高二数学(理科)解答题精选

合集下载

高二上学期中数学理科试卷(含答案)题型归纳

高二上学期中数学理科试卷(含答案)题型归纳

高二上学期中数学理科试卷(含答案)题型归纳在中国古代把数学叫算术,又称算学,最后才改为数学。

数学分为两部分,一部分是几何,另一部分是代数。

小编准备了高二上学期中数学理科试卷,具体请看以下内容。

一、填空题(本大题共14小题,每小题5分,共70分)1.在直角坐标系中,直线的斜率是▲ .2.圆的半径是▲ .3.椭圆的焦点坐标为▲ .4.抛物线的准线方程为▲ .5.双曲线的渐近线方程是▲ .6.若圆与圆相外切,则实数▲ .7.已知点P为直线上一动点,则P到坐标原点的距离的最小值是▲ .8.若方程表示椭圆,则的取值范围是▲ .9.已知两圆和相交于A,B 两点,则直线AB的方程是▲ .10.已知点P在抛物线上运动,F为抛物线的焦点,点M的坐标为(3,2),当取最小值时,点P的坐标为▲ .11.已知点P是圆C:上任意一点,若点P关于直线的对称点仍在圆C上,则的最小值是▲ .12.已知O为坐标原点,点,动点P与两点O、A的距离之比为1∶ ,则P点轨迹方程是▲ .13.设集合,当时,则实数的取值范围是▲ .14.已知椭圆C:的左、右焦点分别、,过点的直线交椭圆C于两点,若,且,则椭圆C的离心率是▲ .二、解答题(本题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤)16.(本小题满分14分)已知三点P(5,2)、 (-6,0)、 (6,0).(Ⅰ)求以、为焦点且过点P的椭圆的标准方程;(Ⅱ)设点P、、关于直线的对称点分别为、、,求以、为焦点且过点的双曲线的标准方程.17.(本题满分14分)某城市交通规划中,拟在以点O为圆心,半径为50m的高架圆形车道外侧P处开一个出口,以与圆形道相切的方式,引申一条直道连接到距圆形道圆心O正北250 m的道路上C处(如图),以O为原点,OC为y轴建立如图所示的直角坐标系,求直道PC所在的直线方程,并计算出口P的坐标.18.(本题满分16分)过点P(4,4)作直线l与圆O:相交于A、B两点.(Ⅰ)若直线l变动时,求AB中点M的轨迹方程;(Ⅱ)若直线l的斜率为,求弦AB的长;(Ⅲ)若一直线与圆O相切于点Q且与轴的正半轴,轴的正半轴围成一个三角形,当该三角形面积最小时,求点Q的坐标.19.(本题满分16分)在平面直角坐标系中,抛物线C的顶点在原点,经过点其焦点F在轴上.(Ⅰ)求抛物线C的标准方程;(Ⅱ)求过点F和OA的中点的直线的方程 ;(Ⅲ)设点 ,过点F的直线交抛物线C于B、D两点,记PB,PF,PD的斜率分别为,求证: .20.(本题满分16分)在平面直角坐标系中,已知定点A(-4,0),B(4,0),动点P与A、B连线的斜率之积为 .(Ⅰ)求点P的轨迹方程;(Ⅱ)设点P的轨迹与y轴负半轴交于点C,半径为r的圆M的圆心M在线段AC 的垂直平分线上,且在y轴右侧,圆M被y轴截得弦长为 .⑴求圆M的方程;⑵当r变化时,是否存在定直线l与动圆 M均相切?如果存在,求出定直线l的方程;如果不存在,说明理由.第一学期期中试卷高二数学(理科)参考答案一、填空题1. 22.33.4.5.6.7.8. 9. _ + 3y 5 =0 10. 11. 1812. (或 ) 13. 14.二、解答题15. 解:由题意得:(1) ,解得:,所以 3分因为所求直线与直线平行,所以,则所求直线方程为: 7分(2)直线MN所在直线的斜率为: 10分因为所求直线与两点所在直线垂直,所以则所求直线方程为: 14分16.解:(1)由题意,可设所求椭圆的标准方程为 + ,其半焦距 . ,,, 5分故所求椭圆的标准方程为 + ; 7分(2)点P(5,2)、 (-6,0)、 (6,0)关于直线y=_的对称点分别为:、 (0,-6)、 (0,6) 9分设所求双曲线的标准方程为 - ,由题意知半焦距,,,, 12分故所求双曲线的标准方程为 . 14分17. 解:圆形道的方程为_2+y2=2500, 2 分引伸道与北向道路的交接点C的坐标为(0,250 ), 4分设的方程为,由图可知又与圆相切,到距离,解得,的方程为①, 8分又,则OP的方程是:② 10分由①②解之得点坐标 13分引伸道在所建坐标系中的方程为,出口P的坐标是 14分18.解:(1)因为点M是AB的中点,所以OMAB,则点M所在曲线是以OP为直径的圆,其方程为,即 ; 4分(2)因为直线l的斜率为,所以直线l的方程是:,即, 6分设点O到直线l的距离为d,则,所以,解得: ; 10分(3)设切点Q的坐标为 .则切线斜率为 .所以切线方程为 .又,则12分此时,两个坐标轴的正半轴于切线围成的三角形面积 .14分由知当且仅当时,有最大值.即有最小值.因此点Q的坐标为 . 16分19.解:(Ⅰ)由题意可设抛物线的方程为:,因为抛物线经过点,所以,解得:,则抛物线C的标准方程是: ; 3分(Ⅱ)由(1)知:F(1,0),OA的中点M的坐标为,则,所以直线FM的方程是: ; 6分(Ⅲ)当直线的斜率不存在时,则所以,则 ;8分当直线的斜率存在时,设为k,则直线的方程为设,则,同理可得:,所以= , 12分由方程组消去y,并整理得:,所以, 14分则,又,所以,综上所述: 16分20. 解:(Ⅰ)设P点的坐标为(_, y),则因为动点P与A、B连线的斜率之积为,所以,化简得:,所以点P的轨迹方程为 (_4) 6分(Ⅱ)(1)由题意知:C(0, 2),A(4,0),所以线段AC的垂直平分线方程为y=2_+3, 8分设M(a, 2a+3)(a0),则⊙M的方程为,因为圆心M 到y轴的距离d=a,由,得:,10分所以圆M的方程为。

高二数学参考答案(理科)

高二数学参考答案(理科)

高二数学参考答案(理科)一、选择题BDDBC BACCB CA二、填空题(13)5 (14)12-(15)35 (16)(0.1)a p + 三、解答题(17)解:(I )91()x x -展开式的通项是 9921991()(1)r r r r r r r T C x C x x--+=-=-. ………………………….2分 依题意,有 925r -=,2r =. …………………………………4分所以,展开式中含5x 项的系数为22219(1)36T C +=-=. ………………….6分 (II )展开式共有10项,所以,中间项为第5、6项. ……………………8分5T =449249(1)126C x x -⨯-=, ………………………………………….10分5592569126(1)T C x x-⨯=-=-. ………………………………………….12分 (18)解: 以D 为坐标原点,射线DA 、DC 、DD 1依次为x 、y 、z 轴,建立空间直角坐标系,则点(1,1,0)E ,1(1,0,1)A , 1(0,2,1)C . ………………………………2分 从而1(1,0,1)DA =,1(0,2,1)DC =,(1,1,0)DE =. ………………………………4分 设平面11DAC 的法向量为(,,)n x y z =,由1100n DA n DC ⎧⋅=⎪⎨⋅=⎪⎩020x z y z +=⎧⇒⎨+=⎩. ………………………………9分 令1(1,,1)2n =--, 所以,点E 到平面11A DC 的距离为n DE d n ⋅=1=. ………………………………12分 (19)解:2(1)n mx +的展开式中含n x 项的系数为2n n n C m ⋅. …………………………2分设21()n x m ++的展开式通项式公式为1r T +,则21121r n r r r n T C xm +-++=⋅. 令21n r n +-=,得1r n =+,故此展开式中n x 项的系数为1121n n n C m+++. …………………………………4分由题意知,11212n n n n n n C m C m +++=.∴ 111(1)21221n m n n +==+++,∴m 是n 的减函数. ∵ n N *∈,∴12m >. …………………………………8分 又当1n =时,23m =,∴ 1223m <≤. …………………………………11分 ∴m 的取值范围是12(, ]23. …………………………………12分 (20)解:(I )这批食品不能出厂的概率是: 514510.80.80.20.263P C =--⨯⨯≈.………………………………………….4分(Ⅱ)五项指标全部检验完毕,这批食品可以出厂的概率是:13140.20.80.8P C =⨯⨯⨯ ………………………………………………6分五项指标全部检验完毕,这批食品不能出厂的概率是:13240.20.80.2P C =⨯⨯⨯ …………………………………………..9分由互斥事件有一个发生的概率加法可知,五项指标全部检验完毕,才能确定这批产品是否出厂的概率是:131240.20.80.4096P P P C =+=⨯⨯=. ………………………12分(21)解:(I )在平面图中,∵点A 、D 分别是RB 、RC 的中点,∴BC AD BC AD 21,//=. ……………………………………..2分 ∴∠RBC RAD PAD ∠=∠==90º.∴AD PA ⊥.在立体图中,PA AD ⊥,又PA AB ⊥,且AD AB A =.∴ PA ⊥平面ABCD ,∵ BC ⊂平面ABCD ,∴ BC PA ⊥. ∵A AB PA AB BC =⊥ ,, ∴BC ⊥平面PAB .∵⊂PB 平面PAB , ∴PB BC ⊥. …………………………..5分(Ⅱ) 建立如图所示的空间直角坐标系xyz A -.则D (-1,0,0),C (-2,1,0),P (0,0,1).∴DC =(-1,1,0),DP =(1,0,1), …………………………..7分设平面PCD 的法向量为n=(x ,y ,z ),则 ⎪⎩⎪⎨⎧=+=⋅=+-=⋅00z x DP n y x DC n , …………………………..9分 令1=x ,得1,1-==z y ,∴n=(1,1,-1).显然,PA 是平面ACD 的一个法向量,PA =(,0,01-),∴cos<n ,PA33131=⨯= . ∴由图形知,二面角P CD A --的平面角(锐角)的余弦值是33. ………..12分 (22)解:(Ⅰ)设“甲中一等奖”为事件1B ,“乙中一等奖”为事件2B ,事件1B 与事件2B 相互独立,1B 2B 表示二人都中一等奖,则0001.001.001.0)()()(2121=⨯==B P B P B B P所以,购买两张这种彩票都中一等奖的概率为0001.0. ……………………6分(Ⅱ)事件B A 的含义是“买这种彩票中奖”或“买这种彩票中一等奖或中二等奖”. 显然,事件A 与事件B 互斥. ………………………….8分 所以,1.0101109101101)()()(=⨯+⨯=+=B P A P B A P 故购买一张这种彩票能中奖的概率为1.0. ………………………….10分 (Ⅲ)由题意得,随机变量ξ的可能取值为2, 0, 8-,109(2)0.91010p ξ=-=⨯=,91(0)0.091010p ξ==⨯=;11(10)0.011010p ξ==⨯=. 的分布列如下:………………………….12分 72.101.0809.009.02-=⨯+⨯+⨯-=ξE所以,购买一张这种彩票的期望收益为损失72.1元. ………………………….14分另解:设中奖所得奖金为随机变量X ,则X 的可能取值为0,2,10109(0)0.91010P X ==⨯= 91(2)0.091010P X ==⨯= 11(10)0.011010P X ==⨯= 随机变量X又∵购买一张这种彩票的收益为随机变量2X ξ=-随机变量ξ的分布列如下:(下略)。

