(完整版)条件概率独立事件习题
北师大版数学【选修2-3】练习:2.3 条件概率与独立事件(含答案)
第二章 §3一、选择题1.一个电路上装有甲、乙两根保险丝,甲熔断的概率为0.85,乙熔断的概率为0.74,甲、乙两根保险丝熔断与否相互独立,则两根保险丝都熔断的概率为( )A .1B .0.629C .0D .0.74或0.85[答案] B[解析] 事件“两根保险丝都熔断”即事件“甲保险丝熔断”“乙保险丝熔断”同时发生,依题意得事件“两根保险丝都熔断”的概率为0.85×0.74=0.629.2.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是( )A.512B.12C.712D.34[答案] C[解析] 依题意得P (A )=12,P (B )=16,事件A ,B 中至少有一件发生的概率等于1-P (AB )=1-P (A )P (B )=1-(1-12)×(1-16)=1-512=712.3.(2014·哈师大附中高二期中)一盒中装有5个产品,其中有3个一等品,2个二等品,从中不放回地取出产品,每次1个,取两次,已知第二次取得一等品的条件下,第一次取得的是二等品的概率是( )A.12 B.13 C.14 D.23[答案] A[解析] 解法1:设A =“第一次取到二等品”,B =“第二次取得一等品”,则AB =“第一次取到二等品且第二次取到一等品”,∴P (A |B )=P (AB )P (B )=2×35×42×3+3×25×4=12.解法2:设一等品为a 、b 、c ,二等品为A 、B ,“第二次取到一等品”所含基本事件有(a ,b ),(a ,c ),(b ,a ),(b ,c ),(c ,a ),(c ,b ),(A ,a ),(A ,b ),(A ,c ),(B ,a ),(B ,b ),(B ,c )共12个,其中第一次取到一等品的基本事件共有6个,∴所求概率为P =612=12.二、填空题4.3人独立地破译一个密码,每人破译出密码的概率分别为15,14,13,则此密码被破译出的概率为________.[答案] 35[解析] 可从对立事件考虑,此密码不被译出的概率是⎝⎛⎭⎫1-15×⎝⎛⎭⎫1-14×⎝⎛⎭⎫1-13=45×34×23=25,所以此密码被破译出的概率是1-25=35. 5.若P (A )=0.5,P (B )=0.3,P (AB )=0.2,则P (A |B )=________,P (B |A )=________. [答案] 23 25[解析] P (A |B )=P (AB )P (B )=0.20.3=23,P (B |A )=P (AB )P (A )=0.20.5=25. 三、解答题6.(2014·陕西理,19)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于...2000元的概率.[解析] (1)设A 表示事件“作物产量为300kg ”,B 表示事件“作物市场价格为6元/kg ”,由题设知P (A )=0.5,P (B )=0.4, ∵利润=产量×市场价格-成本, ∴X 所有可能的取值为500×10-1000=4000,500×6-1000=2000, 300×10-1000=2000,300×6-1000=800,P (X =4000)=P (A -)P (B -)=(1-0.5)×(1-0.4)=0.3,P (X =2000)=P (A -)P (B )+P (A )P (B -)=(1-0.5)×0.4+0.5×(1-0.4)=0.5, P (X =800)=P (A )P (B )=0.5×0.4=0.2, 所以X 的分布列为(2)设C i 表示事件“第i 由题意知C 1,C 2,C 3相互独立,由(1)知,P (C i )=P (X =4000)+P (X =2000)=0.3+0.5=0.8(i =1,2,3), 3季的利润均不少于2000元的概率为 P (C 1C 2C 3)=P (C 1)P (C 2)P (C 3)=0.83=0.512; 3季中有2季利润不少于2000元的概率为P (C -1C 2C 3)+P (C 1C -2C 3)+P (C 1C 2C -3)=3×0.82×0.2=0.384, 所以,这3季中至少有2季的利润不少于2000元的概率为 0.512+0.384=0.896.一、选择题1.已知P (B |A )=13,P (A )=25,则P (AB )等于( )A.56 B.910 C.215 D.115[答案] C[解析] 本题主要考查由条件概率分式变形得到的乘法公式,P (AB )=P (B |A )·P (A )=13×25=215,故选C. 2.假日期间,甲去黄山的概率是14,乙去黄山的概率是15,假定两人的行动相互之间没有影响,那么在假日期间甲、乙两人至少有一人去黄山的概率是( )A.320 B.15 C.25 D.920 [答案] C[解析] 设甲、乙去黄山分别为事件A 、B ,则P (A )=14,P (B )=15,∴P =1-P (A B )=1-34×45=25.3.甲、乙两班共有70名同学,其中女同学40名.设甲班有30名同学,而女同学15名,则在碰到甲班同学时,正好碰到一名女同学的概率为( )A.12B.13 C.14 D.15[答案] A[解析] 设“碰到甲班同学”为事件A ,“碰到甲班女同学”为事件B ,则P (A )=37,P (AB )=37×12,所以P (B |A )=P (AB )P (A )=12,故选A.4.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )A.18B.14C.25D.12[答案] B[解析] ∵P (A )=C 22+C 23C 25=410,P (AB )=C 22C 25=110,∴P (B |A )=P (AB )P (A )=14. 5.已知每门大炮射击一次击中目标的概率是0.3,现用n 门这样的大炮同时对某一目标射击一次,若要使目标被击中的概率超过95%,则n 的最小整数值为( )A .8B .9C .10D .11[答案] B[解析] 把每门大炮射击一次看成做了一次试验,击中目标看成试验成功,则试验成功的概率为0.3,用X 表示这n 门大炮击中目标的次数.事件“目标被击中”即{X >0},则“目标被击中”的概率为P (X >0)=1-P (X =0)=1-(1-0.3)n .为使目标被击中的概率超过95%,则有1-(1-0.3)n >95%,解得n >8.4.根据实际意义,至少要用9门这样的大炮才能使目标被击中的概率超过95%,即n 的最小整数值为9.二、填空题6.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________.[答案] 0.128[解析] 由题设,分两类情况:(1)第1个正确,第2个错误,第3、4个正确,由概率乘法公式得P 1=0.8×0.2×0.8×0.8=0.102 4;(2)第1、2个错误,第3、4个正确, 此时概率P 2=0.2×0.2×0.8×0.8=0.025 6.由互斥事件概率公式得P =P 1+P 2=0.102 4+0.025 6=0.128.7.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是________(写出所有正确结论的编号).①P (B )=25;②P (B |A 1)=511;③事件B 与事件A 1相互独立; ④A 1,A 2,A 3是两两互斥的事件;⑤P (B )的值不能确定,因为它与A 1,A 2,A 3中究竟哪一个发生有关. [答案] ②④[解析] P (B )=P (BA 1)+P (BA 2)+P (BA 3)=5×510×11+2×410×11+3×410×11=922,故①⑤错误;②P (B |A 1)=5×510×1112=511,正确;③事件B 与A 1的发生有关系,故错误; ④A 1,A 2,A 3不可能同时发生,是互斥事件. 三、解答题8.甲、乙两地都位于长江下游,根据一百多年的气象记录,知道甲、乙两地一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,问:(1)乙地为雨天时甲地也为雨天的概率是多少? (2)甲地为雨天时乙地也为雨天的概率是多少?[分析] 设A =“甲地为雨天”,B =“乙为雨天”,则根据题意有P (A )=0.20,P (B )=0.18,P (A ∩B )=0.12.问题(1)为求P (A |B ),(2)为求P (B |A ).[解析] 设A =“甲地为雨天”,B =“乙地为雨天”,则 (1)乙地为雨天时甲地也为雨天的概率是P (A |B )=P (A ∩B )P (B )=0.120.18=0.67. (2)甲地为雨天时乙地也为雨天的概率是 P (B |A )=P (A ∩B )P (A )=0.120.20=0.60. [点评] 要弄清所求事件的概率是在什么条件下的发生的概率,以便正确地运用条件概率公式.9.(2014·北京理,16)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛互相独立):(1)的概率; (2)从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记x -为表中10个命中次数的平均数.从上述比赛中随机选择一场,记X 为李明在这场比赛中的命中次数,比较EX 与x -的大小.(只需写出结论)[解析] (1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)设事件A 为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B 为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C 为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C =A B -∪A -B ,A ,B 独立.根据投篮统计数据,P (A )=35,P (B )=25,P (C )=P (A B -)+P (A -B ) =35×35+25×25 =1325.所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为1325.(3)EX =x -.10.(2012·全国大纲文,20)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙在一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率; (2)求开始第5次发球时,甲得分领先的概率.[解析] 记A 1表示事件:第1次和第2次这两次发球,甲共得i 分,i =0,1,2; B 1表示事件:第3次和第4次这两次发球,甲共得i 分,i =0,1,2; A 表示事件:第3次发球,甲得1分;B 表示事件:开始第4次发球时,甲、乙的比分为1比2;C 表示事件:开始第5次发球时,甲得分领先. (1)B =A 0·A +A 1·A ,P (A )=0.4,P (A 0)=0.42=0.16,P (A 1)=2×0.6×0.4=0.48, P (B )=P (A 0·A +A 1·A ) =P (A 0·A )+P (A 1·A ) =P (A 0)P (A )+P (A 1)P (A ) =0.16×0.4+0.48×(1-0.4) =0.352.(2)P (B 0)=0.62=0.36, P (B 1)=2×0.4×0.6=0.48, P (B 2)=0.42=0.16, P (A 2)=0.62=0.36. C =A 1·B 2+A 2·B 1+A 2·B 2 P (C )=P (A 1·B 2+A 2·B 1+A 2·B 2) =P (A 1·B 2)+P (A 2·B 1)+P (A 2·B 2) =P (A 1)P (B 2)+P (A 2)P (B 1)+P (A 2)P (B 2) =0.48×0.16+0.36×0.48+0.36×0.16 =0.307 2.。
