磁晶各向异性

合集下载

3、磁晶各向异性机理

3、磁晶各向异性机理

随着4f电子的数目增加,磁量子
数m=3,2,1,0,-1,-2,-3,电子云的形状 与m的正负无关。m=0的电子云沿 C轴延伸,使C轴成为易轴。因为 L=0总的电子云变成球形。
Tb的轨道矩 L=3为稀土元素 中最大值,轨道面垂直于J 伸 展,形成薄饼状的电子云。
Tb的六角晶格的c/a值为1.59, 它比密堆积的六角晶格的理 想值1.633小的多,也就是说 晶格沿C轴被压缩了。
二重态
在立方晶体中有四个<111>轴, 若离子平均的分布在具有不同的 <111>轴的八面体间隙位。
EA 1 4 N LS cos 1 cos 2 cos 3 cos 4

式中1 ,2 ,3 ,4为自旋磁矩与四个<111>轴的夹角
EA
1 4
N LS cos 1 cos 2 cos 3 cos 4
第三项为起源相同的高价项,称为四极相互作用。磁晶各向
异性可以通过对晶体中所有自旋对的能量相加而计算出来
这模型称为自旋对(spin-pair)模型。
EA
w
i
i
i表示自旋对。仅考虑近邻,最多到次近邻之间的相互作用。
设(1,2,3 )为平行自旋对的方向余弦。 对原子连线方向与x-轴平行的自旋对,cos可以用1代替, 对平行y-,z-轴的自旋对,cos可分别用2和3替代。
2
3 35
) ......
然而真正测得的磁各向异性相应的l 值比此项给出的值大 100到1000倍。因此产生磁晶各向异性的机制不是偶极相互 作用,虽然形式相同,但其系数是来源于磁晶各向异性,这 种相互作用被称为赝偶极相互作用
机理:部分未淬灭的轨道矩与自旋相互耦合,随着磁化强度的

磁晶与向异性与磁轴伸缩课件

磁晶与向异性与磁轴伸缩课件
存储设备。
医疗领域
利用磁晶与向异性材料的生物相 容性和磁响应性,应用于医学影 像、药物载体、肿瘤治疗等领域

06
案例研究:磁晶与向 异性在硬盘中的应用
硬盘的工作原理
硬盘存储原理
硬盘通过存储数据在磁性材料上,利用磁性材料的磁化状态来记录数据。当电流通过磁头线圈时,磁 头与磁盘表面接触,产生磁场,使磁盘表面上的磁性颗粒磁化,从而记录数据。
磁晶与向异性与磁轴伸缩课 件
目录
• 磁晶与向异性简介 • 磁晶的分类与特性 • 向异性与磁轴伸缩 • 磁晶与向异性在科技中的应用 • 磁晶与向异性面临的挑战与解决方案 • 案例研究:磁晶与向异性在硬盘中的应用
01
磁晶与向异性简介
磁晶与向异性的定义
磁晶
磁晶是指在晶体结构中,由于原 子、分子或离子的排列方式不同 ,导致磁场方向发生变化的特性 。
复杂晶体结构的磁晶各向异性表现出更为复杂的特性,其磁化强度M在不同方向上 可能存在更为复杂的变化。
常见的复杂晶体结构有铁氧体、稀土金属间化合物等。
03
向异性与磁轴伸缩
向异性定义与分类
定义
向异性是指物质在各个方向上表现出不同的物理性质。
分类
晶体材料的向异性可以分为自发向异性和诱导向异性。自发向异性是指晶体材 料本身固有的性质,而诱导向异性则是在外部磁场或电场作用下表现出的性质 。
应用
利用向异性与磁轴伸缩之间的关系,可以开发出新型的传感器、换能器等器件, 用于磁场或电场的测量和调控。同时,这种效应在磁性存储器、磁性随机存储器 等领域也有着广泛的应用前景。
04
磁晶与向异性在科技 中的应用
磁记录技术
磁记录技术是一种利用磁性材料特性进行信息存储的技术,如硬盘、磁 带等。磁晶与向异性在磁记录技术中起着关键作用,它们决定了磁记录 的稳定性和可靠性。

