金属材料塑性成型的基本理论
材料成型工艺基础金属塑性成形
材料成型工艺基础:金属塑性成形1. 引言金属塑性成形是制造业中常见的一种材料成型工艺。
通过对金属材料施加力量,使其在一定的温度和应变条件下发生塑性变形,从而得到所需形状和尺寸的制品。
这种成形工艺广泛应用于汽车、航空航天、机械制造等领域。
本文将介绍金属塑性成形的基本概念、工艺流程以及常见的金属塑性成形方法。
2. 基本概念2.1 金属塑性成形的定义金属塑性成形是指将金属材料通过施加力量,在一定的温度和应变条件下,使其发生塑性变形,从而得到所需形状和尺寸的工艺过程。
2.2 塑性变形的基本概念塑性变形是指材料在一定的应力作用下,在超过其屈服点之后发生的可逆性变形。
在这种变形中,金属材料的原子结构会发生改变,从而改变了材料的形状和尺寸。
3. 工艺流程金属塑性成形的工艺流程主要包括以下几个步骤:3.1 原材料准备在金属塑性成形工艺中,首先需要准备好所需的金属原材料。
原材料的选择需要满足产品的要求,包括材料的强度、韧性、耐蚀性等。
3.2 材料加热在金属塑性成形之前,通常需要将金属材料进行加热。
加热可以使金属材料达到一定的塑性状态,更容易发生塑性变形。
加热的温度和时间需要根据不同的金属材料和成形要求进行调整。
3.3 成型工艺金属塑性成形的成型工艺包括以下几种常见方法:3.3.1 锻造锻造是一种利用压力将金属材料塑性变形成形的方法。
在锻造过程中,金属材料会经过压缩、拉伸、冷却等多个步骤,最终得到所需的形状。
3.3.2 拉伸拉伸是将金属材料放在拉伸机上,通过施加力量使其发生塑性变形的方法。
通过拉伸可以改变金属材料的形状和尺寸。
3.3.3 深冲深冲是将金属材料放在冲压机上,通过模具对材料进行冲压,使其发生塑性变形的方法。
通过调整模具的形状和尺寸,可以得到不同形状和尺寸的制品。
3.4 后处理在金属塑性成形完成之后,通常需要进行一些后处理工艺。
包括去除表面的氧化物、清洗、退火等。
后处理的目的是提高产品的表面质量和性能。
4. 常见的金属塑性成形方法4.1 冷镦成形冷镦成形是一种将金属材料通过冷镦机进行挤压、拉伸、弯曲等操作,使其发生塑性变形的方法。
wwei材料成形技术(塑性)1
二、金属塑性成形的基本生产方式 1、轧制:金属毛坯在两个轧辊之间受压变形而形成各 种产品的成形工艺,图6-1。 2、挤压:金属毛坯在挤压模内受压被挤出模孔而变形 的成形工艺,图6-3。 3、拉拔:将金属坯料拉过拉拔模的模孔而变形的成形 工艺,图6-5。 4、自由锻:金属毛坯在上下砥铁间受冲击或压力而变 形的成形工艺,图6-7(a)。 5、模锻:金属坯料在既有一定形状的锻模模膛内受击 力或压力而变形的成形工艺,图6-7(b) 。
塑性愈大、变形抗力愈小,材料的可锻性愈好
4、可锻性的影响因素
(1)化学成分 A、碳钢中碳和杂质元素的影响
C、H、P(冷脆)、S (热脆) B、合金元素的影响
塑性降低,变形抗力提高。
(2)内部组织
单相组织(纯金属或者固溶体)比多相组织塑性好。 细晶组织比粗晶组织好; 等轴晶比柱状晶好。 面心立方结构的可锻性最好,体心立方结构次之, 而密排六方结构可锻性最差。
冲击力和压力
锻压是锻造与冲压的总称。
★锻造:在加压设备及工(模)具作用下,使坯料、铸锭产生局 部或全部的塑性变形,以获得一定几何尺寸、形状和质量的锻件 的加工方法。锻造通常是在高温(再结晶温度以上)下成形的,
因此也称为金属热变形或热锻。
★锻造特点:1、压密或焊合铸态金属组 织中的缩孔、缩松、空隙、气泡和裂纹。 2、细化晶粒和破碎夹杂物,从而获得一 定的锻造流线组织。因此,与铸态金属 相比,其性能得到了极大的改善。 3、主要用于生产各种重要的、承受重载荷的机器零件或毛坯。 如机床的主轴和齿轮、内燃机的连杆、起重机的吊钩等。 4、高温下金属表面的氧化和冷却收缩等各方面的原因,锻件精度 不高、表面质量不好,加之锻件结构工艺性的制约。
2、晶粒和分布在晶界上的非金属夹杂物ห้องสมุดไป่ตู้沿变形方向被拉长, 但是拉长的晶粒可经再结晶又变成等轴细粒状,而这些夹杂物不能 改变,就以细长线条状保留下来,形成了所谓的纤维组织。 纤维组织的化学稳定性很高,只有经过锻压才能改变其分布方向, 用热处理是不能消除或改变纤维组织形态的。 纤维组织使金属的力学性能具有明显的方向性。
塑性成形理论基础
内力和应力
当所加外力使工件内部原子间距发生变化时,原子间便出现 相应的内力与外力平衡。
内力的强度(大小)称为应力。 如图,工件受若干外力 F1 …….Fn作用。在其内 一点Q处 截取一微小面素dA ,由于平衡, 面素两侧的应力相等dFA= dFB = dF则:
23 2 3
2
31 3 1
2
12 2 1
2
根据主应力的排序规则,最大切应力为:
max 1 3
2
球应力张量与偏差应力张量
应力张量可作如下分解:
xx xy xz xx m xy
xz m 0 0
ij yx
yy
yz
yx
yy m
yz
0
m
0
zx zy zz zx
材料成形原理
第四章 塑性成形理论基础 (物理基础、力学基础)
塑性加工原理的内容
力 1. 塑性加工力学条件
学 基
2. 塑性加工中的摩擦与涧滑
础 3. 不均匀变形
4. 塑性变形机制