高二数学期末试卷(理科)及答案

高二数学期末试卷(理科)及答案

高二数学期末考试卷(理科)一、选择题(本大题共11小题,每小题3分,共33分) 1、与向量(1,3,2)a =-平行的一个向量的坐标是( ) A .(31,1,1) B .(-1,-3,2)C .(-21,23,-1)D .(2,-3,-22)2、设命题p :方程2310x x +-=的两根符号不同;命题q :方程2310x x +-=的两根之和为3,判断命题“p ⌝”、“q ⌝”、“p q ∧”、“p q ∨”为假命题的个数为( ) A .0 B .1 C .2 D .33、“a >b >0”是“ab <222b a +”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4、椭圆1422=+y m x 的焦距为2,则m 的值等于 ( ). A .5 B .8 C .5或3 D .5或85、已知空间四边形OABC 中,c OC b OB a OA ===,点M 在OA 上,且OM=2MA ,N 为BC 中点,则MN =( ) A .c b a 213221+- B .c b a 212132++-C .212121-+D .213232-+6、抛物线2y 4x =上的一点M 到焦点的距离为1,则点M 的纵坐标为( )A .1716 B .1516 C .78D .0 7、已知对称轴为坐标轴的双曲线有一条渐近线平行于直线x +2y -3=0,则该双曲线的离心率为( )A.5或54 或 C. D.5或538、若不等式|x -1| <a 成立的充分条件是0<x <4,则实数a 的取值范围是 ( ) A .a ≤1 B .a ≤3 C .a ≥1 D .a ≥39、已知),,2(),,1,1(t t t t t =--=,则||-的最小值为 ( )A .55 B .555 C .553 D .51110、已知动点P(x 、y )满足1022)2()1(-+-y x =|3x +4y +2|,则动点P 的轨迹是 ( )A .椭圆B .双曲线C .抛物线D .无法确定11、已知P 是椭圆192522=+y x 上的一点,O 是坐标原点,F 是椭圆的左焦点且),(21+=4||=,则点P 到该椭圆左准线的距离为( ) A.6 B.4 C.3 D.25高二数学期末考试卷(理科)答题卷一、选择题(本大题共11小题,每小题3分,共33分)二、填空题(本大题共4小题,每小题3分,共12分)12、命题:01,2=+-∈∃x x R x 的否定是13、若双曲线 4422=-y x 的左、右焦点是1F 、2F ,过1F 的直线交左支于A 、B 两点,若|AB|=5,则△AF 2B 的周长是 .14、若)1,3,2(-=,)3,1,2(-=,则,为邻边的平行四边形的面积为 . 15、以下四个关于圆锥曲线的命题中:①设A 、B 为两个定点,k 为正常数,||||PA PB k +=,则动点P 的轨迹为椭圆;②双曲线221259x y -=与椭圆22135x y +=有相同的焦点; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④和定点)0,5(A 及定直线25:4l x =的距离之比为54的点的轨迹方程为221169x y -=. 其中真命题的序号为 _________.三、解答题(本大题共6小题,共55分)16、(本题满分8分)已知命题p :方程11222=--m y m x 表示焦点在y 轴上的椭圆,命题q :双曲线1522=-mx y 的离心率)2,1(∈e ,若q p ,只有一个为真,求实数m 的取值范围.17、(本题满分8分)已知棱长为1的正方体AB CD -A 1B 1C 1D 1,试用向量法求平面A 1B C 1与平面AB CD 所成的锐二面角的余弦值。

高二数学理科参考答案

高二数学理科参考答案

数学(理)参考答案及评分标准一、 选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ADCABDBBCDCD二、 填空题13、π2 14、32 15、 2 16、①④ 三、解答题17.解: (1)根据正弦定理,sin sin 2sinA B C +=可化为2b c a += ……2分联立方程组4(21)2a b c b c a⎧++=+⎪⎨+=⎪⎩,解得4a =. ……5分(2)3sin ABC S A ∆=, ∴1sin 3sin 62bc A A bc ==,. …… 7分又由(1)可知42b c +=,∴22222()21cos 223b c a b c bc a A bc bc +-+--===. ……10分 18.解:(1)由121+=+n n S a ,可得121,(2)n n a S n -=+≥,两式相减得)2(3,211≥==-++n a a a a a n n n n n , …………………………2分 又,31212=+=S a ∴123a a =, ………………………………………3分 故}{n a 是首项为1,公比为3的等比数列,∴13-=n n a . …………………………………………………………4分 (2)设}{n b 的公差为d ,由153=T 得15321=++b b b ,于是52=b , ……………………………5分 故可设d b d b +=-=5,531,又9,3,1321===a a a ,由题意可得2)35()95)(15(+=+++-d d ,………………………………8分 解得10,221-==d d ,∵等差数列}{n b 的前n 项和n T 有最大值,∴10,0-=<d d , ……………………………………………………10分∴2520)10(2)1(15n n n n n T n -=-⨯-+=. ……………………………12分 19.证明:(1)取PC 的中点G ,连结FG 、EG ,∴FG 为△CDP 的中位线, ∴FG 21//CD , ∵四边形ABCD 为矩形,E 为AB 的中点,∴AE 21//CD , ∴FG //AE , ∴四边形AEGF 是平行四边形, ∴AF ∥EG ,又EG ⊂平面PCE ,AF ⊄平面PCE ,∴AF ∥平面PCE ;……… 4分 (2)∵ PA ⊥底面ABCD ,∴PA ⊥AD ,PA ⊥CD ,又AD ⊥CD ,PA AD=A ,∴CD ⊥平面ADP , 又AF ⊂平面ADP , ∴CD ⊥AF ,……… 5分 直角三角形PAD 中,∠PDA=45°,∴△PAD 为等腰直角三角形,∴PA =AD=2, ∵F 是PD 的中点, ∴AF ⊥PD ,又CD PD=D ,∴AF ⊥平面PCD ,∵AF ∥EG , ∴EG ⊥平面PCD ,又EG ⊂平面PCE , 平面PCE ⊥平面PCD ;………………………… 8分 (3)三棱锥C -BEP 即为三棱锥P -BCE ,……………………… 9分 PA 是三棱锥P -BCE 的高, Rt △BCE 中,BE=1,BC=2, ∴三棱锥C -BEP 的体积V 三棱锥C -BEP =V 三棱锥P -BCE =111112122332323BCE S PA BE BC PA ∆⋅=⋅⋅⋅⋅=⋅⋅⋅⋅=… 12分20.解:(1)设).,(y x OQ =因为Q 在直线OP 上,所以,//OP OQ 而02),1,2(=-∴=y x OP …………………………3分 即),7,21(),,2(y y OQ OA QA y y OQ --=-==),1,25(y y OQ OB QB --=-=…………………………6分.8)2(51220522--=+-=⋅∴y y y QB QA …………………………7分 当2=y 时,取得最小值为-8.此时)2,4(=OQ .…………………………8分(2) 有(1)可知.8),1,1(),5,3(-=⋅-=-=QB QA QB QA ………………10分GEFB ACDP故.17174,cos cos -=⋅⋅=〉〈=∠QBQA QB QA QB QA AQB …………………………12分 21、解:21.解(1)因为232()4()3f x x ax x x =+-∈R 在区间[1,1]-上是增函数,所以,2()2240f x x ax '=-++≥在区间[1,1]-上恒成立,…………2分(1)224011(1)2240f a a f a '-=--+≥⎧∴⇒-≤≤⎨'=-++≥⎩所以,实数a 的值组成的集合[1,1]A =-.………………4分(2)由3312)(x x x f += 得 233214233x ax x x x +-=+ 即 2(2)0x x ax --=因为方程3312)(x x x f +=即2(2)0x x ax --=的两个非零实根为12,x x212,20x x x ax ∴--=是两个非零实根,于是12x x a +=,122x x ⋅=-,22212121212()()48x x x x x x x x a ∴-=-=+-=+,[1,1],a A ∈=- 212max183x x ∴-=+= ………………6分设22()1(1),[1,1]g t m tm tm m t =++=++∈-则2min21,0()()1,01,0m m m g t h m m m m m ⎧++<⎪===⎨⎪-+>⎩,………………8分若212()1g t m tm x x =++≥-对任意A a ∈及[1,1]t ∈- 恒成立,则min 12max ()()3g t h m x x =≥-=,解得 22m m ≤-≥或,……………10分 因此,存在实数22m m ≤-≥或,使得不等式2121x x tm m -≥++对任意A a ∈及[1,1]t ∈- 恒成立.………………………………………………12分22解:(1)当1=a 时,x x x f ln 21)(2+=,x x x x x f 11)(2+=+='; (2)分对于∈x [1,e ],有0)(>'x f ,∴)(x f 在区间[1,e ]上为增函数,…………3分∴21)()(2max e e f x f +== ,21)1()(min ==f x f . …………4分(2)令x ax x a ax x f x g ln 2)21(2)()(2+--=-=,在区间(1,+∞)上,函数)(x f 的图象恒在直线ax y 2=下方 等价于0)(<x g 在区间(1,+∞)上恒成立 ,∵xx a x x ax x a x a x a x g ]1)12)[(1(12)12(12)12()(2---=+--=+--='…………6分 ① 若21>a ,令0)(='x g ,得11=x ,1212-=a x ,当112=>x x ,即121<<a 时,在(2x ,+∞)上有0)(>'x g ,此时)(x g 在区间(2x ,+∞)上是增函数,+∞→+∞→-+∞→x ax x ln ,2)21-(a ,x 2有时,)(x g ∈()(2x g ,+∞),不合题意; ………… 8分当211x x ≤=,即1≥a 时,同理可知,)(x g 在区间(1,+∞)上是增函数,+∞→+∞→-+∞→x ax x ln ,2)21-(a ,x 2有时有)(x g ∈()1(g ,+∞),也不合题意; …………9分② 若21≤a ,则有012≤-a ,此时在区间(1,+∞)上恒有0)(<'x g ,从而)(x g 在区间(1,+∞)上是减函数; 要使0)(<x g 在此区间上恒成立,只须满足021)1(≤--=a g 21-≥⇒a ,由此求得a 的范围是[21-,21].…………11分综上所述,a 的取值范围是[21-,21]. …………12分。

2013-2014高二第二学期数学理科答案

2013-2014高二第二学期数学理科答案

石家庄市2013~2014学年度第二学期期末考试试卷高二数学(理科答案)6分(Ⅱ)222()80(4241636)9.6()()()()40402060n ad bc K a b c d a c b d -⨯⨯-⨯===++++⨯⨯⨯ 由2(7.879)0.005P K ≥≈,所以有99.5%的把握认为“成绩与班级有关系”. …………………12分18. 解:(Ⅰ)由茎叶图可知:甲班有4人及格,乙班有5人及格,设事件“从每班10名同学中各抽取一人,至少有一人及格”为事件A . 则653()101010P A ⨯==⨯, 所以7()1()10P A P A =-=.…………4分 (Ⅱ)由题意可知X 的所有可能取值为0,1,2,3.…………5分2521062(0)1015C P X C ⨯===⨯;25221010465519(1)101045C P X C C ⨯⨯⨯==+=⨯⨯; 25221010645516(2)101045C P X C C ⨯⨯⨯==+=⨯⨯;2521044(3)1045C P X C ⨯===⨯.…………9分 所以X 的分布列为…………10分因此2191647()0123154545455E X =⨯+⨯+⨯+⨯=.…………12分 19. 解 (Ⅰ)a 2=5,a 3=7,a 4=9,猜想a n =2n +1. …………4分(Ⅱ)S n =n (3+2n +1)2=n 2+2n ,…………6分 使得2n n S >成立的最小正整数n =6. …………7分下证:n ≥6(n ∈N *)时都有2n >n 2+2n .①n =6时,26>62+2×6,即64>48成立;…………8分②假设n =k (k ≥6,k ∈N *)时,2k >k 2+2k 成立,那么2k +1=2·2k >2(k 2+2k )=k 2+2k +k 2+2k >k 2+2k +3+2k =(k +1)2+2(k +1),即n =k +1时,不等式成立; 由①、②可得,对于所有的n ≥6(n ∈N *)都有2n >n 2+2n 成立. …………12分20.解 (Ⅰ)根据题意知,(1)()(0)a x f x x x-'=>,…………2分 当0a <时,()f x 的单调递增区间为(1,+∞),单调递减区间为(0,1].…………4分(Ⅱ)∵(2)12a f '=-=,∴2a =-, ∴()2ln 23f x x x =-+-.∴32()(2)2g x x m x x =++-,∴2()3(24)2g x x m x '=++-.…………6分∵()g x 在区间(),2t 上总不是单调函数,且(0)2g '=-,∴()0(2)0g t g '<⎧⎨'>⎩…………8分 由题意知:对于任意的[]0,1t ∈,()0g t '<恒成立,∴(0)0(1)0(2)0g g g '<⎧⎪'<⎨⎪'>⎩…………10分∴9522m -<<-.…………12分21.解:(Ⅰ)由已知得1()(1)e (0)x f x f f x -''=-+,令1x =,得(1)(1)(0)1f f f ''=-+,即()01f =.…………2分又()(1)0ef f '=,所以(1)e f '=. 从而21()e 2x f x x x =-+.…………4分 (Ⅱ)由()()f x g x =得e x a x =-.令()e x h x x =-,则()e 1x h x '=-.…………6分由()0h x '=得0x =.所以当(1,0)x ∈-时,()0h x '<;当()0,2x ∈时,()0h x '>.∴()h x 在(-1,0)上单调递减,在(0,2)上单调递增.…………8分又()01h =,1(1)1eh -=+,()22e 2h =- 且()(1)2h h <-.…………10分∴两个图像恰有两个不同的交点时,实数a 的取值范围是1(1,1]e +.…………12分22.解析:(Ⅰ)证明:由已知条件,可得∠BAE =∠CAD.因为∠AEB 与∠ACB 是同弧上的圆周角,所以∠AEB =∠ACD.故△ABE ∽△ADC. …………5分(Ⅱ)因为△ABE ∽△ADC ,所以AB AE =AD AC,即AB·AC=AD·AE.又S =12AB·ACsin ∠BAC ,且S =12AD·AE, 故AB·ACsin ∠BAC =AD·AE.则sin ∠BAC =1,又∠BAC 为三角形内角,所以∠BAC =90°. …………10分23.坐标系与参数方程(I )由2cos 2sin x y ϕϕ=⎧⎨=⎩可得224x y +=,由4sin()3πρθ=+得24(sin cos cos sin )33ππρρθθ=+, 即22223x y y x +=+,整理得22(3)(1)4x y -+-=.…………5分 (II )圆1C 表示圆心在原点,半径为2的圆,圆2C 表示圆心为(3,1),半径为2的圆, 又圆2C 的圆心(3,1)在圆1C 上,由几何性质可知,两圆相交.…………10分24.不等式选讲解 (Ⅰ)由|21|1x <-得1211x <<--,解得01x <<.所以{}|01M x x <<=.…………5分(Ⅱ)由(Ⅰ)和a b M ∈,可知01a <<,01b <<.所以(1)()(1)(1)0ab a b a b >+-+=--.故1ab a b >++.…………10分。

