2019年成人高考高升专数学常用知识点及公式(精华版)

合集下载

成考专升本常用数学公式

成考专升本常用数学公式

成考专升本常用数学公式数学公式是数学中的重要内容,它们是数学理论和方法的归纳总结,是数学知识的产物。

在成考专升本的数学考试中,经常会使用到一些常用的数学公式,掌握这些公式对于提高解题能力和提高分数是非常重要的。

下面我们来介绍一些常用的数学公式。

一、代数公式1.二项式定理(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)ab^(n-1) + C(n,n)b^n其中C(n,m)表示从n个不同元素中取m个元素的组合数。

2.平方差公式a^2-b^2=(a+b)(a-b)3.三次方差公式a^3 - b^3 = (a - b)(a^2 + ab + b^2)4.二次方差公式a^4-b^4=(a^2+b^2)(a^2-b^2)5.一次方差公式a^n - b^n = (a - b)(a^(n-1) + a^(n-2)b + ... + ab^(n-2) + b^(n-1))6.二次根式根号(ab) = 根号a * 根号b7.乘方a^m*a^n=a^(m+n)8.开方根号(a*b)=根号a*根号b根号(a/b)=根号a/根号b二、几何公式1.三角形面积公式S=1/2*底*高2.平行四边形面积公式S=底*高3.梯形面积公式S=(上底+下底)*高/24.正方形面积公式S=边长^25.矩形面积公式S=长*宽6.圆面积公式S=π*半径^27.圆周长公式L=2*π*半径8.球表面积公式S=4*π*半径^29.球体积公式V=4/3*π*半径^3三、三角函数公式1.正弦定理a/sinA = b/sinB = c/sinC = 2R其中R为三角形外接圆半径。

2.余弦定理a^2 = b^2 + c^2 - 2bc * cosAb^2 = a^2 + c^2 - 2ac * cosBc^2 = a^2 + b^2 - 2ab * cosC3.三角函数关系sin^2θ + cos^2θ = 1tanθ = sinθ / cosθcotθ = cosθ / sinθsecθ = 1 / cosθcscθ = 1 / sinθ4.三角函数和角度之间的转换弧度=角度*π/180角度=弧度*180/π四、导数公式1.常数导数若f(x)=C,其中C为常数,则f'(x)=02.幂函数的导数若f(x) = x^n(n为常数),则f'(x) = nx^(n-1)3.指数函数的导数若f(x) = a^x(a为常数),则f'(x) = a^x * ln(a)以上是一些成考专升本常用的数学公式,掌握这些公式能够更加方便地解题,提高答题效率。

