电容反馈三点式振荡器(20200517143615)
lc电容反馈三点式振荡器实验报告
lc电容反馈三点式振荡器实验报告LC电容反馈三点式振荡器实验报告引言振荡器是一种能够产生固定频率的信号的电路,它在无线通信、射频电路和其他电子设备中起着非常重要的作用。
LC电容反馈三点式振荡器是一种常见的振荡器电路,本实验旨在通过实验验证其工作原理和性能。
实验目的1. 了解LC电容反馈三点式振荡器的工作原理2. 掌握LC电容反馈三点式振荡器的实验方法3. 观察和分析LC电容反馈三点式振荡器的输出波形特性实验原理LC电容反馈三点式振荡器是由一个LC谐振回路和一个放大器构成的。
当LC回路和放大器达到一定的条件时,就会产生自激振荡。
在振荡器的输出端,通过反馈网络将一部分输出信号送回到输入端,从而维持振荡的持续。
实验器材1. 信号发生器2. 示波器3. 电阻、电感、电容等元件4. 电路板和连接线实验步骤1. 按照实验原理搭建LC电容反馈三点式振荡器电路2. 连接信号发生器和示波器3. 调节信号发生器的频率和幅度,观察示波器的输出波形4. 测量并记录振荡器的频率、幅度和波形实验结果通过实验观察和测量,我们得到了LC电容反馈三点式振荡器的频率为f,幅度为A,波形为正弦波。
在不同的频率和幅度下,振荡器都能够稳定地输出正弦波信号,验证了其工作原理和性能。
实验结论本实验通过搭建LC电容反馈三点式振荡器电路,观察和测量其输出波形特性,验证了其工作原理和性能。
振荡器是一种非常重要的电路,对于理解和应用振荡器电路具有重要意义。
结语通过本次实验,我们对LC电容反馈三点式振荡器有了更深入的了解,掌握了其工作原理和实验方法。
振荡器作为一种常见的电子设备,对于我们的学习和工作都具有重要的意义。
希望通过不断的实验和学习,我们能够更好地掌握振荡器电路的原理和应用。
电容三点式振荡
电容三点式振荡器的工作原理与电感三点式LC振荡器相似,不同之处在于电容三点式振荡器的电容和电感元件互换位置。
这种振荡器具有输出波形好、振荡频率高等优点,适用于固定振荡器应用。
电容三点式LC振荡器的核心部分是LC并联谐振回路,其振荡频率与电容和电感的大小有关。
在电路中,三极管或运算放大器的输出电压在LC并联回路上分配,从而实现正反馈。
电容支路由C1和C2串联组成,其上的电压与电容容量成反比分配。
电容三点式LC振荡器的反馈电压是从电容器C2上取出,即C2对地的电压。
如果反馈电压不足,应适当减小电容量。
振荡频率受电容器C1和C2以及电感L的影响,通过调整这两个电容器的容量,可以实现对振荡频率的控制。
在实际应用中,电容三点式LC振荡器广泛应用于通信、广播、导航等领域。
例如,在无线话筒电路中,电容三点式振荡器用于产生载波信号,并将来自话筒的微弱声音信号进行调制,最终通过天线输出。
为了保证电容三点式LC振荡器的稳定工作,电路中采用了二极管稳压技术。
此外,元件的选择也对振荡器的性能有很大影响,如选用高频率、高功率的三极管BG2,以及微型超薄电容式话筒等。
电容三点式LC振荡器实验旨在帮助学生熟悉电子元器件和高频电子线路实验系统,掌握电容三点式LC振荡电路的基本原理,了解各元件功能,以及静态工作点、耦合电容、反馈系数、等效Q值对振荡器振荡幅度和频率的影响。
通过实验,学生还可以了解负载变化对振荡器振荡幅度的影响。
总之,电容三点式LC振荡器是一种重要的振荡电路,其工作原理、元件选择以及应用领域等方面均具有较高的研究价值。
深入了解电容三点式LC振荡器的设计和应用,对于电子工程领域的研究和实践具有重要意义。
实验二lc电容反馈式三点式振荡器
实验二 LC电容反馈式三点式振荡器一、实验目的1.熟悉电容三点式振荡器(考毕兹电路)、改进型电容三点式振荡器(克拉泼电路及西勒电路)的电路特点、结构及工作原理。
2.掌握振荡器静态工作点调整方法。
3.熟悉频率计、示波器等仪器的使用方法。
二、预习要求1.复习LC振荡器的工作原理。
2.分析图1电路的工作原理,及各元件的作用。
结合图2的等效电路,思考怎样跳线连接,才能构成三种不同的电容三点式振荡电路。
三、实验仪器设备1.双踪示波器2.频率计3.万用表4.TPE-GP5通用实验平台5.G1N实验模块四、实验原理及电路简介:1.实验原理:振荡器是一种在没有外来信号的作用下,能自动地将直流电源的能量转换为一定波形的交变振荡能量的装置。
根据振荡器的特性,可将振荡器分为反馈式振荡器和负阻式振荡器两大类,LC振荡器属于反馈式振荡器。
工作时它应满足两个条件:(1)相位条件:反馈信号必须与输入信号同相,以保证电路是正反馈电路,即电路的总相移Σφ=φk+φF=n×3600。
(2)振幅条件:反馈信号的振幅应大于或等于输入信号的振幅,即│ẢF│≥1,式中Ả为放大倍数,F为反馈系数。
当振荡器接通电源后,电路中存在着各种电的扰动(如热噪声、晶体管电流的突变等),它们就是振荡器起振的初始激励。
