X围是________.解析:因为(a+1)-2>(3-2a)-2,又f(x)=x-2为偶函数,且在(0,+∞)上单调递减,所以⎩⎪⎨⎪⎧|a +1|<|3-2a |,a +1≠0,3-2a ≠0,解得a <23且a ≠-1或a >4.答案:(-∞,-1)∪⎝⎛⎭⎪⎫-1,23∪(4,+∞)4.幂函数(m ∈Z )为偶函数,且在区间(0,+∞)上是单调增函数,如此f (2)的值为________. 答案:161.对于幂函数图象的掌握只要抓住在第一象限内三条线分第一象限为六个区域,即x =1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限局部由奇偶性决定.2.在比拟幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进展比拟. 题型二 二次函数的图象与性质 多维探究 考法(一) 二次函数的图象[例1] 如下列图是二次函数y =ax 2+bx +c (a ≠0)图象的一局部,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b . 其中正确的答案是( )A .②④B .①④C .②③D .①③ [答案]B考法(二) 二次函数的单调性[例2](多项选择题)假如函数f (x )=(x -1)|x +a |在区间(1,2)上单调递增,如此满足条件的实数a 的值可能是( )A .0B .2C .-2D .-3[解析]根据题意可知f (x )=⎩⎪⎨⎪⎧x 2+a -1x -a ,x ≥-a ,-x 2-a -1x +a ,x <-a .对于y =x 2+(a -1)x -a 与y =-x 2-(a -1)x +a ,其图象的对称轴均为直线x =1-a 2.当1-a2≥-a ,即a ≥-1时,作出f (x )的大致图象(为方便说明,略去y 轴以与坐标原点)如图1所示,由图可知,此时要满足题意,只需-a ≥2或1-a 2≤1,解得a ≤-2或a ≥-1,故a ≥-1;当1-a2<-a ,即a <-1时,作出f (x )的大致图象(为方便说明,略去y 轴以与坐标原点)如图2所示,由图可知,此时要满足题意,只需-a ≤1或1-a2≥2,解得a ≥-1或a ≤-3,故a ≤-3.综上所述,a ≥-1或a ≤-3. [答案]ABD考法(三) 二次函数中的恒成立问题[例3] 函数f (x )=x 2-x +1,在区间[-1,1]上不等式f (x )>2x +m 恒成立,某某数m 的取值X 围.[解析] 由题意可知,f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0,令g (x )=x 2-3x +1-m ,要使g (x )>0在[-1,1]上恒成立,只需使函数g (x )在[-1,1]上的最小值大于0即可.∵g (x )=x 2-3x +1-m 在[-1,1]上单调递减, ∴g (x )min =g (1)=-m -1, 由-m -1>0得m <-1.因此,满足条件的实数m 的取值X 围是(-∞,-1).解决二次函数图象与性质问题时应注意的三点(1)抛物线的开口方向,对称轴位置,定义区间三者相互制约,要注意分类讨论.(2)要注意数形结合思想的应用,尤其是给定区间上的二次函数最值问题,先“定性〞(作草图),再“定量〞(看图求解).(3)由不等式恒成立求参数取值X 围的关键解题思路:一是别离参数;二是不别离参数.两种思路都是将问题归结为求函数的最值或值域.[题组突破]1.一次函数y =ax +b 与二次函数y =ax 2+bx +c (a ≠0)在同一直角坐标系中的图象大致是( )答案:C2.二次函数f (x )满足f (2+x )=f (2-x ),且f (x )在[0,2]上是增函数,假如f (a )≥f (0),如此实数a 的取值X 围是( )A .[0,+∞)B .(-∞,0]C .[0,4]D .(-∞,0]∪[4,+∞) 答案:C3.a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,如此实数a 的取值X 围为________.解析:2ax 2+2x -3<0在[-1,1]上恒成立. 当x =0时,-3<0,成立; 当x ≠0时, a <32⎝ ⎛⎭⎪⎫1x -132-16,易知1x ∈(-∞,-1]∪[1,+∞),所以当x =1时,函数f (x )取最小值12,所以a <12.综上,实数a 的取值X 围是⎝ ⎛⎭⎪⎫-∞,12.答案:⎝⎛⎭⎪⎫-∞,12二次函数应用中的核心素养(一)逻辑推理——分类讨论思想在二次函数最值问题中的应用[例1] 函数f (x )=x 2+2x 在区间[t ,t +1]上的最小值为8,某某数t 的值.[解析] 二次函数f (x )=x 2+2x 图象的对称轴方程为x =-1.当t +1<-1,即t <-2时,f (x )在区间[t ,t +1]上单调递减,故f (x )min =f (t +1)=(t +1)2+2(t +1)=8,解得t =-5或t =1(舍去);当t ≤-1≤t +1,即-2≤t ≤-1时,f (x )min =f (-1)=-1≠8;当t >-1时,f (x )在区间[t ,t +1]上单调递增,故f (x )min =f (t )=t 2+2t =8,解得t =2或t =-4(舍去).综上可知,t 的值为-5或2.二次函数在闭区间上的最大值和最小值可能在三个地方取到:区间的两个端点处,或对称轴处.也可以作出二次函数在该区间上的图象,由图象来判断最值.解题的关键是讨论对称轴与所给区间的相对位置关系.(二)创新应用——与高数接轨的创新问题[例2] 定义:如果函数f (x )在[a ,b ]上存在x 1,x 2(a <x 1<x 2<b )满足f ′(x 1)=f ′(x 2)=f b -f ab -a ,如此称函数f (x )是[a ,b ]上的“中值函数〞.函数f (x )=13x 3-12x 2+m 是[0,m ]上的“中值函数〞,如此实数m 的取值X 围是________.[解析] 由题意,知f ′(x )=x 2-x 在[0,m ]上存在x 1,x 2(0<x 1<x 2<m ),满足f ′(x 1)=f ′(x 2)=f m -f 0m=13m 2-12m ,所以方程x 2-x =13m 2-12m 在(0,m )上有两个不相等的解.令g (x )=x 2-x -13m 2+12m (0<x <m ),如此⎩⎪⎨⎪⎧ Δ=1+43m 2-2m >0,g0=-13m 2+12m >0,g m =23m 2-12m >0,解得34<m <32. [答案]⎝ ⎛⎭⎪⎫34,32此题关键是利用“中值函数〞的定义转化为二次方程根的分布问题,从而利用函数与方程的思想、数形结合思想求出.[题组突破]1.(2021·某某模拟)假如函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,如此实数a 等于( )A .-1B .1C .2D .-2答案:B2.设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,假如函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,如此称f (x )和g (x )在[a ,b ]上是“关联函数〞.假如f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数〞,如此m 的取值X 围为________.解析:由题意得,函数y =f (x )-g (x )=x 2-3x +4-2x -m =x 2-5x +4-m 在[0,3]上有两个不同的零点.令h (x )=x 2-5x +4-m ,如此⎩⎪⎨⎪⎧ h 0≥0,h ⎝ ⎛⎭⎪⎫52<0,h 3≥0, 即⎩⎪⎨⎪⎧ 4-m ≥0,-94-m <0,⇒-94<m ≤-2.-2-m ≥0 答案:⎝ ⎛⎦⎥⎤-94,-2。