磁性材料的磁滞回线与磁各向异性

磁性材料的磁滞回线与磁各向异性

磁性材料的磁滞回线与磁各向异性磁性材料一直以来都是工业和科学领域中非常重要的材料之一。

它们在电子设备、能源转换、磁记录等方面发挥着重要的作用。

而磁滞回线和磁各向异性是磁性材料的两个重要性质,在研究和应用上都具有重要意义。

首先,我们来了解一下磁滞回线。

磁滞回线是描述磁场对磁性材料磁化过程的一种特征曲线。

当外加磁场作用于磁性材料时,材料会发生短暂或永久的磁化过程。

磁滞回线就是记录了磁性材料在不同磁场下磁化过程的曲线。

磁滞回线的形状和特征对磁性材料的性能有很大的影响。

首先,磁滞回线的形状能够体现出磁性材料的饱和磁化强度和剩余磁化强度。

通过观察磁滞回线,我们可以判断出磁性材料饱和磁化强度的大小以及在去磁场后是否会存在剩余磁化强度。

这些信息对于材料的选用和应用非常重要。

其次,磁滞回线的斜率和宽度也是研究磁性材料性能的重要指标。

斜率越大意味着材料更容易被磁化和去磁化,这对于磁记录等领域的应用非常重要。

而宽度则代表了磁场对材料磁化状态的稳定性,宽度越窄意味着材料越稳定,适用于长时间保持磁化状态的应用。

然而,磁滞回线并不是所有物质都具有的性质,这与磁各向异性密切相关。

磁各向异性是磁性材料在不同方向上的磁性和磁化特性不同。

不同的磁各向异性会导致磁滞回线的形状和性质发生变化。

磁性材料的磁各向异性可以分为两种类型:晶体各向异性和形状各向异性。

晶体各向异性是材料本身晶体结构的特征,产生于晶格的非均匀性。

形状各向异性则是由于材料的形状和结构不同导致的。

这两种各向异性都会影响磁性材料的磁滞回线。

晶体各向异性是磁性材料磁滞回线形状变化的重要原因之一。

晶体各向异性是由于晶胞的结构不均匀而产生的,不同晶向的磁性能量不同。

这就导致材料会在某些方向上更容易磁化,而在其他方向上磁化困难。

例如,铁磁材料的晶体各向异性使得其在[100]方向上更容易磁化,而[111]方向上则磁化困难。

形状各向异性是磁性材料磁滞回线形状变化的另一个重要原因。

磁晶各向异性常数定义

磁晶各向异性常数定义

磁晶各向异性常数定义磁晶各向异性常数定义是指在物理学中,当物体被投入非线性磁场时,物体磁化矢量的模和方向也将随非线性磁场而改变,这过程就是叫做磁晶各向异性,而磁晶各向异性常数定义是描述这种磁晶各向异性的物理量,是指非线性磁化率的定义。

磁晶各向异性常数定义的精确含义是指,在物理学中,磁晶各向异性常数可以被描述为一个三元组或者六元组,用来描述在物体中不同方向上,物体电磁特性的变化情况,这样可以更容易地描述物体表面不同方向上,其磁化率之间的关系。

磁晶各向异性常数由一个物理量强度矢量表示,它定义了在不同方向下物体的磁化反应情况,以及物体内部受磁场作用时,能量的改变情况。

例如可以定义一个三元组来表示磁晶的X方向的磁化反应程度,Y方向的磁化反应程度和Z方向的磁化反应程度,这样可以精确地描述它们之间的差异,以及整体响应磁场作用时能量的改变情况。

由此可见,磁晶各向异性常数定义具有很强的精度,可以有效地描述物体不同方向上的磁化反应程度,定义了在物体内部受磁场作用时,能量的改变情况,可以用来描述像磁体、小分子、大分子及导电体有关物理现象的磁化率,广泛应用于电机、电磁学设计领域等。

磁晶各向异性常数的定义是有参考的,普遍的标准是引用国际标准化组织(ISO)所发表的《磁体及其他波导内各向异性参考模型(TARI)》给定的磁晶各向异性常数,也就是六个矢量参数,即六元组参数。

磁晶各向异性常数实验也是重要环节,实验结果多用于校核和验证磁晶各向异性常数的计算方法,以及可以提高设计的准确性。

总之,磁晶各向异性常数定义是指,当物体被投入非线性磁场时,物体磁化矢量的模和方向也将随非线性磁场而改变,由一个物理量强度矢量表示,它定义了在不同方向下物体的磁化反应情况,以及物体内部受磁场作用时,能量的改变情况,其定义是有参考的,普遍的标准是引用国际标准化组织(ISO)所发表的《磁体及其他波导内各向异性参考模型(TARI)》给定的磁晶各向异性常数,它与实验相结合,可以提高设计的准确性,广泛应用于电机、电磁学设计领域等。

磁性材料与器件-第三章-技术磁化

磁性材料与器件-第三章-技术磁化

3.1.2 磁晶各向异性能
M
W HdM
0
3.1.2 磁晶各向异性能
沿铁磁晶体不同晶轴方向磁化 时所增加的自由能不同,称这 种与磁化方向有关的自由能为 磁晶各向异性能。 在易磁化轴方向上,磁晶各向 异性能最小,而在难磁化轴方 向上,磁晶各向异性能最大。 铁磁体从退磁状态磁化到饱和,需要付出的磁化功为:
3.3.1 磁化机制
技术磁化:铁磁体在外场作用下通过磁畴转动和 畴壁位移实现宏观磁化的过程
磁化本质: 内部的磁畴结 构发生变化
3.3.1 磁化机制
3.3.1 磁化机制
沿外场H方向上的磁化强度MH
Vi为第i个磁畴的体积;i为第i个磁畴的自发磁化 强度与H间的夹角; V0为块体材料的体积。 当H改变H时,MH的改变为
z Is(123)
[001]
[100]:1=1,2=0,3=0
EK[100]=0

[110]: 1 0,2 3 1/ 2 EK[110]=K1/4
y
[110]

1 2 3 1/ 3 [111]:
EK[111]=K1/3+K2/27
x
3.1.2 磁晶各向异性能
3.1.1 磁晶各向异性
同一铁磁物质的单晶体,其磁化曲线随晶轴 方向不同而有所差别,即磁性随晶轴方向而异。 这种现象称为磁晶各向异性。 磁晶各向异性存在于所有铁磁性晶体中。 沿铁磁体不同晶轴方向磁化的难易程度不同,磁 化曲线也不相同。
3.1.1 磁晶各向异性
从能量角度,铁磁体从退磁状态磁化到饱和状态,M-H曲 线与M轴之间所包围的面积等于磁化过程做的功
3.1.5 磁晶各向异性起源
磁晶各向异性来源模型
(a)磁体水平磁化时,电子云交叠少,交换作用弱 ( b)磁体垂直磁化时,由于 L-S 耦合作用,电子云 随自旋取向而转动,电子云交叠程度大,交换作用 强。

