一元一次方程中考试题

合集下载

全国各地中考数学一元一次方程试题.pdf

全国各地中考数学一元一次方程试题.pdf

全国各地中考数学一元一次方程试题.pdf全国各地中考数学一元一次方程试题一、解一元一次方程1.(2019重庆,7,4分)已知关于x的方程2x+a一9=0的解是x=2,则a的值为( )A.2B.3C.4D.5【解析】把x=2代入方程2x+a一9=0即可求出 a.【答案】D【点评】能使方程两边相等的未知数的值是方程的解,根据此定义,如果告诉了方程的解,那么这个数代人方程中一定使方程两边相等,由此可求出待定系数,这是解决此类问题的常法。

2.(2019浙江省温州市,9,4分)楠溪江某景点门票价格:成人票每张70元,儿童票每张35元。

小明买20张门票共花了1225元,设其中有张成人票,张儿童票,根据题意,下列方程组正确的是( )A. B.C. D.【解析】本题的数量关系是:成人票的数量+儿童票数量=20;成人票钱数+儿童票钱数=1225.【答案】B【点评】本题考查了列方程组解应用题。

难度较小.二、一元一次方程的应用1.(2019山东省潍坊市,题号12,分值3)12、下图是某月的日历表,在此日历表上可以用一个矩形圈出个位置的9个数(如6,7,8,13,14,15,20,21,22)。

若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为( ) A. 32 B.126 C. 135D.144 【解析】列方程解日历中问题,日历中数据规律.【答案】不妨设圈出的9个数中,最小的数为x, 最大的x+16 根据最大数与最小数的积为192得到解得 (负值舍去)这9个数的和:8+9+10+15+16+17+22+23+24=144,所以本题正确答案是 D.【点评】用字母表示出这9个数是解决本题的基础。

根据题目中的条件列出方程是解决本题的关键.2.(2019湖南湘潭,15,3分)湖南省2019年赴台旅游人数达7.6万人.我市某九年级一学生家长准备中考后全家人去台湾旅游,计划花费元.设每人向旅行社缴纳元费用后,共剩元用于购物和品尝台湾美食.根据题意,列出方程为 . 【解析】找出等量关系:每人向旅行社缴纳元费用,加上用于购物和品尝台湾美食的元,等于花费的元. 列出方程为3X+5000=20190。

一元一次方程中考真题汇总

一元一次方程中考真题汇总

一元一次方程中考真题一、选择题1. (2011山东菏泽,7,3分)某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打 A .6折 B .7折 C .8折 D .9折 【答案】B2. (2011山东日照,4,3分)某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有( ) (A )54盏 (B )55盏 (C )56盏 (D )57盏 【答案】B3. (2011甘肃兰州,11,4分)某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为A .(1)2070x x -=B .(1)2070x x +=C .2(1)2070x x +=D .(1)20702x x -= 【答案】A4. ( 2011重庆江津, 3,4分)已知3是关于x 的方程2x -a=1的解,则a 的值是( ) A.-5 B.5 C.7 D.2 【答案】B ·5. (2011湖北荆州,6,3分)对于非零的两个实数a 、b ,规定ab b a 11-=⊗,若1)1(1=+⊗x ,则x 的值为A .23 B .31 C . 21 D . 21-【答案】D 二、填空题1. (2011四川重庆,16,4分)某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成.乙种盆景由10朵红花、12朵黄花搭配而成.丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了 朵. 【答案】43802. (2011福建泉州,10,4分)已知方程||x 2=,那么方程的解是 .【答案】1222x x ==-,;3. (2011湖南邵阳,13,3分)请写出一个解为x=2的一元一次方程:_____________。

中考数学总复习《一元一次方程》专项测试卷-附带参考答案

中考数学总复习《一元一次方程》专项测试卷-附带参考答案

中考数学总复习《一元一次方程》专项测试卷-附带参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.某人驾驶一艘小船在甲、乙两个码头之间航行,顺水航行需6h,逆水航行比顺水航行多用2h.若水流速度是2km/h,则这艘小船在静水中的平均速度是( ) A.14km/h B.15km/h C.16km/h D.17km/h2.已知关于x的方程∣5x−4∣+a=0无解,∣4x−3∣+b=0有两个解∣3x−2∣+c= 0只有一个解,则化简∣a−c∣+∣c−b∣−∣a−b∣的结果是( )A.2a B.2b C.2c D.03.已知七(1)班有学生48名,其中参加数学小组的有36人,参加英语小组的人数比参加数学小组的人数少10,并且这两个小组都不参加的人数比这两个小组都参加的人数的14多1,则同时参加这两个小组的人数是( )A.20B.16C.12D.84.下列四个等式中,是一元一次方程的是( )A.3x+2y=6B.2x+1=3xC.x2−2x−3=1D.2x=45.我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?若设有x个人,则可列方程是( ) A.3(x+2)=2x−9B.3(x−2)=2x+9C.x3+2=x−92D.x3−2=x+926.A、B两地相距900km,一列快车以200km/h的速度从A地匀速驶往B地,到达B地后立刻原路返回A地,一列慢车以75km/h的速度从B地匀速驶往A地,两车同时出发,截止到它们都到达终点的过程中,两车第四次相距200km时,行驶的时间是( )A.283h B.445h C.285h D.4h7.一个长方形的长比宽多9米,周长是54米,若设长方形的宽为x米,依题意,所列方程正确的是( )A.x+(x+9)=54B.x+(x−9)=54C.x+(x−9)=12×54D.x+(x+9)=12×548.把方程2x−y=3改写成用含x的式子表示y的形式,正确的是( )A.y=2x−3B.y=3−2xC.y=−2x−3D.y=x+32二、填空题(共5题,共15分)9.若方程−x2k−3+5=0是关于x的一元一次方程,则k=.10.如图,为了测一个玻璃瓶的容积,小丽将一袋240毫升的牛奶倒入瓶中,测得牛奶高度为8厘米,再将瓶子倒放,测得空余部分高度为2厘米,小丽计算得到玻璃瓶的容积应该是毫升.11.一个袋子里有若干个球,其中红球占38,后来又往袋子里放12个红球,这时红球占总数的12,则袋子中原来共有球个.12.一列火车现在以120千米/时的速度从A地前往B地,原来的速度是现在速度的23,现在全程所用时间比原来少用4小时,则A,B两地的全程为千米.13.小红在某月日历的一个竖列上圈了三个数,这三个数的和恰好是33,则这三个数中最大的一个是.三、解答题(共3题,共45分)14.某冷饮店用200元购进A,B两种水果共20kg,进价分别为7元/kg和12元/kg.(1) 这两种水果各购进多少千克?(2) 该冷饮店将所购进的水果全部混合制成50杯果汁,要使售完后所获利润不低于进货款的50%,则每杯果汁的售价至少为多少元?15.在某体育用品商店,购买30根跳绳和60个毽子共需720元,购买10根跳绳和50个毽子共需360元.(1) 跳绳、毽子的单价各是多少元?(2) 该店在儿童节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1800元,该店的商品按原价的几折销售?16.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?参考答案1. 【答案】A2. 【答案】D3. 【答案】A4. 【答案】B5. 【答案】C6. 【答案】B7. 【答案】D8. 【答案】A9. 【答案】 210. 【答案】 30011. 【答案】 4812. 【答案】 96013. 【答案】 1814. 【答案】(1) 设 A 种水果购进了 x kg ,则 B 种水果购进了 (20−x)kg ,根据题意,得7x +12(20−x)=200,解得x =8.所以20−x =12.答:购进 A 种水果 8 kg ,B 种水果 12 kg .(2) 设每杯果汁的售价为 y 元,根据题意,得50y −200≥200×50%,解得y ≥6.答;每杯果汁的售价至少为 6 元.15. 【答案】(1) 设跳绳的单价为 x 元,毽子的单价为 y 元根据题意,得{30x +60y =720,10x +50y =360,解得{x =16,y =4.(2) 设该店的商品按原价的 a 折销售,可得(100×16+100×4)×a10=1800,解得a=9.答:该店的商品按原价的9折销售.16. 【答案】设该店有x间客房则7x+7=9x−9解得x=8.7x+7=7×8+7=63.答:该店有客房8间,房客63人.。

中考数学《一元一次方程》专题练习(附带答案)

中考数学《一元一次方程》专题练习(附带答案)

中考数学《一元一次方程》专题练习(附带答案)一、单选题1.方程x ﹣3=2x ﹣4的解为( )A .1B .﹣1C .7D .﹣72.下列等式变形正确的是( ) A .如果s=12ab ,那么b=s2aB .如果12x=6,那么x=3C .如果x ﹣3=y ﹣3,那么x ﹣y=0D .如果mx=my ,那么x=y3.某种商品,若单价降低110,要保持销售收入不变,那么销售量应增加( )A .110B .19C .18D .174.一个长方形的周长为 26cm ,若这个长方形的长减少 2cm ,宽增加 3cm ,就可以成一个正方形.设长方形的长为 xcm ,可列方程( ) A .x +2=(13−x)−3 B .x +2=(26−x)−3 C .x −2=(26−x)+3D .x −2=(13−x)+35.某超市将两件商品都以84元售出,一件提价 40% ,一件降价 20% ,则最后是( )A .无法确定B .亏本3元C .盈利3元D .不赢不亏6.下列方程变形中,正确的是( )A .方程3x +4=4x −5,移项得3x −4x =5−4B .方程−32x =4,系数化为1得x =4×(−32)C .方程3−2(x +1)=5,去括号得3−2x −2=5D .方程x−12−1=3x+13,去分母得3(x −1)−1=2(3x +1) 7.已知关于x 的一元一次方程 12020x +3=2x +b 的解为x=-3,那么关于y 的一元一次方程 12020(y +1)+3=2(y +1)+b 的解为( ) A .y=1B .y=-1C .y=-3D .y=-48.若(m ﹣2)x |2m ﹣3|=6是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数9.若关于x 的方程(k+1)x 2﹣ √2−k x+ 14=0有实数根,则k 的取值范围是( )A .k≤2且k≠﹣1B .k≤ 12且k≠﹣1C .k≤ 12D .k≥ 1210.下面是一个被墨水污染过的方程 12(1-2ax)=x+a ,答案显示此方程的解是x=-2,被墨水遮盖的是一个常数a ,则这个常数是( )A .1B .−52C .52D .−1211.把方程x2﹣x−16=1去分母,正确的是( )A .3x ﹣(x ﹣1)=1B .3x ﹣x ﹣1=1C .3x ﹣x ﹣1=6D .3x ﹣(x ﹣1)=612.解方程 2x−13+3x−44=0 时,去分母正确的是( ) A .4(2x −1)+9x −4=12 B .4(2x −1)+3(3x −4)=12 C .8x −1+9x +12=0D .4(2x −1)+3(3x −4)=0二、填空题13.湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个莲蓬,付50元,找回38元,设每个莲蓬的价格为x 元,根据题意,列出方程 .14.如表所示,已知a ,b 满足表格中的条件,则b 的值是 .x ﹣1 ax ﹣1 ax 2+b415.若关于x ,y 的方程组{x −y =m +2x +3y =m的解适合方程x +y =−2,则m = .16.某村原有林地108公顷,旱地54公公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%.设把x 公顷旱地改为林地,则为可列方程为 .17.将方程 2x +3y =6 写成用含x 的代数式表示y ,则y= .18.在①2x ﹣1②2x+1=3x ③|π﹣3|=π﹣3④t+1=3中,等式有 方程有 (填入式子的序号)三、综合题19.在习近平主席提出的“一带一路”战略构想下,甲、乙两城市决定开通动车组高速列车,如图, AD是从乙城开往甲城的第一列动车组列车距甲城的路程 s(km) 与运行时间 t(ℎ) 的函数图象, BC 是一列从甲城开往乙城的普通快车离开甲城的路程 s(km) 与运行时间 t(ℎ) 的函数图象,它比第一列动车组动车晚出发 1 小时,请根据图中的信息,解答下列问题:(1)填空:甲、乙两城市之间的距离为千米(2)若普通快车的速度为100km/ℎ,①用待定系数法求BC的函数表达式,并写出自变量的取值范围:②若普通快车与第一列动车组列车相遇后0.4小时与第二列动车组列车相遇,请直接写出相邻两列动车组列车间隔的时间③在②的条件下,请直接写出第二列动车组列车与第一列动车组列车和普通快车距离相等时的t值.20.某超市购进甲、乙两种节能灯共1200只,这两种商品的进价、售价如下表进价(元|只)售价(元|只)甲2530乙4560(2)为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?21.根据下列条件列出方程(1)x比它的78大15(2)2xy与5的差的3倍等于24(3)y的13与5的差等于y与1的差.22.“双11”期间,某市各大商场掀起促销狂潮,现有甲、乙、丙三个商场开展的促销活动如下表所示商场优惠活动甲全场按标价的6折销售乙实行“每满100元送100元的购物券”的优惠,购物券可以在再购买时冲抵现金(如顾客购衣服220元,赠券200元,再购买裤子时可冲抵现金,不再送券)丙实行“每满100元减50元的优惠”(如某顾客购物220元,他只需付款120元)(1)三个商场同时出售某种标价为370元的破壁机和某种标价为350元的空气炸锅,若赵阿姨想买这两样厨房电器,她选择哪家商场最实惠?(2)黄先生发现在甲、乙商场同时购买一件标价为280元的上衣和一条标价为200多元的裤子,最后付款额一样,请问这条裤子的标价是多少元?(3)如果某品牌的巴西大豆在三所商场的标价都是5元/kg,请探究是否存在分别在三个商场付同样多的100多元,并且都能够购买同样质量同品牌的该大豆?如果存在,请求出在乙商场购买该大豆的方案(并指出在三个商场购买大豆的质量是多少千克,支付的费用是多少元)如果不存在,请直接回答“不存在”.23.如图,点A、B、C是数轴上三点,点A、B、C表示的数分别为-10、2、6,我们规定数铀上两点之间的距离用字母表示.例如点A与点B之间的距离,可记为AB(1)写出AB= ,BC=,AC=(2)点P是A、C之间的点,点P在数轴上对应的数为x①若PB=5时,则x=②PA =,PC=(用含x的式子表示)(3)动点M、N同时从点A、C出发,点M以每秒2个单位长度的速度沿数轴向右运动,点N以每秒2个单位长度的速度沿数向左运动,设运动时间为t(t>0)秒,求当t为何值时,点M、N之间相距2个单位长度?24.某商场将进货价为35元台灯以50元销售价售出,平均每月能售出500个,市场调研表明当销售价每上涨1元时,其销售量就将减少10个,若设每个台灯的销售价上涨a元.(1)试用含a的代数式填空涨价后,每个台灯的销售价为元,每台利润为元,商场的台灯平均每月的销售量为台,共可获利元.(2)如果商场要想销售利润平均每月至少达到10000元,现有三种方案.方案一“在原售价每台50元的基础上再上涨25元”方案二“在原售价每台50元的基础上在上涨15元”方案三“在原售价每台50元的基础上在上涨8元”.若为了减少库存,应该采用哪一种方案?并说明理由.参考答案1.【答案】A2.【答案】C3.【答案】B4.【答案】D5.【答案】C6.【答案】C7.【答案】D8.【答案】A9.【答案】C 10.【答案】B 11.【答案】D 12.【答案】D 13.【答案】8x+38=50 14.【答案】3 15.【答案】−316.【答案】20%(108+x )=54﹣x 17.【答案】6−2x 3 (或 2−23x )18.【答案】②③④②④ 19.【答案】(1)600(2)解①设BC 的解析式为s=kt+b , 由题意B (1,0),C (7,600),则有 {k +b =07k +b =600 ,解得 {k =100b =−100 .∴s=100t − 100(1≤t≤7)②设普通快车与第一列动车组列车x 小时后相遇,则100(x -1)+150x=600 解得x=145(小时) 设第二列动车组列车行驶了y 小时与普通快车相遇,则150y+100×(0.4+ 145-1)=600 解得y=3815∴相邻两列动车组列车间隔的时间= 145 − ( 3815 − 0.4)= 23(小时)③当t= 145小时时,普通快车与第一列动车组列车相遇,此时第二列动车组列车与第一列动车组列车和普通快车距离相等.当 100(t −1)+150(t −23)−600=23×150 时,第二列动车组列车与第一列动车组列车和普通快车距离相等.∴100(t −1)+150(t −23)−600=23×150解得 t =185答第二列动车组列车与第一列动车组列车和普通快车距离相等时,t 的值是 145 或 185 .20.【答案】(1)解设商场购进甲型节能灯x 只,则购进乙型节能灯(1200-x )只由题意,得25x+45(1200-x )=46000 解得x=400购进乙型节能灯1200-x=1200-400=800只.答购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元(2)解设乙型节能灯需打a折0.1×60a-45=45×20%解得a=9答乙型节能灯需打9折.21.【答案】(1)解根据题意可得x﹣78x=15(2)解根据题意可得3(2xy﹣5)=24(3)解根据题意可得13y﹣5=y﹣122.【答案】(1)解选甲商场需付(370+350)×0.6=432(元)选乙商场需付370+(350−3×100)=420(元)选丙商场需付370+350−7×50=370(元)因为370<420<432,故答案为丙商场最实惠.(2)解设这条裤子的标价为x元.根据题意,得(280+x)×0.6=280+x−2×100解得x=220.故这条裤子的标价为220元.(3)解设在乙商场先购买ykg大豆,需付100多元,再用100元的购物券再在乙商场购买100÷5=20kg 大豆.根据题意,得5(y+20)×0.6=5y,解得y=30.此时,在甲商场和乙商场都购买了30+20=50kg大豆,都需付30×5=150元.在丙商场购买50kg需付5×50−2×50=150元.所以存在分别在三个商场付同样多的100多元,并且都能买到同样质量同样品牌的该大豆.所以在乙商场的购买方案为先购买30kg大豆付150元,再用100元的购物券再在乙商场购买20kg大豆,共付了150元,购买了50kg大豆.23.【答案】(1)12416(2)解-3x+106-x(3)解相遇前,(6-2t)-(-10+2t) =2,解得t= 3.5相遇后(-10+2t)-(6-2t) = 2,解得t= 4.5.答当t=3.5或t=4.5时,点M、N之间相距2个单位长度.24.【答案】(1)(50+a)(15+a)(500-10a)(15+a)(500-10a)(2)解方案一当a=25时,(15+25)(500-10×25)=10000(元).方案二当a=15时,(15+15)(500-10×15)=10500(元).方案三当a=8时,(15+8)(500-10×8)=9660(元)<10000元,故舍去该方案.因为要减少库存,所以应采用方案二.。

