七年级上册一元一次方程知识点归纳
人教版七年级数学上册—第3章一元一次方程单元总结
第三章 一元一次方程知识点一 :一元一次方程的概念1.方程的定义:含有未知数的等式.①未知数;②等式. 2.一元一次方程的定义:只.含有一个..未知数(元),未知数的最高次数是.....1.,等号两边都是整式的方程叫一元一次方程. 一元一次方程的一般形式....:ax+b=0(a 、b 为常数,且a≠0,即末知数的系数一定不能为0). 3.方程的解:使方程等号左、右两边相等的未知数的值. 4.解方程:求方程的解的过程. 例题:1. (1)下列方程中是一元一次方程的是( )A .23x y =B .()7561x x +=-C .()21112x x +-= D .12x x-= (2)下列各式中,是一元一次方程的是( )A. 6x y -=B. 1223x x --= C. 34x - D. 21x x += 2.(1)已知2x1-m +4=0是一元一次方程,则m= ________.(2)已知方程04)2(1||=+--a xa 是一元一次方程,则=a __________(3)若2(21)30a x bx c +--=是关于x 的一元一次方程,则一定有( )A. 12a =-,0b ≠,c 为任意数 B. 12a =-,b 、c 为任意数 C. 12a =-,0,0b c ≠= D. 12a =,0,0bc =≠(4)若2(1)(1)30k x k x -+++=是关于x 的一元一次方程,求k 的值3.下列说法:①等式是方程; ②x=4是方程5x+20=0的解; ③x=-4和x=6都是方程│x-1│=5的解.其中说法 正确的是___ _.(填序号)4.(1)下列方程中,解为4的方程是( )A. 104x x =-B. 5(2)2(27)x x +=+C.62355y y -=+ D. 50.594x x =+ (2)已知4x =-是方程231x a x +=-的解,则a 的值是 5.根据条件列出方程(1)某数的2倍,再减去1等于5 (2)某数的3倍与它的12的和等于106.(1)买4本练习本和5支铅笔一共用了4.9元,已知铅笔每支0.5元,练习本每本多少元?若设练习本每本x 元,则可列方程为(2)一辆汽车从A 地到B 地后,用去了邮箱里的汽油的25%,还剩40升,邮箱里原有汽油多少升?若设邮箱里原有汽油x 升,可列方程为知识点二:等式的基本性质等式的性质1:等式两边都加(或减)同一个数(或式子),结果仍相等.即:如果a =b ,那么a ±c =b ±c等式的性质2:等式两边都乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果a =b ,那么ac =bc ;如果a =b (c ≠0),那么c a =cb 例题:1.(1)若a b =,则下列式子正确的有( )①22a b -=- ②1132a b =③3344a b -=- ④5151a b -=-. A.1个 B.2个 C.3个 D.4个(2)如果ma mb =,那么在下列变形中,不一定成立的是( )A. 11ma mb +=+B. 33ma mb -=-C. 1122ma mb -=- D. a b = (3)下列变形中,正确的是()A.若ac=bc ,那么a=bB.若cbc a =,那么a=b C.a =b ,那么a=b D.若a 2=b 2那么a=b (4)运用等式的性质进行变形,正确的是( )A.如果a b =,那么a c b c +=-;B.如果a bc c=,那么a b = C.如果a b =,那么a bc c= D.如果23a a =,那么3a = 2.(1)给出下面四个方程及其变形:①48020x x +=+=变形为;②x x x +=-=-75342变形为;③253215x x ==变形为;④422x x =-=-变形为;其中变形正确的是( ) A .①③④ B .①②④C .②③④D .①②③(2)下列各式的变形中,错误的是 ( )A. 260x +=变形为26x =-B.312x x +=-变形为322x x +=- C. 2(4)2x --=-变形为41x -= D. 1122x +-=变形为11x -+=3.用适当的数或式子填空,使所得结果仍是等式,并说明是根据等式的哪一条性质以及怎样变形的; (1)如果810x +=,那么10x =- (2)如果437x x =+,那么4x - =7 (3)如果38x -=,那么x = (3)如果123x =-,那么 =-6 4.完成下列解方程: (1)1343x -= 解:两边 ,根据 得13343x --= 于是13x -=两边 ,根据 得x =(2)5234x x -=+解:两边 ,根据 ,得 =3x+6 两边 ,根据 ,得2x=两边 ,根据 ,得x= 5.根据下列变形,填写过程及理由21100.10.2x -= 解:20101012x -=( ) 20510x -= ( )2015x = ( )34x = ( )6.利用等式的性质解下列方程并检验 (1)1262x += (2)1543x --= (3)328x -=-7.当x 为何值时,式子453x -与31x +的和等于9?8.列方程并求解:一个两位数,个位上的数字比十位上的数字大2,个位与十位上的数字之和是10,求这个两位数(提示,设个位上的数字为x )9.如果方程21x a x +=-的解是x=-4,求32a -的值10.等式2(2)10a x ax -++=是关于x 的一元一次方程,求这个方程的解知识点三:一元一次方程的解法(一般步骤、注意事项) 1.解方程的一般步骤:把含未知数的项归在方程的一边,把常数项归到方程的另一边,将方程化为最简的形式ax b =(0)a ≠,然后根据方程两边都除以a ,化为bx a=的形式。
七年级上册数学《一元一次方程》-知识点整理
一元一次方程知识要点解析一、一元一次方程构成要素:1、是等式;2、含有未知数,且只能是一个;3、未知数的次数有且为“1”(一次整式),且次数不为“0”;二、一元一次方程的基本形式: ax = b三、一元方程的解:使方程中等号左右两边相等的未知数的值四、解方程的理论依据:等式的基本性质:性质(1):等式两边都加上(或减去)同一个数(或式子),结果仍相等.用式子形式表示为:如果a=b,那么a±c=b±c;性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.用式子形式表示为:如果a=b那么a×c=b×c,a÷c=b÷c(c≠0);五、解一元一次方程的基本步骤:注意:我们在解一元一次方程时,既要学会按部就班(严格按步骤) 地解方程,又要善于认真观察方程的结构特征,灵活采用解方程的一些技巧,随机应变(灵活打乱步骤)解方程,能达到事半功倍的效果。
对于一般解题步骤与解题技巧来说,前者是基础,后者是机智,只有真正掌握了一般步骤,才能熟能生巧。