磁场对磁性材料的磁晶各向异性和磁晶畴的影响

磁场对磁性材料的磁晶各向异性和磁晶畴的影响

磁场对磁性材料的磁晶各向异性和磁晶畴的影响磁场是一个强大的物理力量,在磁性材料中,它可以对材料的磁性产生重要影响。

具体而言,磁场可以影响材料的磁晶各向异性和磁晶畴。

本文将探讨磁场对磁性材料的这些影响。

1. 磁晶各向异性磁晶各向异性是指磁性材料在不同晶向上具有不同的磁性能。

磁场可以改变磁晶各向异性,从而影响材料的磁性质。

当材料处于无外加磁场状态时,磁晶各向异性主要由晶格结构和自旋排列决定。

然而,一旦外加磁场作用于材料,它可以改变材料的电子轨道和自旋状态,进而改变磁晶各向异性。

2. 磁晶畴磁晶畴是指磁性材料中由有序的磁矩构成的微观结构。

磁晶畴的形成与磁场密切相关。

在无外加磁场状态下,磁性材料的磁矩会随机排列,形成无序的磁晶畴结构。

然而,当外加磁场作用于材料时,它会对材料中的磁矩施加力,使磁矩重新排列,从而形成有序的磁晶畴结构。

3. 磁场对磁晶各向异性的影响磁场可以改变磁晶各向异性。

当外加磁场作用于材料时,它会对材料中的磁矩施加力矩,使磁矩重新排列。

这种重新排列导致了磁晶各向异性的改变。

具体而言,外加磁场可以使磁晶各向异性增强或减弱,甚至可以改变材料的磁易化方向。

这对于磁性材料的应用有重要意义,例如在磁存储器件和磁传感器中。

4. 磁场对磁晶畴的影响磁场也对磁晶畴的形成和演化起到了重要作用。

外加磁场可以改变材料中的磁矩排列,使磁晶畴重新组织。

具体而言,磁场可以增强或减弱磁晶畴的长大速率,影响磁晶畴壁的运动和畴间磁矩的相互作用。

这些变化直接影响材料的磁性能,在磁存储和磁制冷领域具有潜在应用。

综上所述,磁场对磁性材料的磁晶各向异性和磁晶畴具有显著影响。

通过改变磁晶各向异性,磁场可以调控材料的磁性能,对磁性材料的应用具有重要意义。

同时,磁场还可以改变磁晶畴的形态和演化,影响材料的磁性质。

随着对磁性材料的研究不断深入,我们对磁场对磁晶各向异性和磁晶畴的影响也会有更加深入的了解,为磁性材料的开发和应用提供更多的可能性。

磁各向异性的测量

磁各向异性的测量

易磁化方向与难磁化方向
易磁化方向是能量最低的方向,所以自发磁化形成 磁畴的磁矩取这些方向,在较弱的H下,磁化就很 强甚至饱和。
易磁化轴与难磁化轴: Fe:易轴 [100],难轴 [111] Ni: 易轴 [111],难轴 [100] Co:易轴 [0001],难轴 [1010]
Key Lab for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University
∴可将B3、B5项并入B0及B6项 最后,立方晶体的磁晶各向异性能
Fk
i
的数学表
达式为:
Fk
K0
K1
(12
2
2+
2
23
2+
2 2
31
)
K
212
2 2
2 3
......
一般在考虑Fk相对于Ms取向变化时,常将K0略去:
Fk K1(1222+2232+3212 ) K2122232
其中:K1、K2为磁晶各向异性常数,磁性材料特性 参数之一。其大小可以表征磁性材料沿不同方向磁化至
保持不变。
∴上式中只能出现1、2、3 的偶次函数关系。 并且为轮换对称。
Fk
(i
)
B0
B3 (12
2 2
2 3
)
B5 (14
24
4 3
)
B6 (1222
3222
12
2 3
)
又 12+22+32
1
(12+
2
2+
2 3
)
2
(14
24
4 3
)
2(12 2 2

关于磁晶各向异性

关于磁晶各向异性

关于磁晶各向异性06080 杨芳在磁性物质中,自发磁化主要来源于自旋间的交换作用,这种交换作用本质上是各向同性的,如果没有附加的相互作用存在,在晶体中,自发磁化强度可以指向任意方向而不改变体系的内能。

实际上在磁性材料中,自发磁化强度总是处于一个或几个特定方向,该方向称为易轴。

当施加外场时,磁化强度才能从易轴方向转出,此现象称为磁晶各向异性。

磁各向异性按其来源分成:形状各向性;磁晶各向异性;生长感生各向异性;应力感生各向异性;磁场感生各向异性;其中只有磁晶各向异性是磁性晶体中固有的。

其他各种广义地说都是感生出来的。

定域磁矩是如何辨别不同的结晶学方向呢?μJ是怎样耦合到晶格的?答案在于磁矩的自旋部分与电子轨道形状和取向的耦合(自旋-轨道耦合) ,以及给定原子轨道和它们的局部环境(晶体电场)的化学成键。