经过电路放大和正反馈的作用,它们的幅度会得到不断的加强。
同时,由于电路中LC谐振回路的选频作用,只有等于其谐振频率的电压分量满足振荡条件,最终形成了单一频率的振荡信号。
2.电路特点:图1为实验电路,V1001及周边元件构成了电容反馈振荡电路及石英晶体振荡电路。
V1002构成射极输出器。
S1001、S1002、S1003、J1001分别连接在不同位置时,就可分别构成考毕兹、克拉泼和西勒三种不同的LC振荡器以及石英晶体振荡器。
V1001V1002R 1001R1003R 1002R1008R 1007R 1006R1009C 1009C1006C 1001200P R 1005GNDGND S 1002300P 510P1000PS1004200P 100P 62P20P L 10016.2P62P100P1000P S100312J1001C1005Y 100110.7M H z C1007C1008P1001R p 1001SW1001R1010D1001GND +12VR p 1002C1010P1002GND图1 LC与晶体振荡器原理图12S1001C T 1001C1004C1003C10023. 思路提示:图2给出了几种振荡电路的交流等效电路图。
lc三点式电容反馈振荡器实验报告
LC三点式电容反馈振荡器实验报告引言振荡器是电子电路中常见的一种电路,其功能是产生稳定的交流信号。
本实验报告介绍了LC三点式电容反馈振荡器的设计和实验过程。
实验目的本实验的目的是通过搭建LC三点式电容反馈振荡器电路,掌握振荡器的基本工作原理和设计方法。
实验原理LC三点式电容反馈振荡器是一种基础的振荡器电路,由电感(L)、电容(C)和放大器组成。
其工作原理如下:1.电感和电容组成谐振电路,形成特定频率的谐振回路。
2.在谐振频率下,电路会自激振荡,产生稳定的交流信号。
3.放大器负责放大电路的输出信号,以保持振荡器的稳定性。
实验材料本实验使用的材料和设备如下:•电感(L):1个•电容(C):2个•放大器:1个•示波器:1个•多用途实验板:1个•连接线:若干根实验步骤以下是LC三点式电容反馈振荡器的搭建步骤:1.将一个电容连接到实验板的电感端口上,另一个电容连接到放大器的输入端口上。
2.将电感的另一端连接到放大器的输出端口上。
3.连接示波器的探头到振荡器电路的输出端口上。
4.打开示波器和放大器,并适当调节放大器的增益和频率。
5.观察示波器上的输出波形,并记录振荡器的频率和振幅。
实验结果根据实验步骤进行操作后,观察到示波器上显示出了稳定的振荡波形。
记录下实验结果如下:•振荡器频率:1000Hz•振荡器振幅:5V结论通过本次实验,我们成功搭建了LC三点式电容反馈振荡器,并观察到了稳定的振荡信号。
实验结果表明,该振荡器在特定的频率下能够自激振荡并输出稳定的交流信号。
实验总结本次实验通过搭建LC三点式电容反馈振荡器电路,对振荡器的工作原理和设计方法有了更深入的了解。
同时,我们还学习了使用示波器观察和测量振荡器的输出信号。
在实验过程中,我们注意到振荡器的频率和振幅可以通过调节电容和电感的数值进行调整。
此外,振荡器的稳定性还受到放大器的影响,因此需要适当调节放大器的增益和频率以获得良好的振荡效果。
总的来说,本次实验对于进一步理解振荡器的原理和应用具有重要意义,并为我们今后的学习和实践提供了基础。
电容三点式振荡器原理
电容三点式振荡器原理电容三点式振荡器是一种常见的电路,用于产生稳定的交流信号。
它由三个部分组成:一个电容器、一个反馈电阻和一个晶体管。
这种振荡器以其简单的电路结构和稳定的输出频率而广泛应用于无线电通信和电子设备中。
电容三点式振荡器的原理是基于正反馈的作用,通过反馈电路将一部分输出信号输入到输入端,并经过放大处理再次输入到反馈回路中。
电容三点式振荡器的工作原理可以分为如下几个步骤:1. 初始状况:开始时,晶体管处于截止状态(即没有输入信号)。
2. 充电:当输入一个正脉冲信号时,电容器开始充电。
充电电流通过晶体管的基极和发射极之间,导致晶体管进入放大状态。
晶体管的放大效应使得输出信号通过电容器和反馈电阻被反馈到晶体管的基极上。
3. 放电:当电容器充电到电压足够高的时候,电流开始流向集电极,电容器开始放电。
在这个过程中,电容器的电压不断降低,直到它低于晶体管截止的电压。
4. 建立反向电流:一旦电容器的电压低于晶体管的截止电压,晶体管进入非放大状态。
在这个状态下,电流不再流动,电容器开始充电,电流通过反馈电阻回到电容器。
5. 重复过程:随着电容器的充电和放电,信号通过反馈回路加强,并以稳定的频率振荡。
这个过程不断重复,产生稳定的交流信号。
电容三点式振荡器的频率由电容器和反馈电阻的值决定。
当电容器的容量增加,振荡器的频率会降低;反之,当电容器的容量减小,振荡器的频率会增加。
反馈电阻的变化也会影响频率,当反馈电阻增加时,振荡器的频率会降低;反之,当反馈电阻减小时,振荡器的频率会增加。