高二理科数学(1)(2-2,2-3,4-4)

高二理科数学(1)(2-2,2-3,4-4)

高二理科数学(2)一、选择题(本大题共12小题,共60.0分)1.若复数(i是虚数单位)为纯虚数,则实数a的值为()A. 2 B. C. D.2.若函数的极小值为﹣1,则函数的极大值为()A. 3 B. C. D. 23.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A. B. C. D.4.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(2)+cos x,则f′(2)=()A. B. C. D.5.定义在R上的函数y=f(x)满足:f(x)+f′(x)>1,f(0)=2017,则不等式e x f(x)-e x>2016(其中e为自然对数的底数)的解集为()A. B. C. D.6.用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为()A. a,b,c都是奇数B. a,b,c都是偶数C. a,b,c中至少有两个偶数D. a,b,c中至少有两个偶数或都是奇数7.定积分的值为()A. 1 B. C. D.8.已知函数ƒ(x)=ax3+bx2+cx的图象如图所示,则有()A. ,B. ,C. ,D. ,9.利用回归分析的方法研究两个具有线性相关关系的变量时,下面说法:①相关关系r满足|r|≤1,而且|r|越接近1,变量间的相关程度越大;|r|越接近0,变量间的相关程度越小;②可以用R2来刻画回归效果,对于已获取的样本数据,R2越小,模型的拟合效果越好;③如果残差点比较均匀地落在含有x轴的水平的带状区域内,那么选用的模型比较合适;这样带状区域越窄,回归方程的预报精度越高;④不能期望回归方程得到的预报值就是预报变量的精确值;⑤随机误差e是衡量预报精确度的一个量,它满足E(e)=0.其中正确的结论为( )A. ①②③ B. ①②④ C. ③④⑤ D. ①③④⑤10.箱子里有5个黄球,4个白球,每次随机取一个球,若取出黄球,则放回箱中重新取球,若取出白球,则停止取球,那么在4次取球之后停止取球的概率为()A. B. C. D.11.如图,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法总数为()A. 60B. 480C. 420D. 7012.对同一样本,以下数据能说明X与Y有关系的可能性最大的一组为()A. ,B. ,C. ,D. ,二、填空题(本大题共4小题,共20.0分)13.圆ρ=4cosθ的圆心到直线tan()=1的距离为______ .14.(1-)4展开式中含x-3项的系数是______.15.已知,则的值是______ .16.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根据表中数据,得到.则认为选修文科与性别有关系出错的可能性为________.三、解答题(本大题共7小题,共84.0分)17.已知m∈R,复数.(1)若z是纯虚数,求m的值;(2)当m为何值时,z对应的点在直线x+y+3=0上?18.3名女生和5名男生排成一排(Ⅰ)如果女生必须全排在一起,可有多少种不同的排法?(Ⅱ)如果女生必须全分开,可有多少种不同的排法?(Ⅲ)如果两端都不能排女生,可有多少种不同的排法?(Ⅳ)如果两端不能都排女生,可有多少种不同的排法?19.在数列{a n}中,a1=2,a n+1=(n∈N+),(1)计算a2、a3、a4并由此猜想通项公式a n;(2)证明(1)中的猜想.20.某城市的华为手机专卖店对该市市民使用华为手机的情况进行调查.在使用华为手机的用户中,随机抽取100名,按年龄(单位:岁)进行统计的频率分布直方图如图:(1)根据频率分布直方图,分别求出样本的平均数(同一组数据用该区间的中点值作代表)和中位数的估计值(均精确到个位);(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加华为手机宣传活动,现从这20人中,随机选取2人各赠送一部华为手机,求这2名市民年龄都在[40,45)内的人数为X,求X的分布列及数学期望.21.某中学研究性学习小组,为了研究高中理科学生的物理成绩是否与数学成绩有关系,在本校高三年级随机调查了50名理科学生,调查结果表明:在数学成绩优秀的25人中16人物理成绩优秀,另外9人物理成绩一般;在数学成绩一般的25人中有6人物理成绩优秀,另外19人物理成绩一般.(Ⅰ)试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出有多大把握认为高中理科学生的物理成绩与数学成绩有关系;(Ⅱ)以调查结果的频率作为概率,从该校数学成绩优秀的学生中任取100人,求100人中物理成绩优秀的人数的数学期望和标准差.参考公式:K2=,其中n=a+b+c+d.22.已知曲线的极坐标方程为,直线∈,直线∈.以极点为原点,极轴为轴的正半轴建立平面直角坐标系.(1)求直线,的直角坐标方程以及曲线的参数方程;(2)已知直线与曲线交于,两点,直线与曲线交于,两点,求的面积.23.已知函数f(x)=ln(2x+a)-e2x-1.(1)若函数f(x)在x=处取得极值,求f(x)的单调区间;(2)当a≤1时,f(x)<0,求x的取值范围.高二理科数学(2)答案和解析1.【答案】A解:复数=为纯虚数,∴,≠0,解得a=2.故选A.2.【答案】A解:f′(x)=3x2-3,令f′(x)=0,解得x=±1,当x>1或x<-1时,f′(x)>0,当-1<x<1时,f′(x)<0.故f(x)在(-∞,-1),(1,+∞)上是增函数,在(-1,1)上是减函数,故f(x)在x=1处有极小值f(1)=1-3+m=-1,解得m=1.所以f(x)在x=-1处有极大值f(-1)=-1+3+1=3.故选A.3.【答案】B解:从甲、乙等5名学生中随机选出2人,基本事件总数n==10,甲被选中包含的基本事件的个数m==4,∴甲被选中的概率p===.故选:B.4.【答案】A解:∵f(x)=2xf′(2)+cosx,∴f'(x)=2f′(2)-sinx,令x=2,则f'(2)=2f′(2)-sin2,即f′(2)=sin2,故选:A.5.【答案】D解:设g(x)=e x f(x)-e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)-e x=e x[f(x)+f′(x)-1],∵f(x)+f′(x)>1,∴f(x)+f′(x)-1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)-e x>2016,∴g(x)>2016,又∵g(0)=e0f(0)-e0=2017-1=2016,∴g(x)>g(0),∴x>0,∴不等式的解集为(0,+∞),故选D.6.【答案】D解:用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设是:a,b,c中至少有两个偶数或都是奇数.故选:D.7.【答案】C解: ,因为,所以x2+y2=1,y≥0,即等于圆心在原点,半径为1的圆的面积的,所以,又,所以.故选C.8.【答案】A解:由函数f(x)的图象知f(x)先递增,再递减,再递增∴f′(x)先为正,再变为负,再变为正∵f′(x)=3ax2+2bx+c∴a>0∵在递减区间内∴f′(0)<0即c<0故选A9.【答案】D解:相关系数r是用来衡量两个变量之间线性相关关系的方法,当r=0时,表示两变量间无线性相关关系,当0<|r|<1时,表示两变量存在一定程度的线性相关.且|r|越接近1,两变量间线性关系越大.故①正确;由R2计算公式可知,R2越小,说明残差平方和越大,则模型拟合效果越差.故②错误;由残差图的定义可③正确;在利用样本数据得到回归方程的过程中,不可避免的会产生各种误差,因此用回归方程得到的预报值只能是实际值的近似值.故④正确.随机误差e是衡量预报精确度的一个量,它满足E(e)=0.正确.故答案为:D.10.【答案】B解:第四次取球之后停止表示前三次均取到黄球,第四次取到白球,由题意知本题是一个有放回的取球,是一个相互独立事件同时发生的概率,取到一个白球的概率是,去到一个黄球的概率是其概率为()3×,故选:B.11.【答案】C解:分两步,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用乘法原理可求解.由题设,四棱锥S-ABCD的顶点S,A,B所染的颜色互不相同,它们共有5×4×3=60种染色方法.当S,A,B染好时,不妨设所染颜色依次为1,2,3,若C染2,则D可染3或4或5,有3种染法;若C 染4,则D可染3或5,有2种染法;若C染5,则D可染3或4,有2种染法,即当S,A,B染好时,C,D还有7种染法.故不同的染色方法有60×7=420种.故选:C.12.【答案】A解:根据2×2列联表与独立性检验的应用问题,当与相差越大,X与Y有关系的可能性越大;即a、c相差越大,与相差越大;故选:A.13.【答案】解:圆ρ=4cosθ为ρ2=4ρcosθ,化为直角坐标方程为:x2+y2-4x=0,圆心坐标为C(2,0),直线tan()=1,即cotθ=1,即=1,化为直角坐标方程为:x-y=0,∴圆心C(2,0)到直线的距离d==.故答案为:.14.【答案】解:由,令-r=-3,得r=3.∴(1-)4展开式中含x-3项的系数是.故答案为:.15.【答案】()2018解:∵(x+1)2(x+2)2016=a0+a1(x+2)+a2(x+2)+…+a2018(x+2)2018,∴令x=-2,得a0=0再令x=-,得到a0+=(-+1)2(-+2)2016=()2018,∴=,故答案为:()2018,16.【答案】%解:∵根据表中数据,得到K2的观测值解,因为4.844>3.841,∴认为选修文科与性别有关系出错的可能性为5%.故答案为5%.17.【答案】解:(1)当z为纯虚数时,则,解得m=0,∴当m=0时,z为纯虚数;(2)当z对应的点在直线x+y+3=0上时,则,即,解得m=0或,∴当m=0或时,z对应的点在直线x+y+3=0上.18.【答案】解:(1)女生全部排在一起有A66A33=4320种.(2)女生必须全分开有A55A63=14400种.(3)因为两端都不能排女生,所以两端只能从5个男生中选2个排在两端,有A52种排法,其余6人有A66种排法,所以共有A52•A66=14400种排法.(4)8个人站成一排共有A88种不同的排法,排除掉两端都是女生的排法有A32•A66种,所以符合条件的排法有A88-A32•A66=36000种.19.【答案】解:(1)在数列{a n}中,∵a1=2,a n+1=(n∈N*)∴a1=2=,a2==,a3==,a4==,∴可以猜想这个数列的通项公式是a n=;(2)下面利用数学归纳法证明:①当n=1时,成立;②假设当n=k时,a k=,则当n=k+1(k∈N*)时,a k+1===,因此当n=k+1时,命题成立,综上①②可知:∀n∈N*,a n=都成立.20.【答案】解:(1)根据题意,计算平均数的估计值为=(27.5×0.01+32.5×0.04+37.5×0.07+42.5×0.06+47.5×0.02)×5=38.5≈39;中位数的估计值为:因为5×0.01+5×0.04=0.25<0.5,5×0.06+5×0.02=0.4<0.5,所以中位数位于区间[35,40)年龄段中,设中位数为x,所以0.24+0.07×(x-35)=0.5,x≈39;(2)用分层抽样的方法,抽取的20人,应有6人位于[40,45)年龄段内,14人位于[40,45)年龄段外;依题意,X的可能值为0,1,2;P(X=0)==,P(X=1)==,P(X=2)==;X数学期望为EX=0×+1×+2×=.所以K2=≈8.117>7.879,所以有99.5%把握认为高中理科学生的物理成绩与数学成绩有关系;(Ⅱ)由题意可得,数学成绩优秀的学生中物理成绩优秀的概率为,随机变量X符合二项分布,所以数学期望E(X)=100×=64,标准差==.22.【答案】解:(1)依题意,直线l1的直角坐标方程为,直线l2的直角坐标方程为,因为为+,故ρ2=ρcosθ+2ρsinθ,故x2+y2=x+2y,故(x-)2+(y-1)2=4,故曲线C的参数方程为++(α为参数).(2)∵联立,∴得到|OA|=4,同理,又∵,∴,∴ AOB的面积为.23.【答案】解:(1)f′(x)=-2e2x-1,由已知得f′()=0,即-1=0,所以a=0,所以f(x)=ln2x-e2x-1,函数f(x)的定义域为(0,+∞),f′(x)=-2e2x-1,由于f′(x)在(0,+∞)上为减函数,而f′()=0,所以当x∈(0,)时,f′(x)>0;当x∈(,+∞)时,f′(x)<0,所以f(x)的单调递增区间为(0,),单调递减区间为(,+∞).(2)由于a≤1,所以ln(2x+a)≤ln(2x+1),所以f(x)≤ln(2x+1)-e2x-1,令g(x)=ln(2x+1)-2x(x>-),则g′(x)=,所以,当-<x<0时,g′(x)>0,当x>0时,g′(x)<0,所以g(x)≤g(0)=0,即:ln(2x+1)≤2x令h(x)=e2x-1-2x,则h′(x)=2(e2x-1-1),所以,当x>时,h′(x)>0,当-<<时,h′(x)<0,所以h(x)≥h(),即:e2x-1≥2x.所以,对任意x>,ln(2x+1)-e2x-1<0,因此,当a≤1时,对任意x>-,ln(2x+1)-e2x-1<0,所以x的取值范围为(-,+∞)。