中考数学总复习《一元一次方程》专项测试题-附参考答案

中考数学总复习《一元一次方程》专项测试题-附参考答案

中考数学总复习《一元一次方程》专项测试题-附参考答案(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.过去时全班同学每人互发一条祝福短信,共发了380条,设全班有x名同学,列方程为( )A.12x(x−1)=380B.x(x−1)=380C.2x(x−1)=380D.x(x+1)=3802.若关于x的方程2x+a−4=0的解是x=−2,则a的值等于( )A.−8B.0C.2D.83.如果x=2是方程12x+a=−1的解,那么a的值是( )A.−2B.2C.0D.−64.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场5.解方程x−16=3−2x−14,去分母时,方程两边乘各分母的最小公倍数( )A.10B.12C.24D.66.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为( )A.96里B.48里C.24里D.12里7.如图,用火柴棍分别拼成一排三角形组成的图形和一排正方形组成的图形,如果搭建三角形和正方形一共用了2020根火柴,且三角形的个数比正方形的个数多4个,则搭建三角形的个数是( )A.402B.406C.410D.4208.一元一次方程x−2=0的解是( )A.x=2B.x=−2C.x=0D.x=1二、填空题(共5题,共15分)9.一件商品如果按标价的八折销售,仍可获得25%的利润.已知该商品的成本价是40元,则该商品标价为元.10.小明在做作业时,不小心把方程中的一个常数污染了看不清楚,被污染的方程为:2y−12y=12−■,怎么办?小明想了想,便翻看了书后的答案,此方程的解为y=−53,于是,他很快知道了这个常数,他补出的这个常数是.11.若x=−2是方程m(x+3)−3m−x=6的解,则m的值为.12.关于x的一元一次方程x2022−1=2022x+m的解为x=−2019,则关于y的方程3−y2022−1=2022(3−y)+m的解为.13.−113的倒数的相反数是。

中考数学一轮复习《一元一次方程》练习题(含答案)

中考数学一轮复习《一元一次方程》练习题(含答案)

中考数学一轮复习《一元一次方程》练习题(含答案)一、单选题1.下列方程中解是2x =的方程是( )A .360x +=B .240x -+=C .122x =D .240x += 2.关于x 的不等式21x a +≥的解集如图所示,则a 的值是( )A .-1B .1C .2D .33.已知a =b ,根据等式的性质,错误的是( )A .22a b +=+B .ac bc =C .a b c c =D .2211a b c c =++ 4.若方程()2180m m x---=是关于x 的一元一次方程,则m =( ) A .1 B .2 C .3 D .1或35.下列命题中是真命题的是( )A .同位角相等,两直线平行B .钝角三角形的两个锐角互余C .若实数a ,b 满足a 2=b 2,则a =bD .若实数a ,b 满足a <0,b >0,则ab >06.某车间原计划用15小时生产一批零件,实际每小时多生产了10件,用了13小时不但完成了任务,而且还多生产了80件,设原计划每小时生产x 个零件,那么下列方程正确的是( )A .11(10)801513x x =++B .11(10)801513x x +=+ C .1513(10)80x x =++D .13(10)1580x x +=+ 7.若a b =,下列变形错误的是( )A .11a b +=+B .a m b m -=-C .22a b =D .23a b = 8.《孙子算经》中记载:今有百鹿入城,家取一鹿,不尽,又三家共鹿适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?设有x 户人家,可列方程为( )A .3100x x +=B .3100x x -=C .1003x x -=D .1003x x += 9.已知点P 的坐标为()2,3x x +,点M 的坐标为()1,2x x -,PM 平行于y 轴,则P 点的坐标为( )A .()2,2-B .()6,6C .()2,2-D .()6,6--10.在平面直角坐标系中,若直线y x m =-+不经过第一象限,则关于x 的方程210mx x ++=的实数根的个数为( )A .0个B .1个C .2个D .1或2个11.如图,将4张形状、大小完全相同的小长方形纸片分别以图1、图2的方式放入长方形ABCD 中,若图1中的阴影部分周长比图2的阴影部分周长少1,则图中BE 的长为( )A .14B .12C .1D .212.小江去商店购买签字笔和笔记本(其中签字笔和笔记本的单价相同).若购买20支签字笔和15本笔记本,则他身上的钱还缺25元;若购买19支签字笔和12本笔记本,则他身上的钱会剩下15元.若小江购买17支签字笔和9本笔记本,则( )A .他身上的钱还缺65元B .他身上的钱会剩下65元C .他身上的钱还缺115元D .他身上的钱会剩下115元二、填空题13.已知等式285x y -+=,则32x y -+=______.14.若方程2x -m =1和方程3x =2(x -1)的解相同,则m 的值为__________.15.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是___ 1621x -5x 的值为 _____.17.若()235k y k x -=-+是一次函数,则k =_________.18.已知x =﹣2时,二次三项式x 2﹣2mx +4的值等于﹣4,当x =_____时,这个二次三项式的值等于﹣1.19.对于实数a ,b ,定义运算“※”如下:a ※b =a 2﹣ab ,例如,5※3=52﹣5×3=10.若(1)x +※(4)10x -=,则x 的值为_____.20.一个装有红豆和黄豆共计200颗的瓶子,现将瓶中豆子充分摇匀,再从瓶中取出80颗豆子时,发现其中有20颗红豆,根据实验估计该瓶装有红豆大约_________颗.三、解答题21.解方程:(1)2﹣3x =5﹣2x ;(2)3(3x ﹣2)=4(1+x ).22.解下列方程:(1)4385-=+x x ; (2)7531132y y --=-.23.一个正数a 的两个不相等的平方根分别是21b -和4b +.(1)求b 的值;(2)求a b +的立方根.24.我们规定一种运算=-a b ad cb c d,如232534245=⨯-⨯=-,再如14224-=-+-x x .按照这种运算规定,解答下列各题:(1)计算3245--=___________;(2)若22235-=-x x,求x 的值;(3)若88123332--+-mx x与51--n x的值始终相等,求m,n的值.25.某移动公司设了两类通讯业务,A类收费标准为不管通话时间多长使用者都应缴50元月租费,然后每通话1分钟,付0.4元,B类收费标准为用户不缴月租费,每通话1分钟,付话费0.6元,若一个月通讯x分钟,两种方式费用分别是A y,B y元.(1)分别写出A y,B y与x之间的函数关系式.(2)某人估计一个月通话时间为300分钟,应选哪种通讯方式合算些,请书写计算过程.(3)小明用的A卡,他计算了一下,若是B卡,他本月话费将会比现在多100元,请你算一下小明实际话费是多少元?26.接种疫苗是阻断新冠病毒传播的有效途径,为保障人民群众的身体健康,我市启动新冠疫苗加强针接种工作,已知今年3月甲接种点平均每天接种加强针的人数比乙接种点平均每天接种加强针的人数多20%,两接种点平均每天共有440人接种加强针.(1)求3月平均每天分别有多少人前往甲、乙两接种点接种加强针?(2)4月份,甲接种点平均每天接种加强针的人数比3月少10m人,乙接种点平均每天接种加强针的人数比3月多30%,在m天期间,甲、乙两接种点共有2250人接种加强针,求m 的值.27.冰墩墩(BingDwenDwen),是2022年北京冬季奥运会的吉祥物.将熊猫形象与富有超能量的冰晶外壳相结合,头部外壳造型取自冰雪运动头盔,装饰彩色光环,整体形象酷似航天员.冬奥会来临之际,冰墩墩玩偶非常畅销.小冬在某网店选中A,B两款冰墩墩玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:进货价(元/个)20 15 销售价(元/个)28 20(1)第一次小冬550元购进了A ,B 两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小冬进货时,网店规定A 款玩偶进货数量不得超过B 款玩偶进货数量的一半.小冬计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?28.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d (0d ≥),则称d 为点P 到点Q 的追击值,记作[]d PQ .例如,在数轴上点P 表示的数是5,点Q 表示的数是2,则点P 到点Q 的追击值为[]3d PQ =.(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的追击值[]d MN a =(0a ≥),则点N 表示的数是______(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒4个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 从表示数b 的点出发,且数b 不超过5,设运动时间为t (0t ≥).①当4b =且t =______时,点A 到点B 的追击值[]2d AB =;②当时间t 不超过3秒时,求点A 到点B 的追击值[]d AB 的最大值是多少?(用含b 的代数式表示)参考答案1.B2.D3.C4.C5.A6.D7.D8.D9.A10.D11.B12.B13.614.-515.100元16.317.-318.﹣1或﹣519.120.5021.(1)2﹣3x =5﹣2x2352x x -=-3x -=解得3x =-(2)3(3x ﹣2)=4(1+x )9644x x -=+9446x x -=+510x =2x =22.(1)解:4385-=+x x4835-=+x x48x -=2x =-.(2)解:7531132y y --=- ()()2756331y y -=--1410693y y -=-+1096314y y -+=+-5y -=-5y =.23.(1)解:一个正数a 的两个不相等的平方根分别是21b -和4b +,21(4)0b b +∴-=+,解得1b .(2)解:由(1)已得:1b, []22(21)2(1)19a b ∴=-=⨯--=,9(1)8a b +=+-=∴,a b ∴+的立方根2=.24.(1)解:根据题意354(2)73245---⨯⨯-=-=-, 故答案为:7-(2)解:根据题意22235-=-x x, 转化为2(5)3(2)2x x ⨯--⨯-=, 解方程,得12x =-. (3)解:88123833(81)(2)243732332mx x mx x mx x --+=----+=--+-; 515(1)()5x n x n n x -=---=--;根据题意24375mx x x n --+=-恒成立,即(243)75m x x n --+=-,2435m --=,7n -=, 解得,13m =-,7n =-. 25.(1)解:根据题意得,A 类的费用是月租费加上通话费,即500.4A y x =+; B 类的费用是通话费与时间的乘积,即0.6B y x =,∴500.4A y x =+,0.6B y x =.(2)解:通话时间为300分钟,根据(1)中的结论得,500.4500.4300170A y x =+=+⨯=(元),0.60.6300180B y x ==⨯=(元)∵A B y y <,∴选择A 类.(3)解:根据题意得,100A B y y +=,∴500.41000.6x x ++=,解方程得,750x =,即小明打电话的时间为750分钟, ∴500.4500.4750350A y x =+=+⨯=(元),∴小明实际话费是350元.26.(1)解:设3月平均每天有x 人前往乙接种点接种加强针,则3月平均每天有(1+20%)x 人前往甲接种点接种加强针,依题意得:(1+20%)x +x =440,解得:x =200,∴(1+20%)x =(1+20%)×200=240.答:3月平均每天有240人前往甲接种点接种加强针,有200人前往乙接种点接种加强针;(2)解:依题意得:(240-10m )m +200×(1+30%)m =2250,整理得:m 2-50m +225=0,解得:m 1=5,m 2=45.当m =5时,240-10m =240-10×5=190>0,符合题意;当m =45时,240-10m =240-10×45=-210<0,不符合题意,舍去.答:m 的值为5.27.(1)解:设A 款玩偶购进x 个,B 款玩偶购进(30)x -个,由题意,得2015(30)550x x +-=,解得:20x .302010-=(个).答:A 款玩偶购进20个,B 款玩偶购进10个;(2)解:设A 款玩偶购进a 个,B 款玩偶购进(30)a -个,获利y 元,由题意,得(2820)(2015)(30)3150y a a a =-+--=+. A 款玩偶进货数量不得超过B 款玩偶进货数量的一半.1(30)2a a ∴-, 10a ∴,3150y a =+.30k ∴=>,y ∴随a 的增大而增大.10a ∴=时,180y =最大元.B ∴款玩偶为:301020-=(个).答:按照A 款玩偶购进10个、B 款玩偶购进20个的方案进货才能获得最大利润,最大利润是180元.28.(1)由题意可得:点M 到点N 的距离为a , 当N 在M 左侧时,则N 表示的数为1a -, 当N 在M 右侧时,则N 表示的数为1a +, 故答案为1a -或1a +;(2)①由题意可得:点A 表示的数为14t +,点B 表示的数为4t + 当点A 在B 的左侧时,即144t t +<+,解得1t <, ∵[]2d AB =,∴()4142t t +-+=,解得13t = 当点A 在B 的右侧时,即144t t +>+,解得1t >, ∵[]2d AB =,∴()1442t t +-+=,解得2t = 综上,53t =或13t =时,[]2d AB =; 故答案为:53或13; ②由题意可得:点A 表示的数为14t +,点B 表示的数为b t + 当点B 在点A 的左侧或重合时,此时1b ≤,随着t 的增大,A 与B 之间的距离越来越大, ∵03t ≤≤时,即3t =时,[]143(3)10d AB b b =+⨯-+=-, ∵b 不超过5,∴105b -≥当点B 在点A 的右侧时,此时1b >,在AB 、不重合的情况下,A B 、之间的距离越来越小,[]d AB 最大为初始状态,即0=t 时,[]1d AB b =-,∵b 不超过5,∴14b -≤在AB 、可以重合的情况下,14t b t +=+,13b t =+,b 的最大值为10,又数b 不超过5, ∴,A B 不重合,综上, []d AB 最大值是10b -.。