成人高考数学必背公式

成人高考数学必背公式

成人高考数学必背公式成人高考数学必背公式是参加成人高考的考生必须掌握的重要知识点。

以下是一些成人高考数学必背公式的总结,供考生们参考:一、集合与逻辑符号公式1.N+表示正整数集;Z表示整数集;Q表示有理数集;R表示实数集。

2.集合元素的关系用符号表示:属于,不属于,包含,不包含等。

3.常用逻辑符号:充分条件,必要条件,充要条件,全称量词,存在量词等。

二、函数性质与定义域公式1.函数的单调性:增函数和减函数分别用“↑”和“↓”表示。

2.函数的奇偶性:奇函数和偶函数分别用“+”和“-”表示。

3.函数的定义域:使函数有意义的自变量的取值范围。

三、导数与微分公式1.导数的定义:f'(x)=lim(h→0)[f(x+h)-f(x)]/h。

2.导数的几何意义:曲线在某点处的切线的斜率。

3.导数的基本公式:常数函数,幂函数,指数函数,对数函数等。

4.微分的定义:f'(x)=lim(h→0)[f(x+h)-f(x)]/h。

5.微分的应用:近似计算,误差估计等。

四、积分公式1.不定积分的定义:∫f(x)dx=F(x)+C。

2.定积分的定义:∫[a,b]f(x)dx=F(b)-F(a)。

3.常见的积分公式:常数函数,幂函数,指数函数,对数函数等。

五、三角函数公式1.三角函数的定义:sin(x),cos(x),tan(x)。

2.三角函数的基本公式:和差角公式,积化和差公式,和差化积公式等。

3.三角函数的图像与性质:正弦曲线,余弦曲线,正切曲线等。

六、数列与极限公式1.等差数列的通项公式:a_n=a_1+(n-1)d。

2.等比数列的通项公式:a_n=a_1*q^(n-1)。

3.数列的求和公式:等差数列求和,等比数列求和等。

4.极限的定义:lim(x→x_0)f(x)=A。

5.极限的基本性质:唯一性,有界性,保号性等。

七、不等式与不等式组公式1.不等式的性质:对称性,传递性,加法单调性等。

2.不等式组的解法:取各不等式的解集的交集或并集。

成人高考专升本高等数学公式大全

成人高考专升本高等数学公式大全

成人高考专升本高等数学公式大全1.代数基本公式:-平方差公式:$a^2-b^2=(a+b)(a-b)$-三角恒等式:- 正弦定理:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$- 余弦定理:$c^2 = a^2 + b^2 - 2ab\cos C$- 正弦余弦定理:$\sin^2 A + \cos^2 A = 1$- 二项式定理:$(a + b)^n = \sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k$2.函数与极限公式:-导数的四则运算:- $(u \pm v)' = u' \pm v'$- $(uv)' = u'v + uv'$- $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$- 泰勒公式:$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)(x - a)^2}{2!} + \cdots$-常用极限:- $\lim_{x \to 0}\frac{\sin x}{x} = 1$- $\lim_{x \to \infty}(1 + \frac{1}{x})^x = e$- $\lim_{x \to \infty}(1 + \frac{k}{x})^x = e^k$- $\lim_{n \to \infty}(1 + \frac{x}{n})^n = e^x$3.微分公式:-求导法则:-$(c)'=0$- $(x^n)' = nx^{n-1}$-$(e^x)'=e^x$- $(\ln x)' = \frac{1}{x}$-高阶导数:-$(f(x)g(x))''=f''(x)g(x)+2f'(x)g'(x)+f(x)g''(x)$-$(f(g(x)))''=f''(g(x))(g'(x))^2+f'(g(x))g''(x)$-微分运算法则:- $\frac{d(u \pm v)}{dx} = \frac{du}{dx} \pm \frac{dv}{dx}$ - $\frac{d(kv)}{dx} = k\frac{dv}{dx}$- $\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$- $\frac{d(\frac{u}{v})}{dx} = \frac{v\frac{du}{dx} -u\frac{dv}{dx}}{v^2}$4.积分公式:-不定积分法则:- $\int k \,dx = kx + C$- $\int x^n \,dx = \frac{x^{n+1}}{n+1} + C, (n \neq -1)$- $\int e^x \,dx = e^x + C$- $\int \frac{1}{x} \,dx = \ln ,x, + C$-定积分法则:- $\int_a^b kf(x) \,dx = k\int_a^b f(x) \,dx$- $\int_a^b [f(x) + g(x)] \,dx = \int_a^b f(x) \,dx +\int_a^b g(x) \,dx$- $\int_a^b (f(x) - g(x)) \,dx = \int_a^b f(x) \,dx -\int_a^b g(x) \,dx$5.级数公式:-等比级数求和:$S_n = \frac{a(1-q^n)}{1-q}$,其中 $S_n$ 是前n 项和,a 是首项,q 是公比。

成人高考专升本数学公式汇编

成人高考专升本数学公式汇编

成人高考专升本数学公式汇编数学是成人高考专升本考试中的一门重要科目,掌握数学公式和定理是提高解题效率的关键。

下面是一些常用的数学公式的汇编,供参考:一、代数公式:1.分配律:对于任意实数a、b、c,有如下公式:a*(b+c)=a*b+a*c(a+b)*c=a*c+b*c2.平方差公式:a^2-b^2=(a+b)*(a-b)3.二次方程的解法公式:对于一般形式的二次方程 ax^2 + bx + c = 0,其解为:x1,2 = (-b ± √(b^2 - 4ac)) / 2a4.一元一次方程的解法:对于形如 ax + b = 0 的一元一次方程,其解为:x=-b/a二、几何公式:1.三角形的面积公式:对于已知三角形的三边长a、b、c,可利用海伦公式计算三角形的面积S:S=√(p*(p-a)*(p-b)*(p-c))其中,p=(a+b+c)/22.圆的面积和周长公式:对于已知圆的半径r,可计算圆的面积和周长:S=π*r^2C=2π*r3.直角三角形的勾股定理:对于直角三角形,其边长分别为a、b、c(a和b为直角边,c为斜边),满足以下关系:c^2=a^2+b^24.正弦定理和余弦定理:对于任意三角形的三个内角A、B、C及对应的三边a、b、c,满足以下关系:a/sinA = b/sinB = c/sinC (正弦定理)a^2 = b^2 + c^2 - 2bc*cosA (余弦定理)三、概率与统计公式:1.排列公式:P(n,m)=n!/(n-m)!2.组合公式:C(n,m)=n!/(m!*(n-m)!)3.二项式定理:对于任意实数a、b和非负整数n,有如下展开式:(a+b)^n=C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+...+C(n,n)*a^0*b^n 除了以上列举的一些常用公式外,还有很多其他的数学公式可以根据具体题型和知识点进行查找和应用。

