第五章留数及其应用(练习题)

合集下载

复变函数第五章1留数

复变函数第五章1留数

证明: 若z0是f (z)的m阶零点 即 f (z) (z z0 )m(z)
((z)在 z0 处解析, 泰勒级数:(z) a0 a1(z z0 ) )
f (z)在z0处的泰勒级数为
f (z) a0 (z z0 )m a1 (z z0 )m1 a2 (z z0 )m2
f (z0 ) f (z0 ) f (m1)(z0 ) 0, f (m)(z0 ) a0 0.
则孤立奇点z0称为 f (z)的本性奇点.
例如:f (z) sin 1 以z 1为它的本性奇点
因为sin
1
1 z
在z 1的去心邻域0 z 1 上的罗朗展式为
1
1
z
sin
(1)n ( 1 )2n1
1 z n0 (2n 1)! 1 z
1 ( 1 ) 1 ( 1 )3 (1)n ( 1 )2n1
z 1是f (z)的本性奇点.
或 z沿实轴从点1的右侧趋向于1
z沿实轴从点1 的左侧趋向于1
1
lim e z1极限不存在,且不为 z 1
z 1是f (z)的本性奇点课. 件
1
lim e z1
z1
1
lim e z1 0,
z1
9
综上所述:
定理5.1 若函数f (z)在0 z z0 R内解析,则
z 1是(z2 1)( z 2)3的一级零点
z 2是(z2 1() z 2)3的三级零点,
z 1是f (z)的二级极点,(见例7,m 1 3 n)
z 2是可去奇点, (见例7,m 3 n)
z 0,2,3, 4, 是f (z)的三级极点.
(见例7, m 0 3 n)
k
课件
3
5.1.1 孤立奇点的定义及分类

第五章留数及其应用资料

第五章留数及其应用资料

结论:一个不恒为零的解析函数的零点是孤立的.
事实上,(z)在z0点解析,则(z)连续,(z0 ) 0, 于 是 ( z )在z0的 某 一 邻 域 内 不 为 零.
所以 f (z) (z - z0 )m(z)在z0的该邻域内仅
在z0 处 为 零.
13
性质5
若z0是f (z)的m级零点,则z0是
例如,
Re
s[sin z z
,0]

c-1

0.
(3) 此处的定义只是对有限孤立奇点来说的,
至于无穷远孤立奇点处的留数以后再讨论.
22
2、 留数定理
定理1 设c是一条简单闭曲线, 函数f (z)在c内有 有限个孤立奇点z1, z2 ,, zn , 除此以外, f (z) 在c内及c上解析, 则
n
性质1 若z0为 f (z) 的孤立奇点,则下列条件等价:
(i) f (z)在点z0的主要部分为零;
(ii)
lim
zz0
f
(z)

c0
(c0为 常 数);
(iii) f (z)在点z0的某去心邻域内有界. 8
3.2 若z0为f (z)的m (m 1) 级极点,则
f (z)

c-m (z - z0 )m
可以展开成洛朗级数:



cn (z - z0 )n cn (z - z0 )n c-n (z - z0 )-n . (1)
n-
n0
n1
f (z)在点z0的性质完全体现在级数的主要部分

c-n (z - z0 )-n .据此,将孤立奇点进行分类.
4
n1
2.1 可去奇点:展式中不含z-z0 负幂项,即

复变函数 留数和留数定理讲解

复变函数  留数和留数定理讲解

另解: f1(z) 在点 z0 0 的去心邻域 0 z 内的
Laurent级数为
e
z z5

1

1 z5
1

z
1 z4

1 2! z 3

z2 2! 1
3! z 2

z3 3!
1 4! z
z4 4! 1
5!
z5 5! z
6!
z6
,6!
,

Res[ f1(z), 0] 1 ; Res[ f1(z),1] 0 于是由留数定理得积分值为
I1 2i[1 0] 2i
20
(2)
I2

z 2
esin z dz z 2 (z 2 1)
解: f2 (z) esin z [z 2 (z 2 1)] 在圆 z 2 的内部有一
2 当z0为f(z)=g(z-z0) 的孤立奇点时,若 g 为偶
函数,则f(z)在点z0的留数为零.
3 若z0为f(z) 的一级极点,则有
Re
s
f
(
z),
z0


lim
zz0
(
z

z0
)
f
(
z)
4 若z0为f(z) 的m级极点,则对任意整数 n m有
Re s
f (z), z0
个二级极点 z 0和两个一级极点 z i ,
于是利用留数的计算规则 2 和 1得
Res[
f
2
(
z
),0]

lim
z 0
(
ze2sinz1)

lim

五章 留数及其应用

五章 留数及其应用

第五章留数及其应用§1. 孤立奇点一.孤立奇点的分类1. 孤立奇点的概念定义:若函数在点不解读,但在点的某一去心邻域内处处解读.则称为的孤立奇点.一.求下列函数的奇点,并各奇点是否为孤立奇点.<1) <2)<3)<4)注意:孤立奇点一定是奇点, 但奇点不一定是孤立奇点.2. 孤立奇点的分类设为的孤立奇点,在点的洛朗展式为.(ⅰ> 若有恒成立,则称为的可去奇点.(ⅱ> 若有,但对于有恒成立,则称为的m阶极点.(ⅲ> 若有,则称为的本性奇点.说明: (1>为的洛朗展式,其和函数为在点解读的函数.(2> 无论函数在点是否有定义,补充定义则函数在点解读.3. 孤立奇点的类型的判断(1> 可去奇点的判定方法定理1设在点的某一邻域内解读,则为的可去奇点的充分必要条件是:.定理1’设是的孤立奇点,则为的可去奇点的充分必要条件是:在内有界.(2> 极点的判定方法结论:是的m阶极点的充要条件是:其中在邻域内解读,且.定理2设在点的某一邻域内解读,则为的极点的充要条件是:是的m阶极点的充要条件是:其中为一确定的非零复常数,m为正整数.(3> 本性奇点的判定方法定理3设在点的某一邻域内解读,则为的本性奇点的充要条件是:极限与均不成立.一.判断下列函数的奇点的类型:<1) <2)<3)二. 函数的零点与极点的关系定义:若有正整数m,使得,其中在点解读且,则称为的m阶零点.定理4若在点解读,则为的m阶零点的充要条件是:但一.判断函数的零点及其阶数.定理5 若为的m阶极点,则为的m阶零点.反之亦然.一.判断函数的极点及其阶数.三.函数在无穷远点的性态定义:若存在R>0,有函数在无穷远点的邻域内解读,则称无穷远点为的孤立奇点.设在无穷远点的邻域内的洛朗展式为那么规定:(ⅰ> 若有恒成立,则称为的可去奇点.(ⅱ> 若有,但对于有恒成立,则称为的m阶极点.(ⅲ> 若有,则称为的本性奇点.定理6设在区域内解读,则为的可去奇点、极点和本性奇点的充要条件分别是:极限存在、为无穷及即不存在,也不是无穷.一.判断下列函数的奇点的类型:<1)<2)<3)<4)例6. 判断函数的孤立奇点的类型.§2. 留数一.留数的概念及留数定理定义:设为解读函数的孤立奇点,其洛朗展式为,称系数为在处的留数,记作Res.例6求在孤立奇点0处的留数.例7求在孤立奇点0处的留数.例8求在孤立奇点0处的留数.定理7(柯西留数定理> 设在区域D内除有限多个孤立奇点外处处解读,C是D内包围各奇点的任意一条正向简单闭曲线,那么说明:留数定理把计算周线上的积分的整体问题转化为函数在周线所围成的区域内的各个孤立奇点处的留数的局部问题.例9 计算积分.二. 函数在极点的留数法则Ⅰ如果为的简单极点,则Res.例10 求在各孤立奇点处的留数.法则Ⅱ设,其中在点解读,如果为的一阶零点,则为的一阶极点,且例11 求在的留数.法则Ⅲ如果为的m阶极点,则Res.例12求在孤立奇点0处的留数.例13 计算积分例14 计算积分三. 无穷远点的留数定义:设函数在区域内解读,即为函数的孤立奇点,则称为在的留数,记作Res.定理8如果函数在z平面只有有限多个孤立奇点(包括无穷远点>,设为.则在所有孤立奇点处的留数和为零.法则Ⅳ(无穷远点的留数> 若为函数的孤立奇点,则Res Res.例15 求在它各有限奇点的留数之和.例16计算积分其中C为正向圆周§3. 留数在定积分计算中的应用一.形如的积分思想方法:把定积分化为一个复变函数沿某条周线的积分 .两个重要工作:1> 积分区域的转化,2> 被积函数的转化.当从0到时,z沿单位圆的正向绕行一周.例17 计算的值.二. 形如的积分设为复函数的实值形式,其中满足条件:(1> 。