高考第一轮复习二次函数教案

高考第一轮复习二次函数教案

高考第一轮复习二次函数教案大悟楚才高中柳亚洲教学内容:§2.5 二次函数(第一课时)教学目的:掌握二次函数的解析式及其图像特征;掌握二次函数的单调性,二次函数在某区间上的最值的求解法及规律,培养分类讨论的思维能力。

教学重点:二次函数是重要的初等函数之一,许多问题都需要化归为二次函数来处理,它同时又与二次方程、二次不等式有着密切的联系,因此既要熟练掌握好它的定义、图像特征及性质(特别是单调性),又要掌握“三个二次”(二次函数、二次方程、二次不等式)之间的相互联系及相互转化,复习时要围绕这两个重点展开。

教学过程(一)考点陪练:1.已知二次函数f(x)满足:对x∈R,f(x) ≤f(1)=3且f(0)=2,则f(x)的表达式为()A f(x)=-x2+2x+2B f(x)=x2-2x+2C f(x)=-x2-2x+2D f(x)=x2+2x+22.若函数f(x)=(m-1)x2+(m2-1)x+1是偶函数,则在区间(-∞,0]上f(x)是() A.增函数B.减函数C.常数函数D.可能是增函数,也可能是常数函数3.函数y=-x2+4x-2在区间[1,4]上的最小值是()A.-7 B.-4C.-2 D.24.如果不等式f(x)=ax2-x-c>0的解集为{x|-2<x<1},那么函数y=f(-x)的大致图象是()5.设二次函数f(x)=x2-x+a,若f(-m)<0,则f(m+1)的值是()A.正数B.负数C.非负数D.与m有关(二)知识要点1. 二次函数的定义与解析式(1)二次函数的定义形如:f(x)=ax2+bx+c (a≠0)的函数叫做二次函数.(2)二次函数解析式的三种形式①一般式:__________________.②顶点式:__________________, 顶点为______.③零点式:____________________,其中_______是方程ax 2+bx +c =0的两根.2.二次函数的图象和性质3.二次函数f (x )=ax 2+bx +c (a ≠0)与轴两交点的距离当Δ=b 2-4ac >0时,图象与x 轴有两个交点M 1(x 1, 0) , M 2(x 2, 0)4. 二次函数f (x )=ax 2+bx +c (a >0)在[m , n ]上的最值(1)若 ∈[m , n ], 则 f (x )min= f (x 0)= (2)若 ∉[m , n ], 则①当 x 0<m 时, f (x )min=f (m ), f (x )max=f (n );②当 x 0>n 时, f (x )min=f (n ), f (x )max=f (m ).5.二次函数、一元二次方程、一元二次不等式三者之间的关系(三)例题讲解题型一:二次函数的单调性与最值例1、已知函数2()22,[5,5].f x x ax x =++∈-(1)当1a =-时,求函数()f x 的最大值和最小值。

2019-2020学年高三数学一轮复习 二次函数教案.doc

2019-2020学年高三数学一轮复习 二次函数教案.doc

2019-2020学年高三数学一轮复习 二次函数教案教材分析:二次函数是最简单的非线性函数之一,自身性质活跃,同时经常作为其他函数的载体。

初中的时候学生已经接触过二次函数的相关知识点,在高中阶段将会更加深入和系统地学习二次函数的内容,本次课为专题复习课,包括二次函数的性质与图像,以及二次函数的解析式求解以及最值值域的求解。