初三数学一元一次方程试题

初三数学一元一次方程试题

初三数学一元一次方程试题1.方程x+2=1的解是()A.B.C.D.【答案】D.【解析】根据等式的性质,移项得到x=1﹣2,即可求出方程的解:由x+2=1移项得:x=1﹣2,∴x=﹣1.故选D.【考点】解一元一次方程.2.在实数范围定义运算“&”:a&b=2a+b,则满足x& (x-6)=0的实数x是 .【答案】2【解析】x& (x-6)=02x+(x-6)=03x=6x=2【考点】1、阅读题;2、解方程3.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为()A.1.2×0.8x+2×0.9(60+x)=87B.1.2×0.8x+2×0.9(60﹣x)=87C.2×0.9x+1.2×0.8(60+x)=87D.2×0.9x+1.2×0.8(60﹣x)=87【答案】B.【解析】要列方程,首先要根据题意找出存在的等量关系,本题根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x支铅笔的售价+(60﹣x)支圆珠笔的售价=87,据此列出方程:1.2×0.8x+2×0.9(60﹣x)=87.故选B.【考点】由实际问题抽象出一元一次方程(销售问题).4.一道围栏是由0.3米宽的柱子和2米长的链子组成(链子的长度看作是两根柱子之间的距离),如果围栏的起点与终点均为柱子,下面各数中不可能是围栏长度的是 ( )A.25.6m B.32.5m C.36.5m D.37.1m【答案】C.【解析】设链子的数量为x,则柱子的数量为x+1围栏长度为2x+0.3(x+1)=2.3x+0.3A 2.3x+0.3=25.6,解得x=11;B 2.3x+0.3=32.5,解得x=14;C 2.3x+0.3=36.5,解得x为小数;D 2.3x+0.3=37.1,解得x=16.故选C.【考点】列方程解应用题.5.将图1的正方形作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是()A.502B.503C.504D.505【答案】B【解析】根据正方形的个数变化可设第n次得到2013个正方形,则4n+1=2013,求出即可.解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,以此类推,根据以上操作,若第n次得到2013个正方形,则4n+1=2013,解得n=503.故选:B.6.右边给出的是某年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是()A.69B.54C.27D.40【答案】D【解析】本题解决的关键是观察图形找出数之间的关系,从而找到三个数的和的特点.设中间的数是x,则上面的数是x﹣7,下面的数是x+7.则这三个数的和是(x﹣7)+x+(x+7)=3x,因而这三个数的和一定是3的倍数.则这三个数的和不可能是40.7.长为1,宽为a的矩形纸片(),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a的值为----_______----______.【答案】或.【解析】根据操作步骤,可知每一次操作时所得正方形的边长都等于原矩形的宽.所以首先需要判断矩形相邻的两边中,哪一条边是矩形的宽.当时,矩形的长为1,宽为a,所以第一次操作时所得正方形的边长为a,剩下的矩形相邻的两边分别为1-a,a.由1-a<a可知,第二次操作时所得正方形的边长为1-a,剩下的矩形相邻的两边分别为1-a,a-(1-a)=2a-1.由于(1-a)-(2a-1)=2-3a,所以(1-a)与(2a-1)的大小关系不能确定,需要分情况进行讨论.又因为可以进行三次操作,故分两种情况:①1-a>2a-1;②1-a<2a-1.对于每一种情况,分别求出操作后剩下的矩形的两边,根据剩下的矩形为正方形,列出方程,求出a的值.试题解析:由题意,可知当时,第一次操作后剩下的矩形的长为a,宽为1-a,所以第二次操作时正方形的边长为1-a,第二次操作以后剩下的矩形的两边分别为1-a,2a-1.此时,分两种情况:①如果1-a>2a-1,即a<,那么第三次操作时正方形的边长为2a-1.∵经过第三次操作后所得的矩形是正方形,∴矩形的宽等于1-a,即2a-1=(1-a)-(2a-1),解得a=;②如果1-a<2a-1,即a>,那么第三次操作时正方形的边长为1-a.则1-a=(2a-1)-(1-a),解得a=.考点: 一元一次方程的应用.8.把一根长100cm的木棍锯成两段,使其中一段的长比另一段的2倍少5cm,则锯出的木棍的长不可能为A.70cm B.65cm C.35cm D.35cm或65cm【答案】A【解析】设其中一段的长为xcm,则另一段的长为(100-x)cm,根据其中一段的长比另一段的2倍少5cm,得,解得。

中考数学总复习训练一元一次方程(含解析)

中考数学总复习训练一元一次方程(含解析)

一元一次方程一、选择题1.下列方程中,是一元一次方程的是( )A.x2﹣4x=3 B.x=0 C.x+2y=1 D.x﹣1=2.已知关于x的方程2x﹣a﹣5=0的解是x=﹣2,则a的值为()A.1 B.﹣1 C.9 D.﹣93.如果2x+3=5,那么6x+10等于()A.15 B.16 C.17 D.344.甲、乙两人练习赛跑,甲每秒跑7m,乙每秒跑6。

5m,甲让乙先跑5m,设x秒后甲可追上乙,则下列四个方程中不正确的是()A.7x=6.5x+5 B.7x+5=6.5x C.(7﹣6。

5)x=5 D.6。

5x=7x﹣55.如果三个正整数的比是1:2:4,它们的和是84,那么这三个数中最大的数是()A.56 B.48 C.36 D.126.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定7.当1﹣(3m﹣5)2取得最大值时,关于x的方程5m﹣4=3x+2的解是()A.B.C.D.8.王先生到银行存了一笔三年期的定期存款,年利率是4。

25%.若到期后取出得到本息(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是( )A.x+3×4。

25%x=33825 B.x+4.25%x=33825C.3×4.25%x=33825 D.3(x+4。

25x)=33825二、填空题9.已知关于x的方程有相同的解,那么这个解是.10.某人以4千米/时的速度步行由甲地到乙地,然后又以6千米/时的速度从乙地返回甲地,那么某人往返一次的平均速度是千米/时.11.如果|a+3|=1,那么a= .12.如果关于x的方程3x+4=0与方程3x+4k=18是同解方程,则k= .13.已知方程的解也是方程|3x﹣2|=b的解,则b= .14.已知方程2x﹣3=+x的解满足|x|﹣1=0,则m= .15.若(5x+2)与(﹣2x+9)互为相反数,则x﹣2的值为.16.购买一本书,打八折比打九折少花2元钱,那么这本书的原价是元.17.某公路一侧原有路灯106盏,相邻两盏灯的距离为36米,为节约用电,现计划全部更换为新型节能灯,且相邻两盏灯的距离变为54米,则需更换新型节能灯盏.18.当日历中同一行中相邻三个数的和为63,则这三个数分别为.三、解答题19.已知方程2x+3=2a与2x+a=2的解相同,求a的值.20.解方程:.21.是否存在整数k,使关于x的方程(k﹣5)x+6=1﹣5x;在整数范围内有解?并求出各个解.22.解下列关于x的方程.(1)4x+b=ax﹣8;(a≠4)(2)mx﹣1=nx;(3).23.解方程:|x﹣1|+|x﹣5|=4.24.某商场经销一种商品,由于进货时价格比原进价降低了6。

一元一次方程中考试题精选(最新整理)

一元一次方程中考试题精选(最新整理)
11.找出下列各图形中数的规律,依此,a 的值为 .
12.(4 分)如果单项式 2xm+2nyn﹣2m+2 与 x5y7 是同类项,那么 nm 的值是 . 三:解答题 13.荔枝是深圳的特色水果,小明的妈妈先购买了 2 千克桂味和 3 千克糯米糍,共花费 90 元; 后又购买了 1 千克桂味和 2 千克糯米糍,共花费 55 元.(每次两种荔枝的售价都不变) (1)求桂味和糯米糍的售价分别是每千克多少元; (2)如果还需购买两种荔枝共 12 千克,要求糯米糍的数量不少于桂味数量的 2 倍,请设计 一种购买方案,使所需总费用最低.
Hale Waihona Puke 17979
7.某车间有 26 名工人,每人每天可以生产 800 个螺钉或 1000 个螺母,1 个螺钉需要配 2
个螺母,为使每天生产的螺钉和螺母刚好配套.设安排 x 名工人生产螺钉,则下面所列方程
正确的是( )
A.2×1000(26﹣x)=800x B.1000(13﹣x)=800x
C.1000(26﹣x)=2×800x D.1000(26﹣x)=8 00x 二:填空题
8.一件服装的标价为 300 元,打八折销售后可获利 60 元,则该件服装的成本价是 元. 9.王经理到襄阳出差带回襄阳特产﹣﹣孔明菜若干袋,分给朋友们品尝,如果每人分 5 袋,还 余 3 袋;如果每人分 6 袋,还差 3 袋,则王经理带回孔明菜 袋. 10.为了改善办学条件,学校购置了笔记本电脑和台式电脑共 100 台,已知笔记本电脑的台 数比台式电脑的台数的 还少 5 台,则购置的笔记本电脑有 台.
一元一次方程中考试题精选
一:选择题 1.一元一次方程 3x﹣3=0 的解是( )
A.x=1 B.x=﹣1 C.x= D.x=0