如果一个原子看到的局部晶体场有较低对称性,并且如果原子的成键电子具有不对称的电荷分布(LZ≠0) ,那么,原子轨道与晶体场的相互作用是各向异性的。

分子轨道的某种取向,或成键电子电荷的某种分布在能量上是择优的。

对于磁晶各向异性这是十分重要的,即成键具有明显的方向特性。

磁晶各向异性是磁性材料的内能随磁化强度方向的变化而发生的变化。

当自发磁化强度从一个方向转向另一个方向。

相邻自旋保持平行,这是因为自旋间存在强的交换作用,要解释磁晶各向异性,必须考虑含有晶轴的能量项。

假设自旋与原子连线的夹角为 ,则自旋对的能量经勒让德多项式展开为:真正的机理是:部分未淬灭的轨道矩与自旋相互耦合,随着磁化强度的转动,通过轨道波函数重叠的变化,导致交换能或静电能发生变化,这种相互作用被称为赝偶极相互作用。

磁晶各向异性可以通过对晶体中所有自旋对的能量相加而计算出耒,这模型称为自旋对(spin-pair)模型。

自旋对模型对金属和合金是适用的,对氧化物和化合物不适用。

晶体场理论的基本思想是认为中心金属离子的电子波函数同周围离子(称为配位子)的电子波函数不相重叠,因而可以把组成晶体的离子分为两部分:基本部分是中心金属离子,我们将其外层未满壳层的电子作为量子体系处理;非基本部分是周围的配位子离子,我们将它们作为产生静电场的经典体系处理,配位子所产生的静电场称为晶体场。

D磁性物理基础-各向异性

D磁性物理基础-各向异性

2、六角晶系的磁晶各向异性 A、磁晶各向异性能
z
C轴
y
Is
y
C面
C面
°°° ° ° ° ° ° ° ° °° w x
+2/6
六角晶系的特点是在c面有六次对称 轴,与+2n/6,(n=0、1、2…..) 的方向体系的能量是相同的。用, 替代1,2,3 ,计算磁晶各向异性能
z Is x
I s H A sin
HA <111>

E A K1 2 sin(2 2 ) 3 sin(4 4 ) 8
K2 sin( 2 2 ) 4 sin( 4 4 ) 3 sin( 6 6 ) 64
y
4 K H A ( K1 2 ) / I s 3 3
是易轴与磁化强度之间的夹角
H
1
00
如果样品的体积为V,则平衡条件为
VT=L=k1
易轴
Is
适当选择k,使1在较小的范围内变化。如果磁场的转角为(0到 360度),则=-1,由于1很小,就可简化=。
右图为一个典型的转矩曲线, =22.50时sin4=1由转矩曲线公式 1 L( ) K1 sin 4 2 得到:K1=2L(22.50) ~4x105dyn cmcm-3(ergcm-3)

Co:
Ku1=4.53x105Jm-3 Ku2=1.44x105Jm-3
B、磁晶各向异性场:
a. C轴为易磁化轴,用同样的处理方法 E 得到: H A I s sin A b. c面为易磁化面时:
HA 2( K u1 2 K u 2 ) Is
HA
2 K u1 Is

磁晶各向异性能

磁晶各向异性能

2.2MBxHmkT
Hm109Am-1(107Oe)
( 分子场 )
一、磁晶各向异性
序言:在磁性物质中,自发磁化主要来源于自旋间的交换作用,这 种交换作用本质上是各向同性的,如果没有附加的相互作用存在,在 晶体中,自发磁化强度可以指向任意方向而不改变体系的内能。实际 上在磁性材料中,自发磁化强度总是处于一个或几个特定方向,该方 向称为易轴。当施加外场时,磁化强度才能从易轴方向转出,此现象 称为磁晶各向异性。
5. 磁晶各向异性的机理:
产生磁晶各向异性的来源比较复杂,一直在研究之中。
目前普遍认为和自旋-轨道耦合与晶场效应有关。经过多 年研究,局域电子的磁晶各向异性理论已经趋于成熟,目 前有两种模型:单离子模型和双离子模型。主要适合于解 释铁氧体和稀土金属的磁晶各向异性。而以能带论为基础 用于解释过渡族金属的巡游电子磁晶各向异性理论进展迟 缓,尚不完备。(见姜书P221-228) 下面介绍 Kittel 的一种简明解释:由于自旋-轨道耦合 作用使非球对称的电子云分布随自旋取向而变化,因而导 致了波函数的交迭程度不同,产生了各向异性的交换作用, 使其在晶体的不同方向上能量不同。
磁畴
磁畴

铁磁性材料所以能使磁化强度显著增大,
在于其中存在着磁畴(Domain)结构 在未受到磁场作用时,磁畴方向是无规的, 因而在整体上净磁化强度为零 每个磁矩方向一致的区域就称为一个磁畴。



不同的磁畴方向不同,两磁畴间的区域就
称为磁畴壁 。
MFM: NG-HD
表面形貌图
Topography
表面磁力图
MFM Phase
Bit size: 150× 30nm
为什么会产生自发磁化?