条件概率的独立性1
条件概率的独⽴性1第三章条件概率的独⽴性习题3 ⼀.填空题1.设A.B 为两个互相独⽴事件,若P (A )=0.4,P (B )=0.3,则(P B A ?)=2.在⼀次实验中A 发⽣的概率为p ,现在进⾏n 次独⽴重复试验,那么事件A ⾄少发⽣1次的概率为3.设A.B.C 构成⼀完备事件组,且P(A)=0.4,P(B )=0.7,则P (C )= ,p(AB)=4.若P(A)=21,P(B)=31,P(A B )=32,则P(B A )= 5.某⼈向同⼀⽬标重复独⽴射击,每次命中⽬标的概率为P(02次命中⽬标的概率为⼆.选择题1. 同⼀⽬标进⾏5次射击,每次命中的概率为0.8,则恰好命中两次的概率为() (A) 0.00512 (B) 0.64 (C) 0.256 (D) 0.05122. 5⼈以摸彩的⽅式决定谁从五张彩票中摸的⼀张电影票,设Ai 表⽰“第i 次个⼈摸到电影票”(i=1,2,3,4,5),则下列结果不正确的是() (A) P(1A 2A )=41 (B) P(2A )= 54 (C) P(2A )=51 (D) 53)(21=A A P 3 袋中有5个球(3个新球,2个旧球),现每次取⼀个,⽆放回的抽取两次,则第⼆次取到新球的概率为( )53)(A 43)(B 42)(c 103)(D 4,对于任意两个事件A 与B ,下⾯结论正确的是() (A)若P(A)=0,则A 是不可能事件(B)若P(A)=0,P(B)≥0,则事件B 包含事件A(C)若P(A)=0,则P(B)=1,则事件A 与事件B 对⽴ (D)若P(A)=0,则事件A 与B 独⽴三,计算题1.设A 与B 是两个随机事件,且P(A)=41,31)(=A B P ,21)(=B A P ,试求P(B A ?). 2.设A 与B 是两个随机事件,P(A)=0.7,P(B)=0.6,,4.0)(=A B P 试求P(B A ?).3.如果每次试验成功的概率都是P ,并且已知在三次独⽴重复试验中⾄少成功⼀次的概率为2719,试求P 的值. 4.设随机事件A 与B 互相独⽴,P(A)=P(B)=a-1,P()B A ?=97,求a 的值. 四.应⽤题1.三⼈独⽴的同时解答⼀道题,他们每⼈能够解出的概率为21,4131,,求此题能破解出的概率.2.设在全部产品中有2%是废品,⽽合格产品中有85%是⼀级品,求随机抽出⼀个产品是⼀级品的概率.3.汽车保险公司得到投保⼈资料如表3-1所⽰:5.设10个考签中4个难签,今有3⼈按甲先,⼄次,丙最后的次序参加抽签(不放回),求:(1)甲没有抽到难签⽽⼄抽到难签的概率;(2)甲,⼄,丙都抽到难签的概率.6.设有4个独⽴⼯作的原件1,2,3,4 他们的可靠性都是p,将他们按图3.2的⽅式联接,求整个系统的可靠性.7.甲,⼄两⼈独⽴的对同⼀⽬标射击⼀次,其命中率分别是0.6和0.5,现已知⽬标被击中,求他是甲击中的概率。
条件概率与独立事件、二项分布练习题及答案
4 B.B.223 C.C.335 D.123.(2011·湖北高考)如图,用K 、A 1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为() A .0.960 B .0.864 C .0.720 D .0.576 4.(2011·辽宁高考)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( ) A.18B.14C.25D.125.(2012·山西模拟)抛掷一枚硬币,出现正反的概率都是12,构造数列{a n },使得a n =îïíïì1 (第n 次抛掷时出现正面),-1 (第n 次抛掷时出现反面),记S n =a 1+a 2+…+a n (n ∈N *),则S 4=2的概率为( ) A.116 B.18 C.14D.126.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是( ) A.12B.13C.14D.257.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为________. 8.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于条件概率与独立事件、二项分布1.(2012·广东汕头模拟)已知某射击运动员,已知某射击运动员,每次击中目标的概率都是每次击中目标的概率都是0.8,则该射击运动员射击4次至少击中3次的概率为( ) A .0.85B .0.819 2 C .0.8 D .0.75 2.(2011·广东高考)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ) A.A.33________.9.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的一粒,则这粒种子能成长为幼苗的概率概率为________.10.(2012·厦门质检)从装有大小相同的3个白球和3个红球的袋中做摸球试验,每次摸出一个球.如果摸出白球,则从袋外另取一个红球替换该白球放入袋中,则从袋外另取一个红球替换该白球放入袋中,继续做下一次摸球继续做下一次摸球试验;如果摸出红球,则结束摸球试验.试验;如果摸出红球,则结束摸球试验.(1)求一次摸球后结束试验的概率P 1和两次摸球后结束试验的概率P 2; (2)记结束试验时的摸球次数为X ,求X 的分布列.的分布列.11.某地区为下岗人员免费提供财会和计算机培训,某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,以提高下岗人员的再就业能力,以提高下岗人员的再就业能力,每名下每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.相互之间没有影响.(1)任选1名下岗人员,求该人参加过培训的概率;名下岗人员,求该人参加过培训的概率;(2)任选3名下岗人员,记X 为3人中参加过培训的人数,求X 的分布列.的分布列.12.学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (1)求在1次游戏中,①摸出3个白球的概率;②获奖的概率;个白球的概率;②获奖的概率; (2)求在2次游戏中获奖次数X 的分布列.的分布列.2;第二类,需比赛2局,第一局甲负,第二局甲赢,其概率P 2=12×12=14.故甲队获得冠军的概率为P 1+P 2=34. 3.选B 可知K 、A 1、A 2三类元件正常工作相互独立.所以当A 1,A 2至少有一个能正常工作的概率为P =1-(1-0.8)2=0.96,所以系统能正常工作的概率为P K ·P =0.9×0.96=0.864. 4.选B P (A )=C 23+C 2C 25=410=25,P (A ∩B )=C 2C 25=1)=110410=14. 5.选C 依题意得知,“S 4=2”表示在连续四次抛掷中恰有三次出现正面,因此“S 4=2”的概率为C 34èæøö123·12=14. 6.选C 设“甲、乙二人相邻”为事件A ,“甲、丙二人相邻”为事件B ,则所求概率为P (B |A ),由于P (B |A )=P (AB )P (A ),而P (A )=2A 44A 55=25,AB 是表示事件“甲与乙、丙都相邻”,故P (AB )=2A 33A 5=110,于是P (B |A )=11025=14. 7.解析:设该队员每次罚球的命中率为p , 则1-p 2=1625,p 2=925.又0<p <1.所以p =35. 答案:358.解析:此选手恰好回答4个问题就晋级下一轮,说明此选手第2个问题回答错误,第3、第4个问题均回答正确,第1个问题答对答错都可以.因为每个问题的回答结果相互独立,故所求的概率为1×0.2×0.82=0.128. 答案:0.128 9.解析:设种子发芽为事件A ,种子成长为幼苗为事件B .出芽后的幼苗成活率为P (B |A )=0.8,P (A )=0.9. 故P (AB )=0.9×0.8=0.72. 答案:0.72 10.解:(1)一次摸球结束试验的概率P 1=36=12;两次摸球结束试验的概率 P 2=36×46=13. 1.选B P =C 34×0.83×0.2+C 44×0.84=0.819 2. 2.选A 问题等价为两类:第一类,第一局甲赢,其问题等价为两类:第一类,第一局甲赢,其概率概率P 1=110. 由条件概率计算公式,得P (B |A )=P (A ∩B )P (A1,=1,=3×2×5=5,=3×2×1×6=1X 1 2 3 4 P1213536136X 0 1 2 3 P0.0010.0270.2430.729 =C 3C 2·C 2C 2=15. =C 3C 2·C 2C 2+C 3C 2C 2·C 2C 2=12,且=12+15=710. øö,710øö-7102=9100;C 12710×øö-710=2150;èæøö710=49100. X 0 1 2 P9100215049100(A B )(A )·(B )。
高中数学同步练习 条件概率与独立事件
