导数公式及其运算法则
导数公式大全
导数公式大全导数是微积分中的重要概念之一,它反映了函数在某一点的变化率。
在实际应用中,导数公式的掌握对于求解函数的极值、曲线的切线以及解决实际问题具有重要的作用。
本文将介绍一些常见的导数公式,帮助读者更好地理解和应用导数。
一、基本导数公式1. 常数函数导数公式:若y = c(c为常数),则dy/dx = 0。
2. 幂函数导数公式:若y = x^n(n为常数),则dy/dx = nx^(n-1)。
3. 指数函数导数公式:若y = a^x(a为常数),则dy/dx = a^x * ln(a)。
4. 对数函数导数公式:若y = log_a(x)(a为常数),则dy/dx = 1 / (x * ln(a))。
5. 三角函数导数公式:若y = sin(x),则dy/dx = cos(x);若y = cos(x),则dy/dx = -sin(x);若y = tan(x),则dy/dx = sec^2(x)。
6. 反三角函数导数公式:若y = arcsin(x),则dy/dx = 1 / √(1 - x^2);若y = arccos(x),则dy/dx = -1 / √(1 - x^2);若y = arctan(x),则dy/dx = 1 / (1 + x^2)。
二、基本运算法则1. 和差法则:若u(x)和v(x)是可导函数,c为常数,则有: (u ± v)' = u' ± v';(cf)' = cf'。
2. 积法则:若u(x)和v(x)是可导函数,则有:(uv)' = u'v + uv'。
3. 商法则:若u(x)和v(x)是可导函数,则有:(u/v)' = (u'v - uv') / v^2。
4. 复合函数法则:若y = f(g(x)),其中u = g(x),则有:dy/dx = f'(u) * u'。
导数的基本公式与运算法则
y y 3 3 3 3 3 3 ( x ( x 2 2 ) ) , , 即 3 即 3 x x 4 4 y y 8 8 3 3 0 0 。 。 2 2 4 4
六、对数求导法
1
2
(x1)3x1
y 观 察 函 数
,
yxs方i法xn : .
(x4)2ex
3
先在方程两边取对数, 然后利用隐函数的求导 方法求出导数.——目的是利用对数的性质简化
因 f ( x ) ( x ) ( x a ) ( x )
故 f(a)(a)
正确解法:
f(a)lim f(x)f(a)lim(xa)(x)
x a xa xa xa
lim(x) (a) xa
八、小结
[ u ( x ) v ( x ) ] u ( x ) v ( x ) ; 注[意u(: x)] u(x).
dx dudx
例6 求函 yl数 n six n的导 . 数
解 y ln u ,u six .n
dy dy du 1 cos x cos x coxt
dx du dx u
sin x
注 1.链式法则——“由外向里,逐层求导”
2.注意中间变量
推广 复 合 函 数 y f{ [( x ) ] } 的 导 数
五、隐函数的导数
即 y f( x ) 形 式 的 函 数 称 为 显 函 数 .