复变函数与积分变换第五章留数测验题与答案

复变函数与积分变换第五章留数测验题与答案

第五章 留 数一、选择题: 1.函数32cot -πz z在2=-i z 内的奇点个数为 ( )(A )1 (B )2 (C )3 (D )42.设函数)(z f 与)(z g 分别以a z =为本性奇点与m 级极点,则a z =为函数)()(z g z f 的( )(A )可去奇点 (B )本性奇点 (C )m 级极点 (D )小于m 级的极点3.设0=z 为函数zz e xsin 142-的m 级极点,那么=m ( )(A )5 (B )4 (C)3 (D )2 4.1=z 是函数11sin)1(--z z 的( ) (A)可去奇点 (B )一级极点 (C ) 一级零点 (D )本性奇点5.∞=z 是函数2323z z z ++的( )(A)可去奇点 (B )一级极点 (C ) 二级极点 (D )本性奇点 6.设∑∞==)(n n n z a z f 在R z <内解析,k 为正整数,那么=]0,)([Re k zz f s ( ) (A )k a (B )k a k ! (C )1-k a (D )1)!1(--k a k7.设a z =为解析函数)(z f 的m 级零点,那么='],)()([Re a z f z f s ( ) (A)m (B )m - (C ) 1-m (D ))1(--m 8.在下列函数中,0]0),([Re =z f s 的是( )(A ) 21)(z e z f z -= (B )z z z z f 1sin )(-=(C )z z z z f cos sin )(+=(D) ze zf z111)(--= 9.下列命题中,正确的是( ) (A ) 设)()()(0z z z z f mϕ--=,)(z ϕ在0z 点解析,m 为自然数,则0z 为)(z f 的m 级极点.(B ) 如果无穷远点∞是函数)(z f 的可去奇点,那么0]),([Re =∞z f s (C ) 若0=z 为偶函数)(z f 的一个孤立奇点,则0]0),([Re =z f s (D ) 若0)(=⎰c dz z f ,则)(z f 在c 内无奇点10. =∞],2cos[Re 3ziz s ( ) (A )32-(B )32 (C )i 32(D )i 32-11.=-],[Re 12i e z s iz ( )(A )i +-61 (B )i +-65 (C )i +61 (D )i +65 12.下列命题中,不正确的是( )(A )若)(0∞≠z 是)(z f 的可去奇点或解析点,则0]),([Re 0=z z f s (B )若)(z P 与)(z Q 在0z 解析,0z 为)(z Q 的一级零点,则)()(],)()([Re 000z Q z P z z Q z P s '= (C )若0z 为)(z f 的m 级极点,m n ≥为自然数,则)]()[(lim !1]),([Re 1000z f z z dzd n z z f s n n nx x +→-=(D )如果无穷远点∞为)(z f 的一级极点,则0=z 为)1(zf 的一级极点,并且)1(lim ]),([Re 0zzf z f s z →=∞13.设1>n 为正整数,则=-⎰=211z ndz z ( ) (A)0 (B )i π2 (C )niπ2 (D )i n π2 14.积分=-⎰=231091z dz z z ( ) (A )0 (B )i π2 (C )10 (D )5i π 15.积分=⎰=121sin z dz z z ( ) (A )0 (B )61- (C )3i π- (D )i π-二、填空题1.设0=z 为函数33sin z z -的m 级零点,那么=m .2.函数zz f 1cos1)(=在其孤立奇点),2,1,0(21ΛΛ±±=+=k k z k ππ处的留数=]),([Re k z z f s .3.设函数}1exp{)(22z z z f +=,则=]0),([Re z f s 4.设a z =为函数)(z f 的m 级极点,那么='],)()([Re a z f z f s . 5.双曲正切函数z tanh 在其孤立奇点处的留数为 . 6.设212)(z zz f +=,则=∞]),([Re z f s . 7.设5cos 1)(zzz f -=,则=]0),([Re z f s . 8.积分=⎰=113z zdz e z.9.积分=⎰=1sin 1z dz z . 10.积分=+⎰∞+∞-dx x xe ix21 . 三、计算积分⎰=--412)1(sin z z dz z e zz .四、利用留数计算积分)0(sin 022>+⎰a a d πθθ五、利用留数计算积分⎰∞+∞-+++-dx x x x x 9102242六、利用留数计算下列积分: 1.⎰∞++0212cos sin dx x xx x 2.⎰∞+∞-+-dx x x 1)1cos(2七、设a 为)(z f 的孤立奇点,m 为正整数,试证a 为)(z f 的m 级极点的充要条件是b z f a z m az =-→)()(lim ,其中0≠b 为有限数.八、设a 为)(z f 的孤立奇点,试证:若)(z f 是奇函数,则]),([Re ]),([Re a z f s a z f s -=;若)(z f 是偶函数,则]),([Re ]),([Re a z f s a z f s --=. 九、设)(z f 以a 为简单极点,且在a 处的留数为A ,证明Az f z f az 1)(1)(lim2=+'→. 十、若函数)(z Φ在1≤z 上解析,当z 为实数时,)(z Φ取实数而且0)0(=Φ,),(y x f 表示)(iy x +Φ的虚部,试证明)()sin ,(cos cos 21sin 202t d f tt t Φ=+-⎰πθθθθθπ)11(<<-t答案第五章 留 数一、1.(D ) 2.(B ) 3.(C ) 4.(D ) 5.(B )6.(C ) 7.(A ) 8.(D ) 9.(C ) 10.(A ) 11.(B ) 12.(D ) 13.(A ) 14.(B ) 15.(C )二、1.9 2.2)2()1(π+π-k k 3.0 4.m - 5.16.2- 7.241-8.12i π 9.i π2 10.e i π 三、i π-316. 四、12+πa a .五、π125.六、1.)(443e e e -π 2.e1cos π。

第五章_留数

第五章_留数

§5.2
1的计算规则
定义5.4 设z0是f (z)的孤立奇点, C是在z0的充分 小邻域内包含z0在其内部的分段光滑正向简单闭曲 线, 积分
1 f ( z )dz 2 i C
称为f (z)在z0点的留数(Residue), 记做 Res f ( z ), z0 . 函数 f (z)在孤立奇点z0点的留数即是其在以 z0 为中心的圆环域内Laurent级数-1次幂项的系数.
第五章
留数
§5.1
孤立奇点
孤立奇点
如果函数 f (z)在z0点不解析, 则称z0 是f (z)的 一个奇点. 如果z0 是f (z)的一个奇点, 且存在d >0, 使得f (z)在 0 z z0 d 内解析,则称z0 是f (z)的 孤立奇点.
并不是所有的奇点都是孤立奇点
sin z 的孤立奇点. 但z=0 例如z=0是函数 e 和 z z 1 ( k 1, 2,) 不是函数 的孤立奇点, 因为 1 k sin z 都是奇点.
是 D上的解析函数,( z )dz f 那么
f ( z )dz
nC

2 i Res f ( z ), zk .
C k 1
C2
n
f ( z )dz ,
2
留数的计算
Res[f ( z ), z0 ] 0.
(1) 如果 z 0 为 f (z ) 的可去奇点, 则
(2) 如果 z 0 为 f (z ) 的本性奇点, 则需将 f (z ) 展开 成Laurent级数, 求 c1 .
2 1
其中 c m 0 ( m 1). 于是
f ( z ) ( z z0 ) m c m c m1 ( z z0 ) c m 2 ( z z0 )2 ,

数学物理方法 留数定理及其应用

数学物理方法 留数定理及其应用
1 dx , cosh x 1 dx 3 cosh x
对于条件(1)






奇点 z=/2i, 3/2i,
数学物理方法2015.02
第二节 应用留数定理计算实函数的积分
计算积分 设 f ( z)



1 dx cosh x
y=
1 cosh z
奇点 z=/2i, 3/2i, ,周期 2i -R

0
O
R
R



eix 1 dx cosh x 1 e
eiz C cosh z dz
0 eiR y eiR y dy i dy cosh( R iy ) cosh( R iy )
2 i iz Res f ( z ) e 1 e z i / 2
第二节 应用留数定理计算实函数的积分
计算积分 设 f ( z)



eix dx cosh x
y=
y=/2 y=0
1 cosh z
奇点 z=/2i, 3/2i, ,周期 2i -R
eiz C cosh z dz R R eix eix dx dx R cosh x R cosh( x i ) i
| z z0 |
f z dz a z z dz
n | z z0 | n n 0

z0
2 ia1
如何计算留数,或系数a-1
数学物理方法2015.02
第一节 留数及留数定理
留数的计算方法
(1) 一般方法:利用留数的定义来求留数 (2) 根据孤立奇点的类型来计算留数

复变函数第五章1留数

复变函数第五章1留数

sinz lz i0mz4
lz i0m((szi4)zn)' '
cosz lz im0 3z3
z 1为极点。
2020/6/16
11
5.1.2 零点与极点的关系
定义5.1:设f(z)在z0的邻域内解f析 (z0), 0若 ,
则称 z0为解析函 f(z)数 的零点 m阶零点: 若不恒等于零的解析数函 f (z)能表示成
z a为(z)(z)的 mn阶零 . 点
2)(z)(z)(za)m n 1 1((z z))
当 mn时z, a为 ((zz))的 (mn)阶零点, 当 202m 0/6/1 6 n时 当mz, na时 为 , z((zz))的 a为 (n ((m zz)))阶 的可 极去 点 . 奇 , 点 16
7!
z 0为可去奇点 .

(sizn z) 0,(sizn z)' 0,
z0
z0
(sizn z)' 0,(sizn z)(3) 0
z0
z0
z0是(sinzz)的三级零点。
z 0是z3的三级零点。
z 0为可去奇点 . (见7,例 m3n)
2020/6/16
19
3) f(z) (z2(s1)in(zz)32)3
问 1 ) (z)(z)、 2 )(z)(z)在 z a有何性质?
解 可设 (z) (za)m 1(z)(z) (za)n 1(z)
其 1 ( z ) 中 1 ,( z ) 在 z a 解( 1 析 a )1 ( a ) , 0 . 1 ) ( z )( z ) ( z a ) m n1 ( z )1 ( z ),
类似z, i为f(z)的一阶极点。
问题z: 是 1 的几阶极点?

第五章 留数 留数在定积分计算中的应用

第五章  留数  留数在定积分计算中的应用

个有界区域,函数 f(z) 在 D 内除有限个孤立
奇点 z1 , z2 ,..., zn外处处解析. C是D内包围各 奇点的一条正向简单闭曲线,那么我们有:
n

C
f ( z )dz 2i Res[ f理的基本思想
D
zn C3 Cn z1 z2
z3
C1
显然,函数在z0处的留数C1就是积分 1 f ( z )dz 2 i C 的值.
其中,C为函数f ( z )的去心邻域0 z - z0 R 内绕z0的闭曲线,方向为逆时针方向.
注:留数Res[f(z), z0] 与圆C的半径r无关.
二、留数定理
定理 5.1 (留数定理)设 D 是复平面上的一

C
f ( z )dz 0
如果z0是f(z)的孤立奇点,则上述积分就不 一定等于零。
定义5.1 设z0是解析函数f ( z )的孤立奇点, 我们把f ( z )在z0处的洛朗展开式中负一次 幂项的系数C1称为f ( z )在z0处的留数.记作 Re s[ f ( z ), z0 ],即 Re s[ f ( z ), z0 ] C-1
求沿闭曲线C积分 求C内各孤立奇点处的留数.
三、留数的计算
求函数在孤立奇点处的留数的一般方法 ——将函数在以z0为中心的圆环内展开为 洛朗级数,求出级数中C-1(z-z0)-1项的系数C-1
如果z0是可去奇点,则Res[f(z), z0]=0;
如果z0是本性奇点,则往往只能用展开成洛朗
级数的方法来求C-1.
Res[f ( z ), z0 ] lim( z z0 ) f ( z )
z z0
P( z ) lim( z z0 ) z z0 Q ( z ) Q ( z0 ) P( z0 ) / Q '( z0 ).