学情分析:虽然学生在初中阶段学习过二次函数的相关知识,但本校的学生基础不是很好,在学习相关函数的知识之前,加入本次专题课,主要是复习初中知识并拓展相关的高中知识。

高中的学生有一定的数学思维基础,分析和概括能力相对于初中生来说有很大的提高,容易开发学生的主观能动性,适合有特殊到一般的探究方式。

教学目标:(1)知识与技能目标:理解二次函数的图像和性质,掌握二次函数的三种形式,并会求定义域内的最值和值域。

(2)过程与方法目标:在教学过程中引导学生自主探索、思考及交流讨论,从而培养学生观察、分析、比较、概括的综合能力。

(3)情感态度与价值观目标:通过学习培养学生积极参与和勇于探索的精神。

教学重难点:重点:二次函数的性质和图像难点:二次函数在某一定义域上的最值和值域的求解。

教学过程:一、二次函数y =ax2+bx +c(a≠0)的图象和性质(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而减小;当x >2ba-时,y 随着x 的增大而增大;当x =2b a -时,函数取最小值y =244ac b a-.(2)当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而增大;当x >2ba-时,y 随着x 的增大而减小;当x =2b a -时,函数取最大值y =244ac b a-.上述二次函数的性质可以分别通过图1和图2直观地表示出来.因此,在今后解决二次函数问题时,可以借助于函数图像、利用数形结合的思想方法来解决问题.例1 求二次函数y =-3x 2-6x +1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x 取何值时,y 随x 的增大而增大(或减小)?并画出该函数的图象.解:∵y =-3x 2-6x +1=-3(x +1)2+4, ∴函数图象的开口向下; 对称轴是直线x =-1; 顶点坐标为(-1,4);当x =-1时,函数y 取最大值y =4;当x <-1时,y 随着x 的增大而增大;当x >-1时,y 随着x 的增大而减小;采用描点法画图,选顶点A (-1,4)),与x 轴交于点B 和C (,与y 轴的交点为D (0,1),过这五点画出图象(如图所示)。