在备考过程中,可以根据教材和习题册提供的公式,进行适当的总结和归纳,建立自己的公式汇编,以提高解题的速度和准确性。

专升本成人高考高数常用公式

专升本成人高考高数常用公式

专升本成人高考高数常用公式在成人高考高数中,常用的公式有:1. 三角函数相关公式:- sin²θ + cos²θ = 1 (正弦、余弦平方和为1)- sin(α ± β) = sin α cos β ± cos α sin β (正弦的和差公式)- cos(α ± β) = cos α cos β ∓ sin α sin β (余弦的和差公式) - tan(α ± β) = (tan α ± tan β) / (1 ∓ tan α tan β) (正切的和差公式)- sin 2θ = 2 sin θ cos θ (正弦的倍角公式)- cos 2θ = cos²θ - sin²θ = 2 cos²θ - 1 = 1 - 2 sin²θ (余弦的倍角公式)2. 导数相关公式:- (x^n)' = nx^(n-1) (幂函数的导数)- (sin x)' = cos x (正弦函数的导数)- (cos x)' = -sin x (余弦函数的导数)- (tan x)' = sec²x (正切函数的导数)- (e^x)' = e^x (指数函数的导数)- (ln x)' = 1/x (自然对数函数的导数)3. 积分相关公式:- ∫(x^n) dx = x^(n+1) / (n+1) + C (幂函数的不定积分)- ∫sin x dx = -cos x + C (正弦函数的不定积分)- ∫cos x dx = sin x + C (余弦函数的不定积分)- ∫tan x dx = -ln|cos x| + C (正切函数的不定积分)- ∫e^x dx = e^x + C (指数函数的不定积分)- ∫(1/x) dx = ln|x| + C (自然对数函数的不定积分)以上是一些常用的高数公式,需要注意的是,公式可以根据需要进行组合和变形,因此熟练掌握和灵活运用是非常重要的。

成人高考数学公式

成人高考数学公式

成人高考数学公式数学公式在成人高考中占据着极其重要的地位,掌握了这些公式不仅可以帮助我们在考试中更好地解题,也可以在实际生活中解决诸多问题。

本文将重点介绍成人高考数学中的一些常用公式,供考生参考。

一、函数与方程:1.一次函数的一般式:y = kx + b,其中k为斜率,b为截距。

2.点斜式方程:y-y₁=k(x-x₁),其中k为斜率,(x₁,y₁)为直线上的一点。

3.两点式方程:(y-y₁)/(y₂-y₁)=(x-x₁)/(x₂-x₁),其中(x₁,y₁)和(x₂,y₂)为直线上的两点。

4.二次函数的一般式:y = ax² + bx + c,其中a、b、c为常数。

5.直线与二次函数的交点坐标:将直线方程代入二次函数方程,化简得到二次方程,解得交点坐标。

6.根与系数的关系:一元二次方程ax² + bx + c = 0有两个不同的实根(相等时为两个相同的实根)的充分必要条件是:Δ = b² - 4ac > 0然后可以用公式x=(-b±√Δ)/(2a)求解根。

7.求直线与平面的交点:将直线的参数方程代入平面的方程,得到关于参数的方程组,解方程组求得交点坐标。

8.圆的方程:(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。

二、解析几何:1.直线的斜率公式:k=(y₂-y₁)/(x₂-x₁),其中(x₁,y₁)和(x₂,y₂)为直线上的两点。

2.直线的截距式:y = kx + b,在该式中b即为直线的截距。

3.两直线的夹角公式:α = arctan(k₁) - arctan(k₂)其中k₁和k₂分别为两直线的斜率,α为夹角。

4.点到直线的距离公式:d=,Ax+By+C,/√(A²+B²)其中(A,B,C)为直线的一般式方程系数,(x,y)为点的坐标,d为点到直线的距离。

5.直线的倾斜角:α = arctan(k),其中k为直线的斜率,α为直线的倾斜角。

成人高考高升专数学常用知识点及公式(打印版)精编版

成人高考高升专数学常用知识点及公式(打印版)精编版

成人高考高升专数学常用知识点及公式第1章 集合和简易逻辑知识点1:交集、并集、补集1、交集:集合A 与集合B 的交集记作A ∩B ,取A 、B 两集合的公共元素2、并集:集合A 与集合B 的并集记作A ∪B ,取A 、B 两集合的全部元素3、补集:已知全集U ,集合A 的补集记作A C u ,取U 中所有不属于A 的元素解析:集合的交集或并集主要以列举法或不等式的形式出现 知识点2:简易逻辑概念:在一个数学命题中,往往由条件甲和结论乙两部分构成,写成“如果甲成立,那么乙成立”。