此外,这种振荡器还需要一个直流电源来为晶体管提供正向偏置电压。
直流电源会给晶体管提供必要的电流来放大信号,并保持电容器的充电和放电过程。
总结来说,电容三点式振荡器是一种通过正反馈作用实现稳定振荡的电路。
通过充电、放电和反馈回路的循环过程,它能产生稳定的交流信号。
这种振荡器在无线电通信和电子设备中具有广泛的应用,例如在射频发射器、时钟电路和音频发生器等方面。
电容三点式振荡器
电容三点式振荡电路设一、概述振荡器是一种在没有加外信号作用下的自动将直流电源的能量变换成为一定波形的交变振荡能量的装置。
振荡器的用途十分广泛,它是无线电发送设备的心脏部分,也是超外差式接收机的主要部分,各种电子测试仪器如信号发生器、数字式频率计等的核心部分都离不开正弦波振荡器,功率振荡器在工业方面(例如感应加热、介质加热等)的用途也日益广阔。
一个振荡器必须包括三个部分:放大器、正反馈电路和选频网络。
振荡器按波形分可分为正弦波振荡器和非正弦波振荡器,按照工作原理可以分为反馈式型振荡器与负阻式振荡器两大类。
反馈式振荡器是在放大器电路中加入正反馈,当正反馈足够大时,放大器产生振荡,变成振荡器。
所谓产生振荡是指这时放大器不需要外加激励信号,而是由本身的正反馈信号来代替外加激励信号的作用。
负阻式振荡器则是将一个呈现负阻特性的有源器件直接与谐振电路相接产生振荡。
电容三点式振荡器是自激振荡器的一种,也叫考毕兹振荡电路。
由于它是利用电容将谐振回路的一部分电压反馈到基极上,而且也是将LC谐振回路的三个端点分别与晶体管三个电级相连接,所以这种电路有叫做电容反馈三点式振荡器。
它由串联电容与电感回路及正反馈放大器组成。
二、工作原理1、振荡器振荡条件:(1)平衡条件相位平衡条件:Σφ=n∗360°振幅平衡条件:KF=1(2)起振条件KF>1(3) 稳定条件振幅稳定条件:在平衡点的K-u曲线斜率为负,即dKdu|K=1F<0在平衡点φ−f曲线斜率为负,即dφdf|f=f°<02、对电容三点式振荡器是否满足振荡条件进行分析:(1) 满足相位平衡条件如图所示的电容三点式振荡器矢量图,假设在晶体管的基极和发射极间有一输入信号U be ,当振荡频率等于LC 回路谐振频率时,U ce 与U be 反相,电流 I 滞后于U ce 90°。
C 2上的反馈电压 U f 滞后电流 I 90°。
高频电容反馈三点式振荡器
《高频电子线路》设计报告电容反馈三点式振荡器制作人:李超08111100谢攀08111040汪新皓08111041电容反馈三点式振荡器一、设计目的1.复习和巩固以前所学内容,了解振荡器的工作原理。
2.熟练multisium等仿真软件的使用,提高实际动手能力。
二、设计原理方案电路工作原理电容反馈三点式振荡器是自激振荡器的一种。
振荡器是不需要外加信号激励,自身将直流电能转换为交流电的装置。
凡是可以完成这一目的的装置都可以作为振荡器。
构成一个振荡器必须具备下列一些最基本的条件:(1)任何一个振荡回路,包含两个或两个以上储能元件。
在这两个储能元件中,当一个释放能量时,另一个就接收能量。
接收和释放能量可以往返进行,其频率决定于元件的数值。
(2)电路中必须要有一个能量来源,可以补充由振荡回路电阻所产生的损耗。
在电容三点式振荡器中,这些能量来源就是直流电源。
(3)必须要有一个控制设备,可以使电源在对应时刻补充电路的能量损失,以维持等幅震荡。
这是由有源器件(电子管,晶体管或集成管)和正反馈电路完成的。
对于本次设计,所用的最基本原理如下:(1)振荡器起振条件为AF>1(矢量式),振荡器平衡条件为:AF=1(矢量式),它说明在平衡状态时其闭环增益等于1。
在起振时A>1/F,当振幅增大到一定的程度后,由于晶体管工作状态有放大区进入饱和区,放大倍数A迅速下降,直至AF=1(矢量式),此时开始谐振。
假设由于某种因素使AF<1,此时振幅就会自动衰减,使A与1/F逐渐相等。
(2)振荡器的平衡条件包括两个方面的内容:振幅稳定和相位稳定。
我们可以假设横坐标是振荡电压,而纵坐标分别是放大倍数K和反馈系数F,假设因为某种情况使电压增长,这时K.F<1,振荡就会自动衰减。
反之,若电压减少,出现KF>1的情况,振荡就会自动增强,而又回到平衡点。
由此可知结论为:在平衡点,若K曲线斜率小于0,则满足振荡器的振幅稳定条件。
lc电容反馈式三点式振荡器 实验报告
lc电容反馈式三点式振荡器实验报告实验报告:LC电容反馈式三点式振荡器引言振荡器是一种能够产生周期性交变电压或电流输出的电路。
在电子学中,振荡器是一种非常重要的电路,它在无线电通信、信号发生器、时钟电路等领域有着广泛的应用。
LC电容反馈式三点式振荡器是一种常见的振荡器电路,本实验旨在通过实际操作,掌握LC电容反馈式三点式振荡器的工作原理和性能。
实验目的1. 了解LC电容反馈式三点式振荡器的基本原理;2. 掌握LC电容反馈式三点式振荡器的工作特性;3. 熟练掌握LC电容反馈式三点式振荡器的实际测量方法。