物 理
5. 塑性变形中组织性能演变
基 础
6. 金属的塑性与变形抗力
7. 塑性变形中组织性能控制
塑性加工/成形原理
力学基础(塑性力学基础)
应力、应变分析,屈服准则 本构关系,塑性问题
物理基础(金属学基础)
变形机制、组织性能演变、塑性与 变形抗力
材料科学与工程学科基础课
塑性成形理论基础
之
力学基础
应力、应变分析,屈服准则 本构关系,塑性问题
材料成形原理
一、应力分析
塑性成形/加工中工件所受外力
主要有作用力和约束反力。
金属塑性成型原理
第一章1.什么是金属的塑性什么是塑性成形塑性成形有何特点塑性----在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力;塑性变形----当作用在物体上的外力取消后,物体的变形不能完全恢复而产生的残余变形;塑性成形----金属材料在一定的外力作用下,利用其塑性而使其成型并获得一定力学性能的加工方法,也称塑性加工或压力加工;塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高2.试述塑性成形的一般分类。
Ⅰ.按成型特点可分为块料成形(也称体积成形)和板料成型两大类1)块料成型是在塑性成形过程中靠体积转移和分配来实现的。
可分为一次成型和二次加工。
一次加工:①轧制----是将金属坯料通过两个旋转轧辊间的特定空间使其产生塑性变形,以获得一定截面形状材料的塑性成形方法。
分纵轧、横轧、斜轧;用于生产型材、板材和管材。
②挤压----是在大截面坯料的后端施加一定的压力,将金属坯料通过一定形状和尺寸的模孔使其产生塑性变形,以获得符合模孔截面形状的小截面坯料或零件的塑性成形方法。
分正挤压、反挤压和复合挤压;适于(低塑性的)型材、管材和零件。
③拉拔----是在金属坯料的前端施加一定的拉力,将金属坯料通过一定形状、尺寸的模孔使其产生塑性变形,以获得与模孔形状、尺寸相同的小截面坯料的塑性成形方法。
生产棒材、管材和线材。
二次加工:①自由锻----是在锻锤或水压机上,利用简单的工具将金属锭料或坯料锻成所需的形状和尺寸的加工方法。
精度低,生产率不高,用于单件小批量或大锻件。
②模锻----是将金属坯料放在与成平形状、尺寸相同的模腔中使其产生塑性变形,从而获得与模腔形状、尺寸相同的坯料或零件的加工方法。
分开式模锻和闭式模锻。
2)板料成型一般称为冲压。
分为分离工序和成形工序。
分离工序:用于使冲压件与板料沿一定的轮廓线相互分离,如冲裁、剪切等工序;成型工序:用来使坯料在不破坏的条件下发生塑性变形,成为具有要求形状和尺寸的零件,如弯曲、拉深等工序。
金属塑性成形原理``俞汉清 陈金德主编``
金属塑性成形原理复习指南第一章绪论1、基本概念塑性:在外力作用下材料发生永久性变形,并保持其完整性的能力。
塑性变形:作用在物体上的外力取消后,物体的变形不能完全恢复而产生的永久变形成为塑性变形。
塑性成型:材料在一定的外力作用下,利用其塑性而使其成形并获得一定的力学性能的加工方法。
2、塑性成形的特点1)其组织、性能都能得到改善和提高。
2)材料利用率高。
3)用塑性成形方法得到的工件可以达到较高的精度。
4)塑性成形方法具有很高的生产率。
3、塑性成形的典型工艺一次成形(轧制、拉拔、挤压)体积成形塑性成型分离成形(落料、冲孔)板料成形变形成形(拉深、翻边、张形)第二章金属塑性成形的物理基础1、冷塑性成形晶内:滑移和孪晶(滑移为主)滑移性能(面心>体心>密排六方)晶间:转动和滑动滑移的方向:原子密度最大的方向。
塑性变形的特点:① 各晶粒变形的不同时性;② 各晶粒变形的相互协调性;③ 晶粒与晶粒之间和晶粒内部与晶界附近区域之间变形的不均匀性。
合金使塑性下降。
2、热塑性成形软化方式可分为以下几种:动态回复,动态再结晶,静态回复,静态再结晶等。
金属热塑性变形机理主要有:晶内滑移,晶内孪生,晶界滑移和扩散蠕变等。
3、金属的塑性金属塑性表示方法:延伸率、断面收缩率、最大压缩率、扭转角(或扭转数)塑性指标实验:拉伸试验、镦粗试验、扭转试验、杯突试验。
非金属的影响:P冷脆性 S、O 热脆性 N 蓝脆性 H 氢脆应力状态的影响:三相应力状态塑性好。
超塑性工艺方法:细晶超塑性、相变超塑性第三章金属塑性成形的力学基础第一节应力分析1、塑性力学基本假设:连续性假设、匀质性假设、各向同性假设、初应力为零、体积力为零、体积不变假设。
2、张量的性质1、存在不变量,张量的分量一定可以组成某些函数f(Tij),这些函数的值不随坐标而变。
2、2阶对称张量存在三个主轴和三个主值;张量角标不同的分量都为零时的坐标轴方向为主轴,三个角标相同的分量为值。
金属塑性成形原理pdf
金属塑性成形原理pdf
金属塑性成形(MPM)是一种成型工艺,它包括冷弯折形、冷拉伸、热弯形、热拉伸、冲压和挤压等,它能够将金属材料塑性变形,从而制造成各种形状和尺寸的部件或零件。
虽然它与铸造有许多相似之处,但具有明显的不同,它更多的是在金属材料弯折或拉伸的基础上进行裁剪和成型。
金属塑性成形的主要原理是材料的塑性变形,当金属或其它金属材料受力时,它会发生塑性变形,例如在冷弯折形时,金属材料会受到压力而不会断裂。
冷拉伸的原理与冷弯折形的原理基本相同,只是它使用的是拉伸力而非压力。