[A 组 基础巩固]1.某人一周晚上值班2次,在已知他星期日一定值班的前提下,其余晚上值班所占的概率为( ) A.13 B.14 C.15D.16解析:本题为条件概率,在星期日一定值班的前提下,只需再从其余6天中选一天值班即可,概率为16.答案:D2.甲、乙两人独立解答某道题,解不出来的概率分别是a 和b,那么甲、乙两人都解出这道题的概率是( ) A .1-abB .(1-a)(1-b)C .1-(1-a)(1-b)D .a(1-b)+b(1-a)解析:设甲解出该题为事件A,乙解出该题为事件B,则P(A )=a,P(B )=b, ∴P(AB)=P(A)·P(B)=(1-a)(1-b). 答案:B3.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射一个目标,则他们都中靶的概率是( ) A.1425B.1225C.34D.35解析:P =810×710=56100=1425.答案:A4.某大街在甲、乙、丙三处设有红绿灯,汽车在这三处因遇绿灯而通行的概率分别是为13、12、23,则汽车在这三处因遇红灯而停车一次的概率为( ) A.19 B.16 C.13D.718解析:设汽车分别在甲、乙、丙三处通行为事件A 、B 、C,则P(A)=13,P(B)=12,P(C)=23.停车一次即为事件A BC +A B C +AB C ,故概率为P =⎝ ⎛⎭⎪⎫1-13×12×23+13×⎝ ⎛⎭⎪⎫1-12×23+13×12×⎝ ⎛⎭⎪⎫1-23=718.答案:D5.同时转动如图所示的两个转盘,记转盘甲得到的数为x,转盘乙得到的数为y,x,y 构成数对(x,y),则所有数对(x,y)中满足xy =4的概率为( ) A.116 B.18 C.316D.14解析:满足xy =4的所有可能如下: x =1,y =4;x =2,y =2;x =4,y =1. 所以,所求事件的概率P =P(x =1,y =4)+P(x =2,y =2)+P(x =4,y =1) =14×14+14×14+14×14=316. 答案:C6.在一次三人象棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,比赛顺序如下:第一局,甲对乙;第二局,第一局胜者对丙;第三局,第二局胜者对第一局败者;第四局,第三局胜者对第二局败者,则乙连胜四局的概率为________.解析:乙连胜四局,即乙先胜甲,然后胜丙,接着再胜甲,最后再胜丙,∴概率P =(1-0.4)×0.5×(1-0.4)×0.5=0.09. 答案:0.097.由长期统计资料可知,某一地区在4月份下雨(记作事件A)的概率为415,刮风(用B 表示)的概率为715,既刮风又下雨的概率为110,则P(A|B)=________,P(B|A)=________.解析:P(A|B)=P (AB )P (B )=110715=314,P(B|A)=P (AB )P (A )=110415=38.答案:314 388.若A,B 为相互独立事件,则下列式子成立的是__________.(把你认为正确的序号都填上) ①P(AB)=P(A)P(B);②P(A B)=P(A )P(B);③P(A B )=P(A)-P(A)P(B);④P(A B )=1-P(A)-P(B)+P(A)P(B). 解析:①②正确.③P(A B )=P(A)P(B )=P(A)[1-P(B))] =P(A)-P(A)P(B).④P(A B )=P(A )P(B )=[1-P(A)][1-P(B)] =1-P(A)-P(B)+P(A)P(B). 答案:①②③④9.甲、乙同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5. (1)求甲、乙都未击中敌机的概率; (2)求敌机被击中的概率.解析:设“甲击中敌机”为事件A,“乙击中敌机”为事件B,“甲、乙都未击中敌机”为事件C,“敌机被击中”为事件D.由题意可知A,B 相互独立,则A 与B 也相互独立. (1)P(C)=P(A B )=P(A )·P(B ) =(1-0.6)×(1-0.5)=0.2.(2)P(D)=1-P(A B )=1-0.2=0.8.10.甲、乙两地都位于长江下游,根据一百多年的气象记录,知道甲、乙两地一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%.问: (1)乙地为雨天时,甲地为雨天的概率为多少? (2)甲地为雨天时,乙地也为雨天的概率为多少? 解析:设A =“甲地为雨天”,B =“乙地为雨天”, 则根据题意有P(A)=0.20,P(B)=0.18,P(AB)=0.12, 所以(1)P(A|B)=P (AB )P (B )=0.120.18≈0.67,(2)P(B|A)=P (AB )P (A )=0.120.20=0.60.[B 组 能力提升]1.据统计,大熊猫的平均寿命是12~20岁,一只大熊猫从出生起,活到10岁的概率为0.8,活到20岁的概率是0.4,北京动物园的大熊猫“妞妞”今年已经10岁了,它能活到20岁的概率为( ) A .0.32 B .0.5 C .0.4D .0.8解析:设A =“能活到10岁”,B =“能活到20岁”.即P(A)=0.8,P(B)=0.4,所求概率为P(B|A),由于B ⊆A,故AB =B,∴P(B|A)=P (AB )P (A )=P (B )P (A )=0.40.8=0.5.答案:B2.在如图所示的电路图中,开关a,b,c 闭合与断开的概率都是12,且是相互独立的,则灯亮的概率是( ) A.18 B.38 C.14D.78解析:设开关a,b,c 闭合的事件分别为A,B,C,则灯亮这一事件E =ABC ∪AB C ∪A B C,且A,B,C 相互独立,ABC,AB C ,A B C 互斥, 所以P(E)=P(ABC)∪P(AB C )∪P(A B C) =P(ABC)+P(AB C )+P(A B C)=P(A)P(B)P(C)+P(A)P(B)P(C )+P(A)P(B )P(C) =12×12×12+12×12×⎝ ⎛⎭⎪⎫1-12+12×⎝ ⎛⎭⎪⎫1-12×12=38.答案:B3.甲、乙、丙3人投篮,投进的概率分别是25,12,35,现3人各投篮1次,则3人中恰有2人投进的概率为________.解析:甲、乙、丙投进分别记作事件A 、B 、C,它们相互独立,则3人中恰有2人投进的概率为 P =P(AB C +A B C +A BC)=P(AB C )+P(A B C)+P(A BC)=P(A)P(B)P(C )+P(A)P(B )P(C)+P(A )P(B)P(C) =25×12×(1-35)+25×(1-12)×35+(1-25)×12×35=1950. 答案:19504.(2016·高考四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________. 解析:解法一 先求出成功次数X 的分布列,再求均值.由题意可知每次试验不成功的概率为14,成功的概率为34,在2次试验中成功次数X 的可能取值为0,1,2,则P(X =0)=116,P(X =1)=C 12×14×34=38,P(X =2)=⎝ ⎛⎭⎪⎫342=916.所以在2次试验中成功次数X 的分布列为X 0 1 2 P11638916则在2次试验中成功次数X 的均值为 E(X)=0×116+1×38+2×916=32.解法二 此试验满足二项分布,其中p =34,所以在2次试验中成功次数X 的均值为E(X)=np =2×34=32.答案:325.某种元件用满6 000小时未坏的概率是34,用满10 000小时未坏的概率是12,现有一个此种元件,已经用满6 000小时未坏,求它能用满10 000小时的概率. 解析:设A =“用满10 000小时未坏”, B =“用满6 000小时未坏”, 则P(A)=12,P(B)=34,由于A ⊆B, 故P(AB)=P(A).∴P(A|B)=P (AB )P (B )=P (A )P (B )=1234=23.∴这个元件能用满10 000小时的概率为23.6.如图所示,用A 、B 、C 三类不同元件连接成两个系统N 1、N 2.当元件A 、B 、C 都正常工作时,系统N 1正常工作;当元件A 正常工作且元件B,C 至少有一个正常工作时,系统N 2正常工作.已知元件A 、B 、C 正常工作的概率依次为0.80、0.90、0.90,分别求系统N 1、N 2正常工作的概率P 1、P 2. 解析:由题图可知P1=P(A∩B∩C)=P(A)P(B)P(C)=0.80×0.90×0.90=0.648P2=P(A∩(B∪C))=P(A)·[1-P(B C)] =0.8×[1-P(B)·P(C)]=0.8×[1-(1-0.9)(1-0.9)]=0.8×(1-0.01)=0.8×0.99=0.792.。
条件概率与事件的独立性例题和知识点总结
条件概率与事件的独立性例题和知识点总结在概率论中,条件概率和事件的独立性是两个非常重要的概念。
理解它们对于解决各种概率问题至关重要。
下面,我们将通过一些具体的例题来深入探讨这两个概念,并对相关知识点进行总结。
一、条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
其定义为:设 A、B 是两个事件,且 P(A)>0,在事件 A 发生的条件下,事件 B 发生的条件概率记为 P(B|A),且 P(B|A) = P(AB) /P(A) 。
例 1:一个盒子里有 5 个红球和 3 个白球。
从中随机取出一个球,已知取出的是红球,求它是第二个红球的概率。
解:设 A 表示“第一次取出红球”,B 表示“第二次取出红球”。
则P(A) = 5/8 。
P(AB) 表示“第一次和第二次都取出红球”,其概率为 5/8 × 4/7 = 5/14 。
所以 P(B|A) = P(AB) / P(A) =(5/14) /(5/8) =4/7 。
例 2:某班级学生的数学成绩及格率为 80%,英语成绩及格率为70%,已知某学生数学成绩及格,求他英语成绩也及格的概率。
解:设 A 表示“数学成绩及格”,B 表示“英语成绩及格”。
P(A) =08 ,P(AB) 表示“数学和英语成绩都及格”,假设两者相互独立,则P(AB) = 08 × 07 = 056 。
所以 P(B|A) = P(AB) / P(A) = 056 / 08 =07 。
二、事件的独立性如果事件 A 的发生不影响事件 B 发生的概率,事件 B 的发生也不影响事件 A 发生的概率,那么称事件 A 和事件 B 相互独立。
即 P(B|A) = P(B) 且 P(A|B) = P(A) ,等价于 P(AB) = P(A)P(B) 。
例 3:抛掷两枚均匀的硬币,设事件 A 为“第一枚硬币正面朝上”,事件 B 为“第二枚硬币正面朝上”,判断 A、B 是否独立。
条件概率与独立事件
P( AB) 当P(B)>0时,P( A | B) (其中,A B可以记成AB) P( B)
类似地,当P(A)>0时,A发生时B发生的条件概率 P( AB) P( B | A) P( A)
问题 2
从一副扑克牌(去掉大、小王,共52张)中随机取 出1张,用A表示取出的牌是“Q”,用B表示取出的 牌是红桃.试利用P(B)及P(AB)计算p(A|B).