实验原理LC电容反馈式三点式振荡器是一种由电感(L)、电容(C)和晶体管(或场效应管)组成的振荡器电路。
其基本原理是通过LC振荡回路提供正反馈,使得振荡器能够产生自激振荡。
当LC振荡回路的谐振频率与晶体管的放大倍数达到一定条件时,振荡器就能够产生稳定的正弦波输出。
实验步骤1. 按照实验电路图连接好实验电路;2. 调节电源电压和电容器的值,使得振荡器能够产生稳定的正弦波输出;3. 使用示波器测量振荡器的输出波形,并记录下波形的频率和幅度;4. 调节电容器的值,观察振荡器的输出波形变化,并记录下观察结果;5. 测量晶体管的放大倍数和LC振荡回路的谐振频率。
实验结果通过实验测量,我们得到了LC电容反馈式三点式振荡器的输出波形、频率和幅度等数据。
同时,我们也观察到了在调节电容器数值时振荡器输出波形的变化,以及晶体管的放大倍数和LC振荡回路的谐振频率。
实验结论通过本次实验,我们深入了解了LC电容反馈式三点式振荡器的工作原理和性能特点。
同时,我们也掌握了LC电容反馈式三点式振荡器的实际测量方法,为今后的实际应用打下了基础。
总结LC电容反馈式三点式振荡器是一种常见的振荡器电路,其在无线电通信、信号发生器、时钟电路等领域有着广泛的应用。
通过本次实验,我们对LC电容反馈式三点式振荡器有了更深入的了解,为今后的学习和工作打下了坚实的基础。
电容反馈三点式振荡器电路设计
电子技术课程设计报告题目:基于Multisim的电容反馈三点式振荡器电路的设计与仿真学生姓名:陈颍帝学生学号: 1214030203 年级: 2012级专业:通信工程班级: 2012(2) 指导教师:张水锋电子工程学院制2015年5月基于Multisim的电容反馈三点式振荡器电路的设计与仿真学生:陈颍帝指导老师:张水锋电子工程学院通信工程专业1电容反馈三点式振荡器电路设计的任务与要求1.1 电容反馈三点式振荡器电路设计的任务(1) 理解LC三点式振荡器的工作原理,掌握其振荡性能的测量方法。
(2) 理解振荡回路Q值对频率稳定度的影响。
(3) 理解晶体管工作状态、反馈深度、负载变化对振荡幅度与波形的影响。
(4) 了解LC电容反馈三点式振荡器的设计方法。
1.2 电容反馈三点式振荡器电路设计的要求(1) 原理图设计要符合项目的工作原理,连线要正确,端了要不得有标号。
(2) 图中所使用的元器件要合理选用,电阻,电容等器件的参数要正确标明。
(3) 简要说明设计目的,原理图中所使用的元器件功能及在图中的作用,各器件的工作过程及顺序。
2 电容反馈三点式振荡器电路设计的方案制定2.1 电容反馈三点式振荡器电路设计的原理三点式振荡器的交流等效电路如图1所示。
图1 三点式振荡器交流等效电路图中Xcs、Xbe、Xcb为谐振回路的三个电抗。
根据相位平衡条件可知,Xcs、Xbs必须为同性电抗,Xcb与Xcs、Xbs相比必须为异性电抗,且三者之间满足下列关系:Xcb=-(Xcs+Xbs),这就是三点式振荡器相位平衡条件的判断准则。
若Xcs、Xbs 呈容性,Xcb呈感性,则振荡器为电容反馈三点式振荡器;若Xcs、Xbs呈感性,Xcb 呈容性,则为电感反馈三点式振荡器。
下面以图2“考毕兹”电容三点式振荡器为例分析其原理。
图2 “考毕兹”电容三点式振荡器电路图2中L和C1、C2组成振荡回路,反馈电压取自电容C2的两端,Cb和Cc为高频旁路电容,Lc为高频扼流圈,对直流可视为短路,对交流可视为开路。
实验一 电容反馈三点式振荡器的实验研究
实验一电容反馈三点式振荡器的实验研究一、实验目的1.通过实验深入理解电容反馈三点式振荡器的工作原理,熟悉改进型电容反馈三点式振荡器的构成及电路各元件作用;2.研究在不同的静态工作点时,对振荡器起振、振荡幅度和振荡波形的影响; 3.学习使用示波器测量高频振荡器振荡频率的方法;4.观察电源电压和负载变化对振荡幅度、频率及频率稳定性的影响。
二、实验原理电容反馈三点式振荡器的基本原理电路(考比兹振荡器)如图2-1(a)所示。
由图可知,反馈电压由C 1和C 2分压得到,反馈系数为112C B C C =+ (2-1)起振的幅度条件为p m g Bg 1>(忽略三极管g e ) (2-2) 其中,g m 为晶体管跨导,g p 为振荡回路的等效谐振电导。
图2-1(a)所示等效电路中的回路总电容为2121C C C C C +⋅=(2-3)振荡频率近似为LCf g π21≈(2-4)当外界条件(如温度等)发生变化时,振荡回路元件及晶体管结电容要发生变化,从而使得振荡频率发生漂移。
因此,为了改善普通电容反馈三点式振荡器的频稳度,可在振荡回路中引入串接电容C 3,如图2-1(b)所示,当满足C 3<< C 1、C 2时,C 3明显减弱了晶体管与振荡回路的耦合程度。
为了得到较宽的波段覆盖效果,引入并联电容C 4(它和C 3为同一个数量级),回路总电容近似为C≈C 3+C 4。