热弯形和热拉伸原理与冷弯折形和冷拉伸的原理大致相同,只是需要加热材料来使其塑性变形。
冲压和挤压是两种机器成型工艺,它们通过对金属材料施加压力而产生细小的型腔,从而制造出不同形状的部件或零件。
金属塑性成形的另一个重要原理是金属温度、应力和应变。
温度变化会影响材料的变形性能,应力和应变是金属材料变形的两个重要参数,它们可以帮助确定材料的力学性能,从而选择合适的成形工艺来完成成型任务。
最后,成形过程中还需要考虑工具的
使用,例如冲床、挤压机、回转机等,这些工具可以应用到金属塑性成形中,使金属材料发挥更好的塑性变形性能。
总之,金属塑性成形技术的主要原理是材料的塑性变形,应力、应变和温度等因素的影响,以及工具的使用。
这些原理可以用来帮助确定正确的成型工艺和工具,从而产生精确度相当高的金属零件。
金属塑性成形的概念
金属塑性成形的概念金属塑性成形是指通过在金属材料中施加外力、应用热力或化学反应等手段,使金属材料发生塑性变形的一种金属加工工艺。
与传统的金属加工方式相比,金属塑性成形具有高效性、精确性和经济性的特点。
它广泛应用于汽车、航空航天、冶金等行业。
金属塑性成形的基本原理是利用金属材料的塑性变形特性,通过施加外力使金属材料由原有的形态发生塑性变形,从而得到所需的形状和尺寸。
金属塑性成形可以分为几种不同的形式,主要包括锤击成形、挤压成形、拉伸成形、压力成形和转轧成形等。
锤击成形是一种传统的金属塑性成形方法,它通常通过将金属材料置于锻造设备中,然后利用锤击力量使金属材料发生塑性变形。
锤击成形具有成本低、生产周期短的优点,但是需要大量的人力和物力投入。
挤压成形是指将金属材料置于挤压机中,通过挤压头施加压力使金属材料发生塑性变形。
挤压成形可以分为直接挤压和间接挤压两种形式。
直接挤压是指将金属材料直接放入挤压腔内,然后施加压力使金属材料发生压缩变形。
间接挤压是指将金属材料包裹在特殊形状的模具中,然后施加压力使金属材料逐渐挤出模具,从而达到所需的形状和尺寸。
拉伸成形是通过在金属材料表面施加拉力,使其发生塑性变形。
拉伸成形通常用于制备薄壁结构,如汽车车身、空调管道等。
拉伸成形由于受到法向拉力和剪切力的作用,易造成材料表面的应力集中和变形不均匀,因此在拉伸成形过程中需要注意控制应力分布和变形。
压力成形是一种利用液压或气压对金属材料施加压力的金属塑性成形方法。
压力成形通常具有成形精度高、产品质量好的优点,并且可以实现批量生产。
压力成形主要包括冲压成形、压铸成形和锻压成形等。
转轧成形是一种将金属材料置于转轧机中进行塑性变形的金属加工方法。
转轧成形通常用于制备薄板材料,如钢板、铝板等。
转轧成形具有高效、节省原材料和简便的优点,且可以保证成形件的尺寸精度和表面质量。
总之,金属塑性成形是一种广泛应用于金属加工领域的重要技术,通过施加力量和热力等手段,对金属材料进行塑性变形,从而得到所需的形状和尺寸。
金属板材塑性成形的极限分析
金属板材塑性成形的极限分析一、金属板材塑性成形的基本概念与重要性金属板材塑性成形是一种利用金属材料的塑性变形能力,通过外力作用使其发生形状变化的加工技术。
这种技术广泛应用于汽车、航空航天、家电制造等多个领域,对于提高材料利用率、降低成本、提升产品性能具有重要意义。
1.1 金属板材塑性成形的基本定义塑性成形是指在一定的温度和压力条件下,金属板材在塑性状态下发生形变,最终形成所需形状和尺寸的过程。
这一过程涉及到材料的力学行为、变形机理以及加工工艺等多个方面。
1.2 金属板材塑性成形的重要性金属板材塑性成形技术是现代制造业的基石之一。
它不仅能够提高材料的成形精度和生产效率,还能有效降低生产成本,满足现代工业对高性能、轻量化产品的需求。
二、金属板材塑性成形的关键技术与工艺金属板材塑性成形包含多种关键技术与工艺,这些技术与工艺直接影响成形质量、生产效率和成本。
2.1 金属板材的塑性变形机理金属板材的塑性变形机理是塑性成形的基础。
它涉及到材料内部的微观结构变化,如位错运动、晶粒变形等。
了解这些机理有助于优化成形工艺,提高成形质量。
2.2 塑性成形的主要工艺方法塑性成形的主要工艺方法包括轧制、拉伸、冲压、弯曲等。
每种方法都有其特定的应用场景和优势,选择合适的工艺方法对于保证成形效果至关重要。
2.3 塑性成形过程中的缺陷控制在塑性成形过程中,可能会出现裂纹、起皱、回弹等缺陷。
有效的缺陷控制技术可以显著提高成形件的质量和可靠性。
2.4 塑性成形工艺的数值模拟随着计算机技术的发展,数值模拟已成为塑性成形工艺设计的重要工具。
通过模拟可以预测成形过程中的应力、应变分布,优化工艺参数。
三、金属板材塑性成形的极限分析与应用极限分析是研究金属板材在塑性成形过程中达到极限状态的条件和行为,对于提高成形工艺的安全性和可靠性具有重要意义。
3.1 极限分析的理论基础极限分析的理论基础包括材料力学、塑性力学和断裂力学等。
这些理论为分析金属板材在成形过程中的应力、应变状态提供了科学依据。
塑性成形原理知识点
塑性成形原理知识点塑性成形是一种利用金属材料的塑性变形能力,在一定的条件下通过压力使金属材料发生塑性变形,从而获得所需形状的加工方法。
塑性成形技术是金属加工工艺中的重要分支,广泛应用于汽车、航空、航天、电子、家电、建筑等工业领域。