四个射手独立地进行射击,设每人中靶的概率都 是0.9.试求下列各事件的概率.
(1)4人都没有中靶; 0.1 0.1 0.1 0.1 0.0001 (2)4人都中靶; 0.9 0.9 0.9 0.9 0.6561 (3)2人中靶,另2人没有中靶.
0.9 0.9 0.1 0.1 0.0081
P( AB) P( A) P( B)
对于两个事件A, B, 如果P ( AB) P ( A) P ( B ), 则称A, B相互独立.
通过调查发现,某班学生患近视的概率为0.4, 现随机抽取该班级的2名同学进行体检,求他 们近视的概率.
解:如果用Ai(i=1,2)表示抽取的第i名学生患近视, 则P( A1 ) P( A2 ) 0.4
可以认为2名同学是否近视是相互独立的,因此
P(两位同学都近视) P( A1 A2 ) P( A1 ) P( A2 ) 0.4 0.4 0.16
如果 A1 , A2 ,, An 相互独立, 则P( A1 A2 An ) P( A1 ) P( A2 ) P( An )
问题 1
100个产品中有93个产品的长度合格,90个产品 的重量合格,85个产品的长度、重量都合格.现在,任 取一个产品,若已知它的重量合格,那么它的长度合 格的概率是多少?
条件概率与独立事件例题和知识点总结
条件概率与独立事件例题和知识点总结在概率论中,条件概率和独立事件是两个非常重要的概念。
理解它们对于解决各种概率问题至关重要。
接下来,让我们通过一些具体的例题来深入理解这两个概念,并对相关知识点进行总结。
一、条件概率条件概率是指在事件 B 已经发生的条件下,事件 A 发生的概率,记作 P(A|B)。
其计算公式为:P(A|B) = P(AB) / P(B) (其中 P(AB) 表示事件 A 和事件 B 同时发生的概率)例题 1:一个盒子里有 5 个红球和 3 个白球。
先从中随机取出一个球,不放回,再取一个球。
已知第一次取出的是红球,求第二次取出红球的概率。
解析:第一次取出红球后,盒子里剩下 4 个红球和 3 个白球。
此时总球数为 7 个。
所以第二次取出红球的概率为 4/7。
知识点总结:1、条件概率的本质是在新的信息(即已知某个事件发生)的基础上,重新评估另一个事件发生的可能性。
2、计算条件概率时,要先确定已知条件所限制的样本空间,再计算在这个新样本空间中目标事件发生的概率。
二、独立事件如果事件 A 的发生不影响事件 B 发生的概率,事件 B 的发生也不影响事件 A 发生的概率,那么事件 A 和事件 B 称为相互独立事件。
即P(A|B) = P(A) 且 P(B|A) = P(B) 。
例题 2:掷一枚质地均匀的骰子两次,设事件 A =“第一次掷出的点数是1”,事件 B =“第二次掷出的点数是2”,判断事件 A 和事件 B是否独立。
解析:因为第一次掷骰子的结果不影响第二次掷骰子的结果,所以P(B|A) = P(B) = 1/6 ,P(A) = 1/6 ,满足独立事件的条件,所以事件A 和事件B 是独立事件。
知识点总结:1、独立事件的判断关键在于看一个事件的发生是否会改变另一个事件发生的概率。
2、对于两个独立事件 A 和 B ,它们同时发生的概率为 P(AB) =P(A)×P(B) 。
三、条件概率与独立事件的综合例题例题 3:一个家庭有两个孩子,已知其中一个是女孩,求另一个也是女孩的概率。
条件概率,事件独立性
条件概率,事件独⽴性条件概率,事件独⽴性⼀.选择题(共11⼩题)1.在⼀个坛⼦中装有10个除颜⾊外完全相同的玻璃球,其中有1个红球,2个蓝球,3个黄球,4个绿球.现从中任取⼀球后(不放回),再取⼀球,则已知第⼀个球为红⾊的情况下第⼆个球为黄⾊的概率为()A.B.C.D.2.将3封不同的信投⼈3个不同的信箱,记事件A为“⾄少有1个信箱为空”,事件B为“恰好有2个信箱为空”则P(B|A)=()A.B.C.D.3.将3颗骰⼦各掷⼀次,记事件A为“三个点数都不同”,事件B为“⾄少出现⼀个1点”,则条件概率P(A|B)和P(B|A)分别为()A.B.C.D.4.袋中装有标号为1、2、3的三个⼩球,从中任取⼀个,记下它的号码,放回袋中,这样连续做三次.若抽到各球的机会均等,事件A=“三次抽到的号码之和为6”,事件B=“三次抽到的号码都是2”,则P(B|A)=()A.B.C.D.5.掷两颗均匀的⼤⼩不同的骰⼦,记“两颗骰⼦的点数和为10”为事件A,“⼩骰⼦出现的点数⼤于⼤骰⼦出现的点数”为事件B,则P(B|A)为()A.B.C.D.6.甲、⼄、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀⽼⼈、环境监测、教育咨询、交通宣传等四个项⽬,每⼈限报其中⼀项,记事件A为4名同学所报项⽬各不相同”,事件B为“只有甲同学⼀⼈报关怀⽼⼈项⽬”,则P(B|A)=()A.B.C.D.7.已知ABCD为正⽅形,其内切圆I与各边分别切于E,F,G,H,连接EF,FG,GH,HE.现向正⽅形ABCD内随机抛掷⼀枚⾖⼦,记事件A:⾖⼦落在圆I内,事件B:⾖⼦落在四边形EFGH外,则P(B|A)=()A.B.C.D.8.设A,B为两个事件,且P(A)>0,若,则P(B|A)=()A.B.C.D.相互独⽴事件9.某中学组织⾼三学⽣进⾏⼀项能⼒测试,测试内容包括A、B、C三个类型问题,这三个类型所含题⽬的个数分别占总数的.现有3名同学独⽴地从中任选⼀个题⽬作答,则他们选择的题⽬所属类型互不相同的概率为()A.B.C.D.10.某电视台的夏⽇⽔上闯关节⽬中的前三关的过关率分别为,,,只有通过前⼀关才能进⼊下⼀关,且通过每关相互独⽴.⼀选⼿参加该节⽬,则该选⼿能进⼊第四关的概率为()A.B.C.D.11.电路从A到B上共连接着6个灯泡(如图),每个灯泡断路的概率为,整个电路的连通与否取决于灯泡是否断路,则从A到B连通的概率是()A.B.C.D.12.