高二数学下学期第二次月考试题 理含解析 试题

高二数学下学期第二次月考试题 理含解析 试题

智才艺州攀枝花市创界学校二中二零二零—二零二壹高二下学期第二次月考数学试卷(理科)一、选择题〔此题一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕1.,且,那么实数的值是〔〕A.0B.1C. D.【答案】C【解析】【分析】先计算,再求得,利用模的计算公式求得a.【详解】∵,∴∴=3,得,那么,∴a=,应选:C.【点睛】此题主要考察复数模的运算、虚数i的周期,属于根底题.2.①是三角形一边的边长,是该边上的高,那么三角形的面积是,假设把扇形的弧长,半径分别看出三角形的底边长和高,可得到扇形的面积;②由,可得到,那么①、②两个推理依次是A.类比推理、归纳推理B.类比推理、演绎推理C.归纳推理、类比推理D.归纳推理、演绎推理【答案】A【解析】试题分析:根据类比推理、归纳推理的定义及特征,即可得出结论.详解:①由三角形性质得到圆的性质有相似之处,故推理为类比推理;②由特殊到一般,故推理为归纳推理.应选:A.点睛:此题考察的知识点是类比推理,归纳推理和演绎推理,纯熟掌握三种推理方式的定义及特征是解答此题的关键.满足,那么〔〕A. B.C. D.【答案】A【解析】【分析】由求得,利用复数的除法运算法那么化简即可.【详解】由得,所以=,应选A.【点睛】复数是高考中的必考知识,主要考察复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、一共轭复数、复数的模这些重要概念,复数的运算主要考察除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.=(i是虚数单位),那么复数的虚部为〔〕A.iB.-iC.1D.-1【答案】C【解析】故答案为C的导数是()A. B. C. D.【答案】D【解析】【分析】将f〔x〕=sin2x看成外函数和内函数,分别求导即可.【详解】将y=sin2x写成,y=u2,u=sinx的形式.对外函数求导为y′=2u,对内函数求导为u′=cosx,故可以得到y=sin2x的导数为y′=2ucosx=2sinxcosx=sin2x应选:D.【点睛】此题考察复合函数的求导,熟记简单复合函数求导,准确计算是关键,是根底题=的极值点为()A. B.C.或者D.【答案】B【解析】【分析】首先对函数求导,判断函数的单调性区间,从而求得函数的极值点,得到结果.【详解】==,函数在上是增函数,在上是减函数,所以x=1是函数的极小值点,应选B.【点睛】该题考察的是有关利用导数研究函数的极值点的问题,属于简单题目.()A.5B.6C.7D.8【答案】D【解析】时,时,应选D.与直线及所围成的封闭图形的面积为()A. B. C. D.【答案】D【解析】曲线与直线及所围成的封闭图形如下列图,图形的面积为,选.考点:定积分的简单应用.9.某校高二(2)班每周都会选出两位“进步之星〞,期中考试之后一周“进步之星〞人选揭晓之前,小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,小赵说:“一定没有我,肯定有小宋〞,小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,小谭说:“小赵说的对〞.这四人中有且只有两人的说法是正确的,那么“进步之星〞是()A.小马、小谭B.小马、小宋C.小赵、小谭D.小赵、小宋【答案】C【解析】【分析】根据题意,得出四人中有且只有小马和小宋的说法是正确的,“进步之星〞是小赵和小谭.【详解】小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,假设小马说假话,那么小赵、小宋、小谭说的都是假话,不合题意,所以小马说的是真话;小赵说:“一定没有我,肯定有小宋〞是假话,否那么,小谭说的是真话,这样有三人说真话,不合题意;小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,是真话;小谭说:“小赵说的对〞,是假话;这样,四人中有且只有小马和小宋的说法是正确的,且“进步之星〞是小赵和小谭.应选:C.【点睛】此题考察了逻辑推理的应用问题,分情况讨论是关键,是根底题目.,直线过点且与曲线相切,那么切点的横坐标为()A. B.1 C.2 D.【答案】B【解析】【分析】设出切点坐标,求出原函数的导函数,得到曲线在切点处的切线方程,把点〔0,﹣e〕代入,利用函数零点的断定求得切点横坐标.【详解】由f〔x〕=e2x﹣1,得f′〔x〕=2e2x﹣1,设切点为〔〕,那么f′〔x0〕,∴曲线y=f〔x〕在切点处的切线方程为y〔x﹣〕.把点〔0,﹣e〕代入,得﹣e,即,两边取对数,得〔〕+ln〔〕﹣1=0.令g〔x〕=〔2x﹣1〕+ln〔2x﹣1〕﹣1,显然函数g〔x〕为〔,+∞〕上的增函数,又g〔1〕=0,∴x=1,即=1.应选:B.【点睛】此题考察利用导数研究过曲线上某点处的切线方程,考察函数零点的断定及应用,是中档题.f(x)的导函数f'(x)的图象如下列图,f(-1)=f(2)=3,令g(x)=(x-1)f(x),那么不等式g(x)≥3x-3的解集是() A.[-1,1]∪[2,+∞) B.(-∞,-1]∪[1,2]C.(-∞,-1]∪[2,+∞)D.[-1,2]【答案】A【解析】【分析】根据图象得到函数f〔x〕的单调区间,通过讨论x的范围,从而求出不等式的解集.【详解】由题意得:f〔x〕在〔﹣∞,1〕递减,在〔1,+∞〕递增,解不等式g〔x〕≥3x﹣3,即解不等式〔x﹣1〕f〔x〕≥3〔x﹣1〕,①x﹣1≥0时,上式可化为:f〔x〕≥3=f〔2〕,解得:x≥2,②x﹣1≤0时,不等式可化为:f〔x〕≤3=f〔﹣1〕,解得:﹣1≤x≤1,综上:不等式的解集是[﹣1,1]∪[2,+∞〕,应选:A.【点睛】此题考察了函数的单调性问题,考察导数的应用,分类讨论思想,准确判断f(x)的单调性是关键,是一道中档题.在上存在导函数,对于任意的实数,都有,当时,.假设,那么实数的取值范围是〔〕A. B. C. D.【答案】A【解析】试题分析:∵,设,那么,∴为奇函数,又,∴在上是减函数,从而在上是减函数,又等价于,即,∴,解得.考点:导数在函数单调性中的应用.【思路点睛】因为,设,那么,可得为奇函数,又,得在上是减函数,从而在上是减函数,在根据函数的奇偶性和单调性可得,由此即可求出结果.二、填空题〔此题一共4小题,每一小题5分,一共20分〕为纯虚数,那么实数的值等于__________.【答案】0【解析】试题分析:由题意得,复数为纯虚数,那么,解得或者,当时,〔舍去〕,所以.考点:复数的概念.,,那么__________〔填入“〞或者“〞〕.【答案】.【解析】分析:利用分析法,逐步分析,即可得到与的大小关系.详解:由题意可知,那么比较的大小,只需比较和的大小,只需比较和的大小,又由,所以,即,即.点睛:此题主要考察了利用分析法比较大小,其中解答中合理利用分析法,逐步分析,得出大小关系是解答的关键,着重考察了推理与论证才能.15..【答案】.【解析】试题分析:根据定积分性质:,根据定积分的几何意义可知,表示以为圆心,1为半径的圆的四分之一面积,所以,而,所以.考点:定积分.,假设对任意实数都有,那么实数的取值范围是____________.【答案】【解析】构造函数,函数为奇函数且在上递减,即,即,即,所以即恒成立,所以,所以,故实数的取值范围是.三、解答题〔本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤〕〔i为虚数单位〕.〔1〕当时,求复数的值;〔2〕假设复数在复平面内对应的点位于第二象限,求的取值范围.【答案】〔Ⅰ〕〔Ⅱ〕【解析】【分析】〔Ⅰ〕将代入,利用复数运算公式计算即可。

高二上学期期末考试数学(理科)试卷(含参考答案)

高二上学期期末考试数学(理科)试卷(含参考答案)

高二第一学期理科数学期末考试试题一、选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合2{14}A x x =<<,{lg(1)}B x y x ==-,则AB =( )A .{12}x x <<B .{12}x x ≤<C .{12}x x -<<D .{12}x x -≤< 2. 如果命题“p 且q ”是假命题,“q ⌝”也是假命题,则( ) A .命题“⌝p 或q ”是假命题 B .命题“p 或q ”是假命题 C .命题“⌝p 且q ”是真命题 D .命题“p 且q ⌝”是真命题3. 已知数列{}n a 为等差数列,其前n 项和为n S ,7825a a -=,则11S 为( ) A. 110 B. 55 C. 50 D. 不能确定4. 以抛物线28y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A. 22(1)1x y ++= B. 22(1)1x y -+= C. 22(2)4x y ++= D. 22(2)4x y -+=5.“3a =”是 “函数()3xf x ax =-有零点”的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件6.已知n m ,是两条不同的直线, βα,是两个不同的平面,给出下列命题: ①若βα⊥,α//m ,则β⊥m ; ②若α⊥m,β⊥n ,且n m ⊥,则βα⊥;③若β⊥m ,α//m ,则β⊥α; ④若α//m ,β//n ,且n m //,则βα//. 其中正确命题的序号是( )A .①④B .②④C .②③ D.①③7.我国古代数学典籍《九章算术》第七章“盈不足”中有一问题: “今有蒲生一日,长三尺。