1.塑性变形:在塑性成形过程中,金属材料通过外力作用下的塑性变形使其形状发生改变。
塑性变形是金属材料中原子的相对位置发生改变而引起的宏观形变,其主要表现为材料的延伸、压缩、弯曲等。
塑性变形是金属材料的塑性性质所决定的,不同材料的塑性性能不同。
2.应力-应变关系:金属材料受到外力作用时,材料内部会产生应力,应力与应变之间存在一定的关系。
在塑性成形过程中,材料会发生塑性变形,使其产生应变。
应力-应变关系是描述材料塑性变形过程中应力和应变之间关系的数学模型,常用的模型有胡克定律模型和流变模型。
3.材料流动:塑性成形过程中,材料会发生流动从而获得所需的形状。
材料流动是指塑性材料在外力作用下,发生内部原子的相对位移和重新组合,从而使整个材料的结构发生变化。
材料流动是实现塑性成形的关键,其流动性能决定了成形工艺的可行性和成品质量。
4.成形工艺:塑性成形工艺是金属材料经过一系列工艺操作,通过压力使其发生塑性变形,最终获得所需形状的过程。
常见的塑性成形工艺包括冲压、拉伸、挤压、压铸、滚压等。
不同工艺适用于不同形状的零件,根据材料的性质和零件的要求选择合适的成形工艺。
5.工艺过程控制:塑性成形过程中,需要对各个环节进行控制以确保成品质量。
工艺过程控制包括工艺参数的选择、设备的调整、模具结构的设计等。
在塑性成形过程中,要控制好温度、应力、应变速率等因素,以避免过大的变形应力引起材料的断裂或变形过大导致零件尺寸偏差。
塑性成形技术不仅可以实现复杂形状的制造,而且可以提高材料的强度和刚度,降低材料的质量,节省原材料和能源。
因此,塑性成形技术在现代工业生产中具有重要的地位和应用价值。
第3章 金属材料的塑性成形——压力加工
其优劣主要取决于金属本身和变形时的外部条件。
影响可锻性的因素
(1) 金属的成分:纯金属好于合金,fcc好于bcc好 于hcp,低碳钢优于高碳钢,低碳低合金钢优于 高碳高合金钢;有害杂质元素一般使可锻性变坏
(2) 金属的组织:单相组织好于多相组织;铸态下 的柱状组织、粗晶粒组织、晶界上存在偏析或有 共晶莱氏体组织使可锻性变差
2、研究与开发塑性加工过程的计算机模拟技术与模具 CAD/CAE/CAM技术等。
3、研究与开发柔性成形技术、增量成形技术、净成形技 术、近净成形技术、复合成形技术等。
4、研究与开发使环境净化的加工技术,如低噪音、小/ 无震动、节省能源、资源或再利用的加工技术。
§3.2 金属的塑性加工成形性
金属的塑性加工成形性/可锻性(Forgeability) : 用来衡量金属在外力作用下发生塑性变形而不易 产生裂纹的能力,是金属重要的工艺性能之一;
(3) 加工条件 1) 变形温度:一般变形温度的升高,可提高金 属的可锻性;但注意过热、过烧问题
不同合金系8种典型金属的可锻性
Ⅰ—纯金属及单相合金(铅合金、 钼合金、镁合金);Ⅱ—纯金属及 单相合金(晶粒长大敏感者)(铍、镁 合金、钨合含、钛合金);Ⅲ—具 有不溶解组分的合金(高硫钢,含 硒不锈钢);Ⅳ—具有可溶组分的 合金(含氧化物的钼合金,含可溶 性碳化物和氮化物的不锈钢); Ⅴ—加热时形成有塑性第2相的合 金(高铬不锈钢);Ⅵ—加热时形成 低熔点第2相的合金(含硫的铁、含 锌的镁合金);Ⅶ—冷却时形成有 塑性第2相的合金(碳钢和低合金钢 、-钛合金和钛合金);Ⅷ—冷 却时形成脆性第2相的合金(高温合
可显著减小总变形力,用小设备加工大零件。
材料成型基本原理总结
材料成型力学原理部分第十四章金属塑性变形的物理基础1、塑形成形:利用金属的塑性,使金属在外力作用下成形的一种加工方法,亦称金属塑性加工或金属压力加工。
2、金属塑性成形的优点:生产效率高、材料利用率高、组织性能亦改变、尺寸精度高。
3、塑性成形工艺:锻造、轧制、拉拔、挤压、冲裁、成型4、金属冷塑形变形的形式:1、晶内变形:滑移和孪生2、晶间变形:晶粒间发生相互滑动和转动5、加工硬化:在常温状态下,金属的流动应力随变形程度的增加而上升,为了使变形继续下去,就需要增加变形外力或变形功。
(指应变对时间的变化率)6、热塑性变形时金属组织和性能的变化1、改善晶粒组织2、锻合内部缺陷3、破碎并改善碳化物和非金属夹杂物在钢中的分布4、形成纤维组织5、改善偏析7、织构的理解:多晶体取向分布状态明显偏离随机分布的取向分布结构。
8、细化晶粒:1、晶粒越细小,利于变形方向的晶粒越多2、滑移从晶粒内发生止于晶界处,晶界越多变形抗力越大9、热塑性变形机理:晶内滑移、晶界滑移和扩散蠕变10、塑性:不可逆变形,表征金属的形变能力11、塑性指标:金属在破坏前产生的最大变形程度12、影响塑性的因素:1、化学成分和合金成分对金属塑性的影响2、组织状态对金属塑性的影响3、变形温度4、应变速率5、应力状态13、单位流动压力P:接触面上平均单位面积上的变形力14、碳和杂质元素的影响碳:其含量越高,塑性越差;磷:冷脆;硫:热脆性;氧:热脆性;氮:时效脆性、蓝脆、气孔;氢:氢脆、白点、气孔和冷裂纹等15、合金元素的影响:塑性降低硬度升高16、金属组织的影响(1)晶格类型(2)晶粒度(3)相组成(4)铸造组织17、变形温度对金属塑性的影响:对大多少金属而言,总的趋势是随着温度升高,塑性增加。