解一元一次方程常用的技巧有:1)有多重括号,去括号与合并同类项可交替进行2)当括号内含有分数时,常由外向内先去括号,再去分母3)当分母中含有小数时,可用分数的基本性质化成整数4)运用整体思想,即把含有未知数的代数式看作整体进行变形六、实际问题与一元一次方程1、用一元一次方程解决实际问题的一般步骤是:1)审题,搞清已知量和待求量,分析数量关系. (审题,寻找等量关系)2)根据数量关系与解题需要设出未知数,建立方程;3)解方程;4) 检查和反思解题过程,检验答案的正确性以及是否符合题意.并作答2、用一元一次方程解决实际问题的典型类型1)数字问题:①:数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c则这个三位数表示为:abc,=++abc a b c10010(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c ≤9)②:用一个字母表示连续的自然数、奇数、偶数等规律数2)和、差、倍、分问题:关键词是“是几倍,增加几倍,增加到几倍,增加百分之几,增长率,哪个量比哪个量……”3)工程问题:工作总量=工作效率×工作时间,注意产品配套问题;4)行程问题:路程=速度×时间5)利润问题:商品利润=商品售价-商品成本价=商品利润率×商品成本价商品售价=商品成本价×(1+利润率)6)利息问题:①顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的单位时间数叫做期数,利息与本金的比叫做利率.利息的20%付利息税.②利息=本金×利率×期数,本息和=本金+利息,利息税=利息×税率(20%).7)几何问题:必须掌握几何图形的性质、周长、面积等计算公式,注意等积变形;8)优化方案问题9)浓度问题:溶液×浓度=溶质10)盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量11)年龄问题:抓住人与人的岁数是同时增长的12)增长率问题:原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量七、、思想方法(本单元常用到的数学思想方法小结)1)建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立方程的思想2)方程思想:用方程解决实际问题的思想就是方程思想.3)化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式.体现了化“未知”为“已知”的化归思想.4)数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.5)分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.一元一次方程一、本节学习指导本节我们要掌握一元一次方程的解法,需要多做一些练习题,本节有配套学习视频。
七年级上册一元一次方程知识点归纳
七年级上册《一元一次方程》知识点归纳第二章一元一次方程知识概念1.一元一次方程:只含有一个未知数,而且未知数的次数是1,而且含未知数项的系数不是零的整式方程是一元一次方程2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)3.一元一次方程解法的一样步骤:整理方程……去分母……去括号……移项……归并同类项……系数化为1……(查验方程的解)4.列一元一次方程解应用题:(1)读题分析法:…………多用于“和,差,倍,分问题”认真读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,而且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,取得方程(2)画图分析法:…………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的表现,认真读题,依照题意画出有关图形,使图形各部份具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是取得方程的基础11.列方程解应用题的经常使用公式:(1)行程问题:距离=速度·时刻(2)工程问题:工作量=工效·工时(3)比率问题:部份=全部·比率(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;()商品价钱问题:售价=定价·折,利润=售价-本钱,(6)周长、面积、体积问题:圆=2πR,S圆=πR2,长方形=2,S长方形=ab,正方形=4a,S正方形=a2,S环形=π,V长方体=ab,V正方体=a3,V圆柱=πR2h,V圆锥=初中数学知识点总结(初一)πR2h 本章内容是代数学的核心,也是所有代数方程的基础。
丰硕多彩的问题情境和解决问题的欢乐很容易激起学生对数学的乐趣,因此要注意引导学生从身旁的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探讨学习的进程中取得知识,提升能力,体会数学思想方式。
初一数学上册第三单元一元一次方程知识点归纳及测试题
初一数学上册第三单元一元一次方程知识点归纳及测试题知识网络:一.一元一次方程1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).二.列一元一次方程解应用题。
(1)读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:…………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.三.列方程解应用题的常用公式。
概念、定义:1、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。
七年级上一元一次方程题型及知识点总结
七年级上一元一次方程题型及知识点总结一元一次方程题型及知识点总结一、知识点1.等式:用“=”号连接而成的式子叫等式。
2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。
3.方程:含未知数的等式,叫方程。
4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项。
移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b 是已知数,且a≠0)。