2025届高考数学一轮复习教案:一元二次函数、方程、不等式-二次函数与一元二次方程、不等式

2025届高考数学一轮复习教案:一元二次函数、方程、不等式-二次函数与一元二次方程、不等式

第三节二次函数与一元二次方程、不等式课程标准1.会从实际情境中抽象出一元二次不等式.2.结合二次函数图象,会判断一元二次方程的根的个数,以及解一元二次不等式.3.了解简单的分式、绝对值不等式的解法.考情分析考点考法:本节是高考的必考内容之一,常与函数、导数、解析几何等内容相结合命题,重点考查不等式的求解等问题.核心素养:数学运算、逻辑推理、直观想象【必备知识·逐点夯实】【知识梳理·归纳】1.一元二次不等式只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式,一元二次不等式的一般形式是ax 2+bx +c >0或ax 2+bx +c <0(a ,b ,c 均为常数,a ≠0).2.二次函数的零点一般地,对于二次函数y =ax 2+bx +c ,我们把使ax 2+bx +c =0的实数x叫做二次函数的零点.【微点拨】二次函数的零点为对应方程的根,是一个实数,不是点的坐标.3.三个二次的对应关系(其中a >0)判别式Δ=b 2-4ac Δ>0Δ=0Δ<0二次函数y =ax 2+bx +c 的图象方程ax 2+bx +c =0的根有两个不相等的实数根x 1,x 2(x 1<x 2)有两个相等的实数根x 1=x 2=-b2a没有实数根ax 2+bx +c >0的解集{x |x <x 1,或x >x 2}|2⎧⎫≠-⎨⎬⎩⎭b x x a __R __ax 2+bx +c <0的解集{x |x 1<x <x 2}⌀⌀【微点拨】1.解一元二次不等式一定要结合二次函数开口方向和不等号的方向下结论.2.若关于x 的一元二次不等式ax 2+bx +c <0(a >0)的解集为(m ,n ),则x =m 与x =n 为一元二次方程ax 2+bx +c =0(a >0)的两个根.4.简单的绝对值不等式|x |>a (a >0)的解集为(-∞,-a )∪(a ,+∞),|x |<a (a >0)的解集为(-a ,a ).【基础小题·自测】类型辨析改编易错题号12,341.(多维辨析)(多选题)下列结论正确的是()A .若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2B .若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0C .不等式x 2≤a 的解集为[-,]D .若方程ax 2+bx +c =0(a <0)没有实数根,则不等式ax 2+bx +c >0(a <0)的解集为R 【解析】选AB .C .对于不等式x 2≤a ,当a >0时,其解集为[-,];当a =0时,其解集为{0},当a <0时,其解集为∅.D.若方程ax2+bx+c=0(a<0)没有实数根,则不等式ax2+bx+c>0(a<0)的解集为∅.2.(必修第一册P52例3变条件)不等式-x2-5x+6≥0的解集为()A.{x|-6≤x≤1}B.{x|2≤x≤3}C.{x|x≥3或x≤2}D.{x|x≥1或x≤-6}【解析】选A.不等式-x2-5x+6≥0可化为x2+5x-6≤0,即(x+6)(x-1)≤0,解得-6≤x≤1,所以不等式的解集为{x|-6≤x≤1}.3.(必修第一册P55习题2.3T3变条件)已知集合A=U2−2−3≤0,B== 2−4,则A∩B=()A.2,3B.2,3C.2,3D.2,3【解析】选C.因为x2-2x-3≤0,所以+1−3≤0,即-1≤x≤3,所以A=U−1≤≤3,B=U≥2,所以A∩B=2,3.4.(忽略a=0的情形致误)不等式ax2-ax+a+1>0对∀x∈R恒成立,则实数a的取值范围为()A.0,+∞B.0,+∞C.−∞,−0,+∞D.−∞,−+∞)【解析】选B.①当a=0时,1>0成立,②当a≠0时,只需>0=2−4+1<0,解得a>0,综上可得a≥0,即实数a的取值范围为0,+∞.【巧记结论·速算】1.已知关于x的一元二次不等式ax2+bx+c>0的解集为R,则一定满足>0<0;2.已知关于x的一元二次不等式ax2+bx+c>0的解集为⌀,则一定满足<0≤0;3.已知关于x的一元二次不等式ax2+bx+c<0的解集为R,则一定满足<0<0;4.已知关于x的一元二次不等式ax2+bx+c<0的解集为⌀,则一定满足>0≤0.【即时练】1.“-3<m<1”是“不等式−1x2+−1x-1<0对任意的x∈R恒成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选A.当m=1时,−1x2+−1x-1<0对任意的x∈R恒成立,当m≠1时,则<1<0,解得-3<m<1,故m的取值范围为{m|-3<m≤1}.故“-3<m<1”是“-3<m≤1”的充分不必要条件.2.若关于x的不等式mx2-mx-1≥0的解集是⌀,则m的取值范围是()A.[-4,0]B.(-4,0]C.[0,4)D.(-4,0)【解析】选B.当m=0时,mx2-mx-1≥0即-1≥0,解集是⌀,当m≠0时,不等式mx2-mx-1≥0的解集是⌀,需满足<0=−2+4<0,解得-4<m<0,所以m的取值范围是(-4,0].【核心考点·分类突破】考点一一元二次不等式的解法【考情提示】一元二次不等式是高考的热点问题,它常与集合的交集、并集、补集相结合出现在选择题中.含参数的一元二次不等式常与导数、圆锥曲线相交汇出现在解答题中,重点考查分类讨论思想和推理论证能力.角度1不含参数的一元二次不等式[例1]解下列不等式:(1)2x2+5x-3<0;(2)-3x2+6x≤2;(3)9x2-6x+1>0;(4)x2<6x-10.【解析】(1)因为Δ=49>0,所以方程2x2+5x-3=0有两个不相等的实数根,解得x1=-3,x2=12,画出函数y=2x2+5x-3的图象,如图①所示.由图可得原不等式的解集为{x−3< <12}.(2)原不等式等价于3x2-6x+2≥0.因为Δ=12>0,所以方程3x2-6x+2=0有两个不相等的实数根,解得x1=3−33,x2=3+33,画出函数y=3x2-6x+2的图象,如图②所示,由图可得原不等式的解集为{x≤3−33或≥3+33}.