若为真命题,则甲可推出乙,记作“甲=乙”;若为假命题,则甲推不出乙,记作“甲≠乙”。

题型:判断命题甲是命题乙的什么条件,从两方面出发:①充分条件看甲是否能推出乙 ②必要条件看乙是否能推出甲A 、 若甲=乙 但 乙=甲,则甲是乙的充分必要条件(充要条件)B 、若甲=乙 但 乙≠甲,则甲是乙的充分不必要条件C 、若甲≠乙 但 乙=甲,则甲是乙的必要不充分条件D 、若甲≠乙 但 乙≠甲,则甲不是乙的充分条件也不是乙的必要条件技巧:可先判断甲、乙命题的范围大小,再通过“大范围≠小范围,小范围=大范围”判断甲、乙相互推出情况第2章 不等式和不等式组知识点1:不等式的性质1. 不等式两边同加或减一个数,不等号方向不变2. 不等式两边同乘或除一个正数,不等号方向不变3. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”)解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面 知识点2:一元一次不等式1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。

2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。

3. 如:6x+8>9x-4,求x ? 把x 的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。

成人高考高起专数学部分公式(精简版)

成人高考高起专数学部分公式(精简版)

高起点数学部分公式考点:数列等差数列与等比数列:考点:三角函数同角三角函数关系式:平方关系是:1cossin22=+αα倒数关系是:1cottan=⋅αα商数关系是:αααcossintan=,αααsincoscot=。

考点:解三角形解斜三角形:余弦定理:2a=Abccb cos222-+2b=Bacca cos222-+2c=Cabba cos222-+正弦定理:abcbaCaccaBbccbA2cos,2bcos,2acos.222222222-+=-+=-+=的余弦乘积的两倍减去这两边与他们夹角于其余两边的平方的和三角形任一边的平方等面积公式:A bcB acC ab S abc sin 21sin 21sin 21===∆斜三角形的解法特点1、由题意画出示意图2、已知角求角用内角和定理求3、已知两角和其中一角的对边时用正弦定理求4、已知三边时用余弦定理求5、已知两边和它们的夹角时用余弦定理求6、已知边、边、角时用正弦定理求R cC R b B R a A R CcB b A a 2sin ,2sin ,2sin ,2sin sin sin 2======倍。

的值为三角形外接圆半径正弦比值都相等,该比三角形各边与它对角的1. 两点的距离公式:已知),(),,(222111y x P y x P 两点,其距离:22122121)()(y y x x P P -+-=2. 中点公式:已知),(),,(222111y x P y x P 两点,线段21P P 的中点的O 的坐标为),(y x ,则:2,22121y y y x x x +=+=考点:直线直线方程的几种形式:斜截式:b kx y += (可直接读出斜率k)一般式:0=++C By Ax (直线方程最后结果尽量让A>0)点斜式:)(00x x k y y -=-,(已知斜率k 和某点坐标),(00y x 求直线方程方法)两条直线的位置关系:直线222111b x k y l b x k y l +=+=:,: 两条直线平行:21k k = 两条直线垂直:121-=⋅k k点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200BA CBy Ax d +++=1.圆:1、圆的标准方程是:222)()(r b y a x =-+-,其中:半径是r ,圆心坐标为(a ,b ), 2、圆的一般方程是: 022=++++F Ey Dx y x 转化为:(x+D 2)2+(y +E 2)2=D 2+E 2−4F42.椭圆:定义 平面内到两定点的距离的和等于常数的点的轨迹:a PF PF 221=+焦点的位置 焦点在X 轴上焦点在Y 轴上标准方程12222=+by a x 12222=+bx a y 图形性质 长轴长是a 2,短轴长是b 2,焦距21F F =2c ,222c b a +=(a 最大)顶点 A 1(-a,0),A 2(a,0) B 1(0,-b),B 2(0,b)A 1(0,-a),A 2(0,a)B 1(-b,0),B 2(b,0)焦点坐标 F 1(c,o) F 2(-c,o)F 1(o,c) F 2(o,-c)离心率ace =(0<e<1) 准线方程 ca x 2±=ca y 2±=3.双曲线:定义 平面内到两定点的距离的差的绝对值等于常数的点的轨迹:a PF PF 2-21=焦点的位置 焦点在X 轴上焦点在Y 轴上标准方程12222=-b y a x 12222=-bx a y yPxyPO xO图 形性质实轴长是a 2,虚轴长是b 2,焦距21F F =2c ,222b a c +=(c 最大)顶点A 1(-a,0),A 2(a,0)B 1(0,-b),B 2(0,b)A 1(0,-a),A 2(0,a)B 1(-b,0),B 2(b,0)焦点坐标 F 1(c,o) F 2(-c,o)F 1(o,c) F 2(o,-c)离心率ace =(e>1) 准线方程ca x 2±=ca y 2±=渐近线x ab y ±= x ba y ±= 1. 若直线b kx y +=与圆锥曲线交于两点A(x 1,y 1),B(x 2,y 2),则弦长为2212))(1(x x k AB -+=4.标准方程焦点的位置焦点坐标准线方程图像px y 22=x 正半轴⎪⎭⎫⎝⎛02,p 2px -=px y 22-=x 负半轴⎪⎭⎫⎝⎛-02,p 2px =py x 22=y 正半轴⎪⎭⎫ ⎝⎛20p , 2p y -=py x 22-=y 负半轴⎪⎭⎫ ⎝⎛-20p ,2py =。