甲⼄两队正在⾓逐排球联赛的冠军,在刚刚结束的前三局⽐赛中,甲队2胜1负暂时领先,若规定先胜三局者即为本次联赛冠军,已知两队在每局⽐赛中获胜的概率均为,且各局⽐赛结果相互独⽴,则甲队最终成为本次排球联赛冠军的概率为.⼆.解答题13.某单位有8名青年志愿者,其中男青年志愿者5⼈,分别记为a1,a2,a3,a4,a5,⼥青年志愿者3⼈,分别记为b1,b2,b3现从这8⼈中远4⼈参加某项公益活动.(1)求男青年志愿者a1或⼥青年志愿者b1被选中的概率;(2)在男青年志愿者a1被选中的情况下,求⼥青年志愿者b1被也被选中的概率.14.某班从6名班⼲部(男⽣4⼈,⼥⽣2⼈)中,任选3⼈参加学校的义务劳动.(1)求选中的3⼈都是男⽣的概率;(2)求男⽣甲和⼥⽣⼄⾄少有⼀个被选中的概率;(3)设“男⽣甲被选中”为事件A,“⼥⽣⼄被选中”为事件B,求P(B|A).15.某班包括男⽣甲和⼥⽣⼄在内共有6名班⼲部,其中男⽣4⼈,⼥⽣2⼈,从中任选3⼈参加义务劳动.(1)求男⽣甲或⼥⽣⼄被选中的概率;(2)设“男⽣甲被选中”为事件A,“⼥⽣⼄被选中”为事件B,求P(A)和P(AB).16.某校准备从报名的7位教师(其中男教师4⼈,⼥教师3⼈)中选3⼈去边区⽀教.(Ⅰ)设所选3⼈中⼥教师的⼈数为X,求X的分布列及数学期望;(Ⅱ)若选派的三⼈依次到甲、⼄、丙三个地⽅⽀教,求甲地是男教师的情况下,⼄地为⼥教师的概率.事件独⽴性17.某中学为了丰富学⽣的业余⽣活,开展了⼀系列⽂体活动,其中⼀项是同学们最感兴趣的3对3篮球对抗赛,现有甲⼄两队进⾏⽐赛,甲队每场获胜的概率为.且各场⽐赛互不影响.(1)若采⽤三局两胜制进⾏⽐赛,求甲队获胜的概率;(2)若采⽤五局三胜制进⾏⽐赛,求⼄队在第四场⽐赛后即获得胜利的概率.18.某校开展学⽣社会法治服务项⽬,共设置了⽂明交通,社区服务,环保宣传和中国传统⽂化宣讲四个项⽬,现有该校的甲、⼄、丙、丁4名学⽣,每名学⽣必须且只能选择1项.(Ⅰ)求恰有2个项⽬没有被这4名学⽣选择的概率;(Ⅱ)求“环保宣传”被这4名学⽣选择的⼈数ξ的分布列19.甲、⼄两名射击运动员在进⾏射击训练,已知甲命中10环,9环,8环的概率分别是,,,⼄命中10环,9环,8环的概率分别是,,,任意两次射击相互独⽴.(1)求甲运动员两次射击命中环数之和恰好为18的概率;(2)现在甲、⼄两⼈进⾏射击⽐赛,每⼀轮⽐赛两⼈各射击1次,环数⾼于对⽅为胜,环数低于对⽅为负,环数相等为平局,规定连续胜利两轮的选⼿为最终的胜者,⽐赛结束,求恰好进⾏3轮射击后⽐赛结束的概率20.随着共享单车的成功运营,更多的共享产品逐步⾛⼊⼤家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷.⼴元某景点设有共享电动车租车点,共享电动车的收费标准是每⼩时2元(不⾜1⼩时的部分按1⼩时计算).甲、⼄两⼈各租⼀辆电动车,若甲、⼄不超过⼀⼩时还车的概率分别为;⼀⼩时以上且不超过两⼩时还车的概率分别为;两⼈租车时间都不会超过三⼩时.(Ⅰ)求甲、⼄两⼈所付租车费⽤相同的概率;(Ⅱ)求甲、⼄两⼈所付的租车费⽤之和⼤于或等于8的概率.21.西安世园会志愿者招聘正如⽕如荼进⾏着,甲、⼄、丙三名⼤学⽣跃跃欲试,已知甲能被录⽤的概率为,甲、⼄两⼈都不能被录⽤的概率为,⼄、丙两⼈都能被录⽤的概率为.(1)⼄、丙两⼈各⾃能被录⽤的概率;(2)求甲、⼄、丙三⼈⾄少有两⼈能被录⽤的概率.22.随着⼩汽车的普及,“驾驶证”已经成为现代⼊“必考”证件之⼀.若某⼈报名参加了驾驶证考试,要顺利地拿到驾驶证,需要通过四个科⽬的考试,其中科⽬⼆为场地考试在每⼀次报名中,每个学员有5次参加科⽬⼆考试的机会(这5次考试机会中任何⼀次通过考试,就算顺利通过,即进⼊下⼀科⽬考试,或5次都没有通过,则需要重新报名),其中前2次参加科⽬⼆考试免费,若前2次都没有通过,则以后每次参加科⽬⼆考试都需要交200元的补考费.某驾校通过⼏年的资料统计,得到如下结论:男性学员参加科⽬⼆考试,每次通过的概率均为,⼥性学员参加科⽬⼆考试,每次通过的概率均为.现有⼀对夫妻同时报名参加驾驶证考试,在本次报名中,若这对夫妻参加科⽬⼆考试的原则为:通过科⽬⼆考试或者⽤完所有机会为⽌,(1)求这对夫妻在本次报名中参加科⽬⼆考试都不需要交补考费的概率;(2)求这对夫妻在本次报名中参加科⽬⼆考试产⽣的补考费⽤之和为200元的概率.。
条件概率与独立事件(一)
问题4:怎样计算B发生时A发生的概率?
A
B
例1 在5道题中有3道理科题和2道文科题.如果不 放回地依次抽取2道题,求: (1)第1次抽到理科题的概率; (2)第1次和第2次都抽到理科题的概率; (3)在第1次抽到理科题的条件下,第2次抽到理科 题的概率.
跟踪训练1 一个盒子中有6个白球、4个黑球,每 次从中不放回地任取 1个,连取两次,求第一次取 到白球的条件下,第二次取到黑球的概率. 例2 一张储蓄卡的密码共有6位数字,每位数字 都可从0~9中任选一个.某人在银行自动提款机 上取钱时,忘记了密码的最后一位数字,求: (1)任意按最后一位数字,不超过2次就按对的概 率; (2)如果他记得密码的最后一位是偶数,不超过2 次就按对的概率.
选修2-3 第二章 概率
条件概率与独立事件(一)
问题一:3张奖券中只有一张能中奖,现分别由3名 同学无放回地抽取,问最后一名同学抽到中奖奖券 的概率是否比其他同学小?
问题二:如果已知第一名同学没有抽到中奖奖券, 那么最后一名同学抽到奖券的概率是多少?
条件概率
问题三:100件产品中有93件产品的长度合格,90 件产品的质量合格,85件产品的长度和质量都合格。 现在任取一件产品,若已知它的质量合格,那么它,从20道题中随机抽取 6 道题,若考生至少能答对其中的 4 道即可通过; 若至少能答对其中 5道就获得优秀.已知某考生能 答对其中 10 道题,并且知道他在这次考试中已经 通过,求他获得优秀成绩的概率.