但是这种增加并不是线性的,在加热的某些温度区间,由于相态或晶界状态的变化而出现脆性区,使金属的塑性降低。
(蓝脆区和热脆区)18、变形抗力:指金属在发生塑性变形时,产生抵抗变形的能力一般用接触面上平均单位面积变形力来表示,又称单位面积上的流动压力19、质点的应力状态:变形体内某点任意截面上应力的大小和方向20、对变形抗力的影响因素:①化学成分:纯金属和合金②组织结构:组织状态、晶粒大小和相变③变形温度④变形程度:加工硬化⑤变形速度⑥应力状态21、金属的超塑性:细晶超塑性、相变超塑性第十五章应力分析1、研究塑性力学时的四个假设:①连续性假设:变形体不存在气孔等缺陷②匀质性假设:质点的组织、化学成分等相同③各向同性假设④体积不变假设2、质点:有质量但不存在体积或形状的点3、内力:在外力作用下,物体内各质点之间就会产生相互作用的力。
材料成形工艺基础最新精品课件第五章金属塑性成形理论基础
2. 多晶体的塑性变形
多晶体的塑性变形是由于晶界的存在和 各晶粒晶格位向的不同,其塑性变形过程比 单晶体的塑性变形复杂得多。在外力作用下, 多晶体的塑性变形首先在晶格方向有利于滑 移的晶粒A内开始,然后,才在晶格方向较 为不利的晶粒B、C内滑移。由于多晶体中 各晶粒的晶格位向不同,滑移方向不一致, 各晶粒间势必相互牵制阻扰。为了协调相邻 晶粒之间的变形,使滑移得以继续进行,便 图5-4 多晶体塑性变形过程示意图 会出现晶粒彼此间相对的移动和转动。因此, 多晶体的塑性变形,除晶粒内部的滑移和转 动外,晶粒与晶粒之间也存在滑移和转动。
图5-6 回复和再结晶示意图
(3)晶粒长大 在结晶退火后的金属组织一般为细小均匀的等 轴晶。如果温度继续升高,或延长保温时间,则在结晶后的晶粒 又会长大而形成粗大晶粒,从而使金属的强度、硬度和塑性降低。 所以要正确选择再结晶温度和加热时间的长短。
5.2.2 冷变形和热变形后金属的组织与性能
金属在再结晶温度以下进行的塑性变形称为冷变形,在再结晶以 上进行的塑性变形称为热变形。
图5-7 冲压件的制耳
(4)残余内应力 残余内应力是指去除外力后,残留在金属内 部的应力,它主要是由于金属在外力作用下变形不均匀而造成的。 残余内应力的存在,使金属原子处于一种高能状态,具有自发恢 复到平衡状态的倾向。在低温下,原子活动能力较低,这种恢复 现象难以觉察,但是,当温度升高到某一程度后,金属原子获得 热能而加剧运动。金属组织和性能将会发生一系列变化。
1. 锻造比 锻造比是锻造生产中代表金属变形程度大小的一个参数,一 般是用锻造过程中的典型工序的变形程度来表示(Y)。如拔长时, 锻造比Y拔=F0/F;镦粗时,锻造比Y镦=H0/H。(式中,H0、F0分别为坯 料变形前的高度和横截面积,H、F分别为坯料变形后的高度和横截面 积)。
金属材料加工考试重点
4)适当的温度
轧机:依靠两根或多根旋转圆柱体将物体拽入使 它发生塑性变形的机械装置称为轧机。
轧制过程 轧辊与轧件相互作用,轧件被摩擦力拽入旋转的轧辊间,受到压 缩而发生塑性变形的过程称为轧制过程。 几何变形区的金属流动
(1) l/h增大,变形深入,沿高度方向上应力和变形趋于均匀,变形 前的垂直横截面,变形后还是垂直横截面,宽度可以忽略不记, 这又称作“平断面假设”;
(2) 质点轧制线方向上的运动速度(考察5个关键的横截面); (3) 附加应力分析(在轧制线方向,由于金属流动不均匀而产生 的)。方法:考查变形区与外端相互作用而引起的附加应力。
超塑性成形工艺的应用
(3)挤压和模锻。高温合金及钛合金在常态下塑性很差,变形抗力大,不均 匀变形引起各向异性的敏感性强,通常的成形方法较难成形,材料损耗极 大,致使产品成本很高。如果在超塑性状态下进行模锻,就完全克服了上 述缺点,节约材料,降低成本。
超塑性模锻工艺特点:
(1)扩大了可锻金属材料种类。如过去只能采用锻造成形的镍基合金,也可 以进行超塑性模锻成形。 (2)金属填充模膛的性能好,可锻出尺寸精度高、机械加工余量小甚至不用 加工的零件。 (3)能获得均匀细小的晶粒组织,零件力学性能均匀一致。 (4)金属的变形抗力小,可充分发挥中、小设备的作用。
原因:在变形区,高向上流动不均匀,而在外端,高向上速度却要
变成一样,因此外端对变形区出来的部分必然引起附加应力
2.3 厚轧件的变形特点
(1) l/h减小,变形不深入,只发生表面变形,呈
双鼓形; (2) 质点轧制线方向上的运动速度(考察5个关 键的横截面); (3) 附加应力分布(在轧制线方向,由于金属流 动不均匀而产生的)产生的后果
金属塑性成形原理
金属塑性成形原理金属塑性成形是指通过外力作用下,金属材料在一定温度范围内发生塑性变形的过程。
金属塑性成形是制造工业中常用的一种加工方法,它能够制造出各种形状和尺寸的零部件,广泛应用于汽车、航空航天、机械制造等领域。
金属塑性成形的原理是基于金属材料的内部结构和性能特点,通过外力使其发生形变,从而得到所需的形状和尺寸。
金属材料的塑性成形主要依靠金属的塑性变形特性,其原理主要包括以下几个方面:一、应力和应变。
金属材料在受到外力作用时,会产生应力和应变。
应力是单位面积上的力,而应变是单位长度上的变形量。
金属材料在受到外力作用时,会发生应力和应变的变化,从而产生塑性变形。
二、晶粒滑移。