2.磁晶各向异性场

2.磁晶各向异性场

§4.2 磁晶各向异性场在晶体中,由于磁晶各向异性作用,无外场时磁矩倾向于集中在易磁化轴方向。

这好像在易磁化轴方向存在一个磁场,把磁矩拉了过去那样。

这一作用实际上是来自各向异性,而不是真实的磁场,所以称为磁晶各向异性等效场。

这一概念对有些问题的处理会带来很大的方便。

1. 单轴磁晶各向异性场根据上一节的讨论知道,单轴晶体的各向异性能可以表达为(当2121sin θθu u k K K E ≈=θ很小时) (4.2.1) 设在易磁化方向的等效磁场强度为H k ,磁场作用下的静磁能是θcos k S H J E −= (4.2.2) 这里J s 是单位体积中的饱和磁偶极矩。

两式中的θ都是磁偶极矩方向与易磁化方向的夹角。

(4.2.2)式中,E =0在θ=90°处,为了同(4.2.1)做比较,要求E =0落在θ=0°。

此式可写为)cos 1(θ−=k S H J E这就符合θ=0°时E =0的要求了。

此式还可以写为2222sin 2θk S k S H J H J E ≈⋅= (4.2.3) (4.2.3)与(4.2.1)两式等效,所以21⋅=k S u H J K 由此,单轴磁晶各向异性的等效磁场强度是Su S u k M K J K H 01122μ== (4.2.4) 从这里可以看出,这个各向异性等效场与各向异性常数成正比。

即各向异性常数表征了各向异性等效场的强弱。

2. 立方晶系磁晶各向异性等效场立方晶体的磁晶各向异性能表为(4.2.5) )(2123232222211αααααα++=K E k 把这个式子改用极坐标表示。

由图3.2.9所示11cos cos sin x x r R r Rαθϕ====θ22cos sin sin y y r R r Rαθϕ====θ (4.2.6) 33cos cos z R αθθ===现在考虑时z 轴上等效场的情况。

磁晶各向异性能

磁晶各向异性能

K a (T ) K1 (0) 12 22 22 32 32 12
在‹ ›为所有自旋簇的角函数的平均值,在 ‹ ›, 角函数的幂越高,函数‹ ›随着温度升高降得越快。 根据对次幂函数的精确计算得到
K ( n ) I sn ( n 1) / 2
对于单轴各向异性 n=2
面心 角上
2、轧制磁各向异性
恒磁导率铁镍钴合金,成分为50%Fe-50%Ni,首先经过强冷轧,然后 再结晶产生(001)[100]的晶体织构,最后再次冷轧,厚度减少50%。这样 制成的片材,呈现出大的单轴磁各向异性,其易轴位于轧制面内,但垂直 于轧制方向。平行于冷轧方向磁化完全通过磁畴转动末实现,从而导致线 性磁化曲线。 轧制磁各向异性的大小,要比磁场退火产生的大50倍。其机理,近角提 出《滑移感生各向异性》。一般发生弹性形变时,晶体的一部分会沿着某 个特定的晶面和晶向相对于另一部分滑移,这个特定的晶面和晶向,称为 滑移面和滑移方向。例如A3B型超晶格中,通过滑移面出现了许多BB原子 对,未滑移的部分没有BB对,故BB对的分布构成了各向异性,即方向有序。
何形状及所选取的坐标,一般情况下它是一个二阶张量。
三.形状各向异性
均匀磁化的磁性体中有效磁场Heff与外磁场Hex、 退磁场Hd三者关系:
H eff H ex N M
-
-
Heff
Hd M
+ + + Hex
+
旋转椭球形状样品的磁化 是均匀的,我们选取坐标 系与椭球的主轴重合,则 退磁场的三个分量可以表 示为:
M M
•磁晶各向异性能
磁晶各向异性大的适于作永磁材料,小的适于软磁材 料。 材料制备中人工地使晶粒的易磁化方向排在一特定方 向以提高该方向磁性能。(如硅钢片生产工艺上的冷 扎退化,铝镍钴生产中的定向浇铸(柱晶取向)和磁 场中热处理,磁场成型等都是利用磁晶各向异性。 立方晶系晶体磁晶各向异性能:

第四章 磁各向异性,磁畴和超顺磁

第四章 磁各向异性,磁畴和超顺磁

第四章磁各向异性,磁畴和超顺磁(Lisa Tauxe著,刘青松译)推荐读物关于专业背景知识,可以阅读Butler (1992) 第三章 (pp. 41−55)关于统计力学的背景知识,参见/wiki/Statistical mechanics更多信息详见Dunlop and Özdemir (1997) 第2.8和5章4.1 前言由第3章我们得知,即使在无外场的情况下,一些晶体中的电子自旋也会按照一定方式排列,从而产生自发磁化强度。

这些铁磁性的颗粒能够携带古地磁场信息,这便是古地磁学的基础。

到底是什么原因使得这些磁性颗粒能够沿着古地磁场方向排列并达到平衡状态?是什么原因使得岩石最终锁定这些剩磁,以至于在数百万甚至数十亿年后还能被地质学家测得?我们将再下面几章回答这些问题。