显函方 数程 : x y 3 1 0 能 确 定 一 个 函 数 y f( x ) 3 1 x,
形如 y sin x ,y ln x的函数。 这种由方程确定的函数称为隐函数。 把一个隐函数化成显函数,叫做隐函数的显化。
a b
a x
b x
七、由参数方程所确定的函数的导数
常用导数公式及运算
常用导数公式及运算导数公式及运算是微积分的基础,对于研究函数的性质和求解实际问题具有重要作用。
下面将介绍一些常用的导数公式以及其运算。
1.常数函数的导数对于常数函数y = c,其中c为常数,其导数为0,即dy/dx = 0。
2.幂函数的导数若y = x^n,其中n为实数,其导数可以通过幂函数的定义和求导法则求解。
根据求导法则,对于y = x^n,其导数为dy/dx = nx^(n-1)。
特殊情况下,我们可以得到以下幂函数的导数公式:- y = x,导数为1,即dy/dx = 1;- y = x^0,导数为0,即dy/dx = 0;- y = x^1/n,则其导数为dy/dx = (1/n)x^(1/n-1)。
3.指数函数和对数函数的导数指数函数和对数函数是相互逆的函数。
若y = a^x,其中a为正常数且a ≠ 1,其导数为dy/dx = a^x * ln(a)。
对数函数的导数为dy/dx = 1/(x * ln(a))。
4.三角函数的导数- y = sin(x)的导数为dy/dx = cos(x)。
- y = cos(x)的导数为dy/dx = -sin(x)。
- y = tan(x)的导数为dy/dx = sec^2(x)。
- y = cot(x)的导数为dy/dx = -csc^2(x)。
- y = sec(x)的导数为dy/dx = sec(x) * tan(x)。
- y = csc(x)的导数为dy/dx = -csc(x) * cot(x)。
5.反三角函数的导数- y = arcsin(x)的导数为dy/dx = 1/√(1-x^2)。
- y = arccos(x)的导数为dy/dx = -1/√(1-x^2)。
- y = arctan(x)的导数为dy/dx = 1/(1+x^2)。
- y = arccot(x)的导数为dy/dx = -1/(1+x^2)。
- y = arcsec(x)的导数为dy/dx = 1/(x * √(x^2-1))。
导数的基本公式和四则运算法则
导数的基本公式和四则运算法则导数是微积分中的一个重要概念,它描述了函数在某一点的变化率。
导数的基本公式和四则运算法则是学习导数的基础,也是解决导数相关问题的重要工具。
首先,我们来看导数的基本公式。
对于函数f(x),它在点x处的导数可以用以下公式表示:f'(x) = lim(h->0) [f(x+h) f(x)] / h.这个公式描述了函数在点x处的变化率,也就是函数曲线在该点的切线斜率。
通过这个公式,我们可以求得函数在任意点的导数值,从而描绘出函数的变化规律。
接下来,我们来看四则运算法则在导数中的应用。
四则运算法则包括加法、减法、乘法和除法。
在导数的计算中,我们可以利用这些法则简化复杂函数的导数计算。
对于两个函数f(x)和g(x),它们的和、差、积和商的导数计算规则如下:1. 和的导数,(f+g)'(x) = f'(x) + g'(x)。
2. 差的导数,(f-g)'(x) = f'(x) g'(x)。
3. 积的导数,(fg)'(x) = f'(x)g(x) + f(x)g'(x)。
4. 商的导数,(f/g)'(x) = (f'(x)g(x) f(x)g'(x)) / g(x)^2。
利用四则运算法则,我们可以将复杂函数的导数计算转化为简单函数的导数计算,从而更方便地求得函数的导数值。
在实际问题中,导数的基本公式和四则运算法则是非常有用的工具。
它们可以帮助我们分析函数的变化规律,解决最优化问题,以及研究曲线的性质。
因此,掌握导数的基本公式和四则运算法则对于理解微积分的重要性不言而喻。
希望通过本文的介绍,读者对导数的基本概念有了更清晰的认识,也能够更加灵活地运用导数的基本公式和四则运算法则解决实际问题。
求函数的导数公式
求函数的导数公式函数的导数公式是描述函数在某一点处斜率的一种数学工具,对于一般的函数f(x),它的导数可以用下面的公式来表示:1.导数的定义公式f'(x) = lim(h->0) [f(x + h) - f(x)]/h在这个公式中,f(x + h)表示以点(x + h, f(x + h))为端点的割线斜率,f(x)是函数f(x)在点x处的函数值,h表示x + h与x之差,即点(x + h, f(x + h))与点(x, f(x))之间的距离。
这个公式是导数定义的最基本形式,通常用于求解复杂函数的导数。
2.基本求导公式f'(x) = k,k为常数[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)[f(g(x))]’ = f'(g(x))g'(x)f’(x)/g(x) = [f'(x)g(x) - f(x)g'(x)]/[g(x)]^2[f(x)]^n = nf'(x)[f(x)]^(n-1),n为正整数这里列举了一些常用的求导公式。
对于任何由基本函数组成的函数,都可以使用这些公式求其导数。
3.导数的运算法则导数具有很好的运算性质,常用的运算法则有:(1)线性性质:f(x) ±g(x)的导数为f'(x) ±g'(x),kf(x)的导数为kf'(x),k为常数。
(2)乘积法则:[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)。
(3)商数法则:[f(x)/g(x)]' = [f'(x)g(x) - f(x)g'(x)]/[g(x)]^2。
(4)复合函数的求导法则:如果y = f(g(x)),那么y' = f'(g(x))g'(x)。
以上是函数导数的一些基本公式和运算法则。
导数公式及导数的运算法则
5.y f (x) 1 x
6.y f (x) x
1.函数 y = f (x) =c 的导数
因 y f x x f x c c 0,
x
x
x
y y=c
所以 y' lim y lim 0 0. x0 x x0
看几个例子:
例3.已知y log2 x,求曲线在点 x 2处的切线方程.