8.一元一次方程解法的一般步骤:化简方程——分数基本性质去分母——同乘(不漏乘)最简公分母去括号——注意符号变化移项——变号合并同类项——合并后注意符号系数化为1——未知数细数是几就除以几二、典型例题:例1:解下列方程:1) 2x+1=10x+13y-15y+17y+12) x-1=4/-4/1.55x-0.813) (x-3)/(4+11)=2/(3-x)4) 0.5x^2+0.2x-41=2.3x5) 233.0-26.3x=1+(6)-x课堂练1】解方程:1) 3x-2=5x+32) 2x-3/4=1/2-3x/8巩固练:一、选择题1、下列方程中是一元一次方程的是()A、x-y=2005.B、3x-2004.C、x^2+x=1.D、2=32、方程1-(2x-4)/(x-2)=-7/36去分母得()A.1-2(2x-4)=-(x-7)B.6-2(2x-4)=-x-7C.6-2(2x-4)=-(x-7)D.以上答案均不对3、代数式x-(x-1)/3的值等于1时,x的值是().A)3(B)1(C)-3(D)-14、方程2-(3x-7)/(x^2+17)=4/45去分母得(。
七年级上册解方程一元一次方程
七年级上册解方程一元一次方程一元一次方程是七年级上册数学学科的重要内容之一,也是初中代数学的基础知识之一。
掌握解方程的方法,可以帮助我们解决实际问题,并且对于后续学习更高级别的数学知识也大有裨益。
下面将详细介绍一元一次方程的概念、解法和示例,以此帮助大家更好地理解和掌握这一知识点。
一、一元一次方程的概念一元一次方程是指只含有一个未知数,并且未知数的最高次数为1的方程。
一元一次方程的一般形式为ax + b = 0,其中a和b都是已知的数,x是未知数。
二、一元一次方程的解法要解一元一次方程,需要找到使方程成立的未知数的值。
解一元一次方程的常用方法有几何法、逆运算法和等式法。
1.几何法几何法是通过图形方法来解方程。
当未知数只有一个时,一元一次方程可以用代数方法来解,也可以通过几何方法来解。
例如:解方程3x - 5 = 0。
首先,将方程表示为3x = 5,即x = 5/3。
然后,在数轴上找到一个点,使得这个点到原点的距离等于5/3。
可以发现,在数轴上,点的横坐标就是方程的解。
2.逆运算法逆运算法是通过运用逆运算来解方程。
根据方程的形式,对方程中的各项逆运算可以逐步化简,最终得到未知数的值。
例如:解方程3x + 4 = 10。
首先,将方程整理为3x = 10 - 4,即3x = 6。
然后,对方程的两边同时进行除以3的操作,得到x = 2。
3.等式法等式法是通过等式的性质来解方程。
根据等式的性质,方程两边对应位置的项相等,可以通过移动项的位置来进行化简,最终得到未知数的取值。
例如:解方程2x + 3 = 5x - 1。
首先,将方程整理为2x - 5x = -1 - 3,即-3x = -4。
然后,对方程的两边同时进行除以-3的操作,得到x = 4/3。
三、一元一次方程的实例以下是一元一次方程的一些实例,通过这些实例,我们可以更好地理解和掌握解方程的方法。
1.问题:某书店一天内卖出了25本数学书和某种语文书,总共卖出了35本书,设数学书的价格为5元,语文书的价格为3元,求语文书的本数。
七年级数学上册《一元一次方程》知识点归纳
七年级数学上册《一元一次方程》知识点归纳【第一部分】知识点分布、一元一次方程的解(重点)2、一元一次方程的应用(难点)3、求解一元一次方程及其在实际问题中的应用【第二部分】关于一元一次方程一、一元一次方程(1)含有未知数的等式是方程。
(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。
(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。
(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。
()求出使方程左右两边的值相等的未知数的值,叫做方程的解。
(6)求方程的解的过程,叫做解方程。
二、等式的性质(1)用等号“=”表示相等关系的式子叫做等式。
(2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a±=b±(3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。
【第一部分】知识点分布1、一元一次方程的解(重点)2、一元一次方程的应用(难点)3、求解一元一次方程及其在实际问题中的应用【第二部分】关于一元一次方程一、一元一次方程(1)含有未知数的等式是方程。
(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。
(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。
(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。
()求出使方程左右两边的值相等的未知数的值,叫做x=a(a常数)的形式。
(2)把等式一边的某项变号后移到另一边,叫做移项。
(3)移项依据:等式的性质1移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a(a是常数)的形式。
2、解一元一次方程——去括号与去分母(1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。
(2)顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。
七年级上册一元一次方程知识点归纳
七年级上册一元一次方程知识点归纳金子塔七年级数学上册第三章:一元一次方程知识点归纳一、一元一次方程1.方程是含有未知数的等式。
2.方程的解是使方程左、右两边相等的未知数的值。
3.只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程。
一元一次方程可以化为ax+b=0(a≠)的形式,分母中不能含有未知数。
4.求方程的解叫做解方程。
二、等式的性质(解方程的依据)1.等式两边都加上或者减去同一个数(或代数式),所得结果仍是等式。
如果a=b,那么a±c=b±c。
2.等式两边都乘或者除以同一个数(或代数式),所得结果仍是等式。
如果a=b,那么ac=bc,a/(c≠)=b/c。
拓展:①对称性:如果a=b,那么b=a,即等式的左右互换位置,所得的结果仍是等式;②传递性:如果a=b,b=c,那么a=c(等量代换)三、一元一次方程的解法1.移项:把方程中的某一项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。
移项要变号。
2.解形如mx+p=nx+q的一元一次方程1)移项:根据等式性质,将含未知数的项移到方程的一边(通常是等号左边),常数项移到方程的另一边(通常是等号右边)mx-nx=q-p2)合并同类项:化方程为ax=b(a,b为已知数,a≠)的形式m-n)x=q-p3)未知数系数化为1:根据等式性质,将方程从ax=b的形式化为x=的形式x=(q-p)/(m-n)4)算出(q-p)/(m-n)的值,即为方程的解。
2.解含有括号的方程:1)根据去括号法则去括号;2)移项;3)化成标准形式ax=b;4)系数化为1.注意:(1)去括号时要看清括号前面的符号,用去括号法则去括号;(2)括号前面的系数要与括号里面的每一项相乘,不能漏乘任何一项。