条件概率与事件的独立性【题集】-讲义(教师版)
条件概率与事件的独立性【题集】1. 条件概率A.B.C.D.1.根据历年气象统计资料,某地四月份吹东风的概率,下雨的概率为,既吹东风又下雨的概率为,则在吹东风的条件下下雨的概率为( ).【答案】D【解析】事件:四月份下雨,事件:四月份吹东风,,,,条件概率公式有,故选.【标注】【知识点】条件概率A.B.C.D.2.某小区有名歌手,其中名男歌手,名女歌手.从中选出人参加区组织的社区演出.在男歌手甲被选中的情况下,女歌手乙也被选中的概率为( ).【答案】D【解析】若从中选出人参加区组织的社区演出,在男歌手甲被选中的情况下,又因为小区有名歌手,其中名男歌手,名女歌手,此时若女歌手乙被选择,则被选中的概率为.故选.【标注】【知识点】条件概率A.B.C.D.3.同时抛掷一颗红骰子和一颗蓝骰子,观察向上的点数,记“红骰子向上的点数小于”为事件,“两颗骰子的点数之和等于”为事件,则( ).【答案】D【解析】由题意,为抛掷两颗骰子,红骰子的点数小于时两骰子的点数之和等于的概率,∵抛掷两颗骰子,红骰子的点数小于,基本事件有个,红骰子的点数小于时两骰子的点数之和等于,基本事件有个,分别为,,,∴.故选:.【标注】【知识点】条件概率;古典概型A. B. C. D.4.从装有个红球个白球的袋子中先后取个球,取后不放回,在第一次取到红球的条件下,第二次取到红球的概率为().【答案】C【解析】因为共有个红球个白球,所以先后取个球,取后不放回,第一次取到红球的取法数为:,第一、二次都取到红球的取法数为:,故所求的概率.故选:.【标注】【知识点】条件概率A. B. C. D.5.小赵、小钱、小孙、小李到个景点旅游,每人只去一个景点,设表示事件“个人去的景点各不相同”,表示事件“小赵独自去一个景点”,则().【答案】A【解析】小赵独自去一个景点,则有个景点可选,其余人只能在小赵剩下的个景点中选择,可能性为种,所以小赵独自去一个景点的可能性为种.因为个人去的景点不相同的可能性为种,所以.故选.【标注】【知识点】条件概率(1)(2)6.某中学为了迎接即将在武汉市召开的世界中学生运动会,学生篮球队准备假期集训,集训前共有个篮球队,其中个是新球(即没有用过的球),个是旧球(即至少用过次的球).每次训练,都从中任意取出个球,用完后放回.设第次训练时至少取到个新球,第次训练时也取到个新球的概率.在第次训练时至少取到个新球的条件下,求第次训练时恰好取到个新球的概率.【答案】(1)(2)..【解析】(1)设“第次训练时取到个新球”为事件,则,.设“从个球中任意取出个球,恰好取到个新球”为事件,则“第次训练时恰好取到个新球”就是事件,而事件,互斥,于是.由条件概率公式,得,又因为,所以,第次训练时恰好取到个新球的概率为(2).设在第次训练时至少取到个新球,第次训练时恰好取到个新球,则在第次训练时至少取到个新球的条件下,第次训练时恰好取到个新球的概率为.因为,又,所以.【标注】【知识点】条件概率2. 乘法公式7.已知,,.【答案】【解析】∵,∴.【标注】【知识点】条件概率;相互独立事件的概率乘法公式A. B. C. D.8.已知号箱中有个白球和个红球,号箱中有个白球和个红球,现随机地从号箱中取出个球放入号箱中,然后从号箱中随机地取出个球,则两次都取到红球的概率是().【答案】C【解析】设从号箱取到红球为事件,从号箱取到红球为事件.由题意,可得,,所以.所以两次都取到红球的概率是.故选.【标注】【知识点】古典概型的概率计算(不涉及计数原理);条件概率【素养】数学运算;数据分析3. 事件的独立性A.B.C.D.9.甲、乙两名射击运动员进行射击比赛,甲中靶的概率为,乙中靶的概率为.甲、乙各射击一次,则两人都中靶的概率为( ).【答案】B【解析】设甲中靶为事件,乙中靶为事件,,为相互独立事件,根据相互独立事件的乘法公式可得:.故选.【标注】【知识点】相互独立事件的概率乘法公式A.B.C.D.10.已知盒中装有个红球、个白球、个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,在他第一次拿到白球的条件下,第二次拿到红球的概率( ).【答案】B【解析】设“第一次拿到白球”为事件,“第二次拿到红球”为事件B∴,,则所求概率为,故选:.【标注】【知识点】条件概率11.A.B.C.D.袋中有红黑个大小形状相同的小球,从中依次摸出两个小球,则在第一次摸得红球的条件下,第二次仍是红球的概率为().【答案】B【解析】设”第一次摸到红球”为事件,”第二次摸到红球”为事件.∴,∴.故选.【标注】【知识点】条件概率4. 互斥事件与独立事件A.事件和互斥B.事件和互相对立C.事件和相互独立D.事件和相等12.抛掷两枚硬币,设事件“第一枚正面朝上”,“第二枚反面朝上”,则( ).【答案】C【解析】A 选项:B 选项:C 选项:D 选项:由于事件,能同时发生,则事件,不为互斥事件,故错误;由于事件,能同时发生,则事件,不为对立事件,故错误;第一枚正面朝上和第二枚反面朝上是相互独立事件,故正确;由于事件,中有不同的样本点,则事件,不相等,故错误;故选 C .【标注】【知识点】相互独立事件13.甲罐中有个红球,个白球和个黑球,乙罐中有个红球,个白球和个黑球.先从甲罐中随机取出一个球放入乙罐,分别以,,表示由甲罐取出的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以表示由乙罐取出的球是红球的事件,下列结论中的是( ).不.正.确.A.B.C.D.事件与事件不相互独立,,是两两互斥的事件【答案】D【解析】由题意、、是两两互斥事件,,,,,,,,所以不正确.故选.【标注】【知识点】条件概率14.甲乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中胜的概率为;且各局比赛结果相互独立,则在甲获得冠军的条件下,比赛进行了局的概率为.【答案】【解析】由题意,甲获得冠军的概率为,其中比赛进行了局的概率为,∴所求概率为.故答案为:.【标注】【知识点】相互独立事件的概率乘法公式A. B. C. D.15.两个实习生每人加工一个零件,加工为一等品的概率分别为和,两个零件是否加工为一等品互不影响,则这两个零件中恰有一个一等品的概率为().【答案】B【解析】根据题意得:恰有一个一等品的概率.故选.【标注】【知识点】互斥事件的概率加法公式;相互独立事件的概率乘法公式16.为积极应对新冠肺炎疫情,提高大家对新冠肺炎的认识,某企业举办了“抗击疫情,共克时艰”预防新冠肺炎知识竞赛,知识竞赛规则如下:在预设的个问题中,选手若能连续正确回答出个问题,即停止答题,晋级下一轮.假定某选手正确回答每个问题的概率都是,且每个问题的回答结果相互独立,则该选手至少回答了个问题晋级下一轮的概率等于.【答案】【解析】该选手至少回答了个问题晋级,包含两种情况:回答了五个或者留六个问题.一、回答了五个问题晋级,则第三、四、五个问题都回答正确,而第二个问题回答错误..二、回答了六个问题晋级,则第四、五、六个问题都回答正确,而第三个问题回答错误.,综上:,该选手至少回答了个问题晋级的概率为.【标注】【知识点】相互独立事件的概率乘法公式A. B. C. D.17.首届中国国际进口博览会期间,甲、乙、丙三家中国企业都有意向购买同一种型号的机床设备,他们购买该机床设备的概率分别为,,,且三家企业的购买结果相互之间没有影响,则三家企业中恰有家购买该机床设备的概率是().【答案】C【解析】甲、乙、丙三家中国企业都有意向购买同一种型号的机床设备,他们购买该机床设备的概率分别为,,,且三家企业的购买结果相互之间没有影响,则三家企业中恰有家购买该机床设备的概率:.故选.【标注】【知识点】相互独立事件的概率乘法公式A. B. C. D.18.某地有,,,四人先后感染了传染性肺炎,其中只有到过疫区,确定是受感染的.对于因为难以判定是受还是受感染的,于是假定他受和感染的概率都是.同样也假定受,和感染的概率都是.在这种假定下,,,中恰有两人直接受感染的概率是().【答案】C【解析】根据题意得出:因为直接受感染的人至少是,而,二人也有可能是由感染的,,设,,直接受感染为事件,,,则,,是相互独立的,并且,,,表明除了外,,二人中恰有人是由感染的,∴,∴、、中直接受传染的人数为的概率为.故答案为:.故选.【标注】【知识点】相互独立事件的概率乘法公式A. B. C. D.19.甲、乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制(无平局),甲在每局比赛中获胜的概率均为,且各局比赛结果相互独立,则在甲获得冠军的条件下,比赛进行了三局的概率为().【答案】B【解析】由题意,甲获得冠军的概率为,其中比赛进行了局的概率,∴所以概率为.故选.【标注】【知识点】条件概率A. B.C. D.以上都不对20.甲、乙、丙三名同学用计算机联网学习数学,每天上课后独立完成道自我检测题,甲及格的概率为,乙及格的概率为,丙及格的概率为, 三人各检测一次,则三人中只有一人及格的概率为().【答案】C【解析】由题意可知分三种情况且三人及格与否相互独立,则.故选.【标注】【知识点】相互独立事件的概率乘法公式A. B. C. D.21.已知在个电子元件中,有个次品,个合格品,每次任取一个测试,测试完后不再放回,直到两个次品都为止,则经过次测试恰好将个次品全部的概率().【答案】C【解析】找.到.找.出.11由题意可得:前次抽到了一个次品,且第四次抽到第二个次品,或前次抽到的全是正品,若前次抽到了一个次品,且第四次抽到第二个次品,概率为,若前四次抽到的全是正品,概率为,故所求事件的概率为.故选.【标注】【知识点】相互独立事件的概率乘法公式;古典概型;互斥事件与对立事件的概念辨析;互斥事件的概率加法公式5. 全概率公式22.(敏感性问题调查)要调查蔡老板在学生心目中是不是一个胖子,制作问卷 :蔡老板是胖子么?回答方式为“是”和“否”.由于这是一个敏感性问题学生没法当面回答,现采取如下策略进行调查.现同时制作问卷 :蔡老板是胖子么?问卷 :给你一枚硬币,你丢一次是正面朝上么?学生将从一个只装有红球和白球的盒子中抽球决定回答哪个问题,如果抽到红球,回答 问题,抽到白球,回答 问题,假设抽到红球的概率是.现在对名学生进行调查,发现收到的答案中有个是,你认为根据统计结果,蔡老板是一个胖子么?【答案】是.【解析】 :抽到的球是红球, :回答是,设选择蔡老板是胖子的概率为,,,,,,解得.【标注】【素养】数学运算【知识点】条件概率。