这种改进型电容反馈振荡器称为西勒电路,其振荡频率为)(2143C C L f g +≈π (2-5)图2-1 电容反馈三点式振荡器的交流等效电路图LL(a)(b)三、实验电路说明四、实验内容1.晶体管静态工作点不同时对振荡器输出幅度和波形的影响(1)接通+12V 电源,调节电位器W 1使振荡器振荡,此时用示波器在④点刚好观察到不失真的正弦电压波形(负载电阻R 5或R 6暂不接入)。
问:探头×1和×10测得的数值哪个更接近真实值?为什么?分析: t ~u 0曲线(*10):(2)调节W 1使振荡管静态工作点电流I eQ 在0.5~4mA 之间变化(用万用表测量射极电阻R e 两端电压,计算出相应电流近似为I eQ 大小,至少取5个点),用示波器测量并记录下④点的幅度与波形变化情况,绘制出I eQ ~u 0曲线图。
LC电容反馈式三点式振荡器
节电位器RP,测得发射极电压VE的变化范围,记下最大值,
并计算IE的值:
IE
UE RE
振荡频率与振荡幅度的测试
依照实验讲义的方法接线,并满足相应的测试条件,其中 Ie的取值以Ve的取值来决定。测出Ct与振荡频率和振荡幅 度的关系。
3. 起振点、振幅与工作电流之间的关系
1、 依照实验讲义的方法接线,调整电位器Rp的值, 测得IEQ,此处需注意,测静态工作点时,电容C需断开。而 后测振荡幅度时,C再接入。再测其振荡幅度的峰峰值。
实验目的
1. 进一步了解LC三点式振荡电路的基 本原理;
2. 掌握振荡回路Q值对频率稳定度的 影响;
3. 了解振荡器反馈系数不同时,静态 工作电流IEQ对振荡器起振及振幅的影 响。
实验原理
LC三点式振荡器有两种基本组成形式,即 电感三点式振荡器和电容三点式振荡器。 可用下图判定:
本实验主要研究电容三点式振荡器,电路如图所示。
2、 C和C’的取值共有三组不同的情况。因此表3.2应 该有三个表格。
3、 当IEQ增大到一定的数值之后,振荡波形可能会 产生失真情况,应该如实记录下失真波形,在实验报告中 分析失真的原因。
4. 频率稳定度的影响
1、 改变电阻值,使Q值发生改变,观察对振荡波形 的影响。
观察R取哪种值的情况下稳定度最好。
条件。 此电路的振荡频率为:
f0
1
2π L1C
1
2π L1 1
1 1
1
C C' CT
若电容CT比电容C、C’小得多,则振荡频率为:
f0 2
1 L1CT
它与C、 C, 无关,则结电容对频率的影响可以忽略。
实验内容与步骤
LC电容反馈式三点式振荡器优秀doc资料
LC电容反馈式三点式振荡器优秀doc资料实验: LC电容反馈式三点式振荡荡器一、实验目的与任务1. 掌握 LC 三点式震荡器电路的基本原理,掌握 LC 电容反馈式三点式振荡电路设计及电参数计算。
2. 掌握振荡回路 Q 值对频率稳定度的影响。
3. 掌握振荡器反馈系数不同时,静态工作电流 I EQ 对振荡器起振及振幅的影响。
二、实验基本原理与要求利用电容三点式振荡器正反馈特性产生振荡电压,通过测量了解各参数对频率、幅度的影响。
三、实验设备1. 双踪示波器2.频率计3.万用表4.实验板 12 四、实验内容 1. 设置静态工作点2. 振荡频率与振荡幅度的测试3. 当 C 、C ′为不同数值时,改变 I EQ (断开 C T , 由数字万用表测出 V E 值,根据 4R V I E E =4. 频率稳定度的影响五、实验步骤实验电路见图 1。
实验前根据图 1所示原理图在实验板上找到相应器件及插孔并了解其作用。
1. 设置静态工作点(1在实验板 +12V扦孔上接入 +12V直流电源(注意电源极性不能接反并按C=120pf、C ′ =680pf、 C T =51Pf (实验板标为 50Pf 、 R L =110K接入各元件其连线要尽量短。
(2 OUT 端至地接入双踪示波器和频率计(以函数信号发生器代,分别打开电源开关, 此时频率计应显示振荡频率, 调节 R P 使双踪示波器显示振荡波形最大时停止调节, 断开 C 、C ′、 C T 及 R L ,用数字万用表测出 V E (R 4上的电压,代入下式求得 I E 值。
4R V I EE == (1 设:R e =1KΩ 表 12. 振荡频率与震荡幅度的测试实验条件: C=120pf、C ′ =680pf、 R=110K当电容 C T 分别为 C 9、 C 10、 C 11时, 由频率计读出其相应的 f 值及由双踪示波器读出 V P-P(V P-P 为输出电压峰峰值值,并填入表 1中。
电容反馈三点式振荡器
根据反馈网络 11
互感反馈振荡器:由互感构成反馈网络 电感反馈振荡器:由电感构成反馈网络 电容反馈振荡器:由电容构成反馈网络
二、产生自激振荡的两个条件 ——振荡的平衡条件
12
KF 1 1, 2 ) K F 2n (n 0,
三、振荡的起振条件 KF 1 (即通电之初,振荡是如何建立起来的?)