初三数学一元一次方程试题答案及解析

初三数学一元一次方程试题答案及解析

初三数学一元一次方程试题答案及解析1.为促进交于均能发展,A市实行“阳光分班”,某校七年级一班共有新生45人,其中男生比女生多3人,求该班男生、女生各有多少人.【答案】该班男生、女生分别是24人、21人.【解析】设女生x人,则男生为(x+3)人.再利用总人数为45人,即可得出等式求出即可试题解析:设女生x人,则男生为(x+3)人.依题意得 x+x+3=45,解得,x=21,所以 x+3=24.答:该班男生、女生分别是24人、21人.【考点】一元一次方程的应用2.在实数范围定义运算“&”:a&b=2a+b,则满足x& (x-6)=0的实数x是 .【答案】2【解析】x& (x-6)=02x+(x-6)=03x=6x=2【考点】1、阅读题;2、解方程3.设a,b,c,d为实数,现规定一种新的运算=ad﹣bc,则满足等式=1的x的值为.【答案】﹣10【解析】由题目中新定义的运算可得:,去分母得:3x﹣4x﹣4=6,移项合并得:﹣x=10,解得:x=﹣10,故答案为:﹣10.【考点】解一元一次方程4.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为.【答案】2x+56=589﹣x【解析】等量关系为:到毛泽东纪念馆的人数=到雷锋纪念馆人数的2倍+56人设到雷锋纪念馆的人数为x人,则到毛泽东纪念馆的人数为(589﹣x)人,由题意得,2x+56=589﹣x.故答案为:2x+56=589﹣x.【考点】一元一次方程的应用5.右边给出的是某年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是()A.69B.54C.27D.40【答案】D【解析】本题解决的关键是观察图形找出数之间的关系,从而找到三个数的和的特点.设中间的数是x,则上面的数是x﹣7,下面的数是x+7.则这三个数的和是(x﹣7)+x+(x+7)=3x,因而这三个数的和一定是3的倍数.则这三个数的和不可能是40.6.图1是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是cm3.【答案】1000【解析】设长方体的高为xcm,然后表示出其宽为(15-x)cm,根据题意得:15-x=2x,解得:x=5,故长方体的宽为10cm,长为20cm,则长方体的体积为5×10×20=1000cm3.7.一元一次方程2x=4的解是A.x=1B.x="2"C.x=3D.x=4【答案】B【解析】方程两边都除以2即可得解:x=2。