3.去分母解一元一次方程1)去分母:在方程两边同乘各分母的最小公倍数。
2)去括号;3)移项;4)合并同类项;5)系数化为1.四、一元一次方程模型的应用(难点)1.一般步骤:(1)审题;(2)设未知数;(3)列方程;(4)解方程;(5)验算;(6)作答。
七年级上期末复习《第三章一元一次方程》知识点+易错题(含答案)
2019年七年级数学上册期末复习一元一次方程知识点+易错题一元一次方程知识点总结一、等式与方程1.等式:(1)定义:含有等号的式子叫做等式.(2)性质:①等式两边同时加上(或减去)同一个整式,等式的值不变.若a b=那么a c b c+=+②等式两边同时乘以一个数或除以同一个不为0的整式,等式的值不变.若a b=那么有ac bc=或a c b c÷=÷(0c≠)③对称性:若a b=,则b a=.④传递性:若a b=,b c=则a c=.(3)拓展:①等式两边取相反数,结果仍相等.如果a b=,那么a b-=-②等式两边不等于0时,两边取倒数,结果仍相等.如果0a b=≠,那么11 a b =③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.如移项,运用了等式的性质①;去分母,运用了等式的性质②.④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.2.方程:(1)定义:含有未知数的等式叫做方程.(2)说明:①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.未知数称为元,有几个未知数就叫几元方程.一道题中设两个方程时,它们的未知数不能一样!③“次”:方程中次的概念和整式的“次”的概念相似.指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.未知数次数最高是几就叫几次方程.④方程有整式方程和分式方程.整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.分式方程:分母中含有未知数的方程叫做分式方程.二、一元一次方程1.一元一次方程的概念:(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.(2)一般形式:0ax b+=(a,b为常数,x为未知数,且0a≠).(3)注意:①该方程为整式方程.②该方程有且只含有一个未知数.③该方程中未知数的最高次数是1.④化简后未知数的系数不为0.如:212x x-=,它不是一元一次方程.⑤未知数在分母中时,它的次数不能看成是1次.如13xx+=,它不是一元一次方程.2.一元一次方程的解法:(1)方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“?x=”的形式.(2)解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.(3)移项:①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.②说明:Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并,方便求解.(4)解一元一次方程的一般步骤及根据:①去分母——等式的性质②②去括号——分配律③移项——等式的性质①④合并——合并同类项法则⑤系数化为1——等式的性质②⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等(在草纸上)(5)一般方法:①去分母,程两边同时乘各分母的最小公倍数.②去括号,一般先去小括号,再去中括号,最后去大括号.但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.③移项,方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号.(一般都是把未知数移到一起)④合并同类项,合并的是系数,将原方程化为ax b=(0a≠)的形式.⑤系数化1,两边都乘以未知数的系数的倒数.⑥检验,用代入法,在草稿纸上算.(6)注意:(对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤)①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;②去分母时,方程两边各项都乘各分母的最小公倍数,Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘Ⅱ分数线相当于括号,去分母后分子各项应加括号(整体思想);③去括号时,不要漏乘括号内的项,不要弄错符号;④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号(打草稿认真计算);⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.(7)补充:分数的基本性质:与等式基本性质②不同.分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.3.一元一次方程的应用:(1)解决实际应用题的策略:①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个字一个字的精读,要慢,边读边思考.找到已知条件,未知条件,找到数量关系和等量关系,可以用笔在题目中标注下来重要信息和数量关系,审题往往伴随下个步骤.②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系表示出其他相关的量.③找出等量关系,用符号语言表示就是列出方程.(2)分析问题方法:①文字关系分析法,找关键字词句分析实际问题中的数量关系②表格分析法,借助表格分析分析实际问题中的数量关系③示意图分析法,通过画图帮助分析实际问题中的数量关系(3)设未知量方法:一个应用题,往往涉及到几个未知量,为了利用一元一次方程来解应用题,我们总是设其中一个未知量为x,并用这个未知数的代数式去表示其他的未知量,然后列出方程.①设未知量的原则就是设出的量要便于分析问题,与其它量关系多,好表示其它量,好表示等量关系;②有直接设未知量和间接设未知量,还有不常见的辅助设未知量.(4)找等量关系的方法:“等量关系”特指数量间的相等关系,是数量关系中的一种.数学题目中常含有多种等量关系,如果要求用方程解答时,就需找出题中的等量关系.①标关键词语,抓住关键句子确定等量关系.(比如多,少,倍,分,共)解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定等量关系.②紧扣基本公式,利用基本关系确定等量关系就是根据常见的数量关系确定等量关系.(比如体积公式,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等.这些常见的基本数量关系,就是等量关系)③通过问题中不变的量,相等的量确定等量关系.就是用不同的方法表示同一个量,从而建立等量关系.④借助线段图确定等量关系。