留数(答案解析)

留数(答案解析)

复变函数练习题 第五章 留数系 专业 班 姓名 学号§1 孤立奇点孤立奇点类型的判别法 1、洛朗展开法f(z)在点a 处的洛朗展式中, 若无负幂项,则点a 为可去奇点;若负幂项最高次数为m ,则点a 为m 阶极点; 若负幂项为无穷多个,则点a 为本性奇点。

2、极限法 lim ()z af z →存在且有限,则点a 为可去奇点; 等于无穷,则 a 为极点(无法判断阶数); 不存在且不等于无穷,则a 为本性奇点。

3、判断极点的方法 3.11()()()mf zg z z a =-,g(z)在点a 解析且g(a)不等于零;3.21()()lim ()lim()()()m m z a z a f z g z g z z a f z z a →→==--,存在且有限; 3.31()()()m z a h z f z =-, h(z)在点a 解析且h(a)不等于零 一、选择题 1.函数cot 23zz π-在||2z i -=内奇点的个数为 [ D ](A )1 (B )2 (C )3 (D )4cot cos 3(23)sin 0,()23(23)sin 2z z z z z k k z z z ππππ=-=⇒=∈--,2.设()f z 与()g z 分别以z a =为可去奇点和m 级极点,则z a =为()()f z g z +的 [ C ] (A )可去奇点 (B )本性奇点 (C )m 级极点 (D )小于m 级的极点 (对f(z)和g(z)分别进行洛朗展开并求和) 3.0z =为函数241sin z ez z-的m 级极点,那么m = [ C ] (A )5 (B )2 (C )3 (D )4224224553201112!3.3=(1)sin sin sin sin 2!lim (1)1sin 2!z z z z z e z e z z z z z z z z z z z z z z →⎛⎫++ ⎪--⋅=⋅=⋅++ ⎪⎪ ⎪++= ⎪⎝⎭利用方法, 4.z =∞是函数3232z z z ++的 [ B ](A )可去奇点 (B )一级极点 (C )二级极点 (D )本性奇点322232321=32=0z z z z z z ζζζζ⎛⎫++++=++ ⎪⎝⎭以为一阶极点 5.1z =是函数1(1)sin1z z --的 [ D ] (A )可去奇点 (B )一级极点 (C )一级零点 (D )本性奇点 (将函数在z=1洛朗展开,含无穷多个负幂项) 二、填空题1.设0z =为函数33sin z z -的m 级零点,那么m = 9 。

第五章 留数

第五章 留数
zz0时, F(z)=f(z); 当z=z0时, F(z0)=c0. 由于
z z0
lim f ( z ) lim F ( z ) F ( z0 ) c0 ,
z z0
5
所以不论f(z)原来在z0是否有定义, 如果令
f(z0)=c0, 则在圆域|z-z0|<d内就有
f(z)=c0+c1(z-z0)+...+cn(z-z0)n+...,
其中 g(z)在 z0 解析, 且 g(z0)0. 所以当 zz0 时, 有 1 1 m m ( z - z0 ) ( z - z0 ) h( z ) f ( z) g ( z)
15
函数h(z)也在z 解析, 且h(z )不等于 0,z 不 是h(z)的零点, 因此z 是1/f(z) 的m级零点. 逆命题证明过程类似。
17
注意不能一看函数表面形式就急于作结论. 像函
e z -1 数 z 2 , 初看似乎 z=0 是它的 2 级极点, 其实是一
级极点. 因为
ez -1 1 z n 1 1 z 1 2 - 1 j ( z ), 2 z z z n 0 n! z 2! 3!
其中j(z)在 z=0 解析, 并且j(0)0.
18
4. 解析函数在无穷孤立奇点的性质 如果函数f(z)在无穷远点z=的去心邻域 R<|z|<内解析, 称点为f(z)的孤立奇点.
1 作变换 t z , 并且规定这个变换把扩充 z 平面上的
无穷远点 z=映射成扩充 t 平面上的点 t=0, 则扩充 平面 z 上每一个向无穷远点收敛的序列{zn}与扩充
3 5 2 n 1
26
§5.2 留数

第五章 留数及其应用

第五章 留数及其应用

第五章 留数及其应用一. 目的要求1. 理解孤立奇点概念并掌握其分类法。

2. 理解留数概念,熟练掌握极点处留数的求法(不含无穷远点)。

3. 熟练掌握留数定理,会用留数求围道积分。

二. 主要内容1. 孤立奇点定义、分类,函数的零点与极点之关系,Δ函数在无穷远点的性态。

2. 留数概念,留数定理,留数的计算,*无穷远点的留数。

3. 用留数求围道积分。

4. 用留数求实积分 dx e x R dx x Q x P d R aix ⎰⎰⎰∞+∞-∞+∞-)(*)()(#)sin ,(cos #20,,θθθπ5. *对数留数与辐角原理。