中考一元一次方程易错题50题含答案解析

中考一元一次方程易错题50题含答案解析

中考一元一次方程易错题50题含答案解析一、单选题 1.解一元一次方程()11123x x +=-时,去分母正确的是( ) A .()312x x +=B .()213x x +=C .()312x x +=-D .()213x x +=-2.下列方程是一元一次方程的是( ) A .S=abB .2+5=7C .4x +1=x+2D .3x+2y=63.若方程3x +5=11的解也是关于x 的方程6x +3a =22的解.则a 的值为( ) A .103B .310C .﹣6D .﹣843=的解为( ) A .x =4B .x =7C .x =8D .x =10.5.下列方程中是一元一次方程的是( ) A .210x-=B .21x =C .21x y +=D .132x -=6.下列变形不正确的是( ) A .由2x -<,得<2x - B .由3x -=,得3x =- C .32x -=,得5x = D .由23x +<,得1x <7.若方程3256x a b x--=的解是非负数,则a 与b 的关系是( ) A .56a b ≤-B .56a b ≥C .56a b ≥-D .2856ba -≥8.有一群鸽子和一-些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子.设原有x 只鸽子,则下列方程正确的是( ) A .3568x x -=+B .3568x x+=-C .3568x x -+= D .3568x x +-= 9.下列方程的解是x =﹣2的是( ) A .x +1=2 B .2﹣x =0C .12x =1D .22x -=﹣2 10.解方程20.250.10.10.030.02x x-+=时,把分母化为整数,得( ) A .20025101032x x -+= B .20.250.11032x x-+= C .20.250.10.132x x-+= D .20025100.132x x-+= 11.一个角加上30°后,等于这个角的余角,则这个角的度数是( )A.30°B.40°C.45°D.50°12.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则a与b的和是()A.20B.21C.22D.2313.某校在庆祝祖国70周年“我和我的祖国”中学生读书系列活动中,将一些科技类图书分给了七年级一班的学生阅读,如果每人分4本,则剩余20本;如果每人分5本,则还缺30本.若设该校七年级一班有学生x人,则下列方程正确的是()A.4x﹣20=5x+30B.4x+20=5x﹣30C.4x﹣20=5x﹣30D.4x+20=5x+3014.已知x=2是关于x的方程x-5m=3x+1的解,则m的值是()A.-1B.1C.5D.-515.若整数a既使关于x的一元一次方程22x a-=有非负数解,又使关于x的分式方程11222axx x--=--有正整数解,则满足条件的所有a的和为()A.-2B.-1C.0D.116.A,B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行,已知甲车速度120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t 的值是()A.2B.2.5C.10或12.5D.2或2.5 17.解方程-3x=2时,应在方程两边()A.同乘以-3B.同除以-3C.同乘以3D.同除以3 18.某班分组去两处植树,第一组26人,第二组22人.现第一组在植树中遇到困难,需第二组支援.问第二组调多少人去第一组,才能使第一组的人数是第二组的3倍?设从第二组抽调x人,则可列方程为()A.26+x=3×26B.26=3(22﹣x)C.3(26+x)=22﹣x D.26+x=3(22﹣x)19.三个数的和是98,第一个数与第二个数之比是2:3,第二个数与第三个数之比是5:8,则第二个数是( )A .15B .20C .25D .3020.解方程21101136x x ++-=时,去分母正确的是( ) A .21(101)1x x +-+= B .411016x x +-+= C .2(21)(101)1x x +-+=D .2(21)(101)6x x +-+=二、填空题21.已知A ,B 两镇相距30千米,甲、乙二人同时从A ,B 两镇相向而行,甲每小时行16千米,乙每小时行14千米,甲、乙二人经过几小时相遇?(1)分析:如果设两人经过x 小时相遇,则甲行的路程为__________千米,乙行的路程为__________千米.根据甲、乙所行路程之和等于___________千米,即可列出方程. (2)解:设两人经过x 小时相遇. 根据题意,得___________. 解这个方程,得1x =.因此,甲、乙二人经过_________小时相遇.22.某外贸企业抓住优化疫情防控后的商机,投入资金生产某外贸产品,按疫情防控优化前的销售价格可获利20%,而优化疫情防控后产品价格增长了30%,生产成本仅增长了2%,最后该企业可比疫情优化前多盈利85万元,问该企业投入生产成本______万元.23.规定一种新运算:a *b =a 2﹣2b ,若2*[1*(﹣x )]=6,则x 的值为 _____. 24.将公式v =v 0+at (a ≠0)变形成已知v ,v 0,a ,求t 的表示形式,即t =_____. 25.某商场在销售某商品时,将其提价100%,物价部门查处后,限定其提价幅度只能是原价的14%,则该商品现在降价的幅度是_____.26.某次数学测试共20道选择题,答对一道得5分,答错或不答倒扣2分.小明在这次考试中得了79分,则他答对了____道题.27.若x =1是方程﹣2mx +n ﹣1=0的解,则2020+n ﹣2m 的值为______. 28.写出一个以5x =为解的一元一次方程__________.29.已知方程3x+43y=1,用含x 的代数式表示y 为________;当y=﹣12时,x=________.30.如果关于x 的一元一次方程0ax b +=的解是2x =,那么方程0bx a -=的解为____.31.数轴上点A 和点B 表示的数分别是1-和3,点P 到A 、B 两点的距离之和为6,则点P 表示的数是______ .32.当x =______时,代数式31x +的值与代数式23x -()的值互为相反数. 33.(a-3)x a²-8+3=4是关于x 的一元一次方程,则a 的值是 34.3x =是一元一次方程3245x a +-=的解,则a 的值等于___________. 35.我国古代《洛书》古称龟书,传说有神龟出于洛水,其甲壳上记载着一个世界上最古老的的幻方,如图所示,若将1~9这九个数字填入这个3×3的幻方中,恰好能使三行、三列、对角的三个数字之和分别相等.根据题意,要求幻方中的m 则可列方程为___________________,进而可求得m=_____,n=_____.36.一个正数的平方根分别是1x -+和2x +5,则这个正数是______37.水果在物流运输过程中会产生一定的损耗,下表统计了某种水果发货时的重量和收货时的重量.若一家水果商店以6元/kg 的价格购买了5000kg 该种水果,不考虑其他因素,要想获得约15000元的利润,销售此批水果时定价应为_____元/kg . 38.若方程2(a ﹣x)﹣3(x+1)=21的解是x =﹣2,则a 的值为_____.39.一般地,任何一个无限循环小数都可以写成分数形式,现以无限循环小数0.7•为例进行讨论:设0.7•=x ,由0.7•=0.777…可知,10x ﹣x=7.7•﹣0.7•=7,即10x ﹣x=7.解方程,得x=79.于是,得0. 7•= 79.则0.4•=____________;0.7•5•=____________ .40.如图,一个长方形征好分成A 、B 、C 、D 、E 、F 这6个正方形,其中最小的正方形A边长为1,则这个长方形的面积是_____________.三、解答题41.解方程:0.10.20.710.30.4x x---=.42.A、B两地相距15千米,甲汽车在前边以50千米/小时从A出发,乙汽车在后边以40千米/小时从B出发,两车同时出发同向而行(沿BA方向),问经过几小时,两车相距30千米?43.为了加强学生的体育锻炼,某班计划购买部分绳子和实心球,已知每条绳子的价格比每个实心球的价格少23元,且84元购买绳子的数量与360元购买实心球的数量相同.(1)绳子和实心球的单价各是多少元?(2)如果本次购买的总费用为510元,且购买绳子的数量是实心球数量的3倍,那么购买绳子和实心球的数量各是多少?44.192728xx--=45.当m为何值时,关于x的方程4x+2m=3x﹣5的解和方程6x﹣8=10的解相同?46.解下列方程(1)2x-(5x+16)=3-2(3x-4);(2)+=1.47.下框中是小明对课本P108练一练第4题的解答.请指出小明解答中的错误,并写出本题正确的解答.48.平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元(1)甲种商品每件进价为________元,每件乙种商品利润率为________;(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?49.如图,甲、乙两人利用不同的交通工具,沿同一路线从A地出发到距离A地350千米的B地办事,甲先出发,乙后出发,甲、乙两人距A地的路程和时间的关系如图所示,根据图示提供的信息解答:()1乙比甲晚______小时出发;乙出发______小时后追上甲;()2分别求甲、乙两人离开A地的路程s关于t的函数关系式;()3求乙比甲早几小时到达B地?50.综合与实践:为抗击新冠肺炎疫情,某药店对消毒液和口罩开展优惠活动.消毒液每瓶定价25元,口罩每包定价8元,优惠方案有以下两种:①以定价购买时,买一瓶消毒液送一包口罩;①消毒液和口罩都按定价的80%付款.现某客户要到该药店购x>.买消毒液40瓶,口罩x包(40)(1)若该客户按方案①购买,需付款_______元(用含x的式子表示);若该客户按方案①购买,需付款______元(用含x的式子表示并化简).x=,通过计算说明按方案①,方案①哪种方案购买较为省钱?(2)若80(3)试求当x取何值时,方案①和方案①的购买费用一样.参考答案:1.C【分析】根据等式的性质2,方程两边都乘6即可. 【详解】解:()11123x x +=-, 去分母,得()312x x +=-, 故选:C .【点睛】本题考查了解一元一次方程,能正确运用等式的性质进行变形是解此题的关键. 2.C【详解】A. ① S =ab 有三个未知数,故不是一元一次方程; B. ①2+5=7没有未知数,故不是一元一次方程;C. ①4x +1=x +2有一个未知数,且未知数的次数都是1,两边都是整式,故是一元一次方程;D. ①3x +2y =6有两个未知数,故不是一元一次方程; 故选C. 3.A【分析】求出第一个方程的解得到x 的值,将x 的值代入第二个方程计算即可求出a 的值.【详解】解:方程3x +5=11,解得:x =2, 将x =2代入6x +3a =22,得:12+3a =22, 解得:a =103. 故选:A .【点睛】本题主要考查了一元一次方程的解的定义,熟练掌握使方程左右两边同时成立的未知数的值就是方程的解是解题的关键. 4.D【分析】将等式两边同时平方得到一元一次方程x ﹣1=9,解方程并检验即可解题. 【详解】将方程两边平方得x ﹣1=9 解得:x =10经检验:x =10是原无理方程的解 故选D .【点睛】本题考查了无理方程及一元一次方程的解法,解本题的关键是注意解出方程之后一定要进行检验,确保式子有意义. 5.D【分析】根据一元一次方程的定义逐一判断即可得到答案. 【详解】解:210x -=是分式方程,故A 错误;21x =是一元二次方程,故B 错误;21x y +=是二元一次方程,故C 错误;132x -=是一元一次方程,故D 正确; 故选D .【点睛】本题考查的是一元一次方程的定义,掌握一元一次方程的定义是解题的关键. 6.A【分析】根据不等式的性质和等式的性质逐一进行判断即可. 【详解】解:A 、由2x -<,得2x >-,本选项不正确; B 、由3x -=,得3x =-,本选项正确; C 、由32x -=,得5x =,本选项正确; D 、由23x +<,得1x <,本选项正确; 故选:A【点睛】此题考查了不等式与等式的性质,熟练掌握它们的性质是解本题的关键. 7.C【分析】根据解一元一次方程的一般步骤求出表示x 的代数式,然后根据方程的解为非负数列不等式求解即可. 【详解】解:3256x a b x--= 186510x a b x -=-,①2856x b a =+, ①5628b a x +=, ①方程的解为非负数, ①560b a +≥, ①56a b ≥-,故选C .【点睛】本题考查了解一元一次方程,根据一元一次方程解得情况确定参数的值,根据题意列出不等式是解题的关键. 8.C【分析】根据题意,(x-3)是6的倍数,(x+5)是8的倍数,建立方程即可. 【详解】设原有x 只鸽子, 根据题意,得 3568x x -+=, 故选C.【点睛】本题考查了一元一次方程的应用,抓住鸟笼个数不变或鸟数量不变构建一元一次方程是解题的关键. 9.D【分析】分别把2x =-代入到四个选项中去,使得方程左右两边相等的选项即为所求. 【详解】解:A 、把2x =-代入到12x +=中,方程左边=-1,右边=2,左右两边不相等,故此选项不符合题意;B 、把2x =-代入到20x -=中,方程左边=4,右边=0,左右两边不相等,故此选项不符合题意;C 、把2x =-代入到112x =中,方程左边=-1,右边=1,左右两边不相等,故此选项不符合题意;D 、把2x =-代入到222x -=-中,方程左边=-2,右边=-2,左右两边相等,故此选项符合题意; 故选D .【点睛】本题主要考查了方程的解,解题的关键在于能够熟练掌握方程的解得定义:使得方程左右两边相等的未知数的值叫做方程的解. 10.D【分析】根据题意直接把分子分母同时乘以100,即可得出答案. 【详解】解:20.250.10.10.030.02x x-+=, 把分母化为整数,得20025100.132x x-+=.故选:D .【点睛】此题考查了解一元一次方程的一般步骤,解题的关键是熟练掌握利用分数的性质把分母化为整数.11.A【分析】利用题中的“一个角+30°=这个角的余角”作为相等关系列方程求解.【详解】解:设这个角的度数是x ,则x +30°=90°﹣x ,解得x =30°.答:这个角的度数是30°.故选:A .【点睛】此题主要考查了余角的概念以及运用.解此题的关键是熟悉互为余角的两角的和为90°.12.C【分析】根据图1可知,斜对角的两个数之和相等,继而即可求解.【详解】解:根据图1可知,斜对角的两个数之和相等,①81422a b +=+=,故选:C .【点睛】本题考查了幻方,根据幻方的特点,每一横行、每一竖列以及两条对角线上的3个数之和相等推出空格内的数,结合幻方斜对角的两个数之和相等是解题的关键. 13.B【分析】设该校七年级一班有学生x 人,根据“如果每人分4本,则剩余20本;如果每人分5本,则还缺30本”.【详解】解:设该校七年级一班有学生x 人,依题意,得:420530x x+=﹣ 故选:B【点睛】本题考查了一元一次方程的实际应用,审清题意是正确找到等量关系的前提. 14.A【分析】把x =2代入原方程可得关于m 的方程,解方程即得答案.【详解】解:把x =2代入方程x -5m =3x +1,得2-5m =6+1,解得:m =﹣1. 故选:A .【点睛】本题考查了一元一次方程的解和简单的一元一次方程的解法,属于基本题目,熟练掌握基本知识是解题关键.15.B【分析】方程变形后表示出解,由解为非负数确定出a 的范围,再由分式方程有正整数解,确定出所有a 的值,求出之和即可.【详解】解:方程22x a -=, 解得:22a x +=, 由方程有非负数解,得到202a +,即2a ≥-, 分式方程去分母得:1241x ax -+=-, 解得:4(2)2x a a=≠-, 2,x ≠0,a ∴≠ 方程有正整数解,21a ∴-=,或24,a -=解得: 1a =或2,a =-则所有a 的和为211-+=-,故选:B .【点睛】此题考查了一元一次方程的解与分式方程的解,始终注意分母不为0这个条件. 16.D【分析】分两种情况讨论:①两车相遇之前相距50千米;①两车相遇之后又相距50千米,根据路程=速度⨯时间,列方程求解即可得到答案.【详解】解:①当两车相遇之前相距50千米时,根据题意,1208045050t t +=-,解得:2t =;①当两车相遇之后又相距50千米时,根据题意,1208045050t t +=+,解得: 2.5t =,综上可知,经过t 小时两车相距50千米,则t 的值是2或2.5,故选D .【点睛】本题考查了一元一次方程的应用,利用分类讨论的思想,根据题意找出等量关系是解题关键.17.B【分析】利用等式的性质判断即可.【详解】解:利用等式的性质解方程-3x=2时,应在方程的两边同除以-3,故选:B .【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.D【详解】试题分析:设从第二组抽调x 人,则第一组有x+26人,第二组有22﹣x 人,根据第一组的人数是第二组的3倍,列出方程.解:设从第二组抽调x 人,则第一组有x+26人,第二组有22﹣x 人,由题意得,x+26=3(22﹣x ).故选D .考点:由实际问题抽象出一元一次方程.19.D【分析】先求出三个数的比,然后运用比例的性质,即可求出答案.【详解】解:由题意可得,①第一个数与第二个数之比是2:3,第二个数与第三个数之比是5:8,①三个数之比为10:15:24,设三个数分别为10x 、15x 、24x ,则10152498x x x ++=,解得:2x =,①第二个数为1530x =.故选:D .【点睛】本题考查了比例的性质,解一元一次方程,解题的关键是熟练掌握题意,运用比例的性质进行解题.20.D【分析】去分母的方法是方程两边同时乘以各分母的最小公倍数6,在去分母的过程中注意分数线右括号的作用,以及去分母时不能漏乘没有分母的项.【详解】方程两边同时乘以6得:()()2211016x x +-+=,故选D .【点睛】在去分母的过程中注意分数线起到括号的作用,并注意不能漏乘没有分母的项. 21.(1)16x ,14x ,30;(2)161430x x +=,1【分析】(1)如果设两人经过x 小时相遇,则甲行的路程为16x 千米,乙行的路程为14x 千米.根据甲、乙所行路程之和等于30千米,即可列出方程;(2)设两人经过x 小时相遇.根据题意,列方程求解即可.【详解】(1)16x ,14x ,30;(2)设两人经过x 小时相遇根据题意:161430x x +=解得:1x =【点睛】此题考查了ー元一次方程的应用,涉及了行程问题,解题的关键是读懂题意,正确把握已知条件,准确列出方程.22.250【分析】设该企业投入生产成本x 万元,则按疫情防控优化前的销售价格可获利为:20%x 万元,优化疫情防控后可获利为:()()()120%130%12%0.54x x x ++-+=(万元),再利用该企业可比疫情优化前多盈利85万元,列方程,再解方程即可.【详解】解:设该企业投入生产成本x 万元,则按疫情防控优化前的销售价格可获利为:20%x 万元,优化疫情防控后可获利为:()()()120%130%12%0.54x x x ++-+=(万元), ①0.5420%85x x -=,解得:250x =,答:该企业投入生产成本为250万元.故答案为:250【点睛】本题考查的是一元一次方程的应用,理解题意,确定相等关系是解本题的关键. 23.-1【分析】首先根据题意,可得:1*[(﹣x )=12﹣2×(﹣x )=1+2x ,所以2*[(1+2x )=6,所以22﹣2(1+2x )=6;然后根据解一元一次方程的方法,求出x 的值为多少即可.【详解】解:①a *b =a 2﹣2b ,①1*(﹣x )=12﹣2×(﹣x )=1+2x ,①2*[1*(﹣x )]=6,①2*(1+2x )=6,①22﹣2(1+2x )=6,去括号,可得:4﹣2﹣4x =6,移项,可得:﹣4x =6﹣4+2,合并同类项,可得:﹣4x =4,系数化为1,可得:x =﹣1.故答案为:﹣1.【点睛】此题主要考查新定义运算与解方程,解题的关键是根据题意得到一元一次方程. 24.0v v a- 【分析】根据等式的性质把v =v0+at 变形,即可得出答案.【详解】解:①v =v 0+at ,①at =v ﹣v 0, ①0v v t a-=, 故答案为:0v v a-. 【点睛】本题考查了列代数式,等式性质的应用,掌握等式的性质是解题的关键. 25.43%【分析】根据题意,可以列出相应的方程,从而可以得到该商品现在降价的幅度,本题得以解决.【详解】解:设该商品现在降价的幅度为x ,原来的价格为a 元,a (1+100%)(1−x )=a (1+14%),解得,x =43%,故答案为:43%.【点睛】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程. 26.17【分析】设小明答对y 道题,根据得分79分,构建方程求解.【详解】解:设小明答对y 道题,根据题意得5y -(20-y )×2=79,解得y =17,答:小明答对17道题.故答案为:17.【点睛】本题考查一元一次方程的应用,解题的关键是正确寻找等量关系,构建方程解决问题.27.2021【分析】把x=1代入方程求出n -2m 的值,原式变形后代入计算即可求出值.【详解】解:把x =1代入方程得:﹣2m +n ﹣1=0,整理得:n ﹣2m =1,则原式=2020+(n ﹣2m )=2020+1=2021.故答案是:2021.【点睛】此题考查了一元一次方程的解,利用了整体代入的思想,方程的解即为能使方程左右两边相等的未知数的值.28.315x =【详解】本题答案不唯一,例如2x=10,x-5=0,3x=15,x+7=12等,故答案可以是:3x=15(答案不唯一).【点睛】本题考查了一元一次方程的解,此题的答案不唯一,只要写出的方程是关于x 的一元一次方程,解为5即可.29. 394x - 173 【详解】3x +43y =1,43y =1-3x ,y =34-94x ;将y =-12代入方程得3x -16=1,x =173. 故答案为34-94x ;173. 点睛:注意区分用x 表示y 和用y 表示x 两种说法.30.12x =- 【分析】将2x =代入原方程,可得出2b a =,将其代入方程0bx a -=中,解之即可得出结论.【详解】解:将2x =代入原方程得20a b +=,2b a ∴=-,∴方程0bx a -=为20ax a --=,解之得12x=-,∴方程0bx a-=的解为122a axb a===--.故答案为:12x=-.【点睛】本题考查了一元一次方程的解,牢记“把方程的解代入原方程,等式左右两边相等”是解题的关键.31.4或-2【分析】设点P表示的数为x,分点P在点A的左边和点B的右边两种情况分别列方程求解即可.【详解】解:设点P表示的数为x①AB=|-1-3|=4<6①点P在点的左边时,-1-x+3-x=6,解得:x=-2点P在点B的右边时,x-3+x-(-1)=6.解得:x=4①点P表示的数是-2或4.故答案为-2或4.【点睛】本题考查了数轴上两点间的距离的表示方法,读懂题意、分类列出方程是解答本题的关键.32.7-【详解】分析:利用互为相反数两数相加为0,求出方程的解即可得到x的值.详解:根据题意得:3x+1+2(3﹣x)=0,去括号得:3x+1+6﹣2x=0,移项合并得:x=﹣7.故答案为﹣7.点睛:本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.33.-3【分析】根据一元一次方程的定义即可求出答案.【详解】由题意可知:30²81a a -≠-⎧⎨⎩= 解得:a=-3故答案为:-3【点睛】本题考查一元一次方程的定义,解题的关键是熟练运用一元一次方程的定义,本题属于基础题型.34.0【分析】将3x =代入方程,进行求解即可.【详解】解:①3x =是一元一次方程3245x a +-=的解,①33245a ⨯+-=,解得:0a =;故答案为:0.【点睛】本题考查一元一次方程的解,解一元一次方程.熟练掌握使等式成立的未知数的值,是方程的解,是解题的关键.35. 9+5=8+m 6 2【分析】根据“每行、每列、每条对角线上的三个数之和相等”解答即可.【详解】如图,①“每行、每列、每条对角线上的三个数之和相等”根据题意可得 9+5+x=8+m+x解得m=6,又y+5+6=y+9+n故解得n=2故填:9+5=8+m;6;2.【点睛】本题考查数的特点和有理数的加法,抓住每行、每列、每条对角线上的三个数之和相等是解题的关键.36.49【分析】根据题意,结合平方根的性质列出方程,求解方程即可得到结论.【详解】解:一个正数的平方根有两个,且互为相反数,∴由一个正数的平方根分别是1x -+和2x +5,可知()()1250x x -+++=,即60x +=,解得6x =-,∴()221749x -+==, 故答案为:49.【点睛】本题考查平方根的性质,根据题意列出方程求解是解决问题的关键. 37.10.【分析】根据表格中的数据可知,损耗率约等于10%,然后根据题意,即可列出相应的方程,从而可以得到水果的定价.【详解】设销售此批水果时定价为x 元/kg ,由表格可知,水果的损耗接近10%,则5000×(1﹣10%)x ﹣5000×6=15000,解得,x =10,答:销售此批水果时定价应为10元/kg ,故答案为:10.【点睛】本题主要考查一元一次方程的实际应用,找到等量关系,列出一元一次方程,是解题的关键.38.7【分析】把x =﹣2代入方程得出关于a 的方程解答即可.【详解】把x =﹣2代入方程2(a ﹣x)﹣3(x+1)=21,可得:2(a+2)﹣3(﹣2+1)=21,解得:a =7,故答案为7.【点睛】本题考查了一元一次方程的解,关键是把x =﹣2代入方程得出关于a 的方程解答.39. 497599 【分析】(1)根据题意设0.4•=x ,由0. 4•=0.444…可知,10x-x 的值进而求出即可;(2)根据题意设0. 7•5•= x ,由0. 7•5•=0.7575…可知,100x-x 的值进而求出即可;【详解】解:(1)设0.4•=x,由0. 4•=0.444…可知,10x-x=4. 4•-0.4•=4,即10x-x=4.解方程,得49 x=于是,得0.4•= 4 9故答案为4 9 .(2)设0. 7•5•= x,由0. 7•5•=0.7575…可知,100x-x=75.7•5•- 0. 7•5•=75,即100x-x=75.解方程,得x=75 99,于是,得0. 7•5•=75 99,故答案为75 99.【点睛】此题主要考查了一元一次方程的应用,解答本题的关键是找出其中的规律,即通过方程形式,把无限小数化成分数形式.40.143【分析】设正方形E的边长为x,则原长方形的长为(3x+1),宽为(2x+3),然后根据长方形的对边相等列方程求解即可.【详解】解:设正方形E的边长为x,则D正方形的边长是x+1,C正方形的边长是x+2,B 正方形的边长是2x-1,①原长方形的长为(3x+1),宽为(2x+3),根据题意,得2x-1+x=x+2+x+1,解得:x=4.当x=4时,3x+1=13,2x+3=11,①长方形的面积=13×11=143.故答案为:143.【点睛】此题考查了一元一次方程的实际应用,解题的关键是正确分析题意,找到各正方形的边长之间的关系.41.2922 x=【分析】根据解一元一次方程的步骤即可得到答案.【详解】方程整理得:123x --17104x -=, 去分母得:()()412123710x x --=-,去括号得:48122130x x --=-,移项合并得:2229x =, 解得:2922x =. 【点睛】本题考查解一元一次方程,正确计算是解题关键.42.经过1.5小时,两车相距30千米.【分析】设经过x 小时后,两车相距30千米,根据“甲车行驶的路程加上15千米,减去乙车行驶的路程等于30千米”建立方程,解方程即可得.【详解】解:设经过x 小时后,两车相距30千米,由题意得:50154030x x +-=,解得 1.5x =,答:经过1.5小时,两车相距30千米.【点睛】本题考查了一元一次方程的实际应用,依据题意,正确建立方程是解题关键. 43.(1)绳子的单价为7元,实心球的单价为30元(2)购买绳子的数量为30条,购买实心球的数量为10个【分析】(1)设绳子的单价为x 元,则实心球的单价为(23)x +元,根据“84元购买绳子的数量与360元购买实心球的数量相同”列出分式方程,解分式方程即可解题;(2)根据“总费用为510元,且购买绳子的数量是实心球数量的3倍”列出一元一次方程即可解题.【详解】(1)解:设绳子的单价为x 元,则实心球的单价为(23)x +元, 根据题意,得:8436023x x =+, 解分式方程,得:7x =,经检验可知7x =是所列方程的解,且满足实际意义,①2330x +=,答:绳子的单价为7元,实心球的单价为30元.(2)设购买实心球的数量为m 个,则购买绳子的数量为3m 条,根据题意,得:7330510m m ⨯+=,解得10m =①330m =答:购买绳子的数量为30条,购买实心球的数量为10个.【点睛】本题考查分式方程和一元一次方程的应用,根据题目中的等量关系列出方程是解题的关键.44.545x 【分析】根据解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1即可解答.【详解】192728x x --= 去分母得:45692x x移项、合并同类项得:554x系数化为1得:545x 【点睛】本题考查的是解一元一次方程,掌握一元一次方程的解题步骤是关键.注意:单个的数字或字母去分母时不要漏乘.45.m=﹣4【详解】试题分析:根据方程的解相同,可得关于m 的方程,根据解方程,可得答案. 解:解4x+2m=3x ﹣5,得x=﹣5﹣2m .解6x ﹣8=10,得x=3.关于x 的方程4x+2m=3x ﹣5的解和方程6x ﹣8=10的解相同,得﹣5﹣2m=3.解得m=﹣4,当m=﹣4时,关于x 的方程4x+2m=3x ﹣5的解和方程6x ﹣8=10的解相同.46.(1)x =9(2) x =-【详解】试题分析:(1)按照去括号、移项、合并同类项,系数化为1的解方程的步骤解方程即可;(2)先将分子分母中的小数化为整数,然后按照去分母、去括号、移项、合并同类项,系数化为1的解方程的步骤解方程即可.试题解析:(1)2x -(5x +16)=3-2(3x -4)2x -5x -16=3-6x +8 2分2x -5x +6x =3+8+163x =27x =9 4分(2)+=1原方程整理得:+=1 1分4(x -20)+3(30-7x )=12 2分4x -80+90-21x =12 3分4x -21x =12+80-90 4分-17x =2x =- 5分考点:解一元一次方程.47.48名【分析】根据方程中的x 表示的意义和设的x 的意义得出答案即可,进一步设出这个班的人数,根据每组6人比每组8人多2组列出方程解答即可.【详解】解:小明的错误是“他设中的x 和方程中的x 表示的意义不同”.正确的解答:设这个班共有x 名学生, 根据题意,得268x x -= 解这个方程,得x=48.答:这个班共有48名学生.48.(1)40;60%;(2)购进甲商品40件,乙商品10件;(3)小华在该商场购买乙种商品7件或8件。