反馈电压取自
反馈元件对高 次谐波呈现的 阻抗特性 输出波形 振荡频率
优点
23
4.4 改进型电容三端式振荡器电路
一、串联改进型电容三点式振荡器 ——克拉泼振荡器 二、并联改进型电容三点式振荡器 ——西勒振荡器
24
一、串联改进型电容三点式振荡器 ——克拉泼振荡器
1 1、如果C1、C2过大,则振荡 R’ 0 幅度就太低。 C1 LC
(重点)
16
分析思路: 一、 电容反馈三点式振荡器(考毕兹振荡器) 1、电路结构 2、验证相位平衡条件 二、 电感反馈三点式振荡器(哈特莱振荡器) 1、电路结构 2、验证相位平衡条件 三、 总结出: 三点式LC 振荡器相位平衡条件的判断准则
17
一、 电容反馈三点式振荡器(考毕兹振荡器)
1、电路结构(对应电路名称的来历) 2、相位平衡条件 3、起振条件
4、振荡频率
21
三、 LC 振荡器相位平衡条件的判断准则
X1+X2+X3=0,
|X1+X2|=|X3|
1、晶体管发射极所接的两个电抗元件性质相同 ,而不 与发射极相接的回路元件,其电抗性质与前者相反.
2、谐振频率满足: |X1+X2|=|X3| 22
电容反馈三点式 (考毕兹)
电感反馈三点式 (哈特莱)
电容反馈三点式振荡器实验
成绩高频电子电路实验报告实验名称电容反馈三点式振荡器实验实验班级电子08-2班姓名何达清学号12(后两位)指导教师谢胜实验日期 2010.10.21实验一电容反馈三点式振荡器实验一、实验目的:1. 通过实验深入理解电容反馈三点式振荡器的工作原理,熟悉电容反馈三点式振荡器的构成和电路各元件的作用:2. 研究不同静态工作点对振荡器起振、振荡幅度和振荡波形的影响;3. 学习使用示波器和频率计测量高频振荡器振荡频率的方法;4. 观察电源电压和负载变化对振荡幅度和振荡频率及频率稳定性的影响。
.二、实验内容与实验数据图7.1三、实验内容及步骤:1. 研究晶体三极管静态工作点不同时对振荡器输出幅度和波形的影响:1)将开关K1和K2均拨至1X档,负载电阻R5暂不接入,接通+12V电源,调节W使振荡器振荡,此时用示波器在TP1观察不失真的正弦电压波形;2)调节W使Q1静态电流在0.5-4mA之间变化(可用万用表测量R4两端的电压来计算相应的IeQ,至少取4个点),用示波器测量并记下TP1 点的幅度与波形变化情况。
2. 研究外界条件变化时对振荡频率的影响及正确测量振荡频率:1)选择一合适的稳定工作点电流IeQ,使振荡器正常工作,利用示波器在TP3点和TP2点分别估测振荡器的振荡频率;2)用频率计重测,比较在TP3点和TP2点测量有何不同?3)将负载电阻R5接入电路(将开关K3拨至ON档),用频率计测量振荡频率的变化(为估计振荡器频稳度的数量级,可每10s记录一次频率,至少记录5表1-14)分别将开关K3拨至“OFF”和“ON”档,比较负载电阻R5不接入电路和接入电路两种情况下,输出振幅和波形的变化。
用示波器在TP1点观察并记录。
3. 将开关K1和K2均拨至2X档。
比较选取电容值不同的C2、C3和C2X、C3X,反馈系数不同时的起振情况。
注意改变电容值时应保持静态电流值不变。
四、思考题答:1.为什么静态工作点电流不合适时会影响振荡器的起振?静态工作点电流不合适时会影响与回路电容有关的反馈系数,则必将影响振荡器起振。
电容三点式振荡器
电容三点式振荡器武汉理工大学《高频电子线路》课程设计任务书 1 概述振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。
凡是可以完成这一目的的装置都可以作为振荡器。
一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。
放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。
正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持下去。
选频网络则只允许某个特定频率f0能通过,使振荡器产生单一频率的输出。
振荡器能不能振荡起来并维持稳定的输出是以下两个条件决定的;一个是反馈电压Uf 和输入电压Ui 要相等,这是振幅平衡条件。
二是Uf 和Ui 必须相位相同,这是相位平衡条件,也就是说必须保证是正反馈。
一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。