莞生一日,长一尺。

蒲生日自半。

莞生日自倍。

问几何日而长等?”(蒲常指一种多年生草本植物,莞指水葱一类的植物)现欲知几日后,莞高超过蒲高一倍.为了解决这个新问题,设计右面的程序框图,输入3A =,1a =.那么在①处应填( )A .2?T S >B .2?S T >C .2?S T <D .2?T S < 8.过函数()3213f x x x =-图象上一个动点作函数的切线,则切线倾斜角的范围为( )A. 3[0,]4π B.3π[0,)[,π) 24π⋃ C. 3π[,π) 4 D. 3(,]24ππ 9.已知定义在R 上的函数()f x 满足: ()1y f x =-的图象关于()1,0点对称,且当0x ≥时恒有()()2f x f x +=,当[)0,2x ∈时, ()1x f x e =-,则()()20162017f f +-= ( )(其中e为自然对数的底)A. 1e -B. 1e -C. 1e --D. 1e +10.已知Rt ABC ∆,点D 为斜边BC 的中点,63AB =,6AC =,12AE ED =,则A E E B ⋅等于( ) A. 14- B. 9- C. 9 D.1411.在平面直角坐标系中,不等式组22200x y x y x y r +≤⎧⎪-≤⎨⎪+≤⎩(r 为常数)表示的平面区域的面积为π,若,x y 满足上述约束条件,则13x y z x ++=+的最小值为 ( )A .1- B.17- C. 13 D .75-12. 设双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,离心率为e ,过2F 的直线与双曲线的右支交于B A ,两点,若AB F 1∆是以A 为直角顶点的等腰直角三角形,则=2e ( )A.221+B. 224-C.225-D.223+ 二、填空题:本大题共4小题,每小题5分,满分20分.13. 袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.14.已知α为锐角,向量(cos ,sin )a αα=、(1,1)b =-满足223a b ⋅=,则sin()4πα+= .15.某三棱锥的三视图如图所示,则其外接球的表面积为______.16.若实数,,a b c 满足22(21)(ln )0a b a c c --+--=,则b c -的最小值是_________.三、解答题:本大题共6小题,满分70分,解答须写出文字说明、证明过程和演算步骤.17. (本小题满分10分)在数列{}n a 中,14a =,21(1)22n n na n a n n +-+=+.(1)求证:数列n a n ⎧⎫⎨⎬⎩⎭是等差数列;(2)求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S . 18. (本小题满分12分) 在ABC ∆中,角,,A B C 所对的边分别是,,a b c,且sin sin sin sin 3a Ab Bc C C a B +-= .(1)求角C ;(2)若ABC ∆的中线CD 的长为1,求ABC ∆的面积的最大值.19.(本小题满分12分)某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若75.0||>r ,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.附:相关系数公式∑∑∑===----=ni in i ini iiy y x x y y x x r 12121)()())((,参考数据55.03.0≈,95.09.0≈.20.(本小题满分12分)在五面体ABCDEF 中, ////,222AB CD EF CD EF CF AB AD =====,60DCF ︒∠=,AD ⊥平面CDEF .(1)证明:直线CE ⊥平面ADF ; (2)已知P 为棱BC 上的点,23CP CB =,求二面角P DF A --的大小.21. (本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>的右焦点(1,0)F ,过点F 且与坐标轴不垂直的直线与椭圆交于P ,Q 两点,当直线PQ 经过椭圆的一个顶点时其倾斜角恰好为60︒. (1)求椭圆C 的方程;(2)设O 为坐标原点,线段OF 上是否存在点(,0)T t (0)t ≠,使得QP TP PQ TQ ⋅=⋅?若存在,求出实数t 的取值范围;若不存在,说明理由.22.(本小题满分12分)已知函数()ln a f x x x=+. (1)求函数()f x 的单调区间; (2)证明:当2a e≥时, ()x f x e ->.高二数学期末考试试题参考答案ACBDA CBBAD DC 13. 56 14.315. 323π 16. 117.解:(1)21(1)22n n na n a n n +-+=+的两边同时除以(1)n n +,得*12()1n na a n n n+-=∈+N , …………3分 所以数列n a n ⎧⎫⎨⎬⎩⎭是首项为4,公差为2的等差数列. …………………4分(2)由(1),得22n an n=+,…………………5分所以222n a n n =+,故2111(1)111()222(1)21n n n a n n n n n n +-==⋅=⋅-+++,………………7分所以111111[(1)()()]22231n S n n =-+-++-+, 1111111[(1)()]223231n n =++++-++++ 11(1)212(1)n n n =-=++. ……………10分 18.解:(1)∵ sin sinsin sin a A b B c C Ca B +-=,222cos 2a b c C Cab +-∴==…………4分,即tan C =(0,)C π∈3C π∴=.………………6分(2) 由222211()(2)44CD CA CB CA CB CA CB =+=++⋅ 即2222111(2cos )()44b a ab C b a ab =++=++…………………8分从而22442,3ab a b ab ab -=+≥≤(当且仅当a b ==10分 即114sin 223ABC S ab C ∆=≤⨯=…………………12分19.解:(1)由已知数据可得2456855x ++++==,3444545y ++++==.………1分因为51()()(3)(1)000316iii x x y y =--=-⨯-++++⨯=∑,…………………2分 ,52310)1()3()(22222512=+++-+-=-∑=i ix x …………………………3分=…………………………4分所以相关系数()()0.95ni ix x y yr--===≈∑.………………5分因为0.75r>,所以可用线性回归模型拟合y与的关系.……………6分(2)记商家周总利润为Y元,由条件可得在过去50周里:当70X>时,共有10周,此时只有1台光照控制仪运行,周总利润Y=1×3000-2×1000=1000元.…………8分当5070X≤≤时,共有35周,此时有2台光照控制仪运行,周总利润Y=2×3000-1×1000=5000元.……………………………9分当50X<时,共有5周,此时3台光照控制仪都运行,周总利润Y=3×3000=9000元.…………………10分所以过去50周周总利润的平均值10001050003590005460050Y⨯+⨯+⨯==元,所以商家在过去50周周总利润的平均值为4600元.………………………12分20.证明:(1)//,2,CD EF CD EF CF===∴四边形CDEF为菱形,CE DF∴⊥,………1分又∵AD⊥平面CDEF∴CE AD⊥………2分又,AD DF D⋂=∴直线CE⊥平面ADF.………4分(2) 60DCF∠=,DEF∴∆为正三角形,取EF的中点G,连接GD,则,GD EF GD CD⊥∴⊥,又AD⊥平面CDEF,∴,,DA DC DG两两垂直,以D为原点,,,DA DC DG所在直线分别为,,x y z轴,建立空间直角坐标系D xyz-,………5分2,1CD EF CF AB AD=====,((0,,E F∴-,(1,1,0),(0,2,0)B C………6分由(1)知(0,CE=-是平面ADF的法向量,………7分()()0,1,3,1,1,0DF CB==-,222(,,0)333CP CB==-,(0,2,0)DC=则24(,,0)33DP DC CP=+=,………8分设平面PDF的法向量为(),,n x y z=,∴n DFn DP⎧⋅=⎪⎨⋅=⎪⎩,即2433yx y⎧=⎪⎨+=⎪⎩,令z=3,6y x==-,∴(6,3,n=-………10分∴1cos ,223n CE n CE n CE⋅===-………11分∴二面角P DF A --大小为60.………12分21. 解:(1)由题意知1c =,又tan 603bc ==,所以23b =,………2分2224a b c =+=,所以椭圆的方程为:22143x y += ;………4分 (2)当0k =时, 0t =,不合题意设直线PQ 的方程为:(1),(0)y k x k =-≠,代入22143x y+=,得:2222(34)84120k x k x k +-+-=,故0∆>,则,0k R k ∈≠ 设1122(,),(,)P x y Q x y ,线段PQ 的中点为00(,)R x y ,则2120002243,(1)23434x x k k x y k x k k +===-=-++ ,………7分由QP TP PQ TQ ⋅=⋅ 得:()(2)0PQ TQ TP PQ TR ⋅+=⋅= , 所以直线TR 为直线PQ 的垂直平分线,………8分直线TR 的方程为:222314()3434k k y x k k k +=--++ , ………10分 令0y =得:T 点的横坐标22213344k t k k ==++,………11分因为2(0,)k ∈+∞, 所以234(4,)k +∈+∞,所以1(0,)4t ∈. ………12分所以线段OF 上存在点(,0)T t 使得QP TP PQ TQ ⋅=⋅,其中1(0,)4t ∈.22.解:(1)函数()ln af x x x=+的定义域为()0,+∞.由()ln a f x x x =+,得()221a x af x x x x ='-=-.………1分①当0a ≤时, ()0f x '>恒成立, ()f x 递增, ∴函数()f x 的单调递增区间是()0,+∞ ………2分 ②当0a >时,则()0,x a ∈时,()0,f x '<()f x 递减,(),x a ∈+∞时, ()0f x '>,()f x 递增.∴函数()f x 的单调递减区间是(0,)a ,单调递增区间是(),a +∞.………4分 (2)要证明当2a e ≥时, ()x f x e ->,即证明当20,x a e >≥时, ln xa x e x-+>,………5分 即ln xx x a xe -+>,令()ln h x x x a =+,则()ln 1h x x ='+,当10x e <<时, ()0h x '<;当1x e>时, ()0h x '>. 所以函数()h x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.当1x e =时, ()min1h x a e ⎡⎤=-+⎣⎦.于是,当2a e ≥时, ()11h x a e e≥-+≥.①………8分 令()xx xe φ-=,则()()1xx x x exe e x φ---'=-=-.当01x <<时, ()0x ϕ'>;当1x >时, ()0x φ'<. 所以函数()x φ在()0,1上单调递增,在()1,+∞上单调递减.当1x =时, ()max1x e φ⎡⎤=⎣⎦.于是,当0x >时, ()1x eφ≤.②………11分 显然,不等式①、②中的等号不能同时成立.故当2a e≥时, (f x )xe ->.………12分。

高二数学上学期期末复习题2(理科)答案

高二数学上学期期末复习题2(理科)答案

高二数学上学期期末复习题二(理科)(2013.12)1.命题“存在0x ∈R ,02x ≤0”的否定是( )A.不存在0x ∈R, 02x >0B.存在0x ∈R, 02x ≥0C.对任意的x ∈R, 2x≤0 D.对任意的x ∈R, 2x>0 【答案】D2.如图,若图中直线l 1, l 2, l 3的斜率分别为k 1, k 2, k 3,则A .k 1<k 2<k 3B .k 3<k 1<k 2 C.k 3<k 2<k 1 D.k 1<k 3<k 2 【答案】B3.已知双曲线2222:1x y C a b-=(0,0)a b >>,则C 的渐近线方程为( )(A )14y x =± (B )13y x =± (C )12y x =± (D )y x =±【答案】C ;4.若直线(2m 2+m -3)x +(m 2-m )y =4m -1在x 轴上的截距为1,则实数m 等于( )A .1B .2C .-12D .2或-12解析:当2m 2+m -3≠0时,在x 轴上截距为4m -12m 2+m -3=1,即2m 2-3m -2=0,∴m =2或m =-12.答案:D5.已知椭圆C 的左、右焦点坐标分别是(-2,0),(2,0),离心率是63,则椭圆C 的方程为 ( ).A.x 23+y 2=1 B .x 2+y 23=1 C.x 23+y 22=1 D.x 22+y23=1 解析 因为c a =63,且c =2,所以a =3,b =a 2-c 2=1.所以椭圆C 的方程为x 23+y2 =1. 答案 A6.如图,在正方体1111D C B A ABCD -,若11AA z AB y AD x BD ++=,则x y z ++的值为 ( )A .3 B .1 C .-1 D .-3【答案】B7.设a R ∈,则“1a =”是“直线1:210l ax y +-=与直线2:(1)40l x a y +++=平行”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 【答案】A8.给出下列互不相同的直线l 、m 、n 和平面α、β、γ的三个命题: ①若l 与m 为异面直线,l ⊂α,m ⊂β,则α∥β. ②若α∥β,l ⊂α,m ⊂β,则l ∥m .③若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n . 其中真命题的个数为( ) A .3 B .2 C .1 D .0解析:①中α与β也可能相交,∴①错;在②中l 与m 也可能异面,∴②错,③正确. 答案:C9.设m ,n 为两条直线,α,β为两个平面,则下列四个命题中,正确的命题是( ) A .若m ⊂α,n ⊂α,且m ∥β,n ∥β,则α∥β B .若m ∥α,m ∥n ,则n ∥α C .若m ∥α,n ∥α,则m ∥nD .若m ,n 为两条异面直线,且m ∥α,n ∥α,m ∥β,n ∥β,则α∥β答案:D10.长方体ABCD —A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( ) A.1010 B.3010 C.21510 D.31010答案:B11.已知抛物线22y px =的焦点F 与双曲线22179x y -=的右焦点重合,抛物线的准线与x轴的交点为K ,点A在抛物线上且||||AK AF =,则△AFK 的面积为 (A )4 (B )8 (C )16 (D )32 【答案】D【解析】双曲线的右焦点为(4,0),抛物线的焦点为(,0)2p ,所以42p=,即8p =。