概率统计中的独立事件计算练习题
概率统计中的独立事件计算练习题在概率统计中,独立事件是指一个事件的发生不受其他事件发生与否的影响,即事件之间相互独立。
本文将为读者提供几个独立事件的计算练习题,以加深对该概念的理解和应用。
练习题一:某班级有30名学生,他们的身高分布如下:身高在150厘米以下的有5人身高在150~160厘米之间的有10人身高在160~170厘米之间的有12人身高在170~180厘米之间的有3人身高在180厘米以上的有0人从这个班级中随机选择一个学生,请计算:1. 选到身高在150~160厘米之间的概率;2. 选到身高在170~180厘米之间的概率;3. 选到身高在160~180厘米之间的概率。
练习题二:一箱装有5个红球和3个蓝球。
从中连续无放回地随机抽取3个球,请计算:1. 抽取的3个球中全部为红球的概率;2. 抽取的3个球中至少有2个蓝球的概率;3. 抽取的3个球中至少有1个红球的概率。
练习题三:一位学生参加了一场含有10道选择题的考试,每道题有4个选项。
假设学生对每道题都随机猜答,请计算:1. 学生全部答对的概率;2. 学生至少答对一半的概率;3. 学生至多答对两道题的概率。
练习题四:一批产品从工厂出货,每个产品都有独立的缺陷概率。
已知该批产品中每10个产品的平均缺陷数量为0.3个。
请计算:1. 任选一个产品,它没有缺陷的概率;2. 任选一个产品,它至少有一个缺陷的概率;3. 任选一个产品,它的缺陷数目小于等于1个的概率。
在解答以上练习题时,需要注意独立事件的概率计算方法。
对于独立事件A和B,其概率乘积等于两个事件分别发生的概率之积。
应用这一原则,可以解答上述练习题。
练习题一解答:1. 身高在150~160厘米之间的概率 = 10人 / 30人 = 1/3;2. 身高在170~180厘米之间的概率 = 3人 / 30人 = 1/10;3. 身高在160~180厘米之间的概率 = (12+3)人 / 30人 = 15/30 = 1/2。
条件概率及相互独立事件典型例题
条件概率及相互独立事件【典型例题】例1甲、乙两个人独立地破译一个密码,他们能译出密码的概率分别为和,求:(1)两个人都译出密码的概率;(2)两个人都译不出密码的概率;(3)恰有1个人译出密码的概率;(4)至多1个人译出密码的概率;(5)至少1个人译出密码的概率.分析:我们把“甲独立地译出密码”记为事件,把“乙独立地译出密码”记为事件,显然为相互独立事件,问题(1)两个都译出密码相当于事件、同时发生,即事件.问题(2)两人都译不出密码相当于事件.问题(3)恰有1个人译出密码可以分成两类:发生不发生,不发生发生,即恰有1个人译出密码相当于事件.问题(4)至多1个人译出密码的对立事件是两个人都未译出密码,即事件.由于、是独立事件,上述问题中,与,与,与是相互独立事件,可以用公式计算相关概率.解:记“甲独立地译出密码”为事件,“乙独立地译出密码”为事件,、为相互独立事件,且.(1)两个人都译出密码的概率为:.(2)两个人都译不出密码的概率为:(3)恰有1个人译出密码可以分为两类:甲译出乙未译出以及甲未译出乙译出,且两个事件为互斥事件,所以恰有1个人译出密码的概率为:(4)“至多1个人译出密码”的对立事件为“有两个人译出密码”,所以至多1个人译出密码的概率为:.(5)“至少有1个人译出密码”的对立事件为“两人未译出密码”,所以至少有1个人译出密码的概率为:.说明:如果需要提高能译出密码的可能性,就需要增加可能译出密码的人,现在可以提出这样的问题:若要达到译出密码的概率为99%,至少需要像乙这样的人多少个?我们可以假设有个像乙这样的人分别独立地破译密码,此问题相当于次独立重复试验,要译出密码相当于至少有1个译出密码,其对立事件为所有人都未译出密码,能译出密码的概率为,按要求,,故,可以计算出,即至少有像乙这样的人16名,才能使译出密码的概率达到99%.例2如图,开关电路中,某段时间内,开关开或关的概率均为,且是相互独立的,求这段时间内灯亮的概率.分析:我们把“开关合上”记为事件,“开关合上”记为事件,“开关合上”记为事件C,是相互独立事件且由已知,它们的概率都是,由物理学知识,要求灯亮,有两种可能性,一个是、两开关合上,即事件发生,另一个是开关合上,即事件发生,也就是灯亮相当于事件发生.解:分别记“开关合上”、“开关合上”、“开关合上”为事件,由已知,是相互独立事件且概率都是.开关、合上或开关合上时灯亮,所以这段时间内灯亮的概率为:说明:本题的解题过程中,灵活使用了概率中的一些符号,比如,表示事件与事件同时发生,表示事件与事件至少有一个发生,表示与至少有一个发生,所以分成了三个互斥事件:发生不发生,不发生发生,与都发生,而其中不发生发生即,又不发生即与至少有一个不发生,从而又分成了三个互斥事件:、、,符号语言的正确理解与使用,不仅是提高数学能力的需要,而且也使数学解题过程简便明了,一些数学结论表述更加方便.我们可以尝试理解并领会下列结论:。
条件概率与事件的独立性练习题
条件概率与事件的独立性练习题
1.如图所示的电路,有a ,b ,c 三个开关,每个开关开或关的概率都是12
,且
是相互独立的,则灯泡甲亮的概率为( )
A.18
B.14
C.12
D.116
2、某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有两次击中目标的概率
为( )
A.81125
B.54125
C.36125
D.27125
3、一学生通过英语听力测试的概率是21,他连续测试两次,那么其中恰好一次通过的概率
是() A. 41 B. 31 C.21 D.4
3 4.某人射击一次击中的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为() A .12581 B .1255
4 C .12536 D .125
27 5、甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是 ( )
(A) 0.216 (B)0.36 (C)0.432 (D)0.648
6.甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.
(1)分别求甲、乙两人考试合格的概率;
(2)求甲、乙两人至少有一人考试合格的概率.
7.2009年12月底,一考生参加某大学的自主招生考试,需进行书面测试,测试题中有4道题,每一道题能否正确做出是相互独立的,并且每一道题被该考生正确做出的概率都是34
. (1)求该考生首次做错一道题时,已正确做出了两道题的概率;
(2)若该考生至少正确作出3道题,才能通过书面测试这一关,求这名考生通过书面测试的概率.。
大学概率论试题及答案
大学概率论试题及答案# 大学概率论试题及答案试题一:概率的基本概念问题:设随机变量X服从参数为λ的泊松分布,求P(X=2)。
答案:泊松分布的概率质量函数为:\[ P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!} \]对于本题,k=2,λ为给定参数。
将k代入公式得:\[ P(X = 2) = \frac{e^{-\lambda} \lambda^2}{2!} = \frac{e^{-\lambda} \lambda^2}{2} \]试题二:条件概率和独立事件问题:设事件A和事件B是两个独立事件,且P(A)=0.3,P(B)=0.5。
求P(A|B)。
答案:根据条件概率的定义,P(A|B)是事件B发生的条件下事件A发生的概率,可以表示为:\[ P(A|B) = \frac{P(A \cap B)}{P(B)} \]由于A和B是独立事件,P(A ∩ B) = P(A) * P(B)。
代入已知概率得:\[ P(A|B) = \frac{0.3 \times 0.5}{0.5} = 0.3 \]试题三:随机变量的期望和方差问题:设随机变量X的期望E(X)=5,方差Var(X)=9。
求E(2X+3)。
答案:根据期望的性质,对于任意常数a和b,有:\[ E(aX + b) = aE(X) + b \]将给定的E(X)和常数2, 3代入公式得:\[ E(2X + 3) = 2E(X) + 3 = 2 \times 5 + 3 = 13 \]试题四:大数定律和中心极限定理问题:说明大数定律和中心极限定理的区别。
答案:大数定律描述的是当样本量足够大时,样本均值会趋近于总体均值。
它关注的是随机变量的和或平均数的分布。
而中心极限定理则描述的是,不管原始总体分布如何,当样本量足够大时,样本均值的分布将趋近于正态分布。
中心极限定理是大数定律的一个特例,它更具体地说明了样本均值分布的形状。
独立性与条件概率的关系习题课件高二上学期数学人教B版选择性(完整版)2
课后小记·终身难忘 KEHOUXIAOJI ZHONGSHENNANWANG
PART 07
互联网+
高科技创业商业计划书 感谢您的聆听
祝你学业有成
2024年5月4日星期六9时14分40秒
2.某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不
再重复,则他第 3 次拨号才接通电话的概率为( )
1
7
1
2
A.14
B.9
C.10
D.9
解析 设 Ai={第 i 次拨号接通电话},i=1,2,3,第 3 次拨号才接通电话可表示为 A 1∩ A 2∩A3,显然 A 1, A 2,A3 相互独立,所以 P( A 1∩ A 2∩A3)=190×89×18= 1 10.