金属材料的内部结构是由大量的晶粒组成的,晶粒之间存在着晶界。
当金属受到外力作用时,晶粒会沿着晶界发生滑移,从而使得金属材料发生塑性变形。
晶粒滑移是金属塑性成形的重要原理之一。
三、冷加工和热加工。
金属材料在不同温度下的塑性变形特性是不同的。
在常温下进行的金属塑性成形称为冷加工,而在一定温度范围内进行的金属塑性成形称为热加工。
冷加工和热加工对金属材料的塑性成形有着不同的影响,需要根据具体的工艺要求来选择合适的加工方法。
四、金属材料的变形机制。
金属材料的塑性变形主要有拉伸、压缩、弯曲、挤压等形式。
这些变形机制是通过外力作用下,金属材料内部晶粒的滑移和变形来实现的。
不同的变形机制对应着不同的加工工艺和设备,需要根据具体的要求来选择合适的成形方式。
综上所述,金属塑性成形的原理是基于金属材料的内部结构和性能特点,通过外力使其发生形变,从而得到所需的形状和尺寸。
金属塑性成形是制造工业中常用的一种加工方法,它能够制造出各种形状和尺寸的零部件,广泛应用于汽车、航空航天、机械制造等领域。
深入理解金属塑性成形的原理,对于提高加工工艺的效率和质量具有重要意义。
塑性成形重要知识点总结
塑性成形重要知识点总结塑性成形是一种通过应变作用将金属材料变形为所需形状的加工方法,也是金属加工领域中的一种重要工艺。
以下是塑性成形的重要知识点总结。
1.塑性成形的原理塑性成形是通过施加外力使金属材料发生塑性变形,使其形状和尺寸发生改变。
塑性成形的原理包括应力与应变关系、材料的流动规律和力学模型等。
2.塑性成形的分类塑性成形可以根据加工过程的不同进行分类,主要包括拉伸、压缩、挤压、弯曲、冲压等。
不同的成形方法适用于不同的材料和形状要求。
3.塑性成形的设备塑性成形通常需要使用专门的设备进行加工,包括拉伸机、压力机、挤压机、弯曲机、冲床等。
这些设备提供必要的力量和变形条件,使金属材料发生塑性变形。
4.金属材料的选择不同的金属材料具有不同的塑性特性,因此在塑性成形中需要根据不同的应用需求选择合适的材料。
常用的金属材料包括钢、铝、铜、镁等。
5.塑性成形的加工方法塑性成形的加工方法非常多样,包括冲压、拉伸、挤压、压铸、锻造等。
不同的加工方法适用于不同的材料和形状要求,可以实现复杂的金属成形。
6.塑性成形的工艺参数塑性成形的工艺参数对成形质量和效率具有重要影响。
常见的工艺参数包括温度、应变速率、应力等。
合理的工艺参数可以提高成形质量和生产效率。
7.塑性成形的变形行为塑性成形过程中金属材料的变形行为是研究的重点之一、金属材料的变形行为包括弹性变形、塑性变形和弹变回复等,通常通过应力-应变曲线来描述。
8.塑性成形的缺陷与控制塑性成形过程中可能发生一些缺陷,如裂纹、皱纹、细化等。
为了控制这些缺陷,需要采取合适的工艺和工艺措施,如加热、模具设计优化等。
9.塑性成形的优点与局限塑性成形具有成本低、加工效率高、灵活性好等优点,可以制造出复杂的金属零件。
然而,塑性成形也存在一些局限性,如对材料性能有一定要求、成形限制等。
10.塑性成形的应用领域塑性成形广泛应用于各个领域,如汽车制造、航空航天、电子、家电等。
不仅可以生产大批量的零部件,还可以满足不同产品的形状和性能要求。
第六章金属塑性成形工艺理论基础
3)冲压件尺寸精度高,质量稳定,互换性好, 一般不需机械加工即可作零件使用。 4)冲压生产操作简单,生产率高,便于实现机 械化和自动化。
5)可以冲压形状复杂的零件,废料少。
6)冲压模具结构复杂,精度要求高,制造费用 高,只适用于大批量生产。
坯料在锻造过程中,除与上下抵铁或其它辅 助工具接触的部分表面外,都是自由表面,变形 不受限制,锻件的形状和尺寸靠锻工的技术来保 证,所用设备与工具通用性强。
自由锻主要用于单件、小批生产,也是生产 大型锻件的唯一方法。
1) 自由锻设备
空气锤 它由电动机直接驱动,打击速度快,锤击能量小,适
用于小型锻件;65~750Kg
挤压成形是使坯料在外力作用下,使模具内的金属坯 料产生定向塑性变形,并通过模具上的孔型,而获得 具有一定形状和尺寸的零件的加工方法。
图6-3 挤压
挤压的优点:
1)可提高成形零件的尺寸精度,并减小表面粗糙 度。 2)具有较高的生产率,并可提高材料的利用率。 3)提高零件的力学性能。 4)挤压可生产形状复杂的管材、型材及零件。
3)精整工序:修整锻件的最后尺寸和形状,消除表面的不 平和歪扭,使锻件达到图纸要求的工序。如修整鼓形、平 整端面、校直弯曲。
3)自由锻的特点
优点:
1)自由锻使用工具简单,不需要造价昂贵的模具;
2)可锻造各种重量的锻件,对大型锻件,它是唯一方法
3)由于自由锻的每次锻击坯料只产生局部变形,变形金属 的流动阻力也小,故同重量的锻件,自由锻比模锻所需的 设备吨位小。
实例:
当采用棒料直接经切削加工制造螺钉时,螺钉头部与 杆部的纤维被切断,不能连贯起来,受力时产生的切应力 顺着纤维方向,故螺钉的承载能力较弱(如图示 )。
金属塑性成形原理知识点
弹性:材料的可恢复变形的能力。
塑性:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。
塑性变形:材料在一定外力作用下,利用其塑性而使其成型并获得一定力学性能的加工方法。