(3)因为Δ=0,所以方程9x2-6x+1=0有两个相等的实数根,解得x1=x2=13.画出函数y=9x2-6x+1的图象如图③所示.由图可得原不等式的解集为{x≠13}.(4)原不等式可化为x2-6x+10<0,因为Δ=-4<0,所以方程x2-6x+10=0无实数根,画出函数y=x2-6x+10的图象如图④所示,由图象可得原不等式的解集为∅.【解题技法】解一元二次不等式的一般方法和步骤(1)化:把不等式变形为二次项系数大于零的标准形式.(2)判:计算对应方程的判别式,根据判别式判断方程有没有实根(无实根时,不等式的解集为R或∅).(3)求:求出对应的一元二次方程的根.(4)写:利用“大于取两边,小于取中间”写出不等式的解集.角度2含参数的一元二次不等式[例2]解关于x的不等式.(1)x2+ax+1<0(a∈R);(2)ax2-(a+1)x+1<0.【解析】(1)Δ=a2-4.①当Δ=a2-4≤0,即-2≤a≤2时,原不等式无解.②当Δ=a2-4>0,即a>2或a<-2时,方程x2+ax+1=0的两根分别为x1x2则原不等式的解集为<<综上所述,当-2≤a≤2时,原不等式无解;当a>2或a<-2时,原不等式的解集为<<(2)若a=0,原不等式等价于-x+1<0,解得x>1.若a<0,原不等式等价于−x-1)>0,解得x<1或x>1.若a>0,原不等式等价于−x-1)<0.①当a=1时,1=1,−x-1)<0无解;②当a>1时,1<1,解−x-1)<0,得1<x<1;③当0<a<1时,1>1,解−x-1)<0,得1<x<1.综上所述,当a<0时,解集为{x|x<1或x>1};当a=0时,解集为{x|x>1};当0<a<1时,解集为{x|1<x<1};当a=1时,解集为⌀;当a>1时,解集为{x|1<x<1}.【解题技法】解含参数的一元二次不等式时分类讨论的方法(1)当二次项系数中含有参数时,应讨论二次项系数是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应的一元二次方程的根的个数不确定时,讨论判别式Δ与0的关系.(3)确定无根时可直接写出解集;确定方程有两个不相等的实根时,要讨论两根的大小关系,从而确定解集形式.【对点训练】1.(2024·莆田模拟)不等式1−−3<0的解集是()A.−1,3B.−3,1C.{x<1或x>3}D.{x<-3或x>1}【解析】选C.由1−−3<0,可得(x-1)(x-3)>0,所以x<1或x>3,所以不等式的解集为{x<1或x>3}.2.不等式−2r5K2>0的解集为________.【解析】不等式−2r5K2>0等价于−2+5−2>0,即2−5−2<0,解得2<x<52,所以不等式−2r5K2>0的解集为2<<答案:2<<3.(2024·玉林模拟)已知关于x的不等式ax2-b≥2x-ax s∈R.(1)若不等式的解集为−2≤≤−1,求a,b的值;(2)若a<0,b=2,解不等式.【解析】(1)原不等式可化为ax2+−2x-b≥0,由题知,-2,-1是方程ax 2+−2x -b =0的两根,由根与系数的关系得<0−K2=−3−=2,解得=−1=2.(2)当a <0时,原不等式化为−+1≤0,当2>-1,即a <-2时,解原不等式可得-1≤x ≤2;当2=-1,即a =-2时,原不等式即为+12≤0,解得x =-1;当2<-1,即-2<a <0时,解得2≤x ≤-1,综上所述,当-2<a <0时,不等式的解集为≤≤−1;当a =-2时,不等式的解集为−1;当a <-2时,不等式的解集为−1≤≤考点二三个二次的关系[例3](1)(2024·通辽模拟)已知不等式ax 2+bx -1>0的解集为−12<<−则不等式x 2-bx -a ≥0的解集为()A .{x |x ≤-3或x ≥-2}B .{x |-3≤x ≤-2}C .{x |2≤x ≤3}D .{x |x ≤2或x ≥3}【解析】选A .因为不等式ax 2+bx -1>0的解集为−12<<−所以ax 2+bx -1=0的两根分别为-12,-13,即−12+−=−−12×−=−1,解得a =-6,b =-5.所以不等式x 2-bx -a ≥0可化为x 2+5x +6≥0,其解集为{x |x ≤-3或x ≥-2}.(2)(多选题)(2024·安庆模拟)已知不等式ax 2+bx +c >0的解集为−12<<2,则下列结论正确的是()A.b>0B.c>0C.a+b+c>0D.a-b+c>0【解析】选ABC.由题意可知,方程ax2+bx+c=0的解为x1=-12,x2=2,且a<0,则-=x1+x2=32,=x1x2=-1,解得b=-32a,c=-a,令f=ax2+bx+c=ax2-32ax-a<0,对于A,b=-32a>0,故A正确;对于B,c=-a>0,故B正确;对于C,a+b+c=f1=a-32a-a=-32a>0,故C正确;对于D,a-b+c=f−1=a+32a-a=32a<0,故D错误.【解题技法】一元二次不等式与方程的关系的解题策略1.一元二次方程的根就是相应一元二次函数的零点,也是相应一元二次不等式解集的端点值.2.给出一元二次不等式的解集,相当于知道了相应二次函数图象的开口方向及与x轴的交点,可以利用代入根或利用根与系数的关系求解.【对点训练】(多选题)已知不等式ax2+bx+c>0的解集为<<,其中n>m>0,则以下结论正确的有()A.a<0B.b>0C.cx2+bx+a>0的解集为<<D.cx2+bx+a>0的解集为<1或>【解析】选ABC.因为不等式ax2+bx+c>0的解集为<<,所以a<0,故A 正确;因为n>m>0,令f=ax2+bx+c,所以-2>0,即b>0,故B正确;由上所述,易知f0<0,c<0,由题意可得m,n为一元二次方程ax2+bx+c=0的两根,则m+n=-,mn=,则1·1=,1+1=r B=-,即1,1为方程cx2+bx+a=0的解,则不等式cx2+bx+a>0的解集为<<故C正确,D错误.考点三一元二次不等式恒(能)成立问题角度1在R上的恒成立问题[例4](2024·重庆模拟)当a∈(t1,t2)时,不等式2−B−21−r2<3对任意实数x恒成立,则t1+t2的值为()A.