初三数学一元一次方程试题答案及解析

初三数学一元一次方程试题答案及解析

初三数学一元一次方程试题答案及解析1.天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20克的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图2,则被移动的玻璃球的质量为()A.10克B.15克C.20克D.25克【答案】A.【解析】根据天平仍然处于平衡状态列出一元一次方程求解即可:设左、右侧秤盘中一袋玻璃球的质量分别为m克、n克,根据题意得:m=n+40.设被移动的玻璃球的质量为x克,根据题意得:,解得.故选A.【考点】1.阅读理解型问题;2.一元一次方程的应用.2.方程x+2=1的解是()A.B.C.D.【答案】D.【解析】根据等式的性质,移项得到x=1﹣2,即可求出方程的解:由x+2=1移项得:x=1﹣2,∴x=﹣1.故选D.【考点】解一元一次方程.3.某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里收费是1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能为()A.5.5公里B.6.9公里C.7.5公里D.8.1公里【答案】B.【解析】设人坐车可行驶的路程最远是xkm,根据题意得:5+1.6(x-3)=11.4,解得:x=7.观察选项,只有B选项符合题意.故选B.【考点】一元一次方程的应用.4.若代数式2x+3的值为6,则x的值为A.B.3C.D.3【答案】A.【解析】根据题意得:2x+3=6,移项合并得:2x=3,解得:x=.故选A.【考点】解一元一次方程.5. (1) 解方程:-=1;(2) 解不等式组:【答案】(1) x="3.(2)" .【解析】(1)根据去分母、去括号、移项、合并同类项、系数化为1的步骤进行求解即可求得方程的解.(2)先求出不等式组中每个不等式的解集,再取它们的公共解即可.试题解析:(1)去分母得:3(x+1)-2(2x-3)=6去括号得:3x+3-4x+6=6整理得:-x=-3解得:x=3.(2) ①式解得:②式解得:∴【考点】1.解一元一次方程;2.解一元一次不等式组.6.为确保信息安全,信息需要加密传输,发送方由明文⇒密文(加密),接收方由密文→明文(解密).已知加密规则为:明文a,b,c对应的密文a+1,2b+4,3c+9.例如明文1,2,3对应的密文2,8,18.如果接收方收到密文7,18,15,则解密得到的明文为()A.4,5,6B.6,7,2C.2,6,7D.7,2,6【答案】B【解析】此题的关键是读懂加密规则:“明文a,b,c对应的密文a+1,2b+4,3c+9.”把7,18,15分别代入这三个式子,计算即可.由题意知a+1=7,2b+4=18,3c+9=15,解得明文a=6,b=7,c=2.故选B.7.如果x=2是方程x+a=-1的根,那么a的值是()A.0B.2C.-2D.-6【答案】C【解析】把x=2代入x+a=-1,得1+a=-1∴a=-2.8.毕业在即,某商店抓住商机,准备购进一批纪念品,若商店花440元可以购进50本学生纪念品和10本教师纪念品,其中教师纪念品的成本比学生纪念品的成本多8元.(1)请问这两种不同纪念品的成本分别是多少?(2)如果商店购进1200个学生纪念品,第一周以每个10元的价格售出400个,第二周若按每个10元的价格仍可售出400个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出100个,但售价不得低于进价),单价降低x元销售一周后,商店对剩余学生纪念品清仓处理,以每个4元的价格全部售出,如果这批纪念品共获利2500元,问第二周每个纪念品的销售价格为多少元?【答案】(1)学生纪念品的成本为6元,教师纪念品的成本为14元;(2)5.【解析】(1)可设学生纪念品的成本为x元,根据题意列方程即可求解;(2)第二周销售的销量=400+降低的元数×100;第二周每个旅游纪念品的销售价格降x元,根据纪念品的进价和售价以及销量分别表示出两周的总利润,进而得出等式求出即可.试题解析:(1)设学生纪念品的成本为x元,根据题意得:50x+10(x+8)=440解得:x=6∴x+8=6+8=14.答:学生纪念品的成本为6元,教师纪念品的成本为14元.(2)第二周单价降低x元后,这周销售的销量为400+100x;由题意得出:400×(10-6)+(10-x-6)(400+100x)+(4-6)[(1200-400)-(400+100x)]=2500,即1600+(4-x)(400+100x)-2(400-100x)=2500,整理得:x2-2x+1=0,解得:x1=x2=1,∴6-1=5.答:第二周的销售价格为5元.考点: 1.一元一次方程的应用;(2)一元二次方程的应用.9.一元一次方程2x=4的解是A.x=1B.x="2"C.x=3D.x=4【答案】B【解析】方程两边都除以2即可得解:x=2。

中考数学-一元一次方程专题练习(含答案)

中考数学-一元一次方程专题练习(含答案)

中考数学-一元一次方程专题练习(含答案)一、单选题1.下列方程为一元一次方程的是()A.+y=2B.x+2=3yC.x2=2xD.y+1=22.已知一个多边形的内角和是外角和的4倍,则这个多边形是()A.八边形B.十二边形C.十边形D.九边形3.太平洋服装超市某种服装的标价为120元,元旦期间以九折降价出售,仍获利20%,该服装的进货价为()A.80元B.85元C.90元D.95元4.某商店换季促销,将一件标价为240元的T恤8折售出,仍获利20%,则这件T恤的成本为( )A.144元B.160元C.192元D.200元5.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元.如果设水性笔的单价为x元,那么下列所列方程正确的是()A.5(x﹣2)+3x=14B.5(x+2)+3x=14C.5x+3(x+2)=14D.5x+3(x﹣2)=146.下列式子中,是一元一次方程的有()A.x+5=2xB.x2﹣8=x2+7C.5x﹣3D.x﹣y=47.下列运用等式的性质,变形不正确的是()A.若x=y,则x+5=y+5B.若a=b,则ac=bcC.若= ,则a=bD.若x=y,则8.文具店老板以每个96元的价格卖出两个计算器,其中一个赚了20%,另一个亏了20%,则卖这两个计算器总的是()A.不赚不赔B.亏8元C.盈利3元D.亏损3元9.若关于y的方程2m+y=1与3y﹣3=2y﹣1的解相同,则m的值为()A.2B. -C. -2D.010.商场将某种商品按标价的八折出售,仍可获利90元,若这种商品的标价为300元,则该商品的进价为()A.330元B.210元C.180元D.150元11.已知关于x的方程1 + 3(3-4x) = 2(4x-3) ,若4x-3 = a,则a等于()A.-1B.C.D. -12.已知x=2是关于x的方程3x+a=0的一个解,则a的值是( )A.– 6B.–3C.– 4D.–513.小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.+=-B.-=+C.-=-D.+10=-514.x=1是方程3x—m+1=0的解,则m的值是()A.-4B.4C.2D.-215.方程3x+6=0的解的相反数是()A.2B.-2C.3D.-3二、填空题16.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=________.17.若是关于的方程的解,则________;18.某商品货物进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售,保证利润为5%,则该店应降价________元出售.19.某公司承担了制作600个道路交通指引标志的任务,在实际操作时比原计划平均每天多制作了10个,因此提前了5天完成任务,如果设原计划x天完成,那么根据题意,可以列出的方程是:________.20.已知方程(a﹣2)x|a|﹣1+4=0是关于x的一元一次方程.则a的值为________三、解答题21.已知:如图,BD平分∠ABC,BE分∠ABC为2:5两部分,∠DBE=24°,求∠ABC的度数.22.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.23.毕业在即,九年级(一)班为纪念师生情谊,班委决定花800元班费买两种不同单价的留念册,分别给50位同学和10位任课老师每人一本留做纪念.其中送给老师的留念册的单价比给同学的单价多8元.请问这两种不同留念册的单价分别为多少元?四、计算题24.解方程(1)2(x+8)=3(x﹣1)(2)4x+3(2x﹣3)=12﹣(x+4)(3)x﹣6= x(4)3x+ =3﹣.25.解方程:(1)0.5x+0.6=6﹣1.3x26.(2)1+=.答案解析部分一、单选题1.下列方程为一元一次方程的是()A.+y=2B.x+2=3yC.x2=2xD.y+1=2【答案】D【考点】一元一次方程的定义【解析】【解答】A.分母中含有字母,是分式方程,A不符合题意;B.方程中含有两个未知数,是二元一次方程,B不符合题意;C.方程中未知数的最高次数为2,是一元二次方程,C不符合题意;D.方程中含有一个未知数,且未知数的最高次数为1,是一元一次方程,D符合题意;故答案为:D.【分析】根据一元一次方程定义:指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。

一元一次方程中考练习题

一元一次方程中考练习题

一元一次方程中考练习题一、选择题1. 已知方程3x 5 = 2x + 8,则x的值为()。

A. 13B. 21C. 5D. 62. 若方程5(x 2) = 3(2x + 1)的解为x = a,则a的值为()。

A. 7B. 3C. 7D. 33. 方程2(x 3) + 4 = 3(x + 1)的解是()。

A. 1B. 2C. 3D. 44. 下列方程中,x的值等于5的是()。

A. 3x 15 = 0B. 2x + 10 = 20C. 4x 20 = 0D. 5x 25 = 0二、填空题1. 方程3x 7 = 11的解为x = ______。

2. 若方程4(x 2) + 8 = 2(x + 3)的解为x = a,则a = ______。

3. 方程5x 3 = 2x + 7中,x的值为______。

4. 已知方程2(x 3) + 4 = 3(x 1)的解为x = a,则a + 5 =______。

三、解答题1. 解方程:4x 8 = 3x + 7。

2. 解方程:5(x 2) + 10 = 2(x + 4)。

3. 解方程:3(2x 1) 4 = 2(3x + 2)。

4. 解方程:7(x 3) + 21 = 4(x + 2)。

5. 解方程:6x 9 = 5 2(x 1)。

6. 解方程:2(x + 3) 4 = 3(x 1) + 5。

7. 解方程:4(x 2) + 8 = 3(x + 1) 2。

8. 解方程:5x 3(2x 1) = 7 2(x + 2)。

四、应用题1. 小华的年龄比小明大3岁,两人的年龄之和为39岁。

求小华和小明的年龄。

2. 甲、乙两地相距120公里,一辆汽车从甲地开往乙地,速度为60公里/小时。

求汽车行驶多少小时后,离甲地还有40公里。

3. 某商店举行打折活动,一件衣服原价200元,打八折后售出。

求顾客实际支付了多少钱。

4. 一辆自行车以每小时15公里的速度行驶,行驶了2小时后,又以每小时10公里的速度行驶了3小时。

中考数学专题复习《一元一次方程》测试卷(附参考答案)