y 1 2 (x 2) 2 2 ln 2
例4.已知y cos x,求曲线在点
x 5 处的切线方程.
6
y 3 1 (x 5π )
22 6
例5:求下列函数的导数
1 (1).y x4 ; (2).y x x.
法则2:两个函数的积的导数,等于第一个函数的导数乘第二个 函数,加上第一个函数乘第二个函数的导数 ,即:
f (x) g(x) f (x)g(x) f (x)g(x)
法则3:两个函数的积的导数,等于第一个函数的导数乘第二个
函数,减去第一个函数乘第二个函数的导数 ,再除以第二个函
数的平方.即: f (x) f (x)g(x) f (x)g(x)
2x
x x 1(是常数)
推广:
y f (x) x ( Q)
y/ x 1
这个公式称为幂函数的导数公式.
事实上 可以是任意实数.
基本初等函数的导数公式
1.若f(x)=c,则f'(x)=0
2.若f(x)=xn,则f'(x)=nxn-1(n R)
3.若f(x)=sinx,则f'(x)=cosx
一、复习
1. 导数的几何意义 导数的物理物理意义
高中数学导数公式及运算法则
高中数学导数公式及运算法则1.y=cc为常数 y'=02.y=x^n y'=nx^n-13.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x加(减)法则:[fx+gx]'=fx'+gx'乘法法则:[fx*gx]'=fx'*gx+gx'*fx除法法则:[fx/gx]'=[fx'*gx-gx'*fx]/gx^2由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。
基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。
在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。
只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。
感谢您的阅读,祝您生活愉快。
导数的运算公式和运算法则
导数的运算公式和运算法则导数可是高中数学中的一个重要概念,它的运算公式和运算法则就像是打开数学世界奇妙之门的钥匙。
咱们先来说说常见的导数运算公式。
比如说,对于函数 $f(x) =x^n$ ($n$ 为常数),它的导数就是 $f'(x) = nx^{n-1}$ 。
这就好比是给一个数穿上了速度的外衣,能让我们更清楚地看到它变化的快慢。
再比如,对于函数 $f(x) = \sin x$ ,它的导数是 $f'(x) = \cos x$ ;对于函数 $f(x) = \cos x$ ,导数则是 $f'(x) = -\sin x$ 。
这是不是有点像变魔术,一下子就变出了新的东西。
还有,常数的导数为 0 ,这就好像是一个静止不动的家伙,压根没有变化的趋势。
接下来说说导数的运算法则。
加减法则,就像是把两个小伙伴的速度合起来或者分开算。
如果有两个函数 $f(x)$ 和 $g(x)$ ,那么 $(f(x) ±g(x))' = f'(x) ± g'(x)$ 。
乘法则有点复杂,就像两个小伙伴手拉手一起跑,速度的关系就变得微妙起来。
如果是两个函数 $f(x)$ 和 $g(x)$ 相乘,那么 $(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$ 。