-7B.6C.7D.8【解析】选B.由于1-x+x2=(−12)2+34>0,则不等式2−B−21−r2<3等价于4x2+(a-3)x+1>0,依题意,不等式4x2+(a-3)x+1>0对任意实数x恒成立,则Δ=(a-3)2-16<0,解得-1<a<7,于是t1=-1,t2=7,所以t1+t2=6.【解题技法】ax2+bx+c>0(<0)在R上恒成立的条件1.ax2+bx+c>0的解集为R,则一定满足(1)a =b =0,c >0或(2)>0<0;2.ax 2+bx +c <0的解集为R ,则一定满足(1)a =b =0,c <0或(2)<0<0.角度2在给定区间上的恒成立问题[例5]金榜原创·易错对对碰(1)(一题多法)若对于x ∈[1,3],mx 2-mx +m -6<0(m ≠0)恒成立,则m 的取值范围是________.【解析】由已知得,m (x -12)2+34m -6<0(m ≠0)在x ∈[1,3]上恒成立.方法一:令g (x )=m (x -12)2+34m -6(m ≠0),x ∈[1,3].当m >0时,g (x )在[1,3]上单调递增,所以g (x )max =g (3)=7m -6<0,所以m <67,则0<m <67.当m <0时,g (x )在[1,3]上单调递减,所以g (x )max =g (1)=m -6<0,所以m <6,所以m <0.综上所述,m 的取值范围是{m 0<<67或<0}.方法二:因为x 2-x +1=(x -12)2+34>0,又因为m (x 2-x +1)-6<0,所以m <62−r1.因为函数y =62−r1=6(K 12)2+34在[1,3]上的最小值为67,所以只需m <67即可.因为m ≠0,所以m 的取值范围是{m 0<<67或<0}.答案:{m 0<<67或<0}(2)若mx 2-mx -1<0对于m ∈[1,2]恒成立,则实数x 的取值范围为________.【解析】设g (m )=mx 2-mx -1=(x 2-x )m -1,其图象是直线,当m ∈[1,2]时,图象为一条线段,则o1)<0,o2)<0,即2−−1<0,22−2−1<0,解得1−32<x <1+32,故实数x 的取值范围为(1−32,1+32).答案:(1−32,1+32)【解题技法】在给定区间上的恒成立问题的求解方法(1)若f(x)>0在集合A中恒成立,即集合A是不等式f(x)>0的解集的子集,可以先求解集,再由子集的含义求解参数的值(或范围).(2)转化为函数值域问题,即已知函数f(x)的值域为[m,n],则f(x)≥a恒成立⇒f(x)min≥a,即m≥a;f(x)≤a恒成立⇒f(x)max≤a,即n≤a.(3)对于以下两种题型,可以利用二次函数在端点m,n处的取值特点确定不等式求范围.①ax2+bx+c<0(a>0)对x∈[m,n]恒成立;②ax2+bx+c>0(a<0)对x∈[m,n]恒成立.提醒:一般地,知道谁的范围,就选谁当主元;求谁的范围,谁就是参数.如本例(1)中建立关于x的函数,m为参数,本例(2)中建立关于m的函数,x为参数.角度3不等式能成立或有解问题[例6](一题多法)若关于x的不等式x2-ax+7>0在2,7上有实数解,则a的取值范围是()A.−∞,8B.−∞,8C.−∞,27D.【解析】选A.方法一:(分离参数法)不等式x2-ax+7>0在2,7上有实数解,等价于不等式a<x+7在2,7上有实数解,因为函数f(x)=x+7在(2,7)上单调递减,在(7,7)上单调递增,又由f(2)=2+72=112,f7=7+77=8,所以f max<f7=8,所以a<8,即实数a的取值范围是−∞,8.方法二:(最值转化法)原不等式在(2,7)上有解,它的否定是不等式x2-ax+7>0在(2,7)上无解,则4−2+7≤049−7+7≤0,解得a≥8,因此不等式x2-ax+7>0在(2,7)上有解时a<8.【解题技法】一元二次不等式在给定区间上的有解问题解题策略(1)分离参数法:把不等式化为a>f(x)或a<f(x)的形式,只需a>f(x)min或a<f(x)max.(2)最值转化法;若f(x)>0在集合A中有解,则函数y=f(x)在集合A中的最大值大于0;若f(x)<0在集合A中有解,则函数y=f(x)在集合A中的最小值小于0.(3)数形结合法:根据图象列出约束条件求解.(4)最后一定要注意检验区间的开闭.【对点训练】1.(2024·大同模拟)已知命题p:∃x∈R,使得ax2+2x+1<0成立为真命题,则实数a的取值范围是()A.−∞,0B.−∞,1C.0,1D.0,1【解析】选B.命题p为真命题等价于不等式ax2+2x+1<0有解.当a=0时,不等式变形为2x+1<0,则x<-12,符合题意;当a>0时,Δ=4-4a>0,解得0<a<1;当a<0时,总存在x∈R,使得ax2+2x+1<0;综上可得实数a的取值范围为−∞,1.2.若不等式x2+a(x-1)+1≥0对一切x∈(1,2]都成立,则a的最小值为()A.0B.-22C.-22-2D.-5【解析】选D.记f(x)=x2+a(x-1)+1=x2+ax+1-a,要使不等式x2+a−1+1≥0对一切x∈(1,2]都成立,则−2≤1o1)=2≥0或1<−2<2o−2)=−24−+1≥0或−2≥2o2)=+5≥0,解得a≥-2或-4<a<-2或-5≤a≤-4,综上,a≥-5.3.已知对任意m∈1,3,mx2-mx-1<-m+5恒成立,则实数x的取值范围是()B.,+∞C.【解析】选D.对任意m∈1,3,不等式mx2-mx-1<-m+5恒成立,即对任意m∈1,3,m2−+1<6恒成立,所以对任意m∈1,3,x2-x+1<6恒成立,所以对任意m∈1,3,x2-x6=2恒成立,所以x2-x+1<2,解得1−52<x<1+5,故实数x【加练备选】已知f=x2+2−x+3a+b,若存在常数a,使f(x)≥0恒成立,则b的取值范围是________.【解析】使f(x)≥0恒成立,则Δ=(2-a)2-4×1×(3a+b)≤0,化简整理得4b≥a2-16a+4=(a-8)2-60,由于存在常数a,使f(x)≥0恒成立,可知4b≥(2−16+4)min,因此4b≥-60,解得b≥-15.答案:[-15,+∞)。