【精选】人教版七年级上册数学第三章《一元一次方程》知识点+典型例题
【精选】人教版七年级上册数学第三章《一元一次方程》知识点+典型例题知识点、概念总结1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
3.条件:一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0.4.等式的性质:等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。
等式的性质三:等式两边同时乘方(或开方),等式仍然成立。
解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。
5.合并同类项(1)依据:乘法分配律(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项(3)合并时次数不变,只是系数相加减。
6.移项(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
(2)依据:等式的性质(3)把方程一边某项移到另一边时,一定要变号。
7.一元一次方程解法的一般步骤:使方程左右两边相等的未知数的值叫做方程的解。
一般解法:(1)去分母:在方程两边都乘以各分母的最小公倍数;(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号(4)合并同类项:把方程化成ax=b(a≠0)的形式;(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.8.同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。
9.方程的同解原理:(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
七年级上一元一次方程题型及知识点总结
一元一次方程题型及知识点总结一、知识点1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a≠0).8.一元一次方程解法的一般步骤:化简方程----------分数基本性质去 分母----------同乘(不漏乘)最简公分母去 括号----------注意符号变化移 项----------变号合并同类项--------合并后注意符号系数化为1---------未知数细数是几就除以几二、典型例题:例1:解下列方程:(1)211011412x x x ++-=- (2)6171315213+-=+--y y y(3)4 1.550.8 1.20.50.20.1x x x ----= (4) 21(x 一3)=2一21(x 一3)(5)2x -6115+x =l+342-x (6) 3.05.01x --32x=02.03.0x +l【课堂练习1】解方程:(1); (2)。
巩固练习:一、选择题 1、下列方程中是一元一次方程的是( )A 、x-y=2005B 、3x-2004C 、x 2+x=1D 、21-x =32-x2、方程1-67342--=-x x 去分母得( ) A .1-2(2x-4)=-(x-7) B .6-2(2x-4)=-x-7C .6-2(2x-4)=-(x-7)D .以上答案均不对3、代数式13x x --的值等于1时,x 的值是( ). (A )3 (B )1 (C )-3 (D )-14、方程5174732+-=--x x 去分母得( )。
苏科版七年级数学上册第四章 一元一次方程章节知识点归纳复习
1.定义:方程与一元一次方程
含有未知数的叫方程,方程必须具备两个条件:第一是等式,第二是含有未知数。
方程中只含有一个未知数,且未知数的次数都是1的整式方程叫做一元一次方程。
题判断一元一次方程,确定一元一次方程中字母的值。
2.方程的解与解方程
使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!
(2)画图分析法: ………… 多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.
(6)按比例分配问题
甲:乙:丙=a:b:c,则设一份为x,甲为ax,乙为bx,丙为cx
全部的数量=各个份数之和
(7)若干应用问题等量关系的规律
(1)和、差、倍、分问题此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。增长量=原有量×增长率现在量=原有量+增长量
当分母是小数时,要先利用分母的基本性质把小数转化成整数,然后再去分母。
(4)一元一次方程解法的一般步骤:
化简方程----------分数基本性质
去 分母----------同乘(不漏乘)最简公分母
去 括号----------注意符号变化
移 项----------变号
合并同类项--------合并后注意符号
等量关系_________________________
(4)行程问题
七年级上册第三单元一元一次方程知识点总结 (人教版)
第3步:列方程(组)。根据题中各个量的关系列出方程(组)。
第4步:解方程(组)。根据方程(组)的类型采用相应的解法。
第5步:答。
变形名称
依据
具体做法
注意事项
去分母
等式的性质2
在等号两边都乘各分母的最小公倍数
(1)不要漏乘不含分母的项;
(2)若分子是一个多项式,需加上括号
去括号
乘法分配律、去括号法则
先去小括号,再去中括号,最后去大括号
(1)不要漏乘括号里的项;
(2)不要弄错符号
移项
移项法则
把含有未知数的项移动到方程的一边,其他的项移动到方程的另一边
重点解读
3、方程的解与解方程
定义
实质
方程的解ቤተ መጻሕፍቲ ባይዱ
使方程等号左右两边相等的未知数的值叫做方程的解
具体数值
解方程
求方程解的过程叫做解方程
变形过程
4、等式的性质
语言叙述
字母表示
等式性质1
等式两边加(或减)同一个数(或式子),结果仍相等
如果 ,那么
等式性质2
等式两边乘同一个数,或除以一个不为 的数,结果仍相等
如果 ,那么 ;
如果 ,那么
重点解读
(1)注意等式左右两边同时加、减、乘或除以不能遗漏任一边,并且同时加、减、乘或除以的数必须是同一个数;
(2)等式的两边除以一个数或整式时,这个数或整式不能为0;
(3)等式还有以下性质:①如果 , ,那么 ;②如果 ,那么
5、解一元一次方程的一般步骤
①去分母;②去括号;③移项;④合并同类项;⑤系数化为1。
(1)移项要变号;
(2)不要丢项
初一一元一次方程所有知识点总结和常考题(含答案解析)