除法则更是需要我们多费点心思,就好比是要算出两个小伙伴一起跑,但其中一个跑快了或者跑慢了对整体速度的影响。
如果是$f(x)÷g(x)$ ,那么它的导数就是$\frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$ 。
给大家讲讲我之前教学生导数的一个小经历。
有个学生叫小李,这孩子特别聪明,但就是对导数的运算法则总是弄混。
有一次做练习题,遇到一个函数是两个式子相除的形式,小李想都没想就直接把分子分母分别求导,然后就得出了答案。
我一看,哭笑不得,这孩子明显是把法则给记错了。
导数公式大全
导数公式大全导数是微积分中一个重要的概念,用于描述函数的变化率。
在实际应用中,导数广泛用于求解最优化问题、曲线拟合、物理问题以及其他各种工程和科学领域。
下面是一些常用的导数公式,它们可以帮助我们计算各种函数的导数。
1.基本函数的导数公式(1)常数函数:f(x)=C,其中C为常数,导数为0。
(2)幂函数:f(x) = x^n,其中n为正整数,导数为f'(x) =nx^(n-1)。
(3)指数函数:f(x)=e^x,导数为f'(x)=e^x。
(4)对数函数:f(x) = ln(x),导数为f'(x) = 1/x,其中x大于0。
(5)三角函数:正弦函数:f(x) = sin(x),导数为f'(x) = cos(x)。
余弦函数:f(x) = cos(x),导数为f'(x) = -sin(x)。
正切函数:f(x) = tan(x),导数为f'(x) = sec^2(x)。
(6)反三角函数:反正弦函数:f(x) = arcsin(x),导数为f'(x) = 1/√(1-x^2),其中-1<x<1反余弦函数:f(x) = arccos(x),导数为f'(x) = -1/√(1-x^2),其中-1<x<1反正切函数:f(x) = arctan(x),导数为f'(x) = 1/(1+x^2)。
2.基本运算法则(1)和差法则:若f(x)和g(x)是可导函数,则有(f(x)±g(x))'=f'(x)±g'(x)。
(2)常数倍法则:若f(x)是可导函数,则有(k·f(x))'=k·f'(x),其中k为常数。
(3)乘积法则:若f(x)和g(x)是可导函数,则有(f(x)·g(x))'=f'(x)·g(x)+f(x)·g'(x)。
导数的四则运算法则
2
1)t
2t 2 t 2 1 t 2 1
t2
(2)求函数f(x)
tx2 ex
的导数.
解
:
(2)
f
(
x)
(
x ex
)
xex x(ex ) (ex )2
xex x(ex ) ex xex 1 x
(ex )2
e2x ex
12
练习 1.求 y 2x 3 3x 2 5x 4的导数
(x2 ) (sin x) 2x cosx
(2)求函数g(x) x3 3 x2 6x 2的导数. 2
解:g(x) (x3 3 x2 6x) 2
(x3) ( 3 x2 ) (6x) 3x2 3x 6
2
8
法则3:两个函数的积的导数,等于第一 个函数的导数乘以第二个函数加上第一个 函数乘以第二个函数的导数.即:
x2 6x (x2 3)2
3
当x
3时,
f
(3)
32 (32
63 3)2
3
1 6
16
例4:求曲线y=x3+3x-8在x=2处的切 线的方程.
解 : f (x) (x3 3x 8) 3x2 3, k f (2) 3 22 3 15, 又 切 线 过 点(2,6), 切 线 方 程 为: y 6 15(x 2), 即 :15x y 24 0.