振荡器的用途十分广泛,它是无线电发送设备的心脏部分,也是超外差式接收机的主要部分各种电子测试仪器如信号发生器、数字式频率计等,其核心部分都离不开正弦波振荡器。
功率振荡器在工业方面(例如感应加热、介质加热等)的用途也日益广阔。
正弦波是电子技术、通信和电子测量等领域中应用最广泛的波形之一。
能够产生正弦波的电路称为正弦波振荡器。
通常,按工作原理的不同,正弦振荡器分为反馈型和负载型两种,前者应用更为广泛。
在没有外加输入信号的条件下,电路自动将直流电源提供的能量转换为具有一定频率、一定波形和一定振幅的交变振荡信号输出。
1 武汉理工大学《高频电子线路》课程设计任务书 2 三点式电容振荡器反馈振荡器的原理和分析反馈振荡器原理方框图如图所示。
反馈型振荡器是放大器和反馈网络组成的一个闭合环路,放大器通常是以某种选频网络作负载,是一个调谐放大器。
图反馈振荡器方框图为了能产生自激振荡,必须有正反馈,即反馈到输入端的自你好与放大器输入端的信号相位相同。
定义A为开环放大器的电压放大倍数:A(S)?F(S)为反馈网络的电压反馈系数:Uo(S) Ui(S)Ui’(S) F(S)?Uo(S)Af(S)为闭环电压放大倍数:Af(S)?Uo(s)A(S)? Ui(s)1?A(S)?F(S)在振荡开始时,于激励信号较弱,输出电压的振幅Uo则比较小,此后经过不断放大与反馈循环,输出幅度Uo开始逐渐增大,为了维持这一过程使输出振幅不断增加,应使反馈回来的信号比输入到放大器的信号大,即振荡开始时应为增幅振荡,即:T(jw)?1 因此起振的振幅条件是:2 武汉理工大学《高频电子线路》课程设计任务书A?F?1 ..起振的相位条件是:?A??F?2n? 要使振荡器起振必须同时满足起振的振幅条件和相位条件。
电容反馈式三段振荡器
电容反馈式三段振荡器
考毕兹振荡器的典型电路见图。
有图的等效电路可知,本电路与哈特莱式很相似,只是利用电容C1和C2作为分压器,代替了哈特莱式中的L1和L2。
同样可以证明,这种电路满足产生振荡的相位条件。
经验证明,C1/C2取1/2~1/8较为适宜。
与电感三端振荡电路相比,电容三端振荡器的优点是输出波形较好,这是因为集电极和基极电流可通过对谐波为低阻抗的电容支路回到发射级,所以高次谐波反馈减弱,输出的谐波分量减小,波形更加接近于正弦波。
其次,该电路中的不稳定电容(分布电容、器件的结电容等)都是与该电路并联的,因此适当加大回路电容量,就可以减弱不稳定因素对振荡频率的影响,从而提高了频率稳定度。
最后,当工作频率较高时,甚至可以只利用器件的输入和输出电容作为回路电容。
因而本电路适用于较高的工作频率。
这种电路的缺点是:调C1或C2来改变振荡频率时,反馈系数也将改变。
但只要在L两端并上一个可变电容器,并令C1与C2为固定电容,则在调整频率时,基本不会影响反馈系数。
电容反馈三点式振荡器
电容反馈三点式振荡器1、课程设计的目的本次课程设计我设计的是电容三点式振荡器,而电容三点式振荡器是自激振荡器的一种,因此要先了解一些自激振荡器的知识自激多谐振荡器也叫无稳态电路两管的集电极各有一个电容分别接到另一管子的基极,起到交流耦合作用,形成正反馈电路,当接通电源的瞬间,某个管子先通,另一只管子截止,这时,导通管子的集电集有输出,集电极的电容将脉冲信号耦合到另一只管子的基极使另一只管子导通.这时原来导通的管子截止.这样两只管子轮流导通和截止,就产生了震荡电流.由于器件不可能参数完全一致,因此在上电的瞬间两个三极管的状态就发生了变化,这个变化由于正反馈的作用越来越强烈,导致到达一个暂稳态.暂稳态期间另一个三极管经电容逐步充电后导通或者截止,状态发生翻转,到达另一个暂稳态.这样周而复始形成振荡。
构成电容反馈三点式振荡器的最基本电路应该是一个交流电路。
因此在设计总电路图之前,我先设计了一个交流电路。
通过课程设计,可以使我们加强对高频电子技术电路的理解,因为在整个设计过程中需要我们判断电路是否可以起振和稳定工作外还必须学会振荡电路的分析和参数计算,电路的设计和调试,同时还要明确这种振荡器的优缺点和使用场合。
在设计过程中我们学会了查寻资料﹑方案比较,以及设计计算等环节。
进一步提高分析解决实际问题的能力,创造一个动脑动手﹑独立开展电路实验的机会,锻炼分析﹑解决高频电子电路问题的实际本领,真正实现由课本知识向实际能力的转化;通过典型电路的设计与制作,加深对基本原理的了解,增强自己的实践能力。
为以后的工作打下基础。
2、设计方案论证2.1设计思路及方法本次课程设计我设计的是电容反馈三点式振荡器,而电容反馈三点式振荡器是自激振荡器的一种,因此更好进行设计了。