初一一元一次方程所有知识点总结和常考题【知识点归纳】一、方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次)的方程叫做一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质等式的性质(1):等式两边都加上(或减去)同一个数(或式子),结果仍相等. 用式子形式表示为:如果a=b ,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等. 用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c =b c三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.四、去括号法则〔依据分配律:a (b+c )=ab+ac 〕1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.五、解方程的一般步骤1.去分母(方程两边同乘各分母的最小公倍数)2.去括号(按去括号法则和分配律)3.移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4.合并(把方程化成ax = b (a≠0)形式)5.系数化为1(在方程两边都除以未知数的系数a (或乘未知数的倒数),得到方程的解x=b a). 六、用方程思想解决实际问题的一般步骤1. 审:审题,分析题中已知什么,求什么,找:明确各数量之间的关系;2. 设:设未知数(可分直接设法,间接设法), 表示出有关的含字母的式子;3. 列:根据题意列方程;4. 解:解出所列方程, 求出未知数的值;5. 检:检验所求的解是否是方程的解,是否符合题意;6. 答:写出答案(有单位要注明答案).七、有关常用应用题类型及各量之间的关系1. 和、差、倍、分问题(增长率问题): 增长量=原有量³增长率 现在量=原有量+增长量(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,几分之几,增长率,减少,缩小……”来体现.(2)多少关系:通过关键词语“多、少、大、小、和、差、不足、剩余……”来体现.审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别.2. 等积变形问题:(1)“等积变形”是以形状改变而体积不变(等积)为前提,是等量关系的所在.常用等量关系为: ①形状面积变了,周长没变;②原料体积=成品体积.(2)常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积³高=S ²h =πr 2h3. 劳力调配问题:从调配后的数量关系中找等量关系,要注意调配对象流动的方向和数量.这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变4. 数字问题: 要正确区分“数”与“数字”两个概念,同一个数字在不同数位上,表示的数值不同,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系列方程.列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和.(1)要搞清楚数的表示方法:一般可设个位数字为a ,十位数字为b ,百位数字为c ,十位数可表示为10b+a ,百位数可表示为100c+10b+a (其中a 、b 、c 均为整数,且0≤a ≤9, 0≤b ≤9,1≤c ≤9).(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n —2表示;奇数用2n+1或2n —1表示.5. 工程问题(生产、做工等类问题):工作量=工作效率³工作时间工作时间工作量工作效率=工作效率工作量工作时间= 合做的效率=各单独做的效率的和.一般情况下把总工作量设为1,完成某项任务的各工作量的和=总工作量=1.分析时可采用列表或画图来帮助理解题意。
七年级数学上册一元一次方程章节知识点归纳复习
一元一次方程章节知识点归纳复习1.定义:方程与一元一次方程含有未知数的叫方程,方程必须具备两个条件:第一是等式,第二是含有未知数。
方程中只含有一个未知数,且未知数的次数都是1的整式方程叫做一元一次方程。
题判断一元一次方程,确定一元一次方程中字母的值。
2.方程的解与解方程使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!解方程就是求出使方程中左右两边均相等的未知数的值,是过程。
3.等式的性质(1):等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;(2):等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.解方程的过程就是把方程逐步化为x=a(常数)的形式,等式的性质是重要的转化依据。
4.解方程(1)合并同类项与移项合并时牢记:同类项的系数相加,字母连同指数不变,系数为负数时要注意符号。
(2)移项(移项要变号)移项就是把等式一边的某项变号后移到另一边。
一般把方程转化为含有未知数的在方程的左边,常数在方程的右边。
注意与加法交换律不一样。
移项是把某些项从方程的一边移到另一边,移动要变号,而加法交换律只是加数之间交换位置,改变的只是顺序不改变符号。
(3)去括号与去分母去括号法则与整式去括号法则相同:括号外的因数是整数时,去括号后原括号内各项的符号与原来的符号相同。
括号外的因数是负数时,去括号内后,原括号内各项的符号与原来的符号相反。
去分数:先把分式化成整式再计算。
应注意各项都要乘以各分母的最小公倍数,不要漏乘分母的项,如果分子是一个多项式,去分母时要将分子作为一个整体加上括号。
当分母是小数时,要先利用分母的基本性质把小数转化成整数,然后再去分母。
(4)一元一次方程解法的一般步骤:化简方程----------分数基本性质去分母----------同乘(不漏乘)最简公分母去括号----------注意符号变化移项----------变号合并同类项--------合并后注意符号系数化为1---------未知数细数是几就除以几5.列方程(1)读题分析法:………… 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: ………… 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.(1)x的20%与10的差的一半等于-2.(2)某数与2的差的绝对值加上1等于2.(3)某数的6倍比它的二分之一多9(4)某班同学有50名同学,准备集体去看电影,电影票中有15元和20元的,买电影票共花去880元,问这种电影票应各买几张。
七年级一元一次方程数学知识点
七年级一元一次方程数学知识点
一元一次方程数学知识点1.等式与等量:用=号衔接而成的式子叫等式.留意:等量就能代入!