答案 D
7.事件 A,B,C 相互独立,如果 P(AB)=16,P( B C)=18,P(AB C )=18,则 P(B)= ________,P( A B)=______.
解析 因为 P(AB)=16,P(AB C )=18,事件 A,B,C 相互独立,所以 P( C )=34,
P(C)=14.
(2)P( A BC+A B C+AB C )=P( A BC)+P(A B C)+P(AB C )
=P( A )·P(B)·P(C)+P(A)·P( B )·P(C)+P(A)·P(B)·P( C ) =[1-P(A)]P(B)P(C)+P(A)[1-P(B)]P(C)+P(A)P(B)[1-P(C)] =(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85)=0.329.
又 P( B C)=18,所以 P( B )=12,P(B)=12,
条件概率独立事件练习
自主作业:条件概率与独立事件姓名______________班级_____1.在10个形状大小均相同的球中有6个红球和4个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率为 ( )A.35B.25C.110D.592.已知P (B |A )=13,P (A )=25,则P (AB )等于 ( )A.56B.910C.215D.1153.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是 ( )A.14B.13C.12D.354.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是 ( )A.56B.34C.23D.135.在某段时间内,甲地不下雨的概率为0.3,乙地不下雨的概率为0.4,假设在这段时间内两地是否下雨相互无影响,则这段时间内两地都下雨的概率是 ( )A.0.12B.0.88C.0.28D.0.426.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是 ( )A.p 1p 2B.p 1(1-p 2)+p 2(1-p 1)C.1-p 1p 2D.1-(1-p 1)(1-p 2)7.一个口袋中装有2个白球和3个黑球,则先摸出一个白球后放回,再摸出一个白球的概率是=____________8.某人提出一个问题,甲先答,答对的概率为0.4,如果甲答错,由乙答,答对的概率为0.5,则问题由乙答对的概率为________9.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,则第2次抽出正品的概率为________.10.从1~100这100个整数中,任取一数,已知取出的一数是不大于50的数,则它是2或3的倍数的概率为________.11.把一枚硬币任意掷两次,事件A =“第一次出现正面”,事件B =“第二次出现正面”,求P (B |A )=__________.12.(理)将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k=___13.一道数学竞赛试题,甲生解出它的概率为21,乙生解出它的概率为31,丙生解出它的概率为41,由甲、乙、丙三人独立解答此题只有一人解出的概率为______.14.某单位订阅大众日报的概率为0.6,订阅齐鲁晚报的概率为0.3,则至少订阅其中一 种报纸的概率为________.15.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是31.那么这位司机遇到红灯前,已经通过了两个交通岗的概率是______.16.某校高三(1)班有学生40人,其中共青团员15人.全班分成4个小组,第一组有学生10人,共青团员4人.从该班任选一个作学生代表. (1)求选到的是第一组的学生的概率;(2)已知选到的是共青团员,求他是第一组学生的概率.17.(理)甲、乙两队进行一场排球比赛,根据以往经验,单局比赛甲队胜乙队的概率为0.6.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影响,求:(1)前三局比赛甲队领先的概率;(2)本场比赛乙队以3:2取胜的概率.18.(理)袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是31,从B 中摸出一个红球的概率为p . (Ⅰ) 从A 中有放回地摸球,每次摸出一个,共摸5次.(i )恰好有3次摸到红球的概率;(ii )第一次、第三次、第五次摸到红球的概率. (Ⅱ) 若A 、B 两个袋子中的球数之比为1:2,将A 、B 中的球装在一起后,从中摸出一个红球的概率是25,求p 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
条件概率与独立事件习题课
1.抛掷红、蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B为“两颗骰子的点数之和大于8”则P(B|A)的值为()
A .
B .
C .
D .
2.从1~9这9个正整数中任取2个不同的数,事件A为“取到的2个数之和为偶数”,事件B为“取到的2个数均为偶数”,则P(B|A)=()
A .
B .
C .
D .
3.10件产品中有5件次品,从中不放回的抽取2次,每次抽1件,已知第一次抽出的是次品,则第二次抽出的是正品的概率()
A .
B .
C .
D .
4.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为和P,且甲、乙两人各射击一次得分之和为2的概率为.假设甲、乙两人射击互不影响,则P值为()
A .
B .
C .
D .
5.若甲以10发8中,乙以10发6中,丙以10发7中的命中率打靶,三人各射击一次,则三人中只有一人命中的概率是.
二.解答题
6.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示.
(1)根据频率分布直方图,求重量超过505克的产品数量.
(2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列.
(3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.(删)7.2013年12月21日上午10时,省会首次启动重污染天气Ⅱ级应急响应,正式实施机动车车尾号限行,当天某报社为了解公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:
年龄(岁)[15,
25)
[25,
35)
[35,
45)
[45,
55)
[55,
65)
[65,
75]
频数510151055
赞成人数469634
(Ⅰ)完成被调查人员的频率分布直方图;
(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行进行追踪调查,记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列
8.盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;
(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布.
9.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.
(Ⅰ)求甲在3局以内(含3局)赢得比赛的概率;
(Ⅱ)记X为比赛决出胜负时的总局数,求X的分布列.10.甲、乙两人独立破译一个密码,他们能独立译出密码的概率分别为和.
(I)求甲、乙两人均不能译出密码的概率;
(II)假设有4个与甲同样能力的人一起独立破译该密码,求这4人中至少有3人同时译出密码的概率.
条件概率与独立事件答案
1.解:设x为掷白骰子得的点数,y为掷黑骰子得的点数,
则所有可能的事件与(x,y)建立一一对应的关系,由题意作图,如图.
其中事件A为“黑色骰子的点数为3或6”包括12件,P(A)==
事件AB包括5件,P(AB)=,由条件概率公式P(B|A)==,
2.解:P(A)==,P(AB)==.由条件概率公式得P(B|A)==.
3. 解:根据题意,在第一次抽到次品后,有4件次品,5件正品;
则第二次抽到正品的概率为P=
4.
解:设“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B,
则“甲射击一次,未击中目标”为事件,“乙射击一次,未击中目标”为事件,
则P(A)=,P ()=1﹣=,P(B)=P,P ()=1﹣P ,依题意得:×(1﹣p)+×p=,解可得,p=,故选C.
5.解:设出甲,乙,丙,射击一次击中分别为事件A,B,C,
∵甲以10发8中,乙以10发6中,丙以10发7中
∴甲,乙,丙,射击一次击中的概率分别为:,,
∵“三人各射击一次,则三人中只有一人命中”的事件为:,,
∴三人各射击一次,则三人中只有一人命中的概率为:
=
6.解:(1)重量超过505克的产品数量是40×(0.05×5+0.01×5)=12件;
(2)Y的所有可能取值为0,1,2;
,,,
Y的分布列为
Y012
P
(3)从流水线上任取5件产品,重量超过505克的概率为=,
重量不超过505克的概为1﹣=;
恰有2件产品合格的重量超过505克的概率为•.
7.解:(Ⅰ)根据频率=得各组的频率分别是:0.1;0.2;0.3;0.2;0.1;0.1.由组距为10,可得小矩形的高分别为0.01;0.02;0.03;0.02;0.01;0.01.
由此得频率分布直方图如图:
(Ⅱ)由题意知ξ的所有可能取值为:0,1,2,3.
P(ξ=0)=•=;
P(ξ=1)=•+•=;
P(ξ=2)=•+•=;
P(ξ=3)=•=.
∴ξ的分布列是:
ξ
0123
P
ξ的数学期望Eξ=0×+1×+2×+3×==.
8.解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况
∴取出的2个球颜色相同的概率P=.
(2)X的所有可能值为4,3,2,则P(X=4)=,P(X=3)=
于是P(X=2)=1﹣P(X=3)﹣P(X=4)=,
X的概率分布列为
X234
P
故X数学期望E(X)=
9. 解:(Ⅰ)用事件A i表示第i局比赛甲获胜,
则A i两两相互独立.…(1分)
===.…(4分)
(Ⅱ)X的取值分别为2,3,4,5,…(5分)
P(x=2)=,
P(x=3)=,
P(x=4)=,
P(x=5)=,…(9分)所以X的分布列为
X2345
P
…(11分)
EX==.…(13分)
10.解:(I)由题意知本题是一个相互独立事件同时发生的概率,设“甲、乙两人均不能译出密码”为事件A,
则P(A)=(1﹣)(1﹣)=
即甲、乙两人均不能译出密码的概率是
(II)有4个与甲同样能力的人一起独立破译该密码,
相当于发生四次独立重复试验,成功的概率是
∴这4人中至少有3人同时译出密码的概率为
=
即这4人中至少有3人同时译出密码的概率为。