重点:孤立奇点的判定,留数定理及应用。

难点:留数定理的应用。

本章中心问题是留数定理,前面讲的柯西定理、柯西积分公式都是留数定理的特殊情况,并且留数定理在作理论探讨与实际应用中都具有重要意义,它是复积分与复级数理论相结合的产物,为此先对解析函数的孤立奇点进行分类5.1 孤立奇点 5.2 留数5.3 留数在定积分计算中的应用 本章小结 思考题第一节 孤立奇点一、奇点的分类定义:若函数()f z 在0z 处不解析,但在0z 的某一去心领域00z z δ<-<内处处解析,则称0z 为函数()f z 的孤立奇点如: 0z =是函数1()f z z=的孤立奇点,也是函数1()z f z e =的孤立奇点如0z =是函数1()1sin f z z=的一个奇点,除此之外, 1(1,2,)n z n n π==±± 也是它的一个奇点, 当n 的绝对值逐渐增大时,1n π可任意接近0z =,即在0z =不论怎样小的去心领域,总有函数()f z 的奇点存在, 所以0z =不是函数()f z 的孤立奇点 孤立奇点分类:函数()f z 在孤立奇点0z 的领域00z z δ<-<内展为洛朗级数为: ()f z =()nnn C z z ∞=-∑+01()n nn Cz z ∞--=-∑解析部分 主要部分(1) 主部消失即只有()nnn C z z ∞=-∑,则称0z 为函数()f z 的可去奇点(2) 主部仅含有限项(m 项),则称0z 为函数()f z 的m 阶极点 (3) 主部含有无限多项,则称0z 为函数()f z 的本性奇点 例1. 说明点0z =是函数sin ()zf z z=的可去奇点 解: 函数()f z 在0z =的去心领域内可展开成洛朗级数为:35sin 1()()3!5!z z z f z z z z ==-+- 241113!5!z z =-+- ,展开式中不含负幂项,⇒0z =是函数sin ()zf z z=的可去奇点. 二、可去奇点可去奇点的解析化:若0z 为函数()f z 的可去奇点,则()f z 在0z 的去心领域内的洛朗级数就是一个不含负幂项的级数为:20102000()()()(),0n n f z C C z z C z z C z z z z δ=+-+-+-+<-<显然这个幂级数的和函数()F z 在0z z δ-<内处处解析.令000()lim ()lim ()z z z z f z C F z f z →→===孤立奇点0z 为可去奇点的判别方法:设0z 为函数()f z 的孤立奇点,则下列条件是等价的(1) 0z 为函数()f z 的可去奇点;(2) 函数()f z 在0z 点的洛朗级数展开式中不含0z z -的负幂项,即010()()()n n f z C C z z C z z =+-++-+(3) 00lim ()z z f z C →=,(0C 为一常复数);(4)函数()f z 在0z 某去心领域内有界.若0z 为()f z 的极点,则0lim ()?z z f z →=三、极点如果在洛朗级数展开式中只有有限多个0z z -的负幂项, 且关于10()z z --的最高幂为0()m z z --,即2102010010()()()()()m m f z C z z C z z C z z C C z z ------=-++-+-++-+(1,0)m m C -≥≠则孤立奇点0z 称为函数()f z 的m 阶极点.下面讨论m 阶级点的特征: (1) 2110201001()[()()()()m m m m mf z C C z z C z z C z z z z ---+-+-=+-+-++-- 00()]n m n n C z z ∞+=+-∑01()()mg z z z =-这里()g z 满足: (1)在圆域0z z δ-<内是解析函数; (2) 0()0g z ≠.(2)反过来,当任何一个函数()f z 能表示为01()()()mf zg z z z =-的形式, ()g z 在0z z δ-<内解析且0()0g z ≠,那么0z 是函数()f z 的m 阶极点.判定0z 是函数()f z 的m 阶极点的另一个方法.而001lim ()lim()()m z z z z f z g z z z →→==+∞-⇒0lim ()z z f z →=∞ 判定0z 是函数()f z 的m 阶极点的又一方法.孤立奇点0z 为极点的判别方法:设0z 为函数()f z 的孤立奇点,则下列条件是等价的, (1) 0z 是函数()f z 的m 阶极点; (2) 函数()f z 在点0z 处的洛朗展开式为:10000()()(0,0)()()nm n m mn C C f z C z z C m z z z z +∞---==+++-≠>--∑(3)极限0lim ()z z f z →=∞,缺点:不能指明极点的阶数.(4) 函数()f z 在点0z 的某去心领域内表示成: 01()()()mf zg z z z =-, 其中()g z 在0z 的领域内解析,且0()0.g z ≠Z 例1. 求有理分式函数232()(1)(1)z f z z z -=+-的极点. 解: 函数的孤立奇点有: 1z =, z i =±, 1lim ()z f z →=∞, lim ()z if z →±=∞,⇒1z =,z i =±,都是函数()f z 的极点.(1)当1z =时,1233232121()(1)(1)(1)(1)(1)z z g z z z z z z --=⋅=⋅+--+-, 这里1()g z 在1z =的某处领域内处处解析,且1(1)0g ≠,⇒1z =是有理函数的3阶极点.(2) 对于z i =.有22332121()(1)(1)()()(1)()z z g z z z z i z i z z i --=⋅=+--+-- (3)对于i -,有32332121()(1)(1)()()(1)()z z g z z z z i z i z z i --=⋅=+-+--+ ⇒z i =±都是有理函数的1阶极点.四、本性奇点若在洛朗级数展开式中含有无穷多个0z z -的负幂项,那么孤立奇点0z 称为函数()f z 的本性奇点.例如: 1()zf z e =, 0z =是它的本性奇点,因为它的洛朗级数为:1121112!!n ze z z z n ---=+++++ ,含有无穷多个z 的负幂项. 若0z 为函数()f z 的本性奇点,且具有如下性质:0{}n A z z ∀∃→,,使得0lim ()n z z z f z A =→=即: 若0z 为函数()f z 的本性奇点,则极限0lim ()z z f z →不存在且不是无穷大.例3. 函数1()zf z e =,点0z =为它的本性奇点.解: (1)当z 沿正实轴趋向0时,则函数1()zf z e =→+∞; (2)当z 沿负实轴趋向0时,则函数1()0zf z e =→;(3)若对于给定复数(2)2n iA i e ππ+==写成, 要使1(2)2n i ze i eππ+→=, 可取数列1(2)2n z n i ππ⎧⎫⎪⎪=⎨⎬⎪⎪+⎩⎭,n →∞时, 0n z →, 当z 沿数列n z {}趋向于0时,有: 10lim n zz z e i =→=由(1)、(2)、(3)分析得:极限0lim ()z z f z →不存在.故点0z =为1()zf z e =的本性奇点.孤立奇点0z 为本性奇点的判别方法: 设0z 为函数()f z 的孤立奇点,则下列条件是等价的 (1) 0z 为函数()f z 的本性奇点;(2) 函数()f z 在0z 点洛朗级数展开式中含有无穷多个0z z -的负幂项; (3)极限0lim ()z z f z →不存在(也不是无穷大).利用极限判断极点的类型,当极限是型时,可以像《高等数学》中那样用罗必达法则来求:如果函数()f z ,()g z 是当0z z →,以0为极限的两个不恒等于0的解析函数,则0()()limlim ()()z z z z f z f z g z g z →→'='. 例4. 研究函数21()(1)(2)f z z z =--孤立奇点的类型.解: 1z =,2z =是函数()f z 的两个孤立奇点,当1z =时, 211()1(2)f z z z =⋅--, 21(2)z -在1z =的某处领域内解析,且1z =处取值不等于0,⇒1z =是函数()f z的一阶极点;当2z =,211()(2)1f z z z =⋅--,11z -在2z =的某领域内解析,且2z =处取值不等于0,⇒2z =是函数()f z 的二阶极点.例5. 研究函数11()z f z e-=的孤立奇点的类型.解: 11()z f z e-=在整个复平面内除去点1z =外处处解析,⇒1z =是它的唯一的孤立奇点.将函数在0|1|z <-<+∞内展开成洛朗级数,得到:1121111(1)(1)(1)2!!n z ez z z n ----=+-+-++-+ 此级数含有无穷多个负幂项, 故1z =是它的本性奇点.五、函数的零点与极点的关系 1.零点的定义若函数0()()()m f z z z z ϕ=-,其中()z ϕ在0z 处解析,且0()0z ϕ≠,m 为一正整数,则称0z 为函数()f z 的m 阶零点.例如:函数3()(1)f z z z =-,⇒0z =,1z =分别是()f z 的一阶零点和三阶零点.定理1. 如果函数()f z 在0z 处解析,则0z 为()f z 的m 阶零点的充要条件是()()00()0,0,1,2,(1),()0.n m f z n m f z ==-≠证明: ()⇒设0z 是()f z 的m 阶零点,则0()()()m f z z z z ϕ=-, 其中()z ϕ在0z 处解析,且0()0z ϕ≠,从而在0z 领域内泰勒展开式为:201020()()()z C C z z C z z ϕ=+-+-+ ,取其中00()0z C ϕ=≠,⇒10010()()()m m f z C z z C z z +=-+-+⇒()0()0,0,1,2,,(1),n f z n m ==- 而()00()!0.m f z m C =≠,()⇐已知函数()f z 的泰勒级数为:10010()()()m m f z C z z C z z +=-+-+0010()[()]m z z C C z z =-+-+且()()00()0,0,1,2,(1),()0n m f z n m f z ==-≠ ,令201020()()()z C C z z C z z ϕ=+-+-+ ,0()()()m f z z z z ϕ=-,则0z 为函数()f z 的m 阶零点.例6. 设函数3()1f z z =-,点1z =为函数的几阶零点.解: 由于(1)0f =,且31(1)3|30z f z ='==≠,所以1z =是函数()f z 的一阶零点. 2.函数的零点与极点的关系定理2 若0z 为函数()f z 的m 阶极点,则0z 就是()f z 1m 阶零点,反之也成立. 证明: ()⇒设0z 为()f z 的m 阶极点,则有01()()()mf zg z z z =-,其中()g z 在0z 处解析,且0()0g z ≠,⇒当0z z ≠时,有001()()()()()m m z z z z h z f z g z =-=-1其中()h z 在0z 处解析,且0()0h z ≠.当0z z ≠时,由于0lim0()z z f z →=1,只要令00()f z =1, 由0()()()m z z h z f z =-1可知: 0z 是()f z 1的m 阶零点.()⇐如果0z 是()f z 1的m 阶零点,则⇒0()()()m z z z f z ϕ=-1其中()g z 在0z 处解析,且0()0g z ≠,⇒当0z z ≠时, 01()()()mf z z z z φ=-, 而()()z z φϕ1=在0z 处解析,且0()0z φ≠, 所以点0z 是()f z 的m 阶极点. 例7.(通过零点阶数判断极点阶数)函数1sin z有些什么奇点?如果是极点,指出他的阶? 解: 函数1sin z的奇点是使sin 0z =的点: 由sin 0z =得: iz iz e e -=或221iz k ie e π==,⇒22iz k i π=,即: ,0,1,2,z k k π==±± , 所以,(0,1,2,)z k k π==±± 是函数()f x 的孤立奇点.(sin )|cos |z k z k z z ππ=='=cos (1)0k k π==-≠⇒z k π=是sin z 的一阶零点,即: z k π=是1sin z的一阶极点. 例8.判别函数21()z e f z z-=在0z =处是几阶极点. 解:法一: 22011111[1]()!2!3!z n n e z z z z z n z zϕ∞=-=-=+++=∑ , 其中()z ϕ在0z =解析,且(0)0ϕ≠, 所以0z =是函数21()z e f z z-=的一阶极点. 法二: 2111z z e e z z z --=⋅,01lim 10z z e z →-=≠,⇒1z e z -的展开式中不含负幂项,且0C =1.⇒1z e z-的展开式在0z =,且不等于0.所以0z =是函数21()z e f z z -=的一阶极点.练习:3sin zz;0z =是二阶极点,而不是三阶级点. 六、函数在无穷远点的性态前面讨论函数()f z 解析性及孤立奇点时,均假设z 为复平面上有限点, 那么函数在无穷远点的性态又如何呢?下面就讨论在扩充复平面上函数的性态:1. 定义 若函数()f z 在z =∞的去心领域R z <<∞内解析, 则称点∞为函数()f z 的孤立奇点. 分析:令1t z=,∞(扩充z 平面上) →0(扩充t 平面上) ()f z , 11()()t zR z g t f t =<<∞−−→=, 10t R<<. 若0t =是函数()t ϕ的可去奇点,m 阶极点或本性奇点,那么就称点z =∞是函数()f z 的可去奇点,m 阶极点或本性奇点.2. 奇点∞类型的判别方法由于函数()f z 在R z <<∞内解析,所以在此环域内可以展开成洛朗级数:1()(1)nn n n n n f z C zC z ∞∞--===+∑∑ 其中11()(0,1,2,)2n n C f C d n i ζζπζ+==±±⎰,, C 为圆环域内R z <<∞内绕原点的任何一条正向简单闭曲线.因此函数()t ϕ在圆环域10t R <<内的洛朗级数有上式得到:010()(2)nn n n n n t C t C C t ϕ∞∞--===++∑∑(1) 不含t 的负幂项,则0t =是()t ϕ的可去奇点;(2) 含有t 的有限多的负幂项,且m t -为最高负幂项,则0t =是()t ϕ的m 阶极点; (3) 含有t 的无限多的负幂项,则0t =是()t ϕ的本性奇点. 因此根据前面定义,有: 如果在级数(1)式1()nn nn n n f z CzC z ∞∞--===+∑∑中,(1) 不含z 正幂项,则z =∞是()f z 的可去奇点;(2) 含有z 有限多的正幂项,且mz 为最高负幂项,则z =∞是()f z 的m 阶极点; (3) 含有z 无穷多的正幂项, 则z =∞是()f z 的本性奇点.