高考数学一轮复习二次函数-教学课件

高考数学一轮复习二次函数-教学课件
图象的对称轴为 x2,则 m=_______,
顶点坐标为_______,递增区间为________,递 减区间为____________.
【变式】:若函数yx2a2 x3 的图象关于 x 1
对称,则 b
2012届高考直通车·数学一轮复
诊断练习习
题2.实系数方程 a2xb xc0(a0)
两实根异号的充要条件为____________; 有两正根的充要条件为
2012届高考直通车·数学一轮复
诊断练习习
题3.二次函数 yx22x3在区间 [0, m]
m 上有最大值3,最小值2,则 的取值
范围为_____________.
2012届高考直通车·数学一轮复
诊断练习习
t 【变式】:二次函数 f x对任意 都 有 ftf4t,在区间m,0上有
m 最大值5,最小值1.,则 的范围为
• (1)
• (2)
• (3)
答案] (1)小女孩在5路公交车上要求“我”帮她传一下车票钱。(2) “我”在小女孩无钱买票时帮她垫交了车票钱。(3)小女孩在公交车 站还“我”车票钱。(顺序不能打乱) [点拨] 审清题目要求:按时间顺序概述。按时间顺序,围绕“我”与 小女孩在公交车上发生的事叙述即可。 3.“一时脸蛋儿全红了”,这是文章开头对小女孩因受“我”帮助后 的表情描述,从而暗示了她当时的心理状态和性格特征。请结合文意分 析这句话暗示了小女孩当时怎样的心理状态并概括其性格特征。
a 数 的取值范围;
(2)若 x2ax20 的两个
根都小于 1 ,求实数 a的取值范
围.
【变式】若关于x的方程 3 t2 x 3 7 tx 4 0
的两个实根 , 满足 012
t 求实数 的取值范围。

数学一轮复习第二章2.4二次函数与幂函数学案理含解析

数学一轮复习第二章2.4二次函数与幂函数学案理含解析

第四节二次函数与幂函数【知识重温】一、必记2个知识点1.幂函数(1)定义:形如①________________的函数称为幂函数,其中底数x是自变量,α为常数.常见的五类幂函数为y=x,y=x2,y=x3,y =12x,y=x-1.(2)性质(ⅰ)幂函数在(0,+∞)上都有定义;(ⅱ)当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;(ⅲ)当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.2.二次函数(1)二次函数解析式的三种形式(ⅰ)一般式:f(x)=②________________________;(ⅱ)顶点式:f(x)=③________________________;(ⅲ)零点式:f(x)=④________________________。

(2)二次函数的图象和性质(-∞,+∞)(-∞,+∞)二、必明2个易误点1.研究函数f(x)=ax2+bx+c的性质,易忽视a的取值情况的讨论而盲目认为f(x)为二次函数.2.形如y=xα(α∈R)才是幂函数,如y=123x不是幂函数.【小题热身】一、判断正误1.判断下列说法是否正确(请在括号中打“√”或“×”).(1)函数y=132x是幂函数.()(2)当n〉0时,幂函数y=x n在(0,+∞)上是增函数.()(3)二次函数y=ax2+bx+c(x∈R)不可能是偶函数.()(4)如果幂函数的图象与坐标轴相交,则交点一定是原点.()(5)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是错误!。

()二、教材改编2.已知幂函数y=f(x)的图象过点(2,错误!),则函数y=f(x)的解析式为________.3.函数y=ax2-6x+7a(a≠0)的值域为[-2,+∞),则a 的值为()A.-1 B.-错误!C.1 D.2三、易错易混4.函数y=2x2-6x+3,x∈[-1,1],则y的最小值是() A.-1 B.-2 C.1 D.25.若四个幂函数y=x a,y=x b,y=x c,y=x d在同一坐标系中的图象如图所示,则a,b,c,d的大小关系是()A.d>c〉b>a B.a>b〉c〉dC.d〉c〉a〉b D.a〉b〉d〉c四、走进高考6.[2020·江苏卷]已知y=f(x)是奇函数,当x≥0时,f(x)=23x,则f(-8)的值是________.考点一幂函数的图象及性质[自主练透型]1.已知点错误!在幂函数f(x)的图象上,则f(x)是()A.奇函数B.偶函数C.定义域内的减函数D.定义域内的增函数2.幂函数y=xm2-2m-3(m∈Z)的图象如图所示,则m 的值为()A.-1 B.0C.1 D.23.[2021·江西九江联考]已知a=0.40.3,b=0.30。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:二次函数(1)
一、知识梳理
二次函数作为最基本的初等函数,可以以它为素材来研究函数的解析式、定义域、值域、单调性、奇偶性等性质,还可建立起函数、方程、不等式之间的有机联系;二次函数可以编制出层出不穷、灵活多变的数学问题.
二次函数研究就应从两个方面入手:一是解析式,二是图像特征.从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法. 1、二次函数解析式的三种形式
一般式:()()02≠++=a c bx ax x f 顶点式:()()2()0f
x a x h k a =-+≠
零点式:()()02≠++=a c bx ax x f 存在零点21,x x , 则有()()12()()0f
x a x x x x a =--≠
2、二次函数的图象和性质 (1)、二次函数的图象是一条抛物线,抛物线 的对称轴是 ,顶点的坐标 ,因此对任意的实数x ,都有 。