高起专《数学》重点公式及考点总结

高起专《数学》重点公式及考点总结

成人高考高起专《数学》复习资料考试注意要点1)考试采用闭卷笔试形式。

全卷满分为150分,考试时间为120分钟2)考试中可以使用计算器3)考试要求分为三个等级:了解、掌握、灵活运用一、集合和简易逻辑1.集合的概念(灵活运用)子集:对于集合A和集合B,如果A中的所有元素都能在B中找到,则集合A就叫做B的子集,记作:A包含于B,A⊆B并集:由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B交集:由属于A且属于B的相同元素组成的集合,记作A∩B补集:绝对补集。

一般来说,设U是一个集合,A是U的一个子集,则U中所有不属于A的元素称为A在U中的补集2.简易逻辑(灵活运用)判断真假的语句叫命题。

命题真值只能取两个值:真或假。

真对应判断正确,假对应判断错误。

如:真命题:三角形的三角之和为180度如:假命题:人会飞充分条件:如果A能推出B,B不一定能推出A,那么A就是B的充分条件。

如:A为B的子集,即属于A的一定属于B,则有元素x属于A,就一定能推出x属于B必要条件:如果B能推出A,A不一定能推出B,则B为A的必要条件充分必要条件:A能推出B,B也能推出A,则A是B的充分必要条件二、不等式和不等式组1.不等式性质一(灵活运用)1)不等式两边同加或同减一个数,不等号方向不变,若a>b,则a±c>b±c2)不等式两边同乘或同除以一个正数,方向不变3)不等式两边同乘或同除以一个负数,方向改变2.不等式的性质二(掌握)1)如果a>b>0,c>d>0,那么ac>bd2)如果a>b,ab>0,则1/a<1/b3)如果a>b>0,那么a n>b n(n>1)4)|a+b|≤|a|+|b|三、函数1.函数定义域和值域(掌握)Y=f(x)中,x的取值范围即为函数的定义域,y对应x的取值范围为值域2.函数奇偶性(掌握)偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数。

成人高考高升专数学常用知识点及公式(打印版) (2)

成人高考高升专数学常用知识点及公式(打印版) (2)

成人高考高升专数学常用知识点及公式第1章 集合和简易逻辑知识点1:交集、并集、补集1、交集:集合A 与集合B 的交集记作A ∩B ,取A 、B 两集合的公共元素2、并集:集合A 与集合B 的并集记作A ∪B ,取A 、B 两集合的全部元素3、补集:已知全集U ,集合A 的补集记作A C u ,取U 中所有不属于A 的元素 解析:集合的交集或并集主要以列举法或不等式的形式出现 知识点2A B 况第2章 知识点13. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”)解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面 知识点2:一元一次不等式1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。

2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。

3. 如:6x+8>9x-4,求x ? 把x 的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。

知识点3:一元一次不等式组4. 定义:由几个一元一次不等式所组成的不等式组,叫做一元一次不等式组5. 解法:求出每个一元一次不等式的值,最后求这几个一元一次不等式的交集(公共部分)。

①⎨⎧>5x 解为{x|x>5 } 同大取大 ②⎨⎧<5x 解为{x|x <3 } 同小取小知识点41. 2. 3. 知识点5:一元二次不等式1. 定义:含有一个未知数并且未知数的最高次数是二次的不等式,叫做一元二次不等式。

如:02>++c bx ax与02<++c bx ax(a>0))2. 解法:求02>++c bx ax (a>0为例)3. 步骤:(1)先令02=++c bx ax ,求出x (三种方法:求根公式、十字相乘法、配方法)推荐求根公式法:aacb b x 242-±-=(2)求出x 之后,大于取两边,大于大的小于小的;小于取中间,即可求出答案。

成人高考数学必背公式

成人高考数学必背公式

成人高考数学必背公式以下是一些成人高考数学常见的必背公式:1. 二次函数的顶点坐标公式:对于二次函数y = ax^2 + bx + c,其中a ≠ 0,顶点坐标为(-b/2a, -Δ/4a),其中Δ为判别式。

2. 二次函数的解公式:对于一元二次方程ax^2 + bx + c = 0,其中a ≠ 0,解可以通过使用公式x = (-b ± √Δ) / 2a来求得,其中Δ为判别式。