这样,对于无穷远点来说,它的特征与其洛朗级数之间的关系就跟有限远点一样,不过只是把正幂项与负幂项的作用互相对掉就是. 3. 孤立奇点的判别方法一、函数()f z 的孤立奇点∞为可去奇点的充要条件是下列三条中的任何一条成立:(1) 函数()f z 在∞的去心领域R z <<∞内洛朗级数展开式为: 1202()n n C C C f z C z z z---=+++++ ; (2) 极限0lim ()()z f z C →∞=≠∞存在;(3) 存在0r >,使得函数()f z 在r z <<∞内有界.二、函数()f z 的孤立奇点∞为m 阶极点的充要条件是下列三条中的任何一条成立:(1)函数()f z 在∞的去心领域R z <<∞内洛朗级数展开式为:22101()0m nm m nn C f z C z C z C z C C z+∞-==+++++≠∑, (2)极限lim ()z f z →∞=∞;(3) 1()()g z f z =以z =∞为m 的阶零点. 三、函数()f z 的孤立奇点∞为本性奇点的充要条件是下列二条中的任何一条成立:(1) 函数()f z 在∞点处的洛朗级数展开式中含有无穷多z 的正幂项; (2)极限lim ()z f z →∞不存在,且非∞.例9. 函数1()1f z z =+在圆环域1z <<+∞内可展成: 解: 2311111()1(1)11n n f z z z z z z==-+-++-++它不含正幂项,所以∞是函数()f z 的可去奇点.说明: 当z =∞是函数()f z 的可去奇点,若取()lim ()z f f z →∞∞=则认为函数()f z 在∞解析的.例10. 讨论函数1()f z z z=+解: 含有正幂项,且z 为最高正幂项所以∞是它的一阶极点, 另外0也是它的一阶极点. 例11.讨论函数sin z解: 其展开式为: 3521111sin (1)3!5!(21)!n n z z z z z n +=-+-+-++ 含有无穷多的正幂项,所以z =∞是它的本性奇点.例12.函数2()1zf z z =+是否以z =∞孤立奇点?若是,属于哪一类? 解: 函数2()1zf z z=+在整个复平面内除去z i =与z i =-外的区域内处处解析,所以函数在无穷远的领域1||z <<+∞内是解析的,⇒z =∞是孤立奇点.又因为: 2lim01z zz →∞=+,⇒z =∞是函数的可去奇点.例13.函数23()1234f z z z z =+++是否以z =∞为孤立奇点?若是,属于哪一类?解: 23()1234f z z z z =+++在整个复平面内处处解析,所以z =∞为函数的孤立奇点且为3阶极点.例14. 函数()z f z e =是否以z =∞为孤立奇点?若是,属于哪一类?解: 函数()z f z e =在整个复平面内处处解析,所以z =∞是它的孤立奇点. 极限lim zz e →∞不存在(不是无穷大),⇒z =∞是函数的本性奇点.例15. 函数1()sin f z z=是否以z =∞为孤立奇点? 解: 令sin z =0,得:(0,1,2,)k z k k π==±± ,⇒1()sin f z z=在整个复平面除了(0,1,2,)k z k k π==±± 外处处解析, 而在扩充复平面上,序列{}k z 以z =∞为聚点,⇒z =∞不是函数1()sin f z z=的孤立奇点. 结果:在扩充复平面上, ∞是奇点,但不一定是孤立奇点.例16. 函数233(1)(2)()(sin )z z f z z π--=在扩充复平面内有些什么类型的奇点?如果说极点,指出它的阶数.解: 函数()f z 除使分母为0的点0,1,2,z =±± 外,(1) 当1,1,2z ≠-的奇点时, (sin )cos z z πππ'=,在0,z =-±± 2,3,4处cos z ππ均不为0,⇒这些点是sin z π的一阶零点,从而是3sin z π()的三阶零点,⇒0,z =-±± 2,3,4是()f z 的三阶极点.(2) 当1z =±时, ⇒1z =±为21(1)(1)z z z -=-+的一阶零点, 而且1z =±为3sin z π()的三阶零点,⇒1z =±为函数()f z 的二阶极点.(3) 当2z =时,23233222(1)(2)2lim ()lim lim(1)()(sin )sin z z z z z z f z z z zππ→→→---==-2333013lim[(2)1](),(2)sin z ζπζζζπζππ→=+-==+ 令 ⇒2z =是()f z 的可去奇点.(4) 当z =∞时,由于∞是0,1,2,z =±± 的聚点, ⇒z =∞不是函数()f z 的孤立奇点.第二节 留数留数是复变函数论中重要的概念之一,它与解析函数在孤立奇点处的洛朗展开式、柯西复合闭路定理等有着密切的联系. 一、留数的概念及留数定理 1.留数概念如果函数()f z 在0z 的领域内解析,则有柯西-古萨定理: ()0,Cf z dz =⎰其中C 为0z 领域内的任意一条简单闭曲线.若0z 为函数()f z 的一个孤立奇点,则沿着0z 的某一个去心领域00z z R <-<内含0z 的任意一条正向简单闭曲线C 的积分:(),Cf z dz ⎰一般不等于0.因此将函数()f z 在00z z R <-<内展开成洛朗级数:00011()()(),nn n n n n f z C z z C C z z ∞∞--===-++-∑∑对展开式两边沿着C 逐项积分得:00011()()(),nnnnCCCCn n f z dz Cz z dz C dz C z z dz ∞∞--===-++-∑∑⎰⎰⎰⎰001101(),()nn n n C C Cn n C dz C dz C z z dz z z ∞∞-===++--∑∑⎰⎰⎰ 101()C C dz z z -=-⎰12.C i π-=102,010,0()n C i n dz n z z π+=⎧=⎨≠-⎩⎰ 留数定义:设0z 是函数()f z 的孤立奇点,在环形域00z z R <-<内, 函数()f z 的洛朗展开式中10()z z --项的系数1C -称为函数()f z 在0z 点的留数. 记作: 01Re [(),]s f z z C -=或01Re [(),]()2C s f z z f z dz i π=⎰. 说明1C -的值与C 的半径大小无关,只要求C 包含0z 即可.例1. 求函数1()zf z ze =在孤立奇点0z =处的留数.解: 函数()f z 在0||z <<+∞内的洛朗展开式为:1211()1,2!3!zf z ze z z z ==++++ ⇒11Re [,0]2!zs ze =. 例2. 求函数21()cosf z z z=在孤立奇点0z =处的留数. 解: 函数()f z 在0||z <<+∞内的洛朗展开式为:22211111()cos (1),2!4!(2)!z nn f z z z z z n z -==-+-+-+ 21Re [cos ,0]0.s z z ⇒= 例3. 求函数sin ()zf z z=在孤立奇点0z =处的留数. 解: 0sin lim 1z z z →=,⇒ 0z =是函数sin ()z f z z =的可去奇点,⇒sin Re [,0]0zs z=. 2.留数定理定理 1 设函数()f z 在区域D 内除有限个孤立奇点12,,,n z z z 外处处解析,C 是D 内包围所有奇点的一条正向简单闭曲线,则:1()2Re [(),]nk Ck f z dz i s f z z π==∑⎰.证明: 由复合闭路定理得:1()()()nCC C f z dz f z dz f z dz =++⎰⎰⎰⇒11()Re [(),]2C f z dz s f z z i π=+⎰Re [(),]n s f z z + ,即: 1()2Re [(),]nk Ck f z dz i s f z z π==∑⎰.二、函数在极点的留数法则1:如果0z 为函数()f z 的一阶极点,则000Re [(),]lim()()z z s f z z z z f z →=-.证明: 由于0z 为函数()f z 的一阶极点,⇒110000()()(),0||n n n f z C z z C z z z z δ∞--==-+-<-<∑⇒10100()()()n n n z z f z C C z z +∞+-=-=+-∑,⇒001lim()()z z z z f z C -→-=.结论:先知道奇点的类型,对求留数有时更为有利.例4. 求函数34()(1)(2)z f z z z z -+=--在孤立奇点0,1,2z z z ===的留数.解: 0,1,2z z z ===都是函数()f z 的一阶极点,⇒003434Re [(),0]lim lim 2(1)(2)(1)(2)z z z z s f z zz z z z z →→-+-+===----; ⇒113434Re [(),1]lim(1)lim 1(1)(2)(2)z z z z s f z z z z z z z →→-+-+=-==----;⇒223434Re [(),2]lim(2)lim 1(1)(2)(1)z z z z s f z z z z z z z →→-+-+=-==----.法则 设函数()()()P z f z Q z =,其中()P z 及()Q z 在z 解析,且0()0P z ≠, 00()0,()0Q z Q z '=≠,则0z 是函数()f z 的一阶极点,且留数000()Re [(),]()P z s f z z Q z ='.证明: 已知00()0,()0Q z Q z '=≠,⇒0z 是函数()f z 的一阶零点,⇒0z 是1()Q z 的一阶极点, ⇒011()()z Q z z z ϕ=-,()z ϕ在0z 解析,且0()0z ϕ≠, ⇒0011()()()()f z z P z g z z z z z ϕ==--,()g z 在0z 解析, 且0()0g z ≠, ⇒0z 是函数()f z 的一阶极点.由法则1:0Re [(),]s f z z 00lim()()z z z z f z →=-00000()()lim()()()z z P z P z Q z Q z Q z z z →==-'- 例5. 求函数()cot f z z =在0z =的留数.解:由于cos cot ,sin z z z =⇒0z =是函数()f z 的一阶阶极点,⇒Re [(),0]s f z =0cos cos01(sin )|cos0z z z ==='. 例6. 计算积分21zCze dz z -⎰,其中C 为正向圆周2z =. 解: 在2z =内,函数2()1zze f z z =-有两个一阶极点: 1z =±,⇒22Re [(),1]2Re [(),1]1zCze dz i s f z i s f z z ππ=+--⎰ ,而 211Re [(),1]lim(1)lim (1)12z z z z ze ze es f z z z z →→=-==-+,1211Re [(),1]lim(1)lim (1)12z z z z ze ze e s f z z z z -→-→--=+==--, ⇒122()2cos 122z Cze e e dz i i i z ππ-=+=-⎰ . 法则3 如果0z 为函数()f z 的m 阶极点,则()f z 01011lim [()()](1)!m m m z z d z z f z m dz--→=--证明:因为0z 为函数()f z 的m 阶极点,则在0z 的洛朗展开式为:210201000()()()()()mn m n n f z C z z C z z C z z C z z ∞------==-++-+-+-∑⇒0()()mz z f z -=1101000()()()m m n m m n n C C z z C z z C z z ∞-+--+-=+-++-+-∑⇒101[()()]m m m d z z f z dz ---=1(1)!m C --+{含有(0z z -)正幂的项}⇒01011lim [()()](1)!m m m z z d z z f z m C dz---→-=-, 即: 011011lim [()()](1)!m m m z z d C z z f z m dz---→=--.例7. 求函数2()ze f z z-=在0z =的留数.解: 0z =是函数2()ze f z z-=的二阶极点,⇒Re [(),0]s f z =2201lim [(0)](21)!zz d e z dz z-→--0lim()1z z e -→=-=-. 例8. 计算积分41Czdz z -⎰,其中C 为正向圆周2z =.解: 4()1zf z z =-在圆周2z =内有四个一阶极点: 1,i ±±, ⇒41Czdz z =-⎰ 2Re [(),1]2Re [(),1]i s f z i s f z ππ+-2Re [(),]2Re [(),]i s f z i i s f z i ππ+-+ 由法则2, 得:32()1()44P z z Q z z z==';⇒411112{}014444C z dz i z π=+--=-⎰ , 说明: 用法则1计算比较繁一些.例9. 计算积分2(1)zC e dz z z -⎰ , 其中C 为正向圆周2z =.解: 在圆周2z =内, 0z =是函数()f z 的一阶极点, 1z =是二阶极点,⇒ 2200Re [(),0]lim lim 1(1)(1)z zz z e e s f z zz z z →→===--, ⇒ 2211Re [(),1]lim [(1)](1)!(1)z z d e s f z z z dz z z →=--- 211(1)lim lim 0z z z z d e e z dz z z→→-===, ⇒22{Re [(),0]Re [(),1]}(1)zC e dz i s f z s f z z z π=+-⎰2(10)2i i ππ=+=. 例10. 计算积分6sin Cz zdz z-⎰, 其中C 为正向圆周2z =. 解: 法一: 0z 是函数()f z 的孤立奇点,令()sin P z z z =-,⇒0(0)(sin )|0z P z z ==-=,⇒0(0)(1cos )|0z P z ='=-=,0(0)sin |0z P z =''==.0(0)cos |0z P z ='''=≠, ⇒0z =是()sin P z z z =-的三阶零点, ⇒0z =是是函数()f z 的三阶极点,有规则3,得:2236262300sin 1sin 1sin Re [,0]lim ()lim ()(31)!2!z z z z d z z d z z s z z dz z dz z →→---=⋅=-再往下计算比较繁琐!法二: 如果0z 是函数()f z 的阶极点,则0Re [(),]s f z z 01011lim [()()](1)!m m m z z d z z f z m dz--→=--. 01011lim [()()](1)!m n m n m n z z d z z f z m n dz+-++-→=-+-∑⇒6sin Re [,0]z zs z -565601sin lim [](61)!z d z z z dz z→-=- 5501lim (sin )5!z d z z dz→=-011lim(cos )5!5!z z →=-=. 