2.等式的性质:
等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;
等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.
3.方程:含未知数的等式,叫方程.
4.方程的解:使等式左右两边相等的未知数的值叫方程的解;留意:方程的解就能代入!
5.移项:改动符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.
6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
7.一元一次方程的规范方式:ax+b=0(x是未知数,a、b是数,且a0).
8.一元一次方程的最简方式:ax=b(x是未知数,a、b是数,且a0).
9.一元一次方程解法的普通步骤:整理方程去分母去括号移项兼并同类项系数化为1(检验方程的解).
10.列一元一次方程解运用题:
(1)读题剖析法:多用于和,差,倍,分红绩
细心读题,找出表示相等关系的关键字,例如:大,小,多,少,是,共,合,为,完成,添加,增加,配套-----,应用这些关键字列出文字等式,并且据题意设出未知数,最后应用标题中的量与量的关系填入代数式,失掉方程.
(2)画图剖析法:多用于行程效果
应用图形剖析数学效果是数形结合思想在数学中的表达,细心读题,依照题意画出有关图形,使图形各局部具有特定的含义,经过图形找相等关系是处置效果的关键,从而取得布列方程的依据,最后应用量与量之间的关系(可把未知数看做量),填入有关的代数式是取得方程的基础.。
七年级一元一次方程知识点
七年级一元一次方程知识点一、目录1、从问题到方程2、一元一次方程的解法3、用一元一次方程解决实际问题教学目标:(a)了解一元一次方程的定义(b)运用一元一次方程的解法(c)掌握用一元一次方程解决实际问题二、知识点结构梳理及例题一元一次方程1. 方程:含有未知数的等式叫做方程。
2. 方程的解:使方程左、右两边相等的未知数的值,叫做方程的解。
3. 只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程。
可以化为次方程ax+b=O (a z 0)的形式,分母中不能含有未知数。
4. 求方程的解叫做解方程定义类:1、__________________________________________________ 如果x 3n-2-6=0是一元一次方程,则n= .2、下面的等式中,是一元一次方程的为()1 2A. 3x + 2y= 0 B . 3+ m= 10 C . 2 + = x D . a2= 16x3、如果(n-3 )x n -2+5=0是关于x的一元一次方程,求n的值.4、如果关于x的方程(2m+5)x-3=2x,当a满足什么条件时该方程是一元一次方程?5、若2x-17的绝对值与18-3x的绝对值相等,则得到关于x的方程为______________6、一个两位数,两个数位上的数字之和是7,把两个数位上的数字对调后得到新的两位数比原来的两位数大25,求原来的两位数。
(设出未知数,列出方程)练习:(1) ________________________________________ —元一次方程1-吕=丄□七成标准形式为,它的最简形式是 ________________________________2(2) _______________________________________________已知方程 2 (2x+l ) =3 (x+2) - (x+6)去括号得 ____________________________________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章一元一次方程知识点归纳
一、一元一次方程
1.方程:含有未知数的等式叫做方程。
2.方程的解:使方程左、右两边相等的未知数的值,叫做方程的解。
3.只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程。
一元一次方程可以化为ax+b=0(a≠0)的形式,分母中不能含有未知数。
4.求方程的解叫做解方程
二、等式的性质(解方程的依据)
1.等式两边都加上或者减去同一个数(或代数式),所得结果仍是等式。
如果a=b,那么a ±c=b±c。
2.等式两边都乘或者除以同一个数(或代数式),所得结果仍是等式。
如果a=b,那么
ac=bc,a
c
=b
c(c≠0)
拓展:①对称性:如果a=b,那么b=a,即等式的左右互换位置,所得的结果仍是等式;②传递性:如果a=b,b=c,那么a=c(等量代换)
三、一元一次方程的解法
1.移项:把方程中的某一项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。
移项要变号。
2.解形如mx+p=nx+q的一元一次方程
(1)移项:根据等式性质,将含未知数的项移到方程的一边(通常是等号左边),常数项移到方程的另一边(通常是等号右边)
mx-nx=q-p
(2)合并同类项:化方程为ax=b(a,b为已知数,a≠0)的形式
(m-n)x=q-p
(3)未知数系数化为1:根据等式性质,将方程从ax=b的形式化为x=b
a
的形式
x=q−p m−n
(4)算出q−p
m−n
的值,即为方程的解
2.解含有括号的方程:(1)根据去括号法则去括号;(2)移项;(3)化成标准形式ax=b;(4)系数化为1.