中考数学专题复习《一元一次方程》测试卷(附参考答案)

中考数学专题复习《一元一次方程》测试卷(附参考答案)学校:___________班级:___________姓名:___________考号:___________一、选择题(每题3分,共18分)1. (2023·温州中考)解方程-2(2x +1)=x,以下去括号正确的是( )A.-4x +1=-xB.-4x +2=-xC.-4x -1=xD.-4x -2=x 2. (2023·河北唐山·三模)已知2×m=1,则m 表示数( ) A.12B.-12C.2D.-23. (2023·河北廊坊)已知2a=3b,且a ≠0,则ba=( ) A.23 B.32 C.-23 D.-324. (2023七上·盐都月考)在方程①3x+y =4,②2x-x1=5,③3y+2=2-y,④2x 2-5x+6=2(x 2+3x)中,是一元一次方程的个数为( ) A.1个 B.2个 C.3个 D.4个 5. (2023·南充)端午节买粽子,每个肉粽比素粽多1元,购买10个肉粽和5个素粽共用去70元,设每个肉粽x 元,则可列方程为( )A.10x +5(x -1)=70B.10x +5(x +1)=70C.10(x -1)+5x =70D.10(x +1)+5x =70 6. (2023湖南长沙模拟)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A.2×1000(26﹣x)=800x;B.1000(13﹣x)=800x;C.1000(26﹣x)=2×800x;D.1000(26﹣x)=800x7. (2023•永康市模拟)明代程大位的《算法统宗》记载这样一首打油诗: 《李白沽酒》无事街上走,提壶去买酒.遇店加一倍,见花喝一斗. 三遇花和店,喝光壶中酒.就问此壶中,原有多少酒?李白出门遇到花和店各三次,且花、店交替遇到,则此打油诗答案为( ) A.34斗 B.78斗 C.98斗 D.118斗 8. (2023·杭州)某景点今年四月接待游客25万人次,五月接待游客60.5万人次.设该景点今年四月到五月接待游客人次的增长率为x(x >0),则( )A.60.5(1-x)=25B.25(1-x)=60.5C.60.5(1+x)=25D.25(1+x)=60.5 9. (2023七上·乐清)如图,在11月的日历表中用框数器框出3,5,11,17,19五个数,它们的和为55,若将在图中换个位置框出五个数,则它们的和可能是( )A.40B.88C.107D.11010. (2023七上·东莞)下列说法中,不正确的个数是( ) ①若a+b =0,则有a,b 互为相反数,且ba=-1;②若|a|>|b|,则有(a+b)(a-b)是正数;③三个五次多项式的和也是五次多项式;④a+b+c <0,abc >0,则|abc |abc|ac |ac |bc |bc |ab |ab -+-的结果有三个;⑤方程ax+b =0(a,b 为常数)是关于x 的一元一次方程. A.1个 B.2个 C.3个 D.4个 二、填空题(每题3分,共30分)11. (2023·重庆中考B 卷)方程2(x -3)=6的解是____. 12. (2023·贵州贵阳)已知方程2x-4=0,则x=______. 13. (2023·贵州铜仁)方程3x-6=-6的解是_______.14. (2023七上·温州)若|△-3|=1,则“△”所表示的数为 .15. (2023·枣庄)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m 的值为 . 16. (2023•绍兴)有两种消费券:A 券,满60元减20元,B 券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张A 券,小聪有一张B 券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是 元.17. (2023·陕西)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价. 18. (2023•牡丹江)某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打 折.三、解答题(第17—20题每题10分,第21题12分,共52分) 19. (2023秋•金安区校级期中)如果关于x 的方程8的解与方程4x ﹣(3a+1)=6x+2a ﹣1的解相同,求a 的值.20. (2023春•碑林区校级月考)已知关于y 的方程的解比关于x 的方程3a-x3的解小3,求a 的值.21. (2023·台州)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.22. (2023秋•九龙县期末)一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是60千米/小时,卡车的行驶速度是40千米/小时,客车比卡车早2小时经过B 地,A、B两地间的路程是多少千米?23. (2023•泸州)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?24. (2023秋•吉林期末)《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?答案一、选择题(每题3分,共18分)1. D2. A3. A4. B5. A6. C【解析】题目已经设出安排x 名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.由题意得 1000(26﹣x)=2×800x,故C 答案正确。

九年级中考数学复习《一元一次方程》专项练习题-附带答案

九年级中考数学复习《一元一次方程》专项练习题-附带答案

九年级中考数学复习《一元一次方程》专项练习题-附带答案一、单选题1.已知|x ﹣1|=3,则x 的值为( ) A .x =4B .x =2或x =﹣4C .x =4或x = -2D .x =﹣32.根据下列条件,能列出方程−13x=6的是( ) A .x 的13是6 B .x 的相反数的3倍是6 C .x 的相反数的13是6D .13与x 的差是63.下列运用等式性质进行的变形,正确的是( ) A .如果a =b ,那么a+c =b ﹣c B .如果a 2=3a ,那么a =3 C .如果a =b ,那么 ac =bcD .如果 ac =bc ,那么a =b4.已知关于x 的方程 3x =x +a 的解与 x+12=x +14的解相同,则a 的值为( )A .1B .−1C .2D .−25.小明在体育器材店中,按标价的八折购买了一双跑步钉鞋,比按标价购买节省了40元,则这双跑步钉鞋的实际售价为( ) A .160元B .180元C .200元D .220元6.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a 元后,再次降价20%,现售价为b 元,则原售价为( ) A .(a+ b)元 B .(a + b)元 C .(b+a)元D .(b+a)元7.一项工程,甲单独做需10天完成,乙单独完成需6天完成.现由甲先做2天,乙再加入合做,完成这项工程需多少天?若设完成这项工程共需x 天,依题意可得方程( ) A .x10+x6=1 B .x+210+x−26=1C .x10+x−26=1D .2x +x−210+x−26=18.为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?( ) A .140元B .150元C .160元D .200元二、填空题9.已知关于x的方程:x−2−ax6=x3−1有非负整数解,则整数a的所有可能的值之和为.10.一家商店某种裤子按成本价提高50%后标价,又以八折以后出卖,结果每条裤子获利10元,则是这条裤子的成本是元.11.若关于x的方程(k+2)x2+4kx﹣5k=0是一元一次方程,则k= ,方程的解x= .12.把一批图书分给同学,若每人分3本,则剩下20本,若每人分4本,则还差25本.问有多少同学?若设有x名同学,则可列方程.13.某商品的进货价为每件x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折降低后再让利40元销售,仍可获利10%(相对于进价),则x=元三、解答题14.解方程(1)8x−4=6x−8;(2)x+12−2=x−34.15.2022年春节来临之际,各大商场都进行了促销活动.某商场将某品牌的电视机按进价提高60%作为标价,然后以“九折酬宾,再返现金200元”的优惠进行促销,结果该品牌电视机每台仍可获利460元.求该品牌电视机每台的进价.16.某同学解方程x+12=2−x4+3的过程如下,请仔细阅读,并解答所提出的问题:解:去分母,得2(x+1)=(2−x)+3.(第一步)去括号,得2x+2=2−x+3.(第二步)移项,得2x+x=2−2+3.(第三步)合并同类项,得3x=3.(第四步)系数化为1,得x=1.(第五步)(1)该同学解答过程从第步开始出错,错误原因是;(2)写出正确的解答过程.17.某开发公司要生产若干件新产品,需要精加工后,才能投放市场,现有红星和巨星两个加工厂都想加工这批产品,已知红星厂单独加工这批产品比巨星厂单独加工这批产品多用20天,红星厂每天可加工16件产品,巨星厂每天可加工24件产品公司每天需付红星厂每天加工费80元,巨星厂每天加工费120元.(1)这个公司要加工多少件新产品?(2)在加工过程中,公司需另派一名工程师每天到厂家进行技术指导,并负担每天5元的午餐补助费,公司制定产品加工方案如下:可由一个厂单独加工完成,也可由两厂合作同时完成,请你帮助公司从所有可供选择的方案中选择一种即省钱,又省时间的加工方案.18.当涂大青山有较为丰富的毛竹资源,某企业已收购毛竹110吨,根据市场信息,将毛竹直接销售,每吨可获利100元;如果对毛竹进行粗加工,每天可加工8吨,每吨可获利1000元;如果进行精加工,每天可加工1.5吨,每吨可获利5000元,由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售、为此研究了两种方案:(1)方案一:将收购毛竹全部粗加工后销售,则可获利元;方案二:30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利元.(2)是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.参考答案1.C2.C3.D4.A5.A6.A7.C8.B9.−1910.5011.﹣2;5412.3x+20=4x-2513.70014.(1)解:2x=−4x=−2(2)解:2(x+1)−8=x−32x+2−8=x−3x=3 15.解:设该品牌电视机每台的进价为x元.根据题意,得(1+60%)x×0.9−200−x=460.解得x=1500.答:该品牌电视机每台的进价为1500元.16.(1)一;漏乘不含分母的项(2)解:去分母,得2(x+1)=(2-x)+12去括号,得2x+2=2-x+12移项,得2x+x=2-2+12合并同类项,得3x=12系数化为1,得x=4.17.(1)解:设这个公司要加工x件新产品,由题意得:x16﹣x24=20解得:x=960(件)答:这个公司要加工960件新产品=60天,需要费用为:60×(5+80)=5100元;②由巨星(2)解:①由红星厂单独加工:需要耗时为96016=40天,需要费用为:40×(120+5)=5000元;厂单独加工:需要耗时为96024=24天,需要费用为:24×(80+120+5)=4920元.③由两场厂共同加工:需要耗时为96024+16所以,由两厂合作同时完成时,既省钱,又省时间18.(1)110000;231500(2)解:由已知分析存在第三种方案.设粗加工x天,则精加工(30-x)天,依题意得:8x+1.5×(30-x)=110解得:x=10,30-x=20所以销售后所获利润为:1000×10×8+5000×20×1.5=230000(元)。

初中数学解一元一次方程经典练习题(含答案)

初中数学解一元一次方程经典练习题(含答案)

初中数学解一元一次方程经典练习题(含答案)解下列一元一次方程:1、3x+7 =2x+14;2、59 x + 2.5 = 23 x + 2.4;3、6(x+1)+7(x+2)= 8(x+3);4、x=2−x 3 + 2+x 4 ;5、2x +3(21+x )=6x +5(9+x );6、5−x 3 + 6-x = 1−x 2 + 20+x 4 ;7、23 [ x - 15( x +1)]= 14(x+14);8、4+3x−10.7 =2- 2x−30.5 ;9、5(x-2)+6x= 0.8(x+4)-3;10、3x+4(x+1)+5(x+2)=50;11、 13 - 15(16 x -1;12、1= x + x 2 + x 4 + x 6 + x12 ;参考答案1、3x+7=2x+14;解:3x+7=2x+143x-2x=14-7x=7故原方程的解是:x=72、59 x + 2.5 = 23 x + 2.4; 解:59 x + 2.5 = 23 x + 2.4 59 x - 23 x =2.4-2.5 5−2×39 x= -0.1 −19x= -0.1x= -0.9故原方程的解是:x= -0.93、6(x+1)+7(x+2)= 8(x+3);解:6(x+1)+7(x+2)= 8(x+3)6x+6+7x+14 =8x+2413x+20 =8x+2413x-8x=24-205x= 4x= 45故原方程的解是:x= 454、x= 2−x3 + 2+x4;解:x= 2−x3 + 2+x412x =4(2-x)+3(2+x)12x=8-4x+6+3x12x=14-x12x+x =1413x=14x= 1413故原方程的解是:x= 14135、2x +3(21+x)=6x +5(9+x);解:2x +3(21+x)=6x +5(9+x)2x+63+3x =6x+45+5x5x+63 =11x+455x-11x=45-63-6x= -18x=3故原方程的解是:x=36、5−x3 + 6-x = 1−x2+ 20+x4;解:5−x3 + 6-x = 1−x2+ 20+x4等式两边同时乘以124(5-x)+12(6-x)=6(1-x)+3(20+x)20-4x+72-12x =6-6x+60+3x-16x+92 =-3x+66-16x+3x =-92+66-13x= -26x=2故原方程的解是:x=27、23[ x - 15( x +1)]=14(x+14);解:23[ x - 15( x +1)]=14(x+14)等式两边同时乘以128 [ x - 15( x +1)]=3(x+14)8x- 85( x +1)=3x+42- 85( x +1)= 3x-8x+42- 85( x +1)= -5x+42等式两边同时乘以5-8(x+1)=5(-5x+42)-8x-8 =-25x+21025x-8x=210+817x=218x= 21817故原方程的解是:x=218178、4+ 3x−10.7 =2- 2x−30.5 ;解:4+ 3x−10.7 =2- 2x−30.5等式两边同时乘以0.7×0.54×0.7×0.5 +0.5(3x-1)=2×0.7×0.5 -0.7(2x-3)1.4+1.5x-0.5= 0.7-1.4x+2.10.9+1.5x= -1.4x+2.81.5x+1.4x=2.8-0.92.9x= 1.9x= 1929 故原方程的解是:x= 19299、5(x -2)+6x= 0.8(x+4)-3;解:5(x -2)+6x= 0.8(x+4)-35x-10+6x =0.8x+3.2-35x+6x-0.8x =3.2-3+10(5+6-0.8)x=10.210.2x=10.2x=1故原方程的解是:x=110、3x+4(x+1)+5(x+2)=50; 解:3x+4(x+1)+5(x+2)=503x+4x+4+5x+10=503x+4x+5x= 50-4-10(3+4+5)x= 3612x= 36x= 3故原方程的解是:x=311、 13 - 15(16 x -1;解: 13 - 15(16 x -1等号两边同时乘以15 - 15(16 x -1)] = x 等号左边去中括号(16 x -1)=x 等号左边去小括号- 16 x +1=x等号两边同时乘以2430x-4x+24=24x26x+24=24x2x= -24x= -12故原方程的解是:x= -1212、1= x + x2 + x4+ x6+ x12;解:1= x + x2 + x4+ x6+ x12等式两边同时乘以12 12=12x+6x+3x+2x+x12=24xx= 12故原方程的解是:x= 12。