三、函数在无穷远点的留数无穷远点留数定义:设函数()f z 在圆环域R z <<+∞内解析,C 为只会圆环内绕原点的任何一条正向简单闭曲线,则称积分: 1()2C f z dz i π-⎰,为函数()f z 在无穷远点的留数, 记作: 1Re [(),]()2C s f z f z dz iπ-∞=⎰ . 定理 2 如果函数()f z 在扩充复平面内只有有限个孤立奇点(包括∞), 则函数()f z 在所有各奇点(包括∞)的留数的总和一定为零,即:1R e [(),]R e [(),]0nk k s fz z s f z =+∞=∑ 证明: 设函数()f z 的有限个孤立奇点为(1,2,,)k z k n = , 除∞外, 又设C 为一条绕原点的并将(1,2,,)k z k n = 包含在它内部的正向简单闭曲线, 由留数定理及无穷远点留数定义得:1Re [(),]Re [(),]nk k s f z z s f z =+∞∑11()()022C C f z dz f z dz i i ππ-=+=⎰⎰. 法则4: 211Re [(),]Re [(),0]s f z s f z z ∞=-⋅. 证明: 据在无穷远的留数定义中,取正向的简单闭曲线C为半径足够打的正向圆周z ρ=.令1z ζ=,并设,i i z e re θϕρζ==,⇒1,rρθϕ==-⇒1Re [(),]()2C s f z f z dz i π-∞=⎰201()2i i f e ie d i πθθρρθπ-=⎰2011()2i i i f d i re reπϕϕϕπ=-⎰ 220111()()2()i i i f d re i re re πϕϕϕπ=-⎰21111()2f d i ζρζπζζ==-⎰ 由于函数()f z 在z ρ<<+∞内解析,从而1()f ζ在10ζρ<<内解析,⇒ 211()f ζζ在1ζρ<内除0ζ=外没有其他的奇点,由留数定理得:22111111()Re [(),0].2f d s f iζρζπζζζζ==⋅⎰例11.计算Re [(),]s f z ∞的值,如果(1) 2();1z e f z z =- (2) 41().(1)(4)f z z z z =+- 解: (1) 1Re [(),]Re [(),]0,nk k s f z z s f z =+∞=∑2()1ze f z z =-有两个有限孤立奇点1z =±,且均为一阶极点;21Re [(),1]lim(1),12z z e e s f z z z →=-=- 121Re [(),1]lim(1)12z z e e s f z z z -→--=+=--⇒ Re [(),]Re [(),1]Re [(),1]s f z s f z s f z ∞=---11()sin .222e e e e hi ---=--=-=- (2) 211Re [(),]Re [(),0]s f z s f z z ∞=-⋅ 241Re ,011(1)(4)z s z z z ⎡⎤⎢⎥=-⎢⎥⎢⎥+-⎣⎦44Re ,0(1)(14)z s z z ⎡⎤=-⎢⎥+-⎣⎦例12. 计算积分41Czdz z -⎰其中C 为正向圆周2z =. 解: 4()1zf z z =-在2z =外部除z =∞点外无其他的奇点, ⇒42Re [(),]1C z dz i s f z z π=-∞-⎰ 2112Re [(),0]i s f z z π=⋅42Re [,0]01z i s zπ==-.例13. 计算积分10()(1)(3)C dzz i z z +--⎰ ,其中C 为正向圆周2z =.解: 函数的奇点有: ,1,3,z i z z z =-===∞,Re [(),]Re [(),1]Re [(),3]Re [(),]0s f z i s f z s f z s f z ⇒-+++∞=102{Re [(),]Re [(),1]}()(1)(3)C dzi s f z i s f z z i z z π=-++--⎰2{Re [(),3]Re [(),]}i s f z s f z π=-+∞10231112{lim(3)Re [(),0]}()(1)(3)z i z s f z i z z z zπ→=--++-- 10101012{Re [,0]}(3)2(1)(1)(13)z i s i iz z z π=-++⋅+-- 10(3)ii π=-+ 第三节 留数在定积分计算中的应用留数定理为某些类型积分的计算提供了有效的方法.应用留数定理计算实变函数的定积分的方法称为围道积分法.围道积分法就是把求实变函数的积分化为复变函数沿着围线的积分,然后利用留数定理,使沿着围线的积分计算,归结为留数计算.要使用留数计算,需要两个条件:一是被积函数与某个解析函数有关;其次,定积分可化为某个沿闭路的积分.其实质就是用复积分来计算实积分,这一方法对有些不易求得的定积分和广义积分常常比较有用.现在就几个特殊类型举例说明. 一、形如20(cos ,sin )R d πθθθ⎰的积分令i z e θ=, i dz ie d θθ=, dzd iz θ=, 1cos 22i ie e z z θθθ--++==, 1sin 22i i e e z z i iθθθ----==,其中(cos ,sin )R θθ为cos θ与sin θ的有理函数,且在[0,2]π上连续, 当[0,2]θπ∈时,对应的z 正好沿着单位圆||1z =的正向绕行一周, 函数22111()(,)22z z f z R z iz iz+-=为z 的有理函数,且在||1z =上分母不为零, 即在单位圆||1z =上无奇点,因此满足留数定理的条件,故有2220111(cos ,sin )(,)22z z z dz R d R z iz iz πθθθ=+-=⎰⎰ 1()z f z d ==⎰ .例1. 计算22cos 2(01)12cos I d p p pπθθθ=<<-+⎰,的值. 解: 在02ππ≤≤内, 2212cos (1)2(1cos )0p p p p θθ-+=-+-≠,因而该积分是定积分,21cos 22i i e e z zθθθ-++==,222211cos 2()()22i i e e z z θθθ--=+=+ 2212112122z z z dzI z z iz p p --=+⇒=+-+⎰42112(1)()z z dz iz pz z p =+=--⎰ 1().z f z dz ==⎰被积函数421()2(1)()z f z iz pz z p +=--有三个极点10,,z z p z p ===,只有0,z z p ==在圆周1z =内,其中0z =为二阶极点, z p =为一阶极点,42201Re [(),0]lim []2(1)()z d z s f z z dz iz pz z p →+⇒=--223422220()4(1)(12)lim 2()z z pz p p z z z pz p i z pz p p z →--+-+-+=--+ 2212p ip +=-,421Re [(),]lim [()]2(1)()z p d z s f z p z p dz iz pz z p →+⇒=---,24222221122[].22(1)1p p p I i ip ip p p ππ++⇒=-+=--二、形如()R x dx +∞-∞⎰的积分1111()(),2()n n nm m mz a z a P z R z m n Q z z b z b --+++==-≥+++ 是关于z 的有理函数.(1) ()Q z 比()P z 至少高两次; (2) ()Q z 在实轴上无零点;(3) ()R z 在上半平面Im 0z >内的极点为(1,2,,)k z k n = , 则有:1()2Re [(),]nk k R x dx i s R z z π+∞-∞==∑⎰.基本思想:(1)先取被积函数()R x 在有限区间[,]R R -上的定积分,在引入辅助曲线,即上半圆周:Re (0)i R C z θθπ=≤≤,同[,]R R -一起构成围线,取R 适当的打,使得()()()P z R z Q z =所有的在上班平面内的极点k z 都包含在积分路径内,如下图:1()()()2Re [(),]RnRk CRC k R z dz R x dx R z dz i s R z z π-=⇒=+=∑⎰⎰⎰(2)在R C 上,令Re (0)i z θθπ=≤≤, 则有0()(Re )Re ()(Re )R i i i C P z P dz i d Q z Q θπθθθ=⎰⎰, 因为()Q z 的次数比()P z 的次数至少高两次,于是有当||z R =→∞时,()Re (Re )0()(Re )i i i zP z P Q z Q θθθ=→,1()2Re [(),].()n k k P x dx i s R z z Q x π+∞-∞=⇒=∑⎰ 例2. 计算积分22222,(0,0)()()x dxI a b x a x b +∞-∞=>>++⎰的值. 解: 4,2,2,m n m n ==-=函数()R z 在实轴上没有孤立奇点, 22222()()z z a z b ++在上半平面的奇点为ai bi ,,且为一阶极点;1()2Re [(),].()nk k P x dx i s R z z Q x π+∞-∞=⇒=∑⎰Re [(),]s R z ai 222222()2()a aai b a i a b -==--, 同理, 22Re [(),]2()b s R z bi i b a =-,22222[]2()2()a b I i i a b i b a a bππ=+=--+三、形如()(0)aix R x e dx a +∞-∞>⎰的积分(1) ()R x 是x 的有理函数,而分母的次数至少比分子的次数高一次,(2) 并且()R z 在实轴没有孤立奇点,(3) (1,2,,)k z k n = 为函数()()iaz f z R z e =在上半平面的奇点. 则积分存在,且1()()2Re [(),]()niaxiaxiaz k k P x R x e dx e dx i s R z e z Q x π+∞+∞-∞-∞===∑⎰⎰基本思想:(1) 解决思路同类型2,此时被积函数为()aixR x e ,1111()(),1()--+++==-≥+++ n n nm m mx a x a P x R x m n Q x x b x b (2) 设()R x 在半圆周,0arg R C z R z θπ=≤=≤:上连续(对充分打的R 都如此)且一致地有lim ()0z R z →∞=,则当0a >时,有lim()0Riaz C R R z e dz →∞=⎰.(3)设1111()(),1()n n n m m mx a x a P x R x m n Q x x b x b --+++==-≥+++ ,()P x 与()Q x 互质且在实轴上()0Q x ≠,且0a >, 则:1()2Re [(),]niaxiaz k k R x e dx i s R z e z π+∞-∞==∑⎰,k z 为()R z 上半平面的奇点. 特别地,将上式分开实部与虚部,可得积分1()sin Im{2Re [(),]}niaz k k R x axdx i s R z e z π+∞-∞==∑⎰,1()cos Re{2Re [(),]}niaz k k R x axdx i s R z e z π+∞-∞==∑⎰.例3. 计算积分22cos (0)xdx a x a+∞-∞>+⎰,的值. 解: 2,0,21,m n m n ==-=> 221()R z z a =+在实轴上没有奇点, 所以此积分存在,且此积分是22ixe dx x a +∞-∞+⎰的实部. 而222212Re [,]ix iz n k k e e dx i s z x a z a π+∞-∞==++∑⎰, 函数22iz e z a +在上半平面内只有一个一阶极点z ai =, 22Re [,]2,2iz a ae e e s ai i z a ai a ππ--⇒==+ 22cos x dx x a +∞-∞⇒+⎰ae aπ-=. 例4. 计算22sin (0)x xI dx a x a+∞-∞=>+⎰,的值.解: 2,1,1,m n m n ==-=函数22R()zz z a =+在实轴上没有孤立奇点, 则积分存在,()R z 在上半平面内内只有一个一阶极点z ai =222Re [(),]ix iz xe dx i s R z e ai x aπ+∞-∞⇒=+⎰22aa e i ie ππ--==, 于是可得: 22sin ax x dx e x aπ+∞--∞=+⎰. 同时可以得到:22220sin 1cos 0.2a x x x xdx e dx x a x a π+∞+∞--∞==++⎰⎰, 四、函数在实轴上有奇点的积分可适当的选取路径来积分,使积分路线绕开孤立奇点,得:111()2Re [(),]Re [(),],2nnk k k k f x dx i s f z z s f z x π+∞-∞===+∑∑⎰其中k z 是上班平面的奇点, k x 是实轴上的奇点. 例5. 计算积分sin xdx x+∞-∞⎰的值. 解: 函数sin ()x f x x =是偶函数, 所以0sin 1sin 1Im[]22ixx x e dx dx dx x x x+∞+∞+∞-∞-∞==⎰⎰⎰ ize z 在实轴上有一个一阶极0z =, 012{0Re [,0]}lim .2ix iz izz e e e dx i s i z i x z zπππ+∞-∞→=+==⎰ 0sin 2x x π+∞⇒=⎰. 例6.证明220sin cos x dx x dx +∞+∞==⎰⎰. 证明: 222cos sin ix ex i x =+,取积分的封闭曲线是半径为R 的4π扇形边界, 由于2iz e 在D 内及其边界上C 解析, 20iz Ce dz ⇒=⎰, 即:2220(1)ix iz iz OAABBOe dx e dz e dz ++=⎰⎰⎰在AB 上: Re i z θ=,θ从0到4π; 因此(1)成为: 222240()()4400ii Riix iR e i i re Re dx eRie d ee dr πθππθθ++=⎰⎰⎰;或22222cos2sin 244(cos sin )RRir iRR i x i x dx eedr e Rie d ππθθθθ--+=-⎰⎰⎰,(1) 22444lim Riiir r R e e dr e e dr e πππ+∞--→∞==⎰⎰sin )44i ππ=+==(2)222cos2sin 2sin 2440iR R i R eRie d eRd ππθθθθθθ--≤⎰⎰22440(1)4R R R ed e Rπθππθ--≤=-⎰, 当R →∞时,上面积分趋向于零, 从而有220(cos sin )x i x dx ∞+=⎰,两端实部和虚部分别相等,得:220cos sin x dx x dx ∞∞==⎰⎰。