3. 三角函数的和差公式:- sin(A ± B) = sin(A) cos(B) ± cos(A) sin(B)- cos(A ± B) = cos(A) cos(B) ∓ sin(A) sin(B)- tan(A ± B) = (tan(A) ± tan(B)) / (1 ∓ tan(A) tan(B))4. 三角函数的倍角公式:- sin(2A) = 2sin(A)cos(A)- cos(2A) = cos^2(A) - sin^2(A) = 2cos^2(A) - 1 = 1 - 2sin^2(A) - tan(2A) = (2tan(A)) / (1 - tan^2(A))5. 三角函数的半角公式:- sin(A/2) = ±√[(1 - cos(A)) / 2]- cos(A/2) = ±√[(1 + cos(A)) / 2]- tan(A/2) = ±√[(1 - cos(A)) / (1 + cos(A))]6. 平面几何中的勾股定理:直角三角形中,直角边长度为a和b,斜边长度为c,则有a^2 + b^2 = c^2。

7. 平面几何中的正弦定理:对于三角形ABC,边长a、b、c 与对应的角A、B、C满足正弦定理:a/sin(A) = b/sin(B) =c/sin(C)。

8. 平面几何中的余弦定理:对于三角形ABC,边长a、b、c 与对应的角A、B、C满足余弦定理:c^2 = a^2 + b^2 -2abcos(C)。

成考专升本 高数公式大全

成考专升本 高数公式大全

成考专升本高数公式大全在成考专升本的高等数学学习中,公式是解决问题的关键工具。

掌握这些公式,不仅能提高解题的效率,还能加深对数学概念的理解。

下面为大家整理了一份较为全面的成考专升本高数公式,希望能对大家的学习有所帮助。

一、函数、极限与连续1、函数的概念设 x 和 y 是两个变量,D 是给定的数集,如果对于每个 x ∈ D,按照某种确定的对应关系 f,变量 y 都有唯一确定的值与之对应,则称 y 是 x 的函数,记作 y = f(x),x ∈ D。

2、基本初等函数(1)常数函数:y = C(C 为常数)(2)幂函数:y =x^α(α 为常数)(3)指数函数:y = a^x(a > 0 且a ≠ 1)(4)对数函数:y =logₐx(a > 0 且a ≠ 1)(5)三角函数:正弦函数 y = sin x,余弦函数 y = cos x,正切函数 y = tan x 等(6)反三角函数:反正弦函数 y = arcsin x,反余弦函数 y =arccos x 等3、极限的定义(1)数列极限:对于数列{xn},如果当 n 无限增大时,数列的通项 xn 无限趋近于一个常数 A,则称 A 为数列{xn} 的极限,记作lim(n→∞) xn = A。

(2)函数极限:当自变量 x 无限趋近于某个值 x₀(或趋于无穷大)时,函数 f(x) 的值无限趋近于一个常数 A,则称 A 为函数 f(x) 当 x 趋近于 x₀(或趋于无穷大)时的极限,记作lim(x→x₀) f(x) = A 或lim(x→∞) f(x) = A。

4、极限的运算(1)lim(x→x₀) f(x) ± g(x) =lim(x→x₀) f(x) ± lim(x→x₀) g(x)(2)lim(x→x₀) f(x) · g(x) =lim(x→x₀) f(x) · lim(x→x₀) g(x)(3)lim(x→x₀) f(x) / g(x) =lim(x→x₀) f(x) /lim(x→x₀) g(x) (lim(x→x₀) g(x) ≠ 0)5、两个重要极限(1)lim(x→0) (sin x / x) = 1(2)lim(x→∞)(1 + 1 / x)^x = e6、函数的连续性(1)连续的定义:如果函数 f(x) 在点 x₀处的极限等于函数在该点的函数值,即 lim(x→x₀) f(x) = f(x₀),则称函数 f(x) 在点 x₀处连续。

2019年成人高考专升本《高数》考点—向量代数与空间解析几何

2019年成人高考专升本《高数》考点—向量代数与空间解析几何

2019年成人高考专升本《高数》考点—向量代数与空
间解析几何
2019年成人高考专升本《高数》考点必备—向量代数与空间解析几何
(一)向量代数
1、知识范围
(1)向量的概念
向量的定义、向量的模、单位向量、向量在坐标轴上的投影、向量的坐标表示法、向量的方向余弦
(2)向量的线性运算
向量的加法、向量的减法、向量的数乘
(3)向量的数量积
二向量的夹角、二向量垂直的充分必要条件
(4)二向量的向量积、二向量平行的充分必要条件
2、要求
(1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。

(2)熟练掌握向量的线性运算、向量的数量积与向量积的计算方法。

(3)熟练掌握二向量平行、垂直的充分必要条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成人高考高升专数学常用知识点及公式第1章集合和简易逻辑知识点1:交集、并集、补集1、交集:集合A与集合B的交集记作A∩B,取A、B两集合的公共元素2、并集:集合A与集合B的并集记作A∪B,取A、B两集合的全部元素,取U中所有不属于A的元素3、补集:已知全集U,集合A的补集记作ACu解析:集合的交集或并集主要以列举法或不等式的形式出现知识点2:简易逻辑概念:在一个数学命题中,往往由条件甲和结论乙两部分构成,写成“如果甲成立,那么乙成立”。