导数的 四则运算法则
1
一、复习回顾
1、基本求导公式: (1)C 0(C为常数)
(2)(x )' x 1(为常数)
(3)(a x )' a xlna(a 0,且a 1)
(4)(log a x)'
1 xlna
(a 0,且a 1)
导数的加减乘除运算公式
导数的加减乘除运算公式
在微积分中,导数是描述函数变化率的概念。
导数的加减乘除运算是求导数时经常用到的基本运算法则。
下面将介绍导数的加减乘除运算公式,对于不同类型的函数进行计算。
导数的加法法则
如果有两个函数 f(x) 和 g(x),它们的导数分别为f’(x) 和g’(x),那么这两个函数的和 (f(x) + g(x)) 的导数为: (f(x) +
g(x))’ = f’(x) + g’(x)
导数的减法法则
如果有两个函数 f(x) 和 g(x),它们的导数分别为f’(x) 和g’(x),那么这两个函数的差 (f(x) - g(x)) 的导数为: (f(x) -
g(x))’ = f’(x) - g’(x)
导数的乘法法则
如果有两个函数 f(x) 和 g(x),它们的导数分别为f’(x) 和g’(x),那么这两个函数的乘积 (f(x) * g(x)) 的导数为: (f(x) * g(x))’ = f’(x) * g(x) + f(x) * g’(x)
导数的除法法则
如果有两个函数 f(x) 和 g(x),它们的导数分别为f’(x) 和g’(x),那么这两个函数的商 (f(x) / g(x)) 的导数为: (f(x) /
g(x))’ = (f’(x) * g(x) - f(x) * g’(x)) / (g(x))^2
这些导数的加减乘除运算公式是微积分中非常重要的基本法则,通过这些法则可以帮助我们求解各种函数的导数,进而更深入地理解函数的性质和变化规律。
在实际问题中,导数的加减乘除运算公式为我们提供了有效的工具来分析函数的变化以及优化问题的最优解。
导数公式、导数基本运算法则
导数公式、导数基本运算法则作为很多算法的基础--导数,一定会被算法工程师经常用到。
例如前面的文章中提到的--牛顿高斯迭代[matlab模型]。
算法中的变量 J 便是函数 y=a\cdot e^{b\cdot x} 在 x_{0} 处对 a、b 的偏导数。
为了想不起来时候有地方查找,这篇文章将记录最基本的导数公式,及导数的基本运算法则。
基础导数公式公式1: f(x) = a....................................................导数: f'(x) = 0公式2: f(x) =x^{a} .................................................导数: f'(x) = a\cdot x^{a-1}公式3: f(x) =a^{x} ................................................ ..导数: f'(x) = a^{x}\cdot ln(a)公式4: f(x) =e^{x} ................................................ ...导数: f'(x) = e^{x}公式5: f(x) =log_{a}(x).........................................导数: f'(x) = \frac{1}{x\cdot ln(a)}公式6: f(x) =ln(x).............................................导数: f'(x) = \frac{1}{x}sin(x)..........................................导数:f'(x) = cos(x)公式8: f(x) =cos(x) .........................................导数:f'(x) = -sin(x)公式9: f(x) =tan(x) ........................................导数:f'(x) = sec^{2}(x)公式10:f(x) =cot(x) ........................................导数:f'(x) = -csc^{2}(x)公式11: f(x) =sec(x) ......................................导数:f'(x) = sec(x) \cdot tan(x)公式12: f(x) =csc(x) ......................................导数:f'(x) = -csc(x)\cdot cot(x)公式13: f(x) =arcsin(x) ..............................导数: f'(x) = \frac{1}{\sqrt{1- x^{2}}}公式14: f(x) =arccos(x) ..............................导数: f'(x) = \frac{-1}{\sqrt{1-x^{2}}}arctan(x) ..............................导数: f'(x) = \frac{1}{1+x^{2}}公式16: f(x) =arccot(x) ...............................导数: f'(x) = \frac{-1}{1+x^{2}}以上是我们常见的基本函数的求导公式,其中公式4是公式3的特殊存在,公式6是公式5的特殊存在。
导数公式及导数的运算法则
练一练:
(1)下列各式正确的是( C )
A.(sin )' cos(为常数)
B(. cos x)' sin x C.(sin x)' cos x D.( x5 )' 1 x6
5
(2)下列各式正确的是( D )
A.(log a x)' =
-2x-3
注意公式中, 的任意性.
公式三: (sin x) cos x
公式四: (cos x) sin x
公式五:指数函数的导数
(1) (ax ) ax ln a(a 0, a 1).
(2) (ex ) ex.
注意: f (x)=ax 和 f (x)=xa 是两
给出函数 f (x) x x2,如何来求这个函数的导 函数 ?