图4.1:a) 磁铁矿八面体。

b) 晶体内部结构。

大个的红球代表氧离子,蓝色和黄色小球是在八面体和四面体中的铁离子。

在A区只有Fe3+,在B区有Fe3+和Fe2+。

c) 在一个磁铁矿晶体内部随方向变化的磁晶体各向异性能。

易磁化轴(能量最低)沿着晶体对角线方向(改自Williams和Dunlop, 1995)。

d) 一个磁铁矿立方晶体的磁化强度随外场变化的模拟结果。

外场从饱和状态逐渐减小到0,然后变号并且朝反方向逐渐增大。

[111]为易磁化轴,沿对角线方向且能量最低。

[001]为边线方向,是难磁化轴,能量最高。

首先我们讨论第二个问题:磁化强度沿某一特定方向排列的机制是什么?简单说来就是在磁晶体中,某些方向处于低能状态,而在另外一些方向则处于高能状态。

因此,为了使得磁化强度从一个易磁化轴转换到另外一个易磁化轴,就需要能量。

如果这个能垒(energy barrier)比较高,那么磁性颗粒就能够在非常长的时期内在某一特定方向保持磁化状态。

下面我们将讨论是什么造成了这一能垒。

4.2 颗粒的磁能4.2.1 磁矩与外场由经验得知,磁场对应着某种能量。

磁晶各向异性

磁晶各向异性
晶体的各向异性即沿晶格的不同方向,原子排列的周期性和疏密程度不尽相同,由此导致晶体在不同方向的物理化学特性也不同,这就是晶体的各向异性。晶体的各向异性具体表现在晶体不同方向上的弹性模量、硬度、断裂抗力、屈服强度、热膨胀系数、导热性、电阻率、电位移矢量、电极化强度、磁化率和折射率等都是不同的。各向异性作为晶体的一个重要特性具有相当重要的研究价值。常用密勒指数来标志晶体的不同取向。
相关概念
(1)磁晶各向异性常数K
磁晶各向异性的大小用磁晶各向异性常数K来衡量。对于立方晶体,磁晶各向异性常数可以这样定义:单位体积的铁磁单晶体沿[111]轴与沿[100]轴饱和磁化所需要的能量差。
(2)磁晶各向异性能Fk
通常最容易磁化的晶轴方向称为易磁化方向,所在的轴称为易磁化轴;与之相反的是难磁化方向和难磁化轴。晶体在磁化过程中沿不同晶轴方向所增加的自由能不同,通常沿易磁化轴方向最小,沿难磁化轴方向最大。我们称这种与磁化方向有关的自由能为磁晶各向异性能。(注意与磁各向异性能相区别)
磁晶各向异性
定义:单晶体中原子排列的各向异性往往会导致其许多物理和化学性能具有各向异性,磁性为其中一种。单晶体沿不同晶轴方向上磁化所测得的磁化曲线和磁化到饱和的难易程度不同。即,在某些晶轴方向的晶体容易磁化,而沿某些晶轴方向不容易磁化,这种现象称为磁晶各向异性。
磁晶各向异性的强弱用磁晶各向异性常数衡量。
(3)磁晶各向异性场Hk
磁晶各向异性场是一磁场作用,使它恢复到易磁化轴方向

磁晶各向异性

磁晶各向异性

图(4.19)和(4.20)为样品的磁场
热处理的磁滞回线和转矩曲线。热
处理的条件是:
从300K在
H 10 7 A m1 4
磁场中冷却到77K。
Ea Kd cos H交换
可以看出: ⑴ 磁滞回线发生了偏移;
这是因为Co粒子的磁化 强度趋向于外磁场的正向, 在反向磁化时,为了使磁化 强度反转到负方向,必须在 负方向施加一个额外的场, 也就是交换各向异性产生的 交换场。
Kd 0M
场的热大处小理,的而C2o0KM -C0 是oO单,轴只磁有晶C各o的向单异轴性磁的晶矫各顽向力异,性未,经它磁
的磁滞回线形状,以坐标原点为中心是对称的。图4-19
虚线所示。而对于经过磁场热处理的Co-CoO,由于交换
各向异性的作用,致使磁滞回线发生偏移。
3.4 交换各向异性的起源
右图(a)表示高于CoO的奈耳点以上温 度时的情况,CoO的反铁磁结构不存在, 只有Co的铁磁结构。图(b)表示在强磁场 中进行热处理时的情况。当温 度冷却到 CoO的奈耳点以下 时,则CoO形成反 铁磁结构,同时,由于Co与CoO的介面 上的交换作用,使CoO的原子磁矩成为 平行与反平行于Co的原子磁矩的取向。 图(c)表示在此温度下,外加反向磁场, 使Co原子磁矩转动,但对CoO的原子磁 矩却影响甚小,如将反向磁场去掉,由 于介面层上Co和CoO之间的交换作用, 仍可以使Co原子磁矩又恢复到原磁化方 向。宏观上呈现出磁各向异性,并使整 个磁滞回线偏移了。如图(d)。
Thank you!
其数学表达式为: F K0 sin2 Kd cos 0MH cos
K0 sin2 (H Kd 0M )0M cos
磁滞回线上的矫顽力 HC是由 F 0 和 2F 2 0

磁各向异性能

磁各向异性能

磁各向异性能磁各向异性(Magneto-crystallineAnisotropy,简称MCA),是一种被广泛应用于磁性材料中的物理现象,它是指磁性材料在不同方位上具有不同的磁性特性。