高二数学下学期期末考试理科试题(解析版)

高二数学下学期期末考试理科试题(解析版)
则 的极坐标方程为 ,
由于直线 过原点,且倾斜角为 ,故其极坐标方程为 .
(2)由 得 ,
设 , 对应的极径分别为 ,则 , ,
三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.已知集合 , .
(1)若 , ,求实数 的取值范围;
(2)若 ,且 ,求实数 取值范围.
【答案】(1) ;(2) .
【解析】
【分析】
(1)先求出 ,再根据包含关系可得关于 的不等式组,从而求实数 的取值范围,注意对 是否为空集分类讨论;
所以p∧q为假命题,p∨q为真命题,p∧( q)为假命题, q为假命题.
故选B.
【点睛】(1)本题主要考查命题的真假和复合命题的真假的判断,意在考查学生对这些知识的掌握水平和分析推理能力.(2)复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.
8.甲、乙两位射击运动员的5次比赛成绩(单位:环)如茎叶图所示,若两位运动员平均成绩相同,则成绩较稳定(方差较小)的那位运动员成绩的方差为
【详解】依题意,产品的质量X(单位:千克)服从正态分布N(90,64),得 ,

质量在区间 内的产品估计有 件.
故选A.
【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,考查曲线的对称性,属于基础题.
11.2021年广东新高考将实行 模式,即语文数学英语必选,物理历史二选一,政治地理化学生物四选二,共有12种选课模式.今年高一的小明与小芳都准备选历史,假若他们都对后面四科没有偏好,则他们选课相同的概率( )
公园




获得签名人数
45
60
30
15

高二数学试题参考答案及评分标准(理科)

高二数学试题参考答案及评分标准(理科)

高二数学试题参考答案及评分标准(理科)一、选择题:(每小题5分,满分50分)CDBAD CBDCA二、填空题:(每小题5分,满分25分)11.真 12.90 13.③④三、解答题(本大题共6小题,满分75分)16.解:∵直线3470x y +-=的斜率为34-,∴直线l 的斜率为34-. ………(3分)设直线l 的方程为34y x b =-+,令0y =,得43x b =;令0x =,得y b =. ………(7分)由于直线l 与两坐标轴围成的三角形的面积是24,∴142423S b b =⋅||⋅||=,解得6b =±, ………(10分)∴直线l 的方程是364y x =-±(或34240x y +±=). ………(12分)17.证明:⑴(必要性)∵⊿ABC 三个内角成等差数列,不妨设这三个内角依次为B B B αα-+,,,由()()180B B B αα-+++= ,得60B = ,∴⊿ABC 有一个内角等于60 . …………(5分)⑵(充分性)若ABC ∆有一个内角为60 ,不妨设60B = ,则180601202A C B +=-== , ∴A B B C -=-,∴三个内角A B C ,,成等差数列. …………(10分) 综合⑴⑵得,⊿ABC 三个内角成等差数列的充要条件是有一个内角等于60 . …………(12分) (说明:混淆了必要性与充分性,或未注明必要性与充分性,扣4分) 18.证明:⑴∵BC ABE ⊥平面,AE ABE ⊂平面,∴AE BC ⊥.又∵BF ACE ⊥平面,AE ACE ⊂平面,∴AE BF ⊥. …………(3分) ∵BF BC B = , ∴AE BCE ⊥平面.又∵BE BCE ⊂平面,∴AE BE ⊥. …………(6分) ⑵取DE 的中点P ,连接PA PN ,.∵点N 为线段CE 的中点,∴PN ∥DC ,且12P N D C =. …………(8分)又∵四边形A B C D 是矩形,点M 为线段AB 的中点,∴AM ∥DC ,且12AM DC =,∴PN ∥AM ,且P N A M =, ∴四边形A M N P 是平行四边形,∴MN ∥AP . …………(10分) ∵AP ⊂平面D A E ,M N ⊄平面D A E ,∴MN ∥平面D A E . …………(12分) 19.解:∵O M O N C M C N ==,,∴OC 垂直平分线段MN . ……………(4分)∵2MN k =-,∴12OC k =,∴直线OC 的方程是12y x =,∴212t t =,解得2t =或2t =-. ……………(8分)⑴当2t =时,圆心C 的坐标为(2,1),半径OC =||此时圆心C 到直线24y x =-+的距离d ==<C 相交,符合题意.⑵当2t =-时,圆心C 的坐标为(-2,-1),半径OC =||此时圆心C 到直线24y x =-+的距离d ==>直线与圆C 相离,不符合题意.………………(11分)综合⑴⑵得,圆C 的方程为22(2)(1)5x y -+-=. ………………(12分) 20.解:⑴如图,取AB 的中点E ,则//DE BC . ∵BC AC ⊥,∴DE AC ⊥.∵1A D ⊥平面ABC ,∴分别以1DE DC DA ,,所在直线为x y z ,,轴建立空间直角坐标系,得()01 0A -,,,()0 1 0C ,,,()2 1 0B ,,,()10 0 A t ,,,()10 2 C t ,,.由21130AC BA t ⋅=-+=,得t =…………(3分)设平面1A AB 的法向量为()1111n x y z =,,.∵(10 1AA = ,,()2 2 0AB = ,,,∴11111110220n AA y n AB x y ⎧⋅==⎪⎨⋅=+=⎪⎩. 设11z =,可得)1n =……………(5分)∴点1C 到平面1A AB的距离111AC n d n ⋅==||||. ……………(7分)(2)再设平面1ABC 的法向量为()2222n x y z =,,.∵(10 1CA =- ,,()2 0 0CB = ,,,∴212222020n CA y n CB x ⎧⋅=-=⎪⎨⋅==⎪⎩. 设21z =,可得()20n =, ……………(9分)∴121212cos ||||n n n n n n ⋅<>==⋅ ,……………(11分)根据法向量的方向可知,二面角1A ABC --. …………(13分) 21.解:⑴根据题意得22121914ab =⎨⎪+=⎪⎩,解得2243.a b ⎧=⎨=⎩,. …………(2分)∴椭圆C 的方程为 22143x y +=. …………(5分)⑵由22143x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 并整理,得 222(34)84120k x kmx m +++-=.∵直线l 与椭圆C 交于两点,∴0∆>,得22430k m -+> (*)设点A 、B 的坐标分别为1122()()A x y B x y ,,,, 则212122284123434km m x x x x k k -+=-⋅=++,. ………………(8分) ∵11A A AB ⊥,∴110A A A B ⋅=. 又∵点1A 的坐标为1(2 0)A ,,∴1212(2)(2)0x x y y --+=, 即1212(2)(2)()()0x x kx m kx m --+++=,221212(1)(2)()40k x x km x x m ++-+++=, ∴222224128(1)(2)()403434m km k km m k k-+⋅+--++=++,化简并整理得2271640m km k ++=, 解得2m k =-,或27m k =-,均满足条件(*). ………………(12分)当2m k =-时,:(2)l y k x =-,所过的定点为(2,0),与1A 重合,不合题意.当27m k=-时,2:()7l y k x=-,所过的定点为(27,0),符合题意.综上所述,直线l经过定点(27,0). ………………(14分)命题人:和县一中贾相伟含山二中王冲审题人:庐江中学汪京怀。

人教b版选修1-1高二数学参考答案(理科).docx

人教b版选修1-1高二数学参考答案(理科).docx

高中数学学习材料鼎尚图文*整理制作高二数学参考答案(理科)一、选择题BDDBC BACCB CA二、填空题(13)5 (14)12-(15)35 (16)(0.1)a p + 三、解答题(17)解:(I )91()x x -展开式的通项是 9921991()(1)r r r r r r r T C x C x x--+=-=-. ………………………….2分 依题意,有 925r -=,2r =. …………………………………4分 所以,展开式中含5x 项的系数为22219(1)36T C +=-=. ………………….6分(II )展开式共有10项,所以,中间项为第5、6项. ……………………8分 5T =449249(1)126C x x -⨯-=, ………………………………………….10分5592569126(1)T C x x-⨯=-=-. ………………………………………….12分 (18)解: 以D 为坐标原点,射线DA 、DC 、DD 1依次为x 、y 、z 轴,建立空间直角坐标系,则点(1,1,0)E ,1(1,0,1)A , 1(0,2,1)C . ………………………………2分 从而1(1,0,1)DA =,1(0,2,1)DC =,(1,1,0)DE =. ………………………………4分 设平面11DA C 的法向量为(,,)n x y z =,由1100n DA n DC ⎧⋅=⎪⎨⋅=⎪⎩020x z y z +=⎧⇒⎨+=⎩. ………………………………9分令1(1,,1)2n =--,所以,点E 到平面11A DC 的距离为n DE d n ⋅=1=. ………………………………12分 (19)解:2(1)n mx +的展开式中含nx 项的系数为2n n n C m ⋅. …………………………2分设21()n x m ++的展开式通项式公式为1r T +,则21121r n r r r n T C x m +-++=⋅. 令21n r n +-=,得1r n =+,故此展开式中n x 项的系数为1121n n n C m +++.…………………………………4分由题意知,11212n n n n n n C mC m +++=. ∴ 111(1)21221n m n n +==+++,∴m 是n 的减函数. ∵ n N *∈,∴12m >. …………………………………8分 又当1n =时,23m =,∴ 1223m <≤. …………………………………11分 ∴m 的取值范围是12(, ]23. …………………………………12分 (20)解:(I )这批食品不能出厂的概率是: 514510.80.80.20.263P C =--⨯⨯≈.………………………………………….4分(Ⅱ)五项指标全部检验完毕,这批食品可以出厂的概率是:13140.20.80.8P C =⨯⨯⨯ ………………………………………………6分五项指标全部检验完毕,这批食品不能出厂的概率是:13240.20.80.2P C =⨯⨯⨯ …………………………………………..9分由互斥事件有一个发生的概率加法可知,五项指标全部检验完毕,才能确定这批产品是否出厂的概率是:131240.20.80.4096P P P C =+=⨯⨯=. ………………………12分(21)解:(I )在平面图中,∵点A 、D 分别是RB 、RC 的中点,∴BC AD BC AD 21,//=. ……………………………………..2分 ∴∠RBC RAD PAD ∠=∠==90º.∴AD PA ⊥.在立体图中,PA AD ⊥,又PA AB ⊥,且AD AB A =.∴ PA ⊥平面ABCD ,∵ BC ⊂平面ABCD ,∴ BC PA ⊥. ∵A AB PA AB BC =⊥ ,, ∴BC ⊥平面PAB .∵⊂PB 平面PAB , ∴PB BC ⊥. …………………………..5分(Ⅱ) 建立如图所示的空间直角坐标系xyz A -.则D (-1,0,0),C (-2,1,0),P (0,0,1). ∴DC =(-1,1,0),DP =(1,0,1), …………………………..7分设平面PCD 的法向量为n=(x ,y ,z ),则 ⎪⎩⎪⎨⎧=+=⋅=+-=⋅00z x DP n y x DC n , …………………………..9分 令1=x ,得1,1-==z y ,∴n=(1,1,-1). 显然,PA 是平面ACD 的一个法向量,PA =(,0,01-), ∴cos<n ,PA >=33131=⨯=⋅⋅PAn PA n . ∴由图形知,二面角P CD A --的平面角(锐角)的余弦值是33. ………..12分 (22)解:(Ⅰ)设“甲中一等奖”为事件1B ,“乙中一等奖”为事件2B ,事件1B 与事件2B 相互独立,1B 2B 表示二人都中一等奖,则0001.001.001.0)()()(2121=⨯==B P B P B B P所以,购买两张这种彩票都中一等奖的概率为0001.0. ……………………6分(Ⅱ)事件B A 的含义是“买这种彩票中奖”或“买这种彩票中一等奖或中二等奖”. 显然,事件A 与事件B 互斥. ………………………….8分 所以,1.0101109101101)()()(=⨯+⨯=+=B P A P B A P 故购买一张这种彩票能中奖的概率为1.0. ………………………….10分 (Ⅲ)由题意得,随机变量ξ的可能取值为2, 0, 8-,109(2)0.91010p ξ=-=⨯=,91(0)0.091010p ξ==⨯=;11(10)0.011010p ξ==⨯=. 的分布列如下: ξ 2-0 8 P9.0 09.0 01.0………………………….12分 72.101.0809.009.02-=⨯+⨯+⨯-=ξE所以,购买一张这种彩票的期望收益为损失72.1元. ………………………….14分另解:设中奖所得奖金为随机变量X ,则X 的可能取值为0,2,10109(0)0.91010P X ==⨯= 91(2)0.091010P X ==⨯= 11(10)0.011010P X ==⨯= 随机变量X 的分布列如下:X 0 2 10P 9.0 09.0 01.0又∵购买一张这种彩票的收益为随机变量2X ξ=- 随机变量ξ的分布列如下: ξ 2-0 8 P9.0 09.0 01.0(下略)。