塑性成形:金属材料在一定的外力作用下,利用其塑性而使其成形并获得一定力学性能的加工方法。
塑性成形的特点:组织性能好、材料利用率高、生产效率高、尺寸精度高、设备相对复杂。
冷态塑性变形的机理:晶内变形(滑移和孪生)和晶间变形(滑动和转动)滑移:晶体在力的作用下,晶体的一部分沿一定的晶面(滑移面)和晶向(滑移向)相对于晶体的另一部分发生相对移动或切变。
孪生:晶体在力的作用下,晶体的一部分沿一定的晶面(孪生面)和晶向(孪生向)发生均匀切边滑移面:滑移中,晶体沿着相对滑动的晶面。
滑移方向:滑移中,晶体沿着相对滑动的晶向。
塑性变形的特点:不同时性、不均匀性、相互协调性。
合金:合金是由两种或者两种以上的金属元素或者金属元素与非金属元素组成具有金属特性的物质。
合金分为固溶体(间隙固溶体、置换固溶体)和化合物(正常价、电子价、间隙化合物)固溶强化:以间隙或者置换的方式融入基体的金属所产生的强化。
弥散强化:若第二项是通过粉末冶金的方法加入而引起的强化。
时效强化:若第二项为力是通过对过饱和固溶体的时效处理而沉淀析出并产生强化。
冷态下的塑性变形对组织性能的影响:组织:晶粒形状发生变化,产生纤维组织晶粒内部产生亚晶结构晶粒位向改变:产生丝织构和板织构性能:产生加工硬化(随着塑性变形的程度的增加,金属的塑性韧性降低,强度硬度提高的现象)加工硬化的优点:变形均匀,减小局部变薄,增大成形极限缺点:塑性降低、变形抗力提高、变形困难。
热塑性变形的软化过程:动态回复、动态再结晶、静态回复、静态再结晶、亚动态再结晶金泰回复:从热力学角度,变形引起金属内能增加,而处于稳定的高自用能状态具有向变形前低自由能状态自发恢复的趋势静态再结晶:冷变形金属加热到更高温度后,在原来版型体中金属会重新形成无畸变的等轴晶直至完全取代金属的冷组织的过程。
塑性成形原理
塑性成形原理塑性成形是指通过外力作用下,金属材料经过塑性变形,改变其外形和尺寸的加工方法。
在工程制造中,塑性成形是一种常用的加工工艺,可以用于生产各种各样的零部件和产品。
塑性成形原理是塑性加工的基础,了解和掌握塑性成形原理对于工程技术人员来说至关重要。
首先,塑性成形原理的基础是金属材料的塑性变形特性。
金属材料在外力作用下会发生塑性变形,这是因为金属材料的内部结构存在晶粒和晶界,晶粒内部存在位错。
当外力作用到金属材料上时,位错会发生滑移和交错,从而引起晶粒的形变,最终导致金属材料整体的塑性变形。
因此,了解金属材料的晶体结构和塑性变形机制是理解塑性成形原理的关键。
其次,塑性成形原理涉及到金属材料的应力和应变关系。
在塑性成形过程中,金属材料会受到外力的作用,从而产生应力。
当应力超过金属材料的屈服强度时,金属材料就会发生塑性变形。
而金属材料的应变则是指金属材料在外力作用下的变形程度,通常用应变曲线来描述金属材料的应力和应变关系。
通过研究金属材料的应力和应变关系,可以确定金属材料的塑性变形特性,为塑性成形工艺的设计和优化提供依据。
另外,塑性成形原理还包括金属材料的流变行为。
金属材料在塑性成形过程中会发生流变,即金属材料的形状和尺寸会发生变化。
了解金属材料的流变行为可以帮助工程技术人员选择合适的成形工艺和工艺参数,从而实现对金属材料的精确成形。
总的来说,塑性成形原理是塑性加工的基础,它涉及金属材料的塑性变形特性、应力和应变关系以及流变行为。
掌握塑性成形原理可以帮助工程技术人员更好地理解金属材料的加工特性,指导和优化塑性成形工艺,提高产品的质量和生产效率。
因此,对于从事工程制造和金属加工的人员来说,深入学习和掌握塑性成形原理是非常重要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属材料塑性成型的基本理论
图1.4.2拉伸曲线 《冲压工艺及模具设计》
金属材料塑性成型的基本理论
《冲压工艺及模具设计》
1.4.1 板料的冲压成形性能
冲压成形性能: 板料对各种冲压成形加工的适应能力. 抗破裂性、 贴模性、定形性
成形极限
冲压件形状尺寸精度
1.4.2 板料的冲压成形性能试验
1、间接试验(图1.4.2) 伸长率、屈服点、屈强比、硬化指数、 板厚方向性系数、板平面方向性 2、直接试验 胀形成形性能试验、拉深成形性能试验(图1.4.1) 《冲压工艺及模具设计》
﹡改变坯料局部区域的温度
《冲压工艺及模具设计》
金属材料塑性成型的基本理论
《冲压工艺及模具设计》
金属材料塑性成型的基本理论
《冲压工艺及模具设计》
金属材料塑性成型的基本理论
A-变形区;B-传力区;C-已变形区 图1.3.3 变形趋向性对冲压工艺的影响
《冲压工艺及模具设计》
金属材料塑性成型的基本理论 1.4 板料冲压成形性能及冲压材料
金属材料塑性成型的基本理论
1.影响塑性的因素 内因 :化学成分的影响;组织结构的影响 外因:变形温度 ;变形速度 ;变形的应力状态 2.影响金属变形抗力的主要因素 1)化学成分及组织的影响 2)变形温度对变形抗力的影响(如图1.1.3) 3)变形速度对变形抗力的影响 4)变形程度对变形抗力的影响 5)应力状态对变形抗力的影响
金属材料塑性成型的基本理论 1.金属材料塑性成型的基本理论的基本概念
外力的作用下,金属产生形状和尺寸变化为变形,变形分 为弹性变形与塑性变形.