它是磁性材料中磁晶结构及本征磁矩与应变结构和拓扑结构的综合效应。

在磁性材料中,微小的内部应变可以引起位错的构建,从而调节磁畴的能量,影响磁畴的取向,从而改变磁畴中的磁性特性。

在应用中,这种现象被用来控制磁性材料的性能。

MCA是一种由应力、拓扑和磁场综合作用导致的磁畴取向现象,它有助于理解材料中的磁性行为,也可以用来调控材料的磁性特性。

MCA可以被划分为简单磁各向异性、拓扑各向异性和电荷各向异性。

简单磁各向异性是由材料的结构所引起的,由磁晶结构及本征磁矩所决定,该类各向异性是最基本的形式,对对噪声效应不敏感。

拓扑各向异性受内部拓扑和外部应力影响,因此它更容易受到环境因素或应力影响,它可以用来改变材料磁性特性,从而被用于磁性存储器中。

电荷各向异性是由材料中电荷层状分布引起的一种现象,该类磁畴取向主要由电子自旋对材料中电荷密度所产生的磁场所引起,因此它可以用来改变材料的磁性特性。

MCA是目前磁性材料中最重要的磁性特性,它不仅可以控制磁性材料的磁畴取向,而且也可以控制磁性材料的磁性特性。

它广泛应用于磁性存储器,它使得磁性存储器可以在同一晶体中实现自动反转的功能,从而改善存储器的效能和寿命。

此外,MCA还可以用来改变磁性材料的放大器特性,以及用于动态过程控制。

随着材料科学技术的发展,MCA受到了越来越多的关注,它在电子科技中有着重要的应用。

例如,磁性存储器中的磁性涂层可以得到改善,而这种改善得益于MCA的用途,从而提高了性能的可靠性,从而增强了存储系统的可靠性。

此外,MCA也可以被用于电子设备中的磁畴检测和定位,从而提高系统性能。

以上,就是关于磁各向异性的相关介绍。

从该介绍可以看出,MCA 是当今磁性材料研究中非常重要的现象,它不仅可以改善磁性材料的性能,而且还有助于提高存储系统的可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Thank you!
现设镍的浓度很小(远远小于1),无序时就没有 Ni - Ni 近邻如图(a),若磁场热处理时,铁镍原子的位置互换 如图(b)增加了一个铁铁对和一个镍镍对,同时减少了两个 铁镍对。
lo lNi Ni lFeFe 2lFe Ni
⑵ 逆磁致伸缩效应
是指磁性体在受到形变时将发生 偶极子互作用能的变化和弹性能的变化, 这两种能量的平衡又决定了磁致伸缩所 产生的形变大小,所以磁体受到形变时 将产生磁各向异性现象。
2ቤተ መጻሕፍቲ ባይዱ2 分类
1 2 3
生长感生磁向异性 应力感生磁向异性
磁场感生磁向异性
生长感生各向异性大多发生于磁性薄 膜中,由于生长过程的特殊条件,使各个 磁性离子沿着特定的方向形成有序化,导 致呈现出生长感生各向异性。 应力感生磁各向异性的出现是由于应 力或形变通过磁弹性相互作用影响磁化强 度的从优取向。
(4.19)
⑵ 转矩曲线为 sin 形式。
这表明它是一种单向各向异 性,不同于单轴各向异性—即自
发磁化的稳定方向(或易磁化 方向)平行于一特殊晶轴 。其
产生的各向异性能可 表示为:
Ea Kd cos
(4.20)
Kd为交换各向异性常数,它 取决于颗粒的总表面积。
3.3 Co-CoO在磁场中的自由能
3.2 对Co-CoO的热处理
CoO是反铁磁性,在冷却过程 中,反铁磁自旋结构在奈尔点( 低于 室温 )形成时,由于在外场作用下, 表面处的Co2+的自旋与颗粒中Co 的自旋必定平行排列。 图(4.19)和(4.20)为样品的磁场 热处理的磁滞回线和转矩曲线。热 处理的条件是:
107 1 从300K在 H 4 A m
2K0 Kd 0 M 0 M
的大小,而 场热处理的Co-CoO,只有Co的单轴磁晶各向异性,它 的磁滞回线形状,以坐标原点为中心是对称的。图4-19 虚线所示。而对于经过磁场热处理的Co-CoO,由于交换 各向异性的作用,致使磁滞回线发生偏移。
2K0 0 M 是单轴磁晶各向异性的矫顽力,未经磁
主要内容:
1 2 3
内容回顾
感生磁各向异性
交换各向异性
1.1 磁晶各向异性:
在磁性物质中,自发磁化主要来源于自旋 间的交换作用,这种交换作用本质上是各向同性 的,如果没有附加的相互作用存在,在晶体中, 自发磁化强度可以指向任意方向而不改变体系的 内能。实际上在磁性材料中,自发磁化强度总是 处于一个或几个特定方向,该方向称为易轴。当 施加外场时,磁化强度才能从易轴方向转出,此 现象称为磁晶各向异性。 晶体中原子排列的各向异性导致磁性的各向 异性
Kd 0M
3.4 交换各向异性的起源
右图(a)表示高于CoO的奈耳点以上温 度时的情况,CoO的反铁磁结构不存在, 只有Co的铁磁结构。图(b)表示在强磁场 中进行热处理时的情况。当温 度冷却到 CoO的奈耳点以下 时,则CoO形成反 铁磁结构,同时,由于Co与CoO的介面 上的交换作用,使CoO的原子磁矩成为 平行与反平行于Co的原子磁矩的取向。 图(c)表示在此温度下,外加反向磁场, 使Co原子磁矩转动,但对CoO的原子磁 矩却影响甚小,如将反向磁场去掉,由 于介面层上Co和CoO之间的交换作用, 仍可以使Co原子磁矩又恢复到原磁化方 向。宏观上呈现出磁各向异性,并使整 个磁滞回线偏移了。如图(d)。
F K0 sin 2 Kd cos 0 MH cos
K0 sin 2 (H Kd 0 M )0 M cos
磁滞回线上的矫顽力 H C是由 F 0 和 2 F 2 0
来决定,根据上面各式,可以得到矫顽力的表达式:
HC
上式说明,磁滞回线沿磁场坐标轴向左边偏移了
磁场感生磁各向异性,在大块磁体和磁 性膜中都可以发生,特别是在具有较高电 子迁移率的磁体中更容易实现。当磁体从 高温冷却时,施加外磁场,使之影响磁矩 的取向。如果磁体从高温急冷到常温,则 有新的感生方向被凝结于外磁场方向,从 而形成磁场感生磁各向异性,并且为单轴 各向异性。
2.3 感生磁各向异性的机理
定义:
许多铁磁性合金与铁氧体中,通过对磁体施以某种方 向性处理的工艺,可以感生出磁各向异性。这类处理方式: 磁场作用下的热处理、应力作用下的热处理及冷轧等 。 其中磁场热处理是强磁材料在 TC温度下,处于外磁 场中退火;退火目的是降低硬度;消除残余应力,稳定尺 寸,减少变形,消除组织缺陷。冷轧是指,经过连续冷变 形而引起的冷作硬化使材料的强度、硬度上升、韧塑指标 下降 。
按产生磁各向异性的根源,其机理可以归 结为下面三种效应: ⑴ 原子对方向性排列(方向有序)效应 ⑵ 逆磁致收缩效应 ⑶ 晶粒、晶粒边界的形状效应
1 2 2 1
⑴原子对方向性排列效应,主要产生磁场
感生各向异性或生长感生磁各向异性。 如果是随机占位是无序态,如果分别占据
1-Fe和2-Al位则是有序态。
我们用Fe -Ni合金来解释,假 定铁镍合金中有各向异性分布 的Ni-Ni ,Fe-Fe 和Ni-Fe原子对, 而且Ni-Fe原子对的键长短。这 样方向有序引起晶格畸变,通 过磁弹性能产生感生各向异性。
1.2 磁晶各向异性的宏观描述及磁化功
⑴ 宏观描述
单晶体: 原子离子按同一方式
有规则地周期性排列组成的固体。
多晶体:由许多取向不同的单晶
体组成的固体。
⑵ 磁化功
定义:铁磁体磁化时所需要的 磁化能。
W
沿铁磁晶体不同的晶轴方向上, 磁化到饱和时所需要的磁化能不同