若为真命题,则甲可推出乙,记作“甲=乙”;若为假命题,则甲推不出乙,记作“甲≠乙”。

题型:判断命题甲是命题乙的什么条件,从两方面出发:①充分条件看甲是否能推出乙②必要条件看乙是否能推出甲A、若甲=乙但乙=甲,则甲是乙的充分必要条件(充要条件)B、若甲=乙但乙≠甲,则甲是乙的充分不必要条件C、若甲≠乙但乙=甲,则甲是乙的必要不充分条件D、若甲≠乙但乙≠甲,则甲不是乙的充分条件也不是乙的必要条件技巧:可先判断甲、乙命题的范围大小,再通过“大范围≠小范围,小范围=大范围”判断甲、乙相互推出情况第2章不等式和不等式组知识点1:不等式的性质1.不等式两边同加或减一个数,不等号方向不变2.不等式两边同乘或除一个正数,不等号方向不变3. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”) 解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面 知识点2:一元一次不等式1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。

2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。

3. 如:6x+8>9x-4,求x ? 把x 的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。

知识点3:一元一次不等式组4. 定义:由几个一元一次不等式所组成的不等式组,叫做一元一次不等式组5. 解法:求出每个一元一次不等式的值,最后求这几个一元一次不等式的交集(公共部分)。

①⎩⎨⎧>>35x x 解为{x|x>5 } 同大取大②⎩⎨⎧<<35x x 解为{x|x<3 } 同小取小③⎩⎨⎧<>35x x 解为Ø 大于大的小于小的,取空集④⎩⎨⎧><35x x 解为{x|3 <x<5 }大于小的小于大的,取中间 知识点4:含有绝对值的不等式1. 定义:含有绝对值符号的不等式,如:|x|<a ,|x|>a 型不等式及其解法。

2. 简单绝对值不等式的解法:|x|>a 的解集是{x|x>a 或x<-a},大于取两边,大于大的小于小的。

|x|<a 的解集是{x|-a<x<a},小于取中间; 3. 复杂绝对值不等式的解法:|ax+b|>c 相当于解不等式ax+b>c 或ax+b<-c ,解法同一元一次不等式一样。

|ax+b|<c ,相当于解不等式-c<ax+b<c,不等式三边同时减去b ,再同时除以a(注意,当a<0的时候,不等号要改变方向);解析:主要搞清楚取中间还是取两边,取中间是连起来的,取两边有“或” 知识点5:一元二次不等式1. 定义:含有一个未知数并且未知数的最高次数是二次的不等式,叫做一元二次不等式。

如:02>++c bx ax 与02<++c bx ax (a>0))2. 解法:求02>++c bx ax (a>0为例)3. 步骤:(1)先令02=++c bx ax ,求出x (三种方法:求根公式、十字相乘法、配方法)推荐求根公式法:aacb b x 242-±-=(2)求出x 之后,大于取两边,大于大的小于小的;小于取中间,即可求出答案。

注意:当a<0时必须要不等式两边同乘-1,使得a>0,然后用上面的步骤来解。

第3章 指数与对数 知识点1:有理指数幂1、a a a a a n ⨯⨯= 表示n 个a 相乘 1、 n n aa 1=- 3、10=a 4、a a =1 5、n m nm a a =6、nm nm a a⎪⎭⎫ ⎝⎛=-1先将底数变成倒数去负号例:91634342764642723233232=⎪⎭⎫ ⎝⎛=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-知识点2:幂的运算法则1. y x y x a a a +=⨯(同底数指数幂相乘,指数相加)2. y x y xa ba -=(同底数指数幂相除,指数相减) 3. xyyx a a =)( 4.xxxb a ab =)( 5. x xx ba b a =)(解析:重点掌握同底数指数幂相乘和相除,用于等比数列化简 知识点3:对数1. 定义:如果N a b =(a >0且1≠a ),那么b 叫做以a 为底的N 的对数,记作b N a =log (N>0),这里a 叫做底数,N 叫做真数。