第五章留数定理习题及其解答

第五章留数定理习题及其解答

第五章 留数定理习题及其解答注:此例说明,判断孤立奇点 z类型虽可从f (z)的Laurent 展开式含有负幕项的情 况入手,但切不可忘掉必须是在去心领域内的 Laurent 展式,否则与z0是什么性质的点没有关系。

5.2设f(z)在全平面解析,证明:若::为f(z)的可去奇点,则必有f(z)二a 。

(常数);若::为f(z)的 m 级极点,则f(z)必为m 次多项式: f (z)二a ° • a1z• III • ak Z ,ak = 0;除此之外,f (z)在Z o = 0处的Taylor 展式必有无限多 项系数=0。

证: 因为f (z)在全平面解析,所以f (z)在勺=0邻域内Taylor 展式为f (z)二a 0 a 1z 丨11 a kzJ11且| z" o 注意到这Taylor 级数也是f (z)在::去心邻域 内的Taylor 级数。

所以,当二在f (z)的可去奇点<—>f (z)在::去心邻域内Laurent 展示无z 的正幕项, 即厲=a ?=丨1( =0。

故f (z)=逐(常数);当::为f(z)的m 级极点uf (z)在::去心邻域内Laurent 展示中只含有限个z 的正幕 项,且最高正幕为m 次(am = 0)of(z) = a ° az 川 a m_z m ‘ a m Z ma m 严 a0 n 0m()即f (z)为m 次多项式;除去上述两种情况,::为f(z)的本性奇点=f(z)在::去心邻域内Laurent 展开式中 含有无限多个正幕项,COf (z)=送 a n z n z £邑因此在n£中,有无限多个项的系数不为0。

注(1).对本题的结论,一定要注意成立的条件为f(z)在全面解析,否则结论不成1f(z)=—立。

例: z 在0 < z V -内解析(与全平面解析仅差一个点!),且以°°为可去奇点,1 f(z)=・•• +— + 5.1设有 z 本性奇点?为什么?z njnz z_ ++ ________,能否说z = 0为f (z)答:这个级数由两部分组成:od- n ' zn 4□0 n二命。

05第五章 留数及其应用

05第五章 留数及其应用

f (z)dz
L (z a)n
2
i
f (n1)(a) (n 1)!
2 i c1
在 a 的某去心邻域上被积函数有洛朗展开:
f (z)
(z a)n
cp
p
(z
a)p
k0
f
(k)(a)(z k!
a)kn
柯西公式给出z ? |z|1
§5.1 留数定理
Re
s
[
(
z
zez a)3
,
a],
(2)
Re
s
[
zsin z (1 ez )3
,
0]
解:(1)
f
(z)
zez (z a)3
lim[(z a)3 f (z)] a ea
za
极点 z=a 的阶 3
Res f (a) lim 1 [(z a)3 f (z)](31) za (3 1)!
lim 1 [z ez ](2) a 2 ea
z0
z2 sin z / z3
lim[z
z0
g(z)]
lim
z0
(e z
1)3
/
z3
1
z=0 是 1 阶极点
Resg(z) lim[z g(z)] 1
z0
z0
➢小定理
设 (z), (z) 在 b 点解析,(b) 0, (b) 0,

( z ) Res z b (z)
(z) ( z )
|z b
i
12 (z i)5
|z i
3 8
***留数定理计算实轴积分的标准步骤***
例2:计算积分
1 0 x4 a4 dx
解:

复变函数第五章-1

复变函数第五章-1
(5.2)
17
[证] 若 z 0 是 f (z) 的m阶零点,那么 f (z) 可表成 设 (z) 在 z 0的泰勒展开式为
f ( z ) ( z z0 )m ( z )
( z ) C0 C1 ( z z0 ) C2 ( z z0 )2
其中C0 z0 0 。 从而f (z) 在z 0 的泰勒展开式为
1 1 1 1 2 n z 1 2!( z 1) n!( z 1)
1 z 1
此级数含有无限多个负次幂项,故 z 1 是函数 e
的本性奇点。
16
§5.1.2 函数的零点与极点的关系
m 定义5.2 若 f ( z ) ( z z0 ) ( z ) , (z) 在 z 0 处解析,且 z0 0 ,m为某一正整数,那么称 z 0 为 f (z) 的
sin z sin z 如果约定 在 z 0 的值为1(即C0),那么 在z0 z z 就成为解析的了。 sin z sin z 因为 z 0 是 的可去奇点,故当z→0时, z z 有有限极限。此极限为上面展开式中的常数项。可得
重要极限
sin z lim 1 z 0 z
6
(2)极点 如果在洛朗级数中只有有限多个z-z0的负幂项,
由此可见:

如果补充定义 f (z) 在 z 0 的值为 f ( z0 ) C0 ,则 f (z) 在 z 0 解析。
因此,可去奇点的奇异性是可以除去的。
定理5.1′设 z 0 是 f (z) 的孤立奇点,则 z 0 是f (z) 的可去奇点 的充分必要条件是f (z) 在 z 0 的一个邻域内为有界。
0
[证]
必要性,因 z 0 是 f (z) 的可去奇点,故在 0 z z0 内有

复变函数第五章留数(习题五)解答

复变函数第五章留数(习题五)解答
所以
8.求下列各积分:
(1) ;(2) ,其中 ;
(3) ,其中 ;(4) ;(5) ;
(6) ;(7) ,其中 ;
(8) ,其中 ;[提示]:从顶点为 , , , ( )的矩形中分别挖去以 为心的上半圆盘和以 为心的下半圆,考虑 沿这个区域边界的积分.
(9) ;[提示]:从顶点为 , , , ( )的矩形中分别挖去以 为心的上半圆盘和以 为心的下半圆,考虑 沿这个区域边界的积分.
(2) ,其中 .
[提示]:作辅助函数 ,并考虑以 , , , ( )为顶点的矩形.
证明(1)作辅助函数 ,并取 ,以及如图示的扇形
显然 在此扇形区域及其边界上解析,由柯西积分定理

所以

比较两边的实部和虚部得

(2)因

考虑函数 沿如图示矩形区域边界的积分,由柯西积分定理得

同理
所以
比较两边的实部和虚部得
不难观察出,上式展开后最低的负幂次项为 ,不含有 这样的项,即这样的项的系数为 ,所以,由第4题得

(方法2)[利用公式 计算]
记 ,因 ,显然它以 为可去奇点,所以

6.试把关于留数的基本定理1.1转移到 是扩充复平面上含无穷远点区域情形.
设区域 是一条简单闭曲线或有限条互不相交且其内部也互不相交的简单闭曲线(记为 )的外部(称为扩充平面上含无穷远点的区域),若函数 在 内除去有有限个孤立奇点 , , , 外,在每一点都解析,并且 可连续到 上,则
用此结果计算积分

证明 由题设,显然函数 在复平面上的奇点都是孤立的,记为 , , , .
(方法1:利用第6题)如图示,可取简单闭曲线 ,使得 , , , 都位于 的外部,从而 在 及 的内部是解析的.由第6题,并注意到第3章的柯西定理,