振荡器是不需要外加信号激励,自身将直流电能转换为交流电的装置。
凡是可以完成这一目的的装置都可以作为振荡器。
由我们所学过的知识知道,构成一个振荡器必须具备下列一些最基本的条件:(1)任何一个振荡回路,包含两个或两个以上储能元件。
实验三 LC电容反馈三点式振荡器(克拉泼振荡器)
实验三LC电容反馈三点式振荡器(克拉泼振荡器)一、实验目的1、掌握LC三点式振荡电路的基本原理,掌握电容反馈式LC三点振荡电路的设计方法及参数计算方法。
2、掌握振荡回路Q值对频率稳定度的影响。
3、掌握振荡器反馈系数不同时,静态工作电流I EQ对振荡器起振及振幅的影响。
二、预习要求1、复习LC振荡器的工作原理。
2、分析图3-1电路的工作原理,及各元件的作用,并计算晶体管静态工作电流Ic的最大值(设晶体管的β值为50)。
3、实验电路中,L1=3.3μh,若C=120pf,C′=680pf,计算当C T=50pf和C T=150pf时振荡频率各为多少?三、实验仪器1、双踪示波器2、万用表3、高频电路实验装置四、实验内容及步骤实验电路见3-1,实验前根据原理图在实验板上找到相应器件及插孔并了解其作用。
图3-1 LC电容反馈式振荡器、检查静态工作点(1)在实验板+12V插孔上接入+12V直流电源,注意电源极性不能接反。
(2)反馈电容C不接,(C′=680pf),用示波器观察振荡器停振时的情况,注意:连接C′的接线要尽量短。
(3)改变电位器Rp 测得晶体管V 的发射极电压V E ,V E 可连接变化,记下V E 的最大值,计算I E 值。
I =设Re = 1KΩ2、振荡频率与振荡幅度的测试实验条件:Ie=2mA 、C=100pf C′=680pf R L =110K(1)改变C T 电容,当分别接为C9、C10、C11时,记录相应的频率值,并填入表3.1。
(2)改变C T 电容,当分别接为C9、C10、C11时,用示波器测量相应振荡电压的峰峰值V p-p ,并填入表3.1。
表3.13、测试当C 、C′不同时,起振点、振幅与工作电流I ER 的关系(R=110KΩ)(1)取C=C3=100pf 、C′=C4=1200pf ,调电位器Rp 使I EQ (静态值)分别为表3.2所标各值,用示波器测量输出振荡幅度Vp-p (峰一峰值),并填入表3.2。
实验一 电容反馈三点式振荡器的实验研究
实验一电容反馈三点式振荡器的实验研究一.实验目的1通过实验深入了解电容反馈三点式振荡器的工作原理,熟悉改进型电容反馈三点式振荡器的构成及电路中各元件的作用。
2研究不同的静态工作点对振荡器的起振、振荡幅值和振荡波形的影响。
3学习使用示波器和数字式频率计测量高频振荡频率的方法。
4观察电源电压和负载变化对振荡幅值、频率及频率稳定性的影响。
二.实验仪器及设备1双踪示波器SS-7804型1台2数字式频率计HC-F1000型1台3直流稳压电源WXJ-30F型1台4数字万用表DT9202A型1台5实验电路板三.实验内容电路原理图如下:图1.改进型电容反馈振荡器实验电路1.晶体管静态工作点不同时对振荡器输出幅值和波形的影响。
1接通+12V电源,调节电位器W1(依据书上的原理图为准使振荡器振荡,此时用示波器在4点刚好观察到不失真的正弦电压波形。
2调节W1使振荡管静态工作点电流在0.5mA~4mA之间变化,用示波器测量并记录4点的幅值与波形变化情况,绘制出~曲线图。
分析为什么静态工作点过大和过小都不振荡。
实验结果:表1.不同静态工作点下4点的幅值和振荡频率由原理图知道Re阻值为1k,则根据/Re可以得到,绘出~曲线图如下:图2.~曲线图结果分析:当电路的静态工作点偏小时,其直流偏置小,会使晶体管工作在截止区域,导致振荡电路不满足起振条件。
同样当静态工作点选择得太高时,会使静态管过早进入饱和区,导致三极管的开始变小,,变小会使放大电路的增益变小,从而导致不能正常起振2.外界条件发生变化时对振荡频率的影响及正确测量振荡频率1选择合适的(1~2mA,使振荡器正常工作,在4点上测量,从示波器上读出频率和幅值,再测量3点和5点,分别读出振荡器的振荡幅值和频率,分析上述几点的频率和幅值为何不同。
实验结果:表2.为1.5mA时不同测量点的幅值和频率将上面的峰峰值除以2、再乘以10倍就得到振荡幅值。
频率和幅值不同的原因:由于示波器的探头存在分布电容的缘故,实验中使用X10的探头,那么探头与地之间的分布电容会有10pF到15pF左右,同时由于晶体管内部的结电容影响,也会使3点和4点之间的电容有差别。