Ms
0
HdM
2.1 感生磁各向异性的定义
Ea Kd cos
H交换
磁场中冷却到77K。
可以看出: ⑴ 磁滞回线发生了偏移;
这是因为Co粒子的磁化 强度趋向于外磁场的正向, 在反向磁化时,为了使磁化 强度反转到负方向,必须在 负方向施加一个额外的场, 也就是交换各向异性产生的 交换场。
在77K温度下,轻微氧化的Co粉 的磁滞回线 实线:磁场中 冷却;虚线:无外场下冷却。
⑶ 晶粒、晶粒边界的形状效应
主要出现在析出型合金和一些特殊 成膜工艺的磁性薄膜中。对于析出型合 金,在磁场热处理过程中,析出粒子产 生了择优长大,结果由于这种析出物的 形状各向异性,导致产生了单轴磁各向 异性。
3 交换各向异性
3.1 定义
将强磁性的Co微粒表面进行微弱氧化, 形成薄层CoO,由于Co是铁磁性的,而CoO 是反铁磁性的,在Co和CoO界面就有交换作 用,当磁场热处理 后,由此引起交换各向异 性(做成磁带,录音效果好)。 Maiklejohn与Bean发現,颗粒直径为 10-100nm的轻微氧化的Co粉,在磁场下从 室温冷却到770k时,表現出单向各向异性。 这种各向异性,驱使磁化强度沿着冷却时所 加的外场方向。
单向各向异性的转矩表达式是:
L( ) Kd sin
转动磁滞代表正反旋转磁场一周分别测量的转矩曲线 所需要的能量之差。其表达式为:
2
其中 为磁场H与磁化强度M的夹角,则转矩为:
W L( )d
0
L( ) HM sin
Co-CoO在磁场中的自由能包括三部分: ⑴ Co的单轴磁晶各向异性能; ⑵ Co与CoO界面的单向各向异性能; ⑶ 磁场能。 其数学表达式为:
Fe
无序
完全有序
方向有序
在这种产生感生磁各向异性的机理里,偶极子互相作用起 着重要作用,以薄膜为例,其单轴各向异性能为:
E K0 Sin2
式中 K 0为感生磁各向异性常数, 为磁化强度和热处理外加 强磁场方向的夹角。 定义 l0 是与磁化平行的镍铁原子对中的一个与其他原子交 换位置时发生的能量变化。
相关文档
最新文档