第五章 留数理论及其应用习题解答

第五章   留数理论及其应用习题解答

习题五1. 求下列函数的留数.(1)()5e 1z f z z-=在z =0处. 解:5e 1z z-在0<|z |<+∞的罗朗展开式为 23454321111111112!3!4!2!3!4!z z z z z z z z z +++++-=+⋅+⋅+⋅+ ∴5e 111Res ,014!24z z ⎡⎤-=⋅=⎢⎥⎣⎦ (2)()11ez f z -=在z =1处. 解:11ez -在0<1z -| <+∞的罗朗展开式为 ()()()11231111111e 112!3!!111z n z n z z z -=++⋅+⋅++⋅+----∴11Res e ,11z -⎡⎤=⎣⎦.2. 利用各种方法计算f (z )在有限孤立奇点处的留数.(1)()()2322z f z z z +=+ 解:()()2322z f z z z +=+的有限孤立奇点处有z =0,z =-2.其中z =0为二级极点z =-2为一级极点.∴()[]()()120013232324Res ,0lim lim 11!242z z z z z f z z z →→++--⎛⎫=⋅=== ⎪⎝+⎭+ ()[]2232Res ,2lim 1z z f z z→-+-==- 3. 利用罗朗展开式求函数()211sin z z+⋅在∞处的留数. 解:()()()22235111sin 21sin 11111213!5!z z z z zz z z z z +⋅=++⋅⎛⎫=++⋅-⋅+⋅+ ⎪⎝⎭∴()[]1Res ,013!f z =- 从而()[]1Res ,13!f z ∞=-+ 5. 计算下列积分.(1)ctan πd z z ⎰,n 为正整数,c 为|z |=n 取正向.解:c c sin πtan πd d cos πz z z z z =⎰⎰.为在c 内tan πz 有12k z k =+ (k =0,±1,±2…±(n -1))一级极点 由于()()2sin π1Res ,πcos πk z kz f z z z =⎡⎤==-⎣⎦' ∴()c 1tan πd 2πi Res ,2πi 24i πk kz z f z z n n ⎛⎫=⋅⎡⎤=⋅-⋅=- ⎪⎣⎦⎝⎭∑⎰ (2) ()()()10c d i 13zz z z +--⎰ c :|z |=2取正向. 解:因为()()()101i 13z z z +--在c 内有z =1,z =-i 两个奇点. 所以()()()()[]()[]()()[]()[]()()10c 10d 2πi Res ,i Res ,1i 132πi Res ,3Res ,πi3i zf z f z z z z f z f z =⋅-++--=-⋅+∞=-+⎰6. 计算下列积分.(1)π0cos d 54cos m θθθ-⎰ 因被积函数为θ的偶函数,所以ππ1cos d 254cos m I θθθ-=-⎰ 令π1π1sin d 254cos m I θθθ-=-⎰则有 i π1π1e i d 254cos m I I θθθ-+=-⎰ 设i e z θ= d 1d i z z θ= 2os 12c z z θ+=则 ()121211d i 2i 15421d 2i 521m z mz z z I I z z z z z z ==+=⎛⎫+- ⎪⎝⎭=-+⎰⎰被积函数()()2521m z f z z z =-+在|z |=1内只有一个简单极点12z = 但()()[]12211Res ,lim 232521m mz z f z z z →⎡⎤==⎢⎥⎣⎦⋅'-+ 所以111πi 2πi 2i 3232m m I I +=⋅⋅=⋅⋅ 又因为π1π1sin d 254s 0co m I θθθ-=-=⎰∴π0cos d 54cos π32m m θθθ=⋅-⎰(2) 202πcos3d 12cos a a θθθ+-⎰,|a|>1. 解:令2π102cos3d 12cos I a a θθθ+=-⎰ 2π202sin3d 12cos I a a θθθ+=-⎰32π120i 2e i d 12cos I I a a θθθ-++=⎰ 令z =e i θ.31d d i os 2c z z zz θθ==,则 ()()()3122123221321i d 1i 1221d i 1112π2πi Res ,i 1z z z I I z z z a a zz z az a z af z a a a ==+=⋅+-⋅+=-++--⎡⎤=⋅⋅=⎢⎥⎣⎦-⎰⎰ 得()1322π1I a a =- (3)()()2222d x x a x b∞+-∞++⎰,a >0,b >0. 解:令()()()22221R z z a z b =++,被积函数R (z )在上半平面有一级极点z =i a 和i b .故 ()[]()[]()()()()()()()()()()22222222i i 22222πi Res ,i Res ,i 112πi lim i lim i 112πi 2i 2i πz a z b I R z a R z b z a z b z a z b z a z b a b a b a b ab a b →→=+⎡⎤=-+-⎢⎥++++⎣⎦⎡⎤=+⎢⎥--⎣⎦=+4. ()22022d x x x a ∞++⎰,a >0. 解:()()2222022221d d 2x x x x x a x a -∞++∞∞=++⎰⎰ 令()()2222z R z z a =+,则z =±a i 分别为R (z )的二级极点故()()[]()[]()()()22222222i 0i 1d 2πi Res ,i Res ,i 2πi lim lim i i π2z a z a x x R z a R z a x a z z z a z a a-→∞→-=⋅⋅+-+⎛⎫''⎡⎤⎡⎤ ⎪=+⎢⎥⎢⎥ ⎪+-⎣⎦⎣⎦⎝⎭=⎰ (5) ()2022sin d x x x b xβ∞+⋅+⎰,β>0,b>0. 解:()()()i 222222222cos sin e d d i d x x x x x x x x x x b x b x b βββ+++--∞∞∞∞∞∞-⋅⋅⋅=++++⎰⎰⎰ 而考知()()222zR z z b =+,则R (z )在上半平面有z =b i 一个二级极点.()()[]()i i 222i i e d 2πi Res e ,i e π2πi lim e i i 2z x z z b b xx R z b x b z z b b βββββ+--→∞∞⋅=⋅⋅+'⎡⎤=⋅=⋅⋅⎢⎥+⎣⎦⎰()222sin πd e 2b b b xx x x βββ+--∞∞⋅=⋅+⎰ 从而()2022sin ππd e 44e b b x x b b x x b βββββ+-∞⋅=⋅=+⎰ (6) 22i e d xx x a +-∞∞+⎰,a >0 解:令()221R z z a =+,在上半平面有z =a i 一个一级极点 ()[]i i i 22i e e e πd 2πi Res e ,i 2πi lim 2πi i 2i e x z a z az a x R z a x a z a a a -+-→∞∞=⋅⋅=⋅=⋅=++⎰ 7. 计算下列积分(1)()20sin 2d 1x x x x ∞++⎰ 解:令()()211R z z z =+,则R (z )在实轴上有孤立奇点z =0作的原点为圆心r 为半径的上半圆周c r ,使c r ,[-R ,-r ],c r ,[r ,R ]构成封装曲线,此时闭曲线内只有一个奇点i , 是()()[]{}()z 22i 201e 1e Im d Im 2πi Res ,i lim d 2211r r x iz c I x R z z z z x x +-∞∞→⎡⎤==⋅-⎢⎥++⎣⎦⎰⎰ 而()202e d lim πi 1r iz c r z zz →⋅=-+⎰. 设()()2221e 1e πIm 2πi lim πi Im 2πi πi 1e 21222zz i i I z z --→⎡⎤⎡⎤⎛⎫=⋅+=⋅-+=- ⎪⎢⎥⎢⎥+⎝⎭⎣⎦⎣⎦. (2)21d 2πi zT a z z⎰,其中T 为直线Re z =c ,c >0,0<a <1解:在直线z =c +i y (-∞<y <+∞)上,令()ln 22e z z a a f z z z==,()ln 22e i c a f c y c y ⋅+=+,()ln 22e i d d c a f c y y y c y ⋅++--∞∞∞∞+=+⎰⎰收敛,所以积分()i i d c c f z z ∞∞+-⎰是存在的,并且()()()i i i i d lim d lim d c c c c AB R R R R f z z f z z f z z ++--→+∞→+∞∞∞==⎰⎰⎰其中AB 为复平面从c -i R 到c +i R 的线段.考虑函数f(z)沿长方形-R ≤x ≤c ,-R ≤y ≤R 周界的积分.<如图>因为f (z )在其内仅有一个二级极点z =0,而且()[]()()20Res ,0lim ln z f z z f z a →'=⋅= 所以由留数定理.()()()()d d d d 2πi ln AB BE EF FAf z z f z z f z z f z z a +++=⋅⎰⎰⎰⎰ 而()()()()i ln ln ln ln 22222e e e e d d d d 0i x R a x a aC C a R C C R BE C R R f z z x x x C R x R R R x R →+⋅⋅-+--∞==⋅+−−−→++⎰⎰⎰⎰≤≤.。

第五章 留数定理习题及其解答

第五章 留数定理习题及其解答

第五章 留数定理习题及其解答5.1设有++++++++=+-1212221111)(n nn n z z z z z z f ,能否说0=z 为)(z f 本性奇点?为什么?答:这个级数由两部分组成:即∑∑∞=∞=+-+1012n n n n nz z。

第一个级数当11<z 即1>z 时收敛,第二个级数当12<z 即2<z 时收敛。

于是所给级数在环域21<<z 内收敛(成立),且和函数2111112()11232112z f z z z z z z z -=+=+=---+--。

显然0z =是()f z 的解析点。

可见此级数并非在0z =的去心领域内成立。

故不能由其含无限多个负幂项断定0z =的性质。

注: 此例说明,判断孤立奇点0z 类型虽可从()f z 的Laurent 展开式含有负幂项的情况入手,但切不可忘掉必须是在去心领域内的Laurent 展式,否则与0z 是什么性质的点没有关系。

5.2 设()f z 在全平面解析,证明:若∞为()f z 的可去奇点,则必有0()f z a ≡(常数);若∞为()f z 的m 级极点,则()f z 必为m 次多项式:01(),0k k k f z a a z a z a =+++≠ ;除此之外,()f z 在00z =处的Taylor 展式必有无限多项系数0≠。

证:因为()f z 在全平面解析,所以()f z 在00z =邻域内Taylor 展式为01()k k f z a a z a z =++++ 且z <+∞。

注意到这Taylor 级数也是()f z 在∞去心邻域内的Taylor 级数。

所以,当∞在()f z 的可去奇点<═>()f z 在∞去心邻域内Laurent 展示无z 的正幂项,即120a a === 。

故0()f z a ≡(常数);当∞为()f z 的m 级极点⇔()f z 在∞去心邻域内Laurent 展示中只含有限个z 的正幂项,且最高正幂为m 次(0m a ≠)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档