注意:(1)去括号时要看清括号前面的符号,用去括号法则去括号;(2)括号前面的系数
要与括号里面的每一项相乘,不能漏乘任何一项。
3.去分母解一元一次方程
(1)去分母:在方程两边同乘各分母的最小公倍数。
(2)去括号;(3)移项;(4)合并
同类项;(5)系数化为1
四、一元一次方程模型的应用(难点)
1.一般步骤:(1)审题;(2)设未知数;(3)列方程;(4)解方程;(5)验算;(6)
作答。
弄清题目中“几倍、多、少、差、几分之几”等关键词体现的等量关系。
解方程模型应用的几种类型
一元一次方程应用题的解题关键就是:先找出等量关系,根据基本量设未知数。
一般是
问什么设什么,但是一些特殊的题目为了使方程简便有时会设一些中间量为未知数。
解方程
应用题的关键就是要“抓住基本量,找出相等关系”。
找等量关系:①从题目中的关键语句入手寻找等量关系;②利用某些基本公式寻找等量
关系;③从变化的关系中寻找不变的量,进而找到等量关系。
主要的应用模型有以下几类:
不管是什么问题,关键是要了解各个具体问题所具有的基本量,并了解各个问题所本身
隐含的等量关系,结合具体的问题,根据等量关系列出方程。
(一)行程问题
行程问题中有三个基本量:路程、时间、速度。
等量关系为:①路程=速度×时间;
②速度=路程/时间;
③时间=路程/速度
1.航行问题
①顺水(风)速度=静水(无风)速度+水流速度(风速);
②逆水(风)速度=静水(无风)速度-水流速度(风速)。
由此可得到航行问题中一个重要等量关系:
顺水(风)速度-水流速度(风速)=逆水(风)速度+水流速度(风速)=静水(无风)
速度。
2.相遇问题
A走的路程+B走的路程=两地之间的距离
3.追击问题
同时不同地出发:A走的路程-B走的路程=被追赶的路程(A、B出发时相距的距离)
4.环形问题
(1)同向行驶,如果A速度较快,则A走的路程-B走的路程=n环/圈(n表示第n次相遇)(2)反向行驶,A走的路程+B走的路程=n环/圈(n表示第n次相遇)
(二)工程问题
1.工程问题的基本量有:工作量、工作效率、工作时间。
关系式为:工作量=工作效率×工
作时间;
工作时间=工作量/工作效率;工作效率=工作量/工作时间。
2.工程问题中,在工作总量不明的情况下一般常将全部工作量看作整体1,如果完成全部工
作的时间为t,则工作效率为1/t。
3.常见的相等关系有两种:
①如果以工作量作相等关系,A工作量+B工作量 =总工作量。
②如果以时间作相等关系,对于同一工作:A工作时间-B工作时间=时间差
一般情况下,合作的工作效率=A工作效率+B工作效率
(三)销售计费问题
销售类问题主要体现为三大类:①销售利润问题、②存贷问题。
这三类问题的基本量各不相同,在寻找相等关系时,一定要联系实际生活情景去思考,才能更好地理解问题的本质,正确列出方程。
(1)价格费用问题
费用问题中的基本量:费用(总价)、单价、数量
基本关系式有
费用(总价)=单价×数量
分段计费:总费用=第一阶段单价×数量+第二阶段单价×数量+……
(2)销售利润问题
利润问题中有四个基本量:成本(进价)、销售价(收入)、利润、利润率。
基本关系式有:
利润=销售价(收入)-成本(进价);
成本(进价)=销售价(收入)-利润;
利润率=利润
成本(进价)
;
利润=成本(进价)×利润率。
在有折扣的销售问题中,实际销售价=标价×折扣率。
打折问题中常以进价不变作相等关系。
打折:n折即表示标价的n/10,如7折为70%
(3)存贷问题(利息、利润问题)
存贷问题中有本金、利息、利率、本息等基本量。
其关系式有:
①利息=本金×利率×期数;
②本息和(本利)=本金+利息
(四)溶液配比问题
溶液配比问题中有四个基本量:溶质(纯净物)、溶剂(杂质)、溶液(混合物)、浓度(含量)。
其关系式为:
溶液=溶质+溶剂(混合物=纯净物+杂质);
浓度=溶质
溶液
×100%=
溶质
溶质+溶剂
×100%;
纯度(含量)=纯净物
混合物
×100%=
纯净物
纯净物+杂质
×100%。
由①②可得到:溶质=浓度×溶液=浓度×(溶质+溶剂)。
(五)数字问题
一元一次方程应用题中的数字问题多是整数,要注意数位、数位上的数字、数值三者间的关系:
任何数=∑(数位上的数字×位权)(54=5×10+4)
如两位数ab= 10a + b;三位数abc= 100a + 10b + c
(六)比例问题
比例问题在生活中比较常见,比如合理安排工人生产,按比例选取工程材料,调剂人数或货物等。
比例问题中主要考虑总量与部分量之间的关系,或是量与量之间的比例关系。
调配问题也属于比例问题,其关键是要认识清楚部分量、总量以及两者之间的关系。
在调配问题中主要考虑“总量不变”。
(七)设中间变量的问题
一些应用题中,设直接未知数很难列出方程求解,而根据题中条件设间接未知数,却较容易列出方程,再通过中间未知数求出结果。