实例分析
按照求函数导数的步骤: 首先给定自变量x一个改变量x, 则函数值y的改变量为
y f (x x) f (x)
(x x) (x x)2 (x x2 ) x 2xx x2.
f (x0 ) (x0 x)2 x02 x
f (x0 ),
令x
0,由于
lim (
x0
x0
x)2
x02 ,
lim
x0
f (x0
x) x
f (x0 )
f (x0 ),
lim (x0
x0
x)2 x
x02
2x0 ,
知f (x)g(x) x2 f (x)在x0处的导数值为
例1求下列函数的导数: (1) y x2 2;(2) y x ln x.
导数的基本公式与运算法则
(3)
y'
x ( )' 1- x2
x '(1-
x2 ) - x(1(1- x2 )2
x2 ) '
1-
x2 - x(-2x) (1- x2 )2
1 x2
(1 - x2 )2
(4) y ' (2x3) ' (3x sin x) ' (e2 ) ' 2(x3 )'-3(x sin x)'0 6x2 - 3(sin x x cos x)
求 z f (x, y) 对自变量 x (或 y)的偏导数时,只须将另一 自变量 y (或 x )看作常数,直接利用一元函数求导公式和
四则运算法则进行计算.
例1 设函数 f (x, y) x3 - 2x2 y 3y4,
求
f
x
(
x,
y),
f
y
(
x,
y),
f
x
(1,1),
f
y
(1,
-1),
(u(x)v(x)) = u(x)v(x) + u(x)v(x);
v( u(
x) x)
u( x)v( x) - u( x)v( x)
[u( x)]2
.
推论 1 (cu(x)) = cu(x) (c 为常数).
推论 2
1 u( x)
-
u( x) u2 ( x)
例2 设函数 z (x2 y 2 ) ln( x2 y 2 ), 求 z z
x y
解:z x
导数公式及导数的运算法则
y' 4x5
y'
3
1
x2
2
练习:求下列函数的导数:
(1) y 1 2 ; x x2
(2)
y
x 1 x2
;
(3) y tan x;
答案:
(1)
y
1 x2
4 x3
;
(2)
y
1 x2 (1 x2 )2
;
(3)
y
1 cos2
x
;
课后思考:
如何求函数 y 2xsin(2x 5) 的导数?
1
1.
x0 x x0 x x x 2 x
小结
1.若 f (x)=c(c为常数), 则f (x)=0 ; 2.若 f (x)=x, 则f (x)=1 ; 3.若 f (x)=x2 ,则f (x)=2x ;
4.若f
x
1 x
, 则f
'
x
1 x2
;
5.若f x x,则f 'x 1 .
(1)从图象上看,它们的导数分别表示什么?y y=4x y=3x
(2)这三个函数中,哪一个增加得最 快?哪一个增加得最慢?
y=2x
2
y=x
1
(3)函数y=kx(k≠0)增(减)的快 慢与什么有关?
-2 -1 -1
-2
1 2x
函数 y= f (x)= kx 的导数
因为 y f x x f x
4.若f(x)=cosx,则f'(x)=-sinx
5.若f(x)=ax,则f'(x)=ax ln a
导数计算公式和法则
导数计算公式和法则导数计算公式和法则是微积分中重要的概念之一。
导数是函数的变化率,我们通过求导来计算函数的导数。
以下是导数计算公式和法则的详细说明:一、基本导数公式1、常数函数的导数为0,即f(x)=C,则f'(x)=0。
2、幂函数的导数,对于正整数n,f(x)=x^n,则f'(x)=nx^(n-1)。
3、指数函数的导数,f(x)=a^x,则f'(x)=a^xln(a)。
4、对数函数的导数,f(x)=ln(x),则f'(x)=1/x。
5、三角函数的导数:(1)sin(x)的导数为cos(x),即(sin(x))'=cos(x)。
(2)cos(x)的导数为-sin(x),即(cos(x))'=-sin(x)。
(3)tan(x)的导数为sec^2(x),即(tan(x))'=sec^2(x)。
二、导数的四则运算法则1、和差法则:(f(x)+g(x))'=f'(x)+g'(x),(f(x)-g(x))'=f'(x)-g'(x)。
2、积法则:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。
3、商法则:(f(x)/g(x))'=[f'(x)g(x)-f(x)g'(x)]/g(x)^2。
三、复合函数的导数1、复合函数的链式法则:如果g(x)和f(x)都是可导函数,则复合函数h(x)=g(f(x))的导数为h'(x)=g'(f(x))f'(x)。
2、反函数的导数:如果y=f(x)是单调且可导的函数,且f'(x)≠0,则其反函数x=f^-1(y)的导数为dx/dy=1/f'(f^-1(y))。
以上就是导数计算公式和法则的详细说明,掌握这些公式和法则可以帮助我们更好地理解和应用微积分中的导数概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.2.2基本初等函数的导数公式及导数的运算法则(两课时)
学习目标
1.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数;
2.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数.