高二数学理科答案

高二数学理科答案

高二数学理科答案一、 选择题BBCBD ABACA BD二、 填空题13、; -2·e -2x +1 14、π215、2 16、(-2,2)三、解答题17、【答案】 (1)当m 2+m -2=0,即m=-2或m=1时,z 为实数;(2)当m 2+m -2≠0,即m ≠-2且m ≠1时,z 为虚数; (3)当,解得, 即时,z 为纯虚数; (4)当,解得,即m=-2时,z=0. 18、【解析】(1(2)由(1的定义域为,令,即,解得或(舍去), 当时,,单调递减,当时,,单调递增. 所以函数的单调递减区间是,单调递增区间是.12cos 2y x x '=-222m +3m 2=0m +m 20⎧-⎪⎨-≠⎪⎩1m =m =22m 2m 1⎧-⎪⎨⎪≠-≠⎩或且1m =2222m +3m 2=0m +m 20⎧-⎪⎨-=⎪⎩1m =m =22m 2m 1⎧-⎪⎨⎪=-=⎩或或()f x (0,)+∞()0f x '=210x x-=1x =1x =-01x <<()0f x '<()f x 1x >()0f x '>()f x ()f x (0,1)(1,)+∞19、【解析】y ′=3x 2+6ax+3b,因为x=2是函数的极值点, 所以12+12a+3b=0,即4+4a+b=0.①又图象在x=1处的切线与直线6x+2y+5=0平行,所以y ′|x=1=3+6a+3b=-3,即2a+b+2=0.②由①②解得a=-1,b=0.此时,y ′=3x 2-6x=3x(x-2).(1)令y ′>0,得x(x-2)>0,所以x<0或x>2;令y ′<0,得x(x-2)<0,所以0<x<2.所以函数在(0,2)上是减函数,在(-∞,0)和(2,+∞)上是增函数.(2)由(1)可以断定,x=0是极大值点,x=2是极小值点,又y=f(x)=x 3-3x 2+c,所以y 极大值-y 极小值=f(0)-f(2)=c-(8-12+c)=4. 20、【答案】(1);(2)证明见解析,该定值为6.3()f x x x =-(2)设为曲线上任一点,由,知曲线在点处的切线方程为, 即. 令得,从而得切线与直线的交点坐标为; 令得,从而得切线与直线的交点坐标为, 所以点处的切线与直线,所围成的三角形的面积为. 故曲线上任一点处的切线与直线和直线所围成的三角形的面积为定值,此定值为6.21、解:(1)F (x )=f (x )+2=x 2+b sin x -2+2=x 2+b sin x , 依题意,对任意实数x ,恒有F (x )-F (-x )=0.即x 2+b sin x -(-x )2-b sin(-x )=0,即2b sin x =0,所以b =0,所以f (x )=x 2-2.00(),P x y 231y x'=+00(),P x y 00203(1)()y y x x x -=+-0020033()(1)()y x x x x x --=+-0x =06y x =-0x =06(0)x -,y x =02y x x ==y x =00)2(2x x ,00(),P x y 0x =y x =0016|||2|62x x -⋅=()y f x =0x =y x =(2)∵g (x )=x 2-2+2(x +1)+a ln x ,∴g (x )=x 2+2x +a ln x , g ′(x )=2x +2+ax. ∵函数g (x )在(0,1)上单调递减, ∴在区间(0,1)内,g ′(x )=2x +2+a x =2x 2+2x +a x≤0恒成立, ∴a ≤-(2x 2+2x )在(0,1)上恒成立 .∵-(2x 2+2x )在(0,1)上单调递减,∴a ≤-4为所求. 22、答案(2)由得, 令得,令得, 在上单调递增,在上单调递减. ①当,即时,函数在区间[1,2]上是减函数, ∴的最小值是. ②当,即时,函数在区间[1,2]上是增函数, ∴的最小值是.③当,即时,函数在上是增函数,在是减函数.又,∴当时,最小值是;当()l n f x x a x =-11()ax f x a x x-+'=-=()0f x '>10x a <<()0f x '<1x a>()f x ∴10,a ⎛⎫ ⎪⎝⎭1,a ⎛⎫+∞ ⎪⎝⎭11a≤1a ≥()f x ()f x ()2l n 22f a =-12a ≥102a <≤()f x ()f x ()1f a =-112a <<112a <<()f x 11,a ⎡⎤⎢⎥⎣⎦1,2a ⎡⎤⎢⎥⎣⎦()()21l n 2f f a -=-1l n 22a <<l n 20,a ->()1f a =-时,最小值为.ln 21a ≤<()2ln22f a =-。

高考理科数学试题(带答案解析)

高考理科数学试题(带答案解析)

高考理科数学试题(带答案解析)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个备选项中,只有一项是符合题目要求的(1)在等差数列{}n a 中,241,5a a ==,则{}n a 的前5项和5S =(A)7(B)15(C)20(D)25【答案】:B【解析】:422514,d a a =-=-=2d =,1252121,3167a a d a a d =-=-=-=+=+=155()5651522a a S +⨯⨯===【考点定位】本题考查等差数列的通项公式及前n 项和公式,解题时要认真审题,仔细解答.(2)不等式1021x x -≤+的解集为(A)1,12⎛⎤-⎥⎝⎦(B)1,12⎡⎤-⎢⎥⎣⎦(C)[)1,1,2⎛⎫-∞-+∞ ⎪⎝⎭(D)[)1,1,2⎡⎤-∞-+∞⎢⎥⎣⎦(3)对任意的实数k ,直线1y kx =+与圆222x y +=的位置关系一定是(A)相离(B)相切(C)相交但直线不过圆心(D)相交且直线过圆心(4)8+的展开式中常数项为(A)3516(B)358(C)354(D)105【答案】B【解析】:8821881()2rrr r r r r T C C --+==令820r -=解得4r =展开式中常数项为4458135()28T C ==【考点定位】本题考查利用二项展开式的通项公式求展开式的常数项(5)设tan ,tan αβ是方程2320x x -+=的两根,则tan()αβ+的值(A)-3(B)-1(C)1(D)3【答案】:A【解析】:tan tan 3,tan tan 2αβαβ+==,则tan tan 3tan()31tan tan 12αβαβαβ++===---【考点定位】本此题考查学生灵活运用韦达定理及两角和的正切函数公式化简求值.(6)设,,x y R ∈向量(,1),(1,),(2,4)a x b y c ===- ,且,//a c b c ⊥ ,则||a b +=(C)(D)10(7)已知()f x 是定义在R 上的偶函数,且以2为周期,则“()f x 为[0,1]上的增函数”是“()f x 为[3,4]上的减函数”的(A)既不充分也不必要的条件(B)充分而不必要的条件(C)必要而不充分的条件(D)充要条件【答案】:D【解析】:由()f x 是定义在R 上的偶函数及[0,1]上的增函数可知在[-1,0]减函数,又2为周期,所以[3,4]上的减函数【考点定位】本题主要通过常用逻辑用语来考查函数的奇偶性和对称性,进而来考查函数的周期性.根据图象分析出函数的性质及其经过的特殊点是解答本题的关键.(8)设函数()f x 在R 上可导,其导函数为()f x ',且函数(1)()y x f x '=-的图像如题(8)图所示,则下列结论中一定成立的是(A )函数()f x 有极大值(2)f 和极小值(1)f (B )函数()f x 有极大值(2)f -和极小值(1)f (C )函数()f x 有极大值(2)f 和极小值(2)f -(D )函数()f x 有极大值(2)f -和极小值(2)f(9)设四面体的六条棱的长分别为1,1,1,1,2和a ,且长为a 的棱与长为2的棱异面,则a 的取值范围是(A )(0,2)(B )(0,3)(C )(1,2)(D )(1,3)【答案】:A【解析】:2221()22BE =-=,BF BE <,22AB BF =<,【考点定位】本题考查棱锥的结构特征,考查空间想象能力,极限思想的应用,是中档题.(10)设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x y B x y x y x⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则A B 所表示的平面图形的面积为(A )34π(B )35π(C )47π(D )2π[【答案】:D【解析】:由对称性:221,,(1)(1)1y x y x y x≥≥-+-≤围成的面积与221,,(1)(1)1y x y x y x≤≥-+-≤围成的面积相等得:A B 所表示的平面图形的面积为22,(1)(1)1y x x y ≤-+-≤围成的面积即2122R ππ⨯=25115112lim lim 555n n n n nn n→∞→∞++++===【考点定位】本题考查极限的求法和应用,n 都没有极限,可先分母有理化再求极限;(13)设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且35cos ,cos ,3,513A B b ===则c =【答案】:c =145【解析】:由35cos ,cos 513A B ==得412sin ,sin ,513A B ==由正弦定理sin sin a bA B=得43sin 13512sin 513b A a B ⨯===由余弦定理22a c =2+b -2cbcosA 得22590c -c+56=0则c =145【考点定位】利用同角三角函数间的基本关系求出sinB 的值本题的突破点,然后利用正弦定理建立已知和未知之间的关系.同时要求学生牢记特殊角的三角函数值.(14)过抛物线22y x =的焦点F 作直线交抛物线于,A B 两点,若25,,12AB AF BF =<则AF =。

高二上学期期末考试数学(理)试题及答案 (11)

高二上学期期末考试数学(理)试题及答案 (11)

学年度高二第一学期期末学分认定考试数学试题(理科)本试卷分第I 卷(选择题)和第Ⅱ卷(填空题和解答题)两部分。

满分150分; 考试时间120分钟.考试结束后,监考教师将答题纸和答题卡一并收回。

第Ⅰ卷(共50分)注意事项:本试卷分第I卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第I卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.一、选择题:本大题共10个小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列双曲线中,渐近线方程为2y x =±的是( )A .2214y x -= B .2214x y -=C .2212y x -= D .2212x y -= 2.设,a b ∈R ,则“0a b >>”是“11a b<”的( )条件 A .充分而不必要 B .必要而不充分 C .充分必要 D .既不充分也不必要 3.在ABC ∆中,如果=cos cos a bB A,则该三角形是 A .等腰三角形B .直角三角形C .等腰或直角三角形D .以上答案均不正确4.已知数列{}n a 的前n 项和21nn S =-,那么4a 的值为A .1B .2C .4D .85.在平面直角坐标系中,不等式组0400x y x y y -≥⎧⎪+-≤⎨⎪≥⎩表示的平面区域的面积是( )A . 2B . 4C . 8D . 16 6.若不等式08322≥-+kx kx的解集为空集,则实数k 的取值范围是( ) A . )0,3(- B .)3,(--∞ C . (]0,3- D .),0[]3,(+∞--∞ 7.下列命题中,说法正确的是( )A .命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”B.“102x <<”是“(12)0x x ->”的必要不充分条件 C .命题“0x ∃∈R ,使得20010x x ++<”的否定是:“x ∀∈R ,均有210x x ++>”D .命题“在ABC ∆中,若A B >,则sin sin A B >”的逆否命题为真命题 8.等差数列{}n a 和{}n b 的前n 项和分别为S n 和T n ,且231n n S nT n =+,则55b a A .32 B . 149 C . 3120 D . 979.在ABC ∆中,,,4530,2===C A a 则ABC S ∆=( ) A .2 B .22 C .13+ D .()1321+10.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A . 3(0,]4B .3(0,]2 C .3[,1)2 D .3[,1)4第Ⅱ卷(共100分)二、填空题:本大题共5个小题,每小题5分,共25分,把答案填写在答题纸中横线上。