中考数学真题精选汇编之《一元一次方程》训练卷

中考数学真题精选汇编之《一元一次方程》训练卷

中考数学真题精选汇编之《一元一次方程》训练卷一.选择题(共8小题)1.《孙子算经》中有这样一道题,大意为:今有100头鹿,每户分一头鹿后,还有剩余,将剩下的鹿按每3户共分一头,恰好分完,问:有多少户人家?若设有x户人家,则下列方程正确的是()A.x+13=100B.3x+1=100C.x+13x=100D.x+13=1002.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x,可列方程为()A.9x+11=6x+16B.9x﹣11=6x﹣16C.9x+11=6x﹣16D.9x﹣11=6x+163.关于x的一元一次方程2x+m=5的解为x=1,则m的值为()A.3B.﹣3C.7D.﹣74.《算学启蒙》是我国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x 天可以追上慢马,则下列方程正确的是()A.240x+150x=150×12B.240x﹣150x=240×12C.240x+150x=240×12D.240x﹣150x=150×125.元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得()A.x240=x+12150B.x240=x150−12C.240(x﹣12)=150x D.240x=150(x+12)6.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一,书中记载了这样一个题目:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺?设木长x 尺,则可列方程为( )A .12(x +4.5)=x ﹣1B .12(x +4.5)=x +1C .12(x +1)=x ﹣4.5D .12(x ﹣1)=x +4.5 7.《孙子算经》记载:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”(尺、寸是长度单位,1尺=10寸).意思是,现有一根长木,不知道其长短.用一根绳子去度量长木,绳子还剩余4.5尺;将绳子对折再度量长木,长木还剩余1尺.问长木长多少?设长木长为x 尺,则可列方程为( )A .12(x +4.5)=x ﹣1B .12(x +4.5)=x +1C .12(x ﹣4.5)=x +1D .12(x ﹣4.5)=x ﹣1 8.有一东西向的直线吊桥横跨溪谷,小维、阿良分别从西桥头、东桥头同时开始往吊桥的另一头笔直地走过去,如图所示,已知小维从西桥头走了84步,阿良从东桥头走了60步时,两人在吊桥上的某点交会,且交会之后阿良再走70步恰好走到西桥头,若小维每步的距离相等,阿良每步的距离相等,则交会之后小维再走多少步会恰好走到东桥头( )A .46B .50C .60D .72二.填空题(共3小题)9.我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出8元钱,会多3钱;每人出7元钱,又差4钱,问人数有多少.设有x 人,则可列方程为: .10.《九章算术》中记载了一道数学问题,其译文为:有人合伙买羊,每人出5钱,还缺45钱;每人出7钱,还缺3钱,问合伙人数是多少?为解决此问题,设合伙人数为x 人,可列方程为 .11.古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两).今有干丝12斤,问原有生丝多少?”则原有生丝为斤.三.解答题(共7小题)12.为了增强学生身体素质,学校要求男女同学练习跑步.开始时男生跑了50m,女生跑了80m,然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m/s,当到达终点时男、女均停止跑步,女生从开始匀速跑步到停止跑步共用时120s.已知x轴表示从开始匀速跑步到停止跑步的时间,y轴代表跑过的路程,则:(1)男女跑步的总路程为;(2)当男、女相遇时,求此时男、女同学距离终点的距离.13.对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是6:4,左、右边的宽相等,均为天头长与地头长的和的110.某人要装裱一副对联,对联的长为100cm,宽为27cm.若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.(书法作品选自《启功法书》)14.小红在一家文具店买了一种大笔记本4个和一种小笔记本6个,共用了62元.已知她买的这种大笔记本的单价比这种小笔记本的单价多3元,求该文具店中这种大笔记本的单价.15.某惯性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投.计分规则如下:投中位置A区B区脱靶一次计分(分)31﹣2在某一局中,珍珍投中A区4次,B区2次.脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k的值.16.大学生小敏参加暑期实习活动,与公司约定一个月(30天)的报酬是M型平板电脑一台和1500元现金.当她工作满20天后因故结束实习,结算工资时公司给了她一台该型平板电脑和300元现金.(1)这台M 型平板电脑价值多少元?(2)小敏若工作m 天,将上述工资支付标准折算为现金,她应获得多少报酬(用含m 的代数式表示)?17.某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种,甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒503亩,求派往甲区每架次无人机平均喷洒多少亩?18.某校组织七年级学生到江姐故里研学旅行,租用同型号客车4辆,还剩30人没有座位;租用5辆,还空10个座位.求该客车的载客量.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级(上)中考试题---一元一次方程应用题1. (02河南)某种收音机,原来每台售价48元,降价后每台售价42元,则降价的百分数为 .2.(02杭州)在时刻 8:30,时钟上的时针和分针之间的夹角为( )(A )85° (B )75° (C )70° (D )60°3.(01荆州)某商品的进价是1000元.售价为1500元.由于销售情况不好,商店决定降价出售.但又要保证利润率不低于5%.那么,商店最多降_________元出售此商品.4.(08广东)已知某种商品的售价为204元,即使促销降价20%仍有20%的利润,则该商品的成本价是( )A .133B .134C .135D .1365.(06仙桃)小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”.小刚却说:“只要把你的31给我,我就有10颗”,那么小刚的弹珠颗数是 .6.(06陕西)一件商品按成本价提高40%后标价,再打8折(标价的80%)销售,售价为240元,设这件商品的成本价为x 元,根据题意,下面所列的方程正确的是( ) A 、x ·40%×80%=240 B 、x (1+40%)×80%=240 C 、240×40%×80%=x D 、x ·40%=240×80%7.(06黑龙江)A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行,已知甲车速度为120千米/时,乙车速度为80千米/时,经过t 小时两车相距50千米,则t 的值是( )A 、2或2.5B 、2或10C 、10或12.5D 、2或12.5 8.(06绵阳)我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则超过部分按每立方米2元收费,如果某居民户今年5月缴纳了17元水费,那么这户居民今年5月的用水量为________立方米。

9.(06荆门)在一次主题为“学会生存”的中学生社会实践生活中,春华同学为了锻炼自己,他通过了解市场行情,以每件6元的价格从批发市场购进若干件印有2008北京奥运标志的文化衫到自由市场去推销,当销售完30件之后,销售金额达到300元,余下的每件降价2元,很快推销完毕,此时销售金额达到380元,春华同学在这次活动中获得纯收入__________元。

10. (06枣庄)某原料供应商对购买其原料的顾客实行如下优惠:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元给九折优惠;(3)一次购买超过3万元,其中3万元九折优惠,超过3万元的部分八折优惠.某厂因库容原因,第一次在供应商购买原料付款7800元,第二次购买付款26100元,如果他是一次购买同样数量的原料,可少付金额为( )元.A.1460B.1540C.1560D.200011.(06临沂)某市出租车收费标准:乘车不超过2公里收费5元,多于2公里不超过4公里,每公里收费1.5元,4公里以上每公里收费2元。

张舒从住处乘坐出租车去车站送同学,到车站时计费表显示7.25元。

张舒立即沿原路返回住处,那么他乘坐原车和换乘另外出租车相比,哪种方法省钱?___________省多少?_________12.( 06 新疆) 汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x 米,根据题意,列出方程为______________________。

13.(05荆门)参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1100元,那么此人住院的医疗费是( )住院医疗费(元) 报销率(%) 不超过500元的部分 0 超过500~1000元的部分 60 超过1000~3000元的部分 80 ……A 、14. 在每个数字只能使用一次的情形下,将1 , 2, 3 ,4及9作成最小的五位数,且此五位数为偶数,则其十位数字为?( ) (A) 1 (B) 2 (C) 3 (D) 4 (E) 915.(04资阳)如图1,宽为50 cm 的矩形图案由10个全等的小长方 形拼成,其中一个小长方形的面积为( )A. 400 cm 2B. 500 cm 2C. 600 cm 2D. 4000 cm 216.(04徐州)为了能有效地使用电力资源,我市供电部门最近进行居民峰谷用电试点,每天8:00至21:00用电每千瓦时0.55元(“峰电”价),21:00至次日8:00每千瓦时0.30元(“谷电”价).王老师家使用“峰谷”电后,五月份用电量为300千瓦时,付电费115元,则王老师家该月使用“峰电” ______千瓦时. 17.(08株洲)利民商店中有3种糖果,单价及重量如下表:若商店将以上糖果配成什锦糖,则这种什锦糖果的单价是每千克_________元.18.(06诸暨)假设一家旅馆一共有30个房间,分别编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,•要求所刻的数字必须使服务员很容易辩认是哪一个房间的钥匙,而使局外人不容易猜到.现在有一种编码的方法是:•在每把钥匙上刻上两个数字,左边的一个数字是把这把钥匙原来的房间号码除以5所得的余数,•而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数,那么刻的数是36的钥题所对应的原来房间应该是________号.图119.(07陕西)中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%.某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐).设到期后银行应向储户支付现金x 元,则所列方程正确的是( ) A .50005000 3.06%x -=⨯ B .500020%5000(1 3.06%)x +⨯=⨯+ C .5000 3.06%20%5000(1 3.06%)x +⨯⨯=⨯+D .5000 3.06%20%5000 3.06%x +⨯⨯=⨯20.(07湘潭)某市在端年节准备举行划龙舟大赛,预计15个队共330人参加.已知每个队一条船,每条船上人数相等,且每条船上有1人击鼓,1人掌舵,其余的人同时划桨.设每条船上划桨的有x 人,那么可列出一元一次方程为 . 21.(08茂名)依法纳税是每个公民应尽的义务,新的《中华人民共和国个人所得税法》规定,从2008年3月1日起,公民全月工薪不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得税额,此项税款按右表分段累进计算.黄先生4月份缴纳个人所得税税金55元,那么黄先生该月的工薪是 __________元.22.(09牡丹江)五一期间,百货大楼推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则用贵宾卡又享受了 折优惠. 23.(2009年舟山)“家电下乡”农民得实惠.村民小郑购买一台双门冰箱,在扣除13%的政府财政补贴后,再减去商场赠送的“家电下乡”消费券100元,实际只花了1 726.13元钱,那么他购买这台冰箱节省了 元钱.24.(06佛山)在商品市场经常可以听到小贩的叫嚷声和顾客的讨价还价声:“10元一个的玩具赛车打八折能不能再便宜2元?”如果小贩真的让利(便宜)2元卖了,他还能获利20%,根据下列公式求一个玩具的进价. 公式:(利润=进价×利润率=销售价×打折数―让利数―进价)25.(06安徽)张欣和李明相约到图书城去买书,请你根据他们的对话内容,求出李明上次所买书籍的原价。

张欣:听说在20元买一张会员卡,买书可享受八折优惠;李明:是的,我上次买了几本书,加上办卡的费用,还省了12元。

26.(05北京)夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施。

某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度。

求只将温度调高1℃后两种空调每天各节电多少度?27.(04潍坊)甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价。

在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?28.(05东营)某水果批发市场香蕉的价格如下表:张强两次共购买香蕉50千克(第二次多于第一次),共付出264元,请问张强第一次、第二次分别购买香蕉多少千克?29.(06乌鲁木齐)为满足市民对优质教育的需求,某中学决定改变校园条件,计划拆除一部分旧校舍、建造新校舍,拆除旧校舍每平方米需80元,建造新校舍每平方米需700元,计划在年内拆除旧校舍与建造新校舍共7200平方米,在实施中为扩大绿地面积,新建校舍只完成了计划的80%,而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆建总面积(1)求:原计划拆、建面积各是多少平方米?(2)若绿化1平方米需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方米?30.(04海淀)解应用题:2004年4月我国铁路第5次大提速.假设K120次空调快速列车的平均速度提速后比提速前提高了44千米/时,提速前的列车时刻表如下表所示:请你根据题目提供的信息填写提速后的列车时刻表,并写出计算过程.31.(05浙江)据了解,火车票价按“总里程数实际乘车里程数全程参考价⨯”的方法来确定.已知A 站至H 站总里程数为1 500千米,全程参考价为180元.下表是沿途各站至H 站的里程数:例如,要确定从B 站至E 站火车票价,其票价为8736.8715004021130180≈=-⨯(元).(1) 求A 站至F 站的火车票价(结果精确到1元); (2) 旅客王大妈乘火车去女儿家,上车过两站后拿着火车票问乘务员:我快到站了吗?乘务员看到王大妈手中票价是66元,马上说下一站就到了.请问王大妈是在哪一站下车的?32.(2009年四川宜宾)某城市按以下规定收取每月的水费:用水量不超过6吨,按每吨1.2元收费;如果超过6吨,未超过部分仍按每吨1.2元收取,而超过部分则按每吨2元收费。

如果某用户5月份水费平均为每吨1.4元,那么该用户5月份应交水费多少元?33.(04常州)仔细阅读下列材料,然后解答问题。

相关文档
最新文档