金属材料塑性成型的基本理论的物理概念
外力破坏原子间原有的平衡状态,造成排列的畸变,引起 金属形状和尺寸的变化。
1.1.2塑性变形的基本方式
滑移 \孪生 \多晶体的塑性变形(变形后形成纤维组织、变 形织构)(如图)
r 0, 且 t 0 r 0, 且 t 0
《冲压工艺及模具设计》
金属材料塑性成型的基本理论
3.冲压毛坯变形区受异号应力的作用,而且拉应力的绝对值 大于压应力的绝对值。(可以分为两种情况) (图1.3.2) r 0 , t 0且 r
《冲压工艺及模具设计》
1.1.3金属的塑性与变形抗力
金属材料塑性成型的基本理论
1.塑性及塑性指标 塑性:指金属在外力的作用下,能稳定的发挥塑性变形而 不破坏其完整性的能力。 塑性指标:常用的塑性指标
LK L0 伸长率: 100% L0 A0 A K 100% A0
断面收缩率:
金属材料塑性成型的基本理论
图1.2.1 点的应力状态 a)任意坐标系; b) 主轴坐标系
《冲压工艺及模具设计》
金属材料塑性成型的基本理论
图1.2.2 单向拉应力-应变曲线
《冲压工艺及模具设计》
金属材料塑性成型的基本理论
图1.2.3 几种常用冲压板料的硬化曲线 《冲压工艺及模具设计》
金属材料塑性成型的基本理论 1.3 各种冲压成形方法的力学特点与分类
综上所述: 冲压变形可分为伸长类变形和压缩类变形 《冲压工艺及模具设计》
金属材料塑性成型的基本理论
1.3.3 冲压成形过程中变形趋向性及其控制
1、变形趋向性(如图1.3.3) 弱区必先变形,变形区应为弱区
2、变形趋向性的控制 ﹡ 改变坯料各部分的相对尺寸
﹡改变模具工作部分的几何形状和尺寸 ﹡改变坯料和模具之间的摩擦阻力
变形时的硬化现象和硬化曲线
金属材料塑性成型的基本理论
1.硬化现象的表现形式: 材料的强度指标随变形程度的增加而增加,塑性随之降低.
2Байду номын сангаас加工硬化的结果 引起材料力学性能的变化.
3.加工硬化有利及不利方面 有利方面:板料硬化能够减小过大的局部变形,使变形趋于均 匀,增大成形极限,同时也提高了材料的强度 不利方面:使进一步变形困难. 4.硬化曲线(如图1.2.3) 《冲压工艺及模具设计》
三个推论:
﹡塑性变形时,只有形状的变化,而无体积的变化; ﹡不论什么应变状态,其中一个主应变的符号与另外两个 主应变的符号相反; ﹡已知两个应变就可求第三个应变。 《冲压工艺及模具设计》
1.2.3 塑性变形时应力与应变的关系
单向拉伸应力-应变曲线(如图1.2.2)
金属材料塑性成型的基本理论
1.增量理论 d1 d 2 d 2 d 3 d 3 d1 C 1 2 2 3 3 1 1 2 2 3 3 1 2.全量理论 C 1 2 2 3 3 1
点的应力满足屈服准则,该点就进入塑性状态。 1.屈雷司加准则 2.密席思准则 3.工程上常采用屈服准则通式:
1 2 s
《冲压工艺及模具设计》
金属材料塑性成型的基本理论
5.主应变及主应变状态 点的应变状态 主应变状态 6.体积不变定律 1 2 3 0 该式说明:金属塑性变形前后,只有形状的变化,而无体 积的变化。
3.例:全量理论分析应力应变关系 1) 2 0时, 称平面应变(或称平面变形),由上式可得出:
2 (1 2 ) / 2
2) 1 0, 且 2 3 0时, 材料受单向拉应力,由上式可得:
1 0, 2 3 (1 / 2)1
《冲压工艺及模具设计》
1.4.3 板料的力学性能与冲压成形性能的关系
金属材料塑性成型的基本理论
1、屈服极限 屈服极限 s 小,材料容易屈服,则变形抗力小. 2、屈强比 屈强比小,说明 s值小而 b 值大 3、伸长率 拉伸实验中,试样拉断时的伸长率称总伸长率 4、硬化指数 单向拉伸硬化曲线可写成 k n 其中n为硬化指数 5、厚向异性指数 厚向异性指数是指单向拉伸试样宽度应变和厚度应 变之比 b / t 6、板平面各向异性指数 ( 2 ) / 2
0 90 45
《冲压工艺及模具设计》
金属材料塑性成型的基本理论
1.4.4常用冲压材料及其力学性能
黑色金属 金属材料
冲压材料
有色金属
非金属材料 板料:大型零件 条料:中小型零件
坯料类型
卷料:大批量生产的自动送料 块料:少数钢种和有色金属的冲压
《冲压工艺及模具设计》
金属材料塑性成型的基本理论
图1.4.1 拉深试验试样 《冲压工艺及模具设计》
1.1.5金属塑性变形对组织和性能的影响
晶粒形状和方位变化; 产生应力; 产生加工硬化。 《冲压工艺及模具设计》
金属材料塑性成型的基本理论
《冲压工艺及模具设计》
金属材料塑性成型的基本理论 1.2 塑性变形的力学基础
外力 模具 毛坯 内力 零件
1.2.1 点的应力与应变状态
1.应力:内力的强度,用σ表示。 2.点的应力状态(如图1.2.1) 3.应变:微小六面体的变形,用ε表示。
1.3.1 变形毛坯的分区(如图1.3.1) 1.3.2 变形区的应力与应变特点
1. 冲压毛坯两向受拉应力的作用 (可分两种情况):
r 0, 且 t 0 r 0, 且 t 0
(图1.3.2Ⅰ象限)
2.冲压毛坯变形区受两向压应力的作用 (图1.3.2Ⅲ象限)
2.变形抗力及其指标 金属产生塑性变形的力为变形力,金属抵抗变形的力称为 变形抗力。通常以真实应力作为变形抗力的指标。 《冲压工艺及模具设计》
H0 HK 镦粗率: c 100% H0
金属材料塑性成型的基本理论
图1.1.1 晶体变形
图1.1.2多晶体的塑 性变形
《冲压工艺及模具设计》
1.1.4影响金属的塑性与变形抗力的因素
主应变
1 2 3
4.点的应变状态 空间一点无论受多少个力,都可简化为九个应力分量。在 静力平衡时,根据剪应力互等定理,可简化为六个应力分量。 主平面:剪应力为零的平面。 主应力:主平面上的应力。 《冲压工艺及模具设计》
金属材料塑性成型的基本理论
1.2.2 屈服准则(塑性条件)
屈服准则:材料进入塑性状态的力学条件。当材料中的某
0 r , t 0且 r
4.冲压毛坯变形区受异号应力的作用而且压应力的绝对值大 于拉应力的绝对值。 (可以分为以下两种情况)
r 0 , t 0且 r 0 r , t 0且 r