高二数学(理科)参考答案.doc

高二数学(理科)参考答案.doc

12分2m+ 3 > 3mm — 2>lm=3 3 分vr高二数学(理科)参考答案一、 1—10: DCBBA CAAAD 二、 11, k<l 12、相交 13、0.414、3100415、若四面体A-BCD 的内切球的半径为R ,四个面的面积分别是5\、,、品、&,则 四面体的体积V A _BCD =:(S] +禹+S, +SQ 人三、16解:证对了一边得5分,证对了两边得10分,等号成立条件考虑对得12分 证明方法有比较法,分析法,综合法等。

证明过程略。

17解:以D 为坐标原点,DA, DC, OD]依次为x 轴、y 轴,z 轴正方向建立空间直角坐标系,并高正方体棱长为1,设点E 的坐标为8(0,7,0)。

(I ) 页= (-1,0,1), 函= (l,l-f,l) 疝瓦= (-1,0,1)(1,1T,1) = 0,EB[ ± ADj … (II)当E 是CD 中点时,——- —- 1ADj =(-1,0,1), AE = (-l,-,0),设平面 ARE 的一个法向量是 〃 = (x,y,z), AZ" = (x, y, z) • (-1,0,1) = 0 则由一 I 得一组解是" = (1,2,1),= (x,y,z)・=(—y ,0) = 0I .1 EB] • n 3由 I cos < EB 「, n >1=J --- = ----- —I 冲“I 而32从而直线EB,与平面AD.E 所成的角的正弦值是 —113由3 —《)4的展开式中的同项公式知T2= T 2 = C 》4T (_L )= x(2)当 x=l 时,S nx=l )("1) ]-x n当x^l 时,S n =——1 — X月收入不低于55百元人数 月收入低于55百元人数 合计赞成 a = 3 c = 2932 不赞成 b = 7d = ll18 合计10405050x(3x11 - 7x29)2(3 + 7)(29 + 11)(3 + 29)(7 + 11) (II ) g 所有可能取值有G 0一仁c-仁一一 -- - - &9 &9 \ /|\ /|\p P C ; CC 4 28 6 16 -4x^- = —x — + —x — CC C ; C ; 4 16 6 1 x —^+日乂― = —x —+—x — 席 C ;席 10 45 10C ; 4 1 2 _±_ = _ x __ — ___ C" 10 45 22510422535225 (12a n = x n~所以没有99%的把握认为月收入以5500为分界点对“楼市限购令”的态度有差异.(6分)6 28 84 '= x _ = _10 45 225所以g 的分布列是&0 1 2 3P84 225104 22535 2252 225所以g 的期望值是_ "04 | 70 | 6 _ 4'一 +225 + 225 +225 ~520 解 f\x) = --a(x > 0)X11 — X(I)当〃 =1 时,f\x) = 一 一1 =——,................................................ 2 分X X令> 0时,解得0<%<1,所以f3)在(0, 1)上单调递增; ……4分令f'3)<。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学(理科)解答题精选1.已知z ∈C ,2z i +和2z i-都是实数.(1)求复数z ;(2)若复数2()z ai +在复平面上对应的点在第四象限,求实数a 的取值范围. 2.如图,直三棱柱111ABC A B C -中, AB =1,AC =(1)证明:1A B A C ⊥;(2)求二面角A —1A C —B 的余弦值。

3.某兴趣小组的3名指导老师和7名同学站成前后两排合影,3名指导老师站在前排,7名同学站在后排.(1)若甲,乙两名同学要站在后排的两端,共有多少种不同的排法? (2)若甲,乙两名同学不能相邻,共有多少种不同的排法?(3)在所有老师和学生都排好后,摄影师觉得队形不合适,遂决定从后排7人中抽2人调整到前排.若其他人的相对顺序不变,共有多少种不同的调整方法?(本题各小题都要求列出算式,并用数字作答)4 如图,,A B 两点之间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4 现从中任取三条网线且使每条网线通过最大的信息量(I )设选取的三条网线由A 到B 可通过的信息总量为x ,当6x ≥时,则保证信息畅通求线路信息畅通的概率;(II )求选取的三条网线可通过信息总量的数学期望5.已知231111()(1)(1)(1)(1)3333nf n =---鬃- ,11()(1)23ng n =+,其中n ∈N*.(1)分别计算(1)f ,(2)f ,(3)f 和(1)g ,(2)g ,(3)g 的值;(2)由(1)猜想()f n 与()g n (n ∈N*)的大小关系,并证明你的结论.6.已知函数3()3()f x x ax x =-∈R .(Ⅰ)当1a =时,求()f x 的极小值;(Ⅱ)若直线0x y m ++=对任意的m ∈R 都不是...曲线()y f x =的切线,求a 的取值范围.7. 已知函数()3f x ax =-,2()(,)b c g x a b x x=+∈R ,且1()(1)(0)2g g f --=.(1)试求,b c 所满足的关系式;(2)若0b =,方程),在(∞+=0)()(x g x f 有唯一解,求a 的取值范围. 8.已知椭圆中心在原点,焦点在x 轴上,离心率22=e ,过椭圆的右焦点且垂直于长轴的弦长为.2(1)求椭圆的标准方程;(2)已知直线l 与椭圆相交于P 、Q 两点,O 为原点,且OP ⊥OQ 。

试探究点O到直线l 的距离是否为定值?若是,求出这个定值;若不是,说明理由。

高二数学(理科)解答题参考答案1.解:(1)设(,)z a bi a b R =+ ,…………………………………………………1分 则2(2)z i a b i +=++,()(2)2222(2)(2)55z a b i a b i iaba bi ii i i +++-+===+---+,………………3分 ∵2z i +和2z i-都是实数,∴20205b a b ì+=ïïïí+ï=ïïî,解得42a b ì=ïïíï=-ïî, …………………………………………6分∴42z i =-. …………………………………………………7分(2)由(1)知42z i =-,∴222()[4(2)]16(2)8(2)z ai a i a a i +=+-=--+-,………………8分 ∵2()z ai +在复平面上对应的点在第四象限,∴216(2)08(2)0a a ìï-->ïíï-<ïî, …………………………………………………9分即241202a a a ìï--<ïíï<ïî,∴262a a ì-<<ïïíï<ïî, ………………………………12分 ∴22a -<<,即实数a 的取值范围是(2,2)-. ………………………14分2.解:因为三棱柱111ABC A B C -为直三棱柱所以1AB A A ⊥ 在ABC 中1A B=0,60A C A B C =∠=………………2分由正弦定理得030ACB ∠=所以090BAC ∠=………………4分 即A B A C ⊥,所以11AB AA C C ⊥平面,又因为111A C A A C C ⊂平面,所以1A B A C ⊥…………6分(2)如图所示,作1AD A C ⊥交1A C 于D ,连B D ,由三垂线定理可得1B D A C ⊥所以A B D ∠为所求二面角的平面角,在1Rt AA C ∆中,112A A A CAD A C===g 8分在R t B A D ∆中,2BD ===,…………10分所以cos 52A D AB D B D===………………11分即 二面角A —1A C —B5。

………………………12分3.解(1)144061202335522=⨯⨯=A A A …………………4分答:共有1440种不同的排法. ……………………………………………5分 (2)21600630120332655=⨯⨯=A A A答:共有21600种不同的排法.……………………………………………10分 (3)227576544202C A ´=创= 答:共有420种不同的调整方法.…………………………………………14分(说明:没有答,则扣1分,列式正确而运算出错,一处扣1分)4.解:(I )411)6(,6321411361212=⋅+==∴=++=++CC C x P431012034141)6(101202)9(,9432203)8(,842243141205)7(,7322421=+++=≥∴===∴=++==∴=++=++===∴=++=++x P x P x P x P(II )203)5(,5221311,101)4(,4211===++=++===++x P x P∴线路通过信息量的数学期望 5.61019203841741620351014=⨯+⨯+⨯+⨯+⨯+⨯=答:(I (II )线路通过信息量的数学期望是6.55.解(1)∵231111()(1)(1)(1)(1)3333nf n =---鬃- ,11()(1)23ng n =+,其中n ∈N*∴()121133f =-=, ()211162(1)(1)3327f =--=, ()2311116264163(1)(1)(1)3332727729f =---=?,112(1)1233g 骣÷ç=+=÷ç÷ç桫, 2115(2)1239g 骣÷ç=+=÷ç÷ç桫, 31114(3)12327g 骣÷ç=+=÷ç÷ç桫. ……………………3分(2)由(1)知()21(1)3f g ==,()51516(2)292727g f ==<= ,14378416(3)27729729g ==<……………………5分由此可以猜想:对任意n ∈N*,)()(n g n f >,当且仅当1n =时取“=”.……7分 证明:①当1n =和2n =时,猜想显然成立. ……………………8分 ②假设当k n =(k ∈N*且2≥k )时, ()()f k g k >,即23111111(1)(1)(1)(1)1333323kk 骣÷ç---鬃->+÷ç÷ç桫 ……………………10分 则当1n k =+时,23111111(1)(1)(1)(1)(1)(1)33333kk f k f ++=---鬃--1111(1)(1)233kk +>+? ……………………12分1211111(1)2333k k k++=-+-121121(1)233k k ++=+-11211111(1)2333k k k +++=++-12111131(1)2323kk k ++-=++111(1)(1)23k g k +>+=+,即1n k =+时猜想也成立. ……………………15分 由①②知,对任意对任意n ∈N*,)()(n g n f >恒成立,当且仅当1n =时取“=”. …………………………………………16分6.解:(Ⅰ)因为当1=a 时,33)(2-='x x f ,令0)(='x f ,得1x =-或1=x .…………………………………………………………….3分当(1,1)x ∈-时,0)(<'x f ;当(,1)(1,)x ∈-∞-+∞ 时,0)(>'x f .所以)(x f 在(1,1)-上单调递减,在[)(,1],1,-∞-+∞上单调递增. ……………5分 所以)(x f 的极小值为2)1(-=f . ……………………………………7分(Ⅱ)因为2()333f x x a a '=--≥, ……………………………………9分所以,要使直线0=++m y x 对任意的m ∈R 总不是曲线)(x f y =的切线,当且仅当a 31-<-,即31<a . …………………………………12分7.解:(Ⅰ)由)0()1()21(f g g =--,得3)()42(-=+-+-c b c b .所以b 、c 所满足的关系式为01=--c b . …………………………………3分 (Ⅱ)由0=b ,01=--c b ,可得1-=c . ……………………………5分 方程)()(x g x f =,即213ax x-=-,可化为331a xx=-.令1t x=,则由题意可得,33t t a -=在),0(+∞上有唯一解.令33)(t t t h -=)0(>t ,由033)(2=-='t t h ,可得1=t . 当10<<t 时,由0)(>'t h ,可知)(t h 是增函数;当1>t 时,由0)(<'t h ,可知)(t h 是减函数.故当1=t 时,)(t h 取极大值2.………………..11分由函数)(t h 的图象知,当2a =或0a ≤时,方程)()(x g x f =有且仅有一个正实数解. 故所求a 的取值范围是{}20.a a a =或≤ ………………………………..14分8.解:(1)设椭圆方程为).0(12222>>=+b a by ax ………………1分因为,)22,(,.22,22在椭圆上点据题意所以c ac e ==则,121222=+bac于是.1,121212==+b b解得 ………………4分因为.2,1,1,2222====-=a cbc a c a 则 ………………5分故椭圆的方程为.1222=+yx………………6分(2)当直线l 的斜率存在时,设直线l 的方程为112222222222222121222221212121222,(,),(,).1,(21)4220.72(4)4(21)(22)8(21)0(*)422,.2121()()()2y kx m P x y Q x y x y k x km x m y kx m km k m k m km m x x x x k k y y kx m kx m k x x km x x m m k =+⎧+=⎪+++-=⎨⎪=+⎩∆=-+-=-+>-+=-=++=++=+++=⋅点由得分所以于是2222222222212122222421212.921,2223220,212121km km mk k m k k O P O Q O P O Q m m k m k x x y y k k k --+⋅+++-=+⊥⇔⊥----+=+==+++分因为所以2222223220,.*103,123k m k m O l d d +--====== 即所以代入()验证成立。

相关文档
最新文档