当 时,抛物线开中方向 ,在区间 上是递增,在区间 上 ,是递减,因此抛物线在 处,取得最小值 。

当 时,抛物线开中方向 ,在区间 上是递增,在区间 上 ,是递减,因此抛物线在 处,取得最大值 。

(2)、二次函数的图象与x 轴的位置关系:由判别式判定 3、二次函数,二次方程,二次不等式的关系 一般地,设二次函数,二次方程的根的差别式
,我们可以利用二次方程的根求出不等式,或,解集,它们的关系如下表:
二次函数()的图象
Y
X
Y
X
Y
X
二次方程 的根
==
没有实数根
()的解集
(-)
R
()的解集 (,)
二、题型探究
[探究一]二次函数的最值问题
例1:已知函数f(x)=,t 为实数,求函数的最小值。

变式:如何求函数的最大值。

[探究二] 二次函数与一元二次方程
例2.若函数2()24f x x ax a =+-+是偶函数,则函数()f x 的最小值为 . 解:∵二次函数是偶函数,∴其图像关于y 轴对称.∴0a =.∴函数()f x 的最小值为4-.
例3:【2014高考江苏卷第13题】已知()f x 是定义在R 上且周期为3的函数,当[)0,3x ∈时,21
()22
f x x x =-+
,若函数()y f x a =-在区间[]3,4-上有10个零点(互不相同),则实数a 的取值范围是 .
【考点】函数的零点,周期函数的性质,函数图象的交点问题.
[探究三] 二次函数与导数
例4. 已知函数()f x 在R 上满足2
()2(2)88f x f x x x =--+-,则曲线()y f x =在点
(1,(1))f 处的切线方程是 .
解:由2
()2(2)88f x f x x x =--+-
得2
(2)2()(2)8(2)8f x f x x x -=--+--, 即2
2()(2)44f x f x x x --=+-,∴2
()f x x =
∴()2f x x '=,∴切线方程为12(1)y x -=-,即210.x y --=
例5.设函数2
()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则
曲线()y f x =在点(1,(1))f 处切线的斜率为 .
解:由已知(1)2g '=,而()()2f x g x x ''=+,∴(1)(1)214f g ''=+⨯=
[探究四] 二次函数与恒成立问题
例6.若函数2()ln(21)f x ax ax =++的定义域为一切实数,则实数a 的取值范围是 .
解:由已知2
210ax ax ++>对一切实数x 恒成立.
(1)当0a =时,满足题意;(2)当0a ≠时,只须20,
440.
a a a >⎧⎨-<⎩解得01a <<.
由(1)、(2)得01a ≤<.
练习:若函数2()21
x
e f x ax ax =+-的定义域为一切实数,则实数a 的取值范围是

解:由已知2
210ax ax +-≠对一切实数x 恒成立.
(1)当0a =时,满足题意;(2)当0a ≠时,只须2
440a a +<.解得10a -<<. 由(1)、(2)得10a -<≤.
精美句子
1、善思则能“从无字句处读书”。

读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。

读大海,读出了它气势磅礴的豪情。

读石灰,读出了它粉身碎骨不变色的清白。

2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。

幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。

幸福是“零落成泥碾作尘,只有香如故”的圣洁。

幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。

幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。

幸福是“人生自古谁无死,留取丹心照汗青”的气节。

3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。

4、成功与失败种子,如果害怕埋没,那它永远不能发芽。

鲜花,如果害怕凋谢,那它永远不能开放。

矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。

蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。

航船,如果害怕风浪,那它永远不能到达彼岸。

5、墙角的花,当你孤芳自赏时,天地便小了。

井底的蛙,当你自我欢唱时,视野便窄了。

笼中的鸟,当你安于供养时,自由便没了。

山中的石!当你背靠群峰时,意志就坚了。

水中的萍!当你随波逐流后,根基就没了。

空中的鸟!当你展翅蓝天中,宇宙就大了。

空中的雁!当你离开队伍时,危险就大了。

地下的煤!你燃烧自己后,贡献就大了
6、朋友是什么?
朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。

朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。

7、一粒种子,可以无声无息地在泥土里腐烂掉,也可以长成参天的大树。

一块铀块,可以平庸无奇地在石头里沉睡下去,也可以产生惊天动地的力量。

一个人,可以碌碌无为地在世上厮混日子,也可以让生命发出耀眼的光芒。

8、青春是一首歌,她拨动着我们年轻的心弦;青春是一团火,她点燃了我们沸腾的热血;青春是一面旗帜,她召唤着我们勇敢前行;青春是一本教科书,她启迪着我们的智慧和心灵。

相关文档
最新文档