3.复合函数的分解,求复合函数的导数.
一、预习与反馈(预习教材P 14~ P 19,找出疑惑之处)
复习1:常见函数的导数公式:
(1) '____C =(C 为常数);(2)()'________n
x =, n ∈N +;(3)(sin )'_______x =; (4)(cos )'_______x =; (5)()'________x e =; (6)()'_________x a =;
(7)(ln )'______x =; (8) e x
x a a log 1)'(log =
复习2:根据常见函数的导数公式计算下列导数
(1)6y x = (2
)y =
(3)21y x = (4
)y =
新知
1.可导函数的四则运算法则
法则1 '[()()]____________.u x v x ±=(口诀:和与差的导数等于导数的和与差).
法则2 [()()]____________u x v x '=. (口诀:前导后不导,后导前不导,中间是正号) 法则3 ()[]_______________(()0)()
u x v x v x '=≠(口诀:分母平方要记牢,上导下不导,下导上不导,中间是负号)
例1. 根据基本初等函数的导数公式和导数运算法则,求函数3123y x x x
=-++导数.
变式:( 1)2log y x =; (2)2x y e =;
(3)522354y x x x =-+-; (4)3cos 4sin y x x =-
例2求下列函数的导数:
(1)32log y x x =+; (2)n x
y x e = (3)y=2e -x
2. 复合函数:
1.定义:一般地,对于两个函数y =f (u )和()u g x =,如果通过变量u,y 可以表示成x 的函数,那么这个函数为函数 和 的复合函数,记住
2.复合函数的求导法则
复合函数(())y f g x =的导数和函数y =f (u ),()u g x =的导数间的关系式为 ,即y 对x 的导数等于 的乘积。
例。
3 求下列函数的导数:
(1)2(23)y x =+; (2)1x y e
-+=; (3)sin()y x πϕ=+
变式:求下列函数的导数:
(1)cos 3
x y =; (2)2sin(25)y x x =+
三、课堂小结
1.由常数函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数.
2.对于函数求导,一般要遵循先化简,再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,首先要注意化简的等价性,避免不必要的运算失误.
3.复合函数求导的基本步骤是:分解——求导——相乘——回代.
四、课堂练习:
1. 函数1y x x =+
的导数是( ) A .211x - B .11x - C .211x + D .11x
+ 2. 函数sin (cos 1)y x x =+的导数是( )
A .cos2cos x x -
B .cos2sin x x +
C .cos2cos x x +
D .2cos cos x x +
3. 设2sin y x =,则y '=( )
A .sin 2x
B .2sin x
C .22sin x
D .2cos x 4. cos x y x
=的导数是( ) A .2
sin x x - B .sin x - C .2sin cos x x x x +-
D .2cos cos x x x x +-
5. 函数2()138f x x =-,且0()4f x '=,则0x =
6.求曲线sin x y x
=
在点(,0)M π处的切线方程
7. 已知函数ln
=.
y x x
(1)求这个函数的导数;
(2)求这个函数在点1
x=处的切线方程.
※8.已知f(x)是一次函数,x2f(x)-(2x-1)f(x)=1对一切x∈R恒成立,求f(x)的解析式。