特别地,以10为底的对数叫做常用对数,通常记N 10log 为lgN ;以e 为底的对数叫做自然对数,e ≈2.7182818,通常记作N ln 。

2. 两个恒等式:b a N a b Na==10log log , 3. 几个性质:b N a =log ,N>0,零和负数没有对数 1log =a a ,当底数和真数相同时等于1 01log =a ,当真数等于1的对数等于0知识点4:对数的运算法则1. N M MN a a a log log )(log +=2. N M NMa a alog log log -= 3. M n M a n a log log =(真数的次数n 可以移到前面来)4. M n M a a n log 1log =(底数的次数n 变成 n 1可以移到前面来)5. M ab M N bNalog log =第4章 函数知识点1:函数的定义域和值域定义:x 的取值范围叫做函数的定义域;y 的值的集合叫做函数的值域 求定义域: 1.cbx ax y b kx y ++=+=2一般形式的定义域:x ∈R2. xk y = 分式形式的定义域:x ≠0(分母不为零) 3. x y = 根式的形式定义域:x ≥0(偶次根号里不为负) 4. x y a log = 对数形式的定义域:x >0(对数的真数大于零)解析:考试时一般会求结合两种形式的定义域,分开最后求交集(公共部分)即可知识点2:函数的单调性(见导数部分) 知识点3:函数的奇偶性1. 函数奇偶性判别: ① 奇函数)()(x f x f -=-⇔ ② 偶函数)()(x f x f =-⇔ ③ 非奇非偶函数2. 常见的奇偶函数① 奇函数:为奇数)n x y n (=,x y sin =,x y tan = ② 偶函数: 为偶数)n x y n (=,x y cos =,x y = ③ 非奇非偶函数: x a y =,x y a log = 3. 奇偶性运算 ① 奇+C=非奇非偶 ② 偶+C=偶 ③ 奇+奇=奇 ④ 偶+偶=偶 ⑤ 奇+偶=非奇非偶 ⑥ 奇*奇=偶 ⑦ 偶*偶=偶 ⑧ 奇*偶=奇知识点4:一次函数解析式:b kx y +=其中k ,b 为常数,且0≠k 。

(图像为一条直线) 当b=0是,kx y =为正比例函数,图像经过原点。

当k>0时,图像主要经过一三象限;当k<0时,图像主要经过二四象限 重点:一次函数主要掌握一次函数解析式的求法。

知识点5:二次函数解析式:c bx ax y ++=2,其中a ,b ,c 为常数,且0≠a ,1、当a>0时, 图像为开口向上的抛物线,顶点坐标为(a b ac a b 44,22--),对称轴a b x 2-=,有最小值ab ac 442-,(-∞,a b 2-]为单调递增区间,[a b 2-,+∞)为单调递减区间;2、当a<0时, 图像为开口向下的抛物线,顶点坐标为(a b ac a b 44,22--),对称轴a b x 2-=,有最大值ab ac 442-,[a b 2-,+∞)为单调递增区间,(-∞,a b 2-]为单调递减区间; 3、韦达定理:ac x x a b x x =⋅-=+2121,2 知识点6:反比例函数定义: xky =叫做反比例函数 1、 定义域:0≠x 2、 是奇函数3、当k>0时,函数在区间(-∞,0)与区间(0,+∞)内是减函数当k<0时,函数在区间(-∞,0)与区间(0,+∞)内是增函数第5章 数列知识点1:通项公式与前n 项和1、通项公式:如果一个数列{n a }的第n 项n a 与项数n 之间的函数关系可以用一个公式来表示,这个公式就叫做这个数列的通项公式。

知道一个数列的通项公式,就可以求出这个数列的各项。

2、n S 表示前n 项之和,即n n a a a a S +++=321,他们有以下关系:2,111≥-==-n S S a S a n n n备注:这个公式主要用来在不知道是什么数列的情况下求n a ,如果满足d a a n n =--1则是等差数列,如果满足q a a n n=-1则是等比数列, 知识点2:等差数列与等比数列第6章 导数 知识点1:导数1、几何意义:函数在)(x f 在点(00y ,x )处的导数值)(0x f '即为)(x f 在点(00y ,x )处切线的斜率。

即αtan )(0='=x f k (α为切线的倾斜角)。

备注:这里主要考求经过点(00y ,x )的切线方程,用点斜式得出切线方程)(00x x k y y -=-2、函数的导数公式:c 为常数1)(0)(-='='n n anx ax c aax nx x n n ='='-)()(1知识点2:函数单调性的判别方法:单调递增区间和单调递减区间1、求出导数)(x f '2、令0)(>'x f 解不等式就得到单调递增区间,令0)(<'x f 解不等式即得单调递减区间。

知识点3:最值:最大值和最小值1、确定函数的定义区间,求出导数)(x f '2、令0)(='x f 求函数的驻点(驻点即0)(='x f 时x 的根,也称极值点),判断驻点是否在所求区间内,不在所在区间内的驻点去掉;3、求出各驻点及端点处的函数值,并比较大小,最大的为最大值,最小的为最小值第7章 三角函数及其有关概念 知识点1:角的有关概念1. 逆时针旋转得到角为正角,顺时针旋转得到的角为负角,不旋转得到角为零角。

相关文档
最新文档