苏科版七年级数学上册第二章 有理数 单元检测卷(无答案)
学苏科版七年级数学上册:第二章《有理数》练习(2)(无答案)
江苏省连云港市岗埠中学苏科版七年级数学上册:第二章《有理数》练习(2)1.按照如图所示的操作步骤,若输入x的值为3,则输出的值为2.如图,是一个简单的数值运算程序,当输入x的值为3时,则输出的数值为.3.如图是一个简单的数值运算程序,当输入的x的值为﹣1时,则输出的值为()4.如图所示是计算机某计算程序,若开始输入x=﹣2,则最后输出的结果是.5.如图所示是计算机程序计算,若开始输入x=﹣1,则最后输出的结果是.6.如图所示是计算机程序计算,若开始输入x=﹣1,则最后输出的结果是.7.如图所示是计算机程序计算,若开始输入x=﹣1,则最后输出的结果是.8.根据图中的程序,当输入x=3时,输出的结果是.9.如图是一个数值转换机的示意图,若输入x的值为3,y的值为﹣2,则输出结果为.10.根据如图所示的程序计算,若输入x的值为1,则输出y的值为.11.某工厂生产某种型号的配件,为保证质量,有些不合格的配件不能出厂,因此会使得每天的产量有所不同.表是某周的生产情况:(以日平均生产2000个为标准,超过为正,不足为负,每周按五个工作日生产.)(1)根据记录可知这一周第一天生产个配件;(2)这一周产量最多的一天比产量最少的一天多生产个配件;(3)已知这种型号的配件每个的产值为15元.请你以该周产量估计该工厂生产这种型号的配件的年产值是多少元.(一年按52周计算,结果用科学计数法表示.)12. 一汽车修配厂某周计划每日生产一种汽车配件500件,因工人实行轮休,每日上班人数不等,实际每天生产量与计划生产量相比情况如下表:(超出的为正数,减少的为负数)(1)生产量最多的一天比生产量最少的一天多生产了多少件?(2)本周总生产量是多少?比计划超产了还是减少了?增减数为多少?13.小明同学积极参加体育锻炼,天天坚持跑步,他每天以1000m为标准,超过的记作正数,不足的记作负数.下表是一周内小明跑步情况的记录(单位:m):(1)星期三小明跑了多少米?(2)小明在跑得最少的一天跑了多少米?跑得最多的一天比最少的一天多跑了多少米?(3)若小明跑步的平均速度为240m/min,求本周内小明用于跑步的时间.14.现有20筐葡萄,以每筐15千克为标准,超过或不足的千克数分别用正、负数来表示,与标准质量的差值记录如下:(1)这20筐葡萄中,最重的一筐比最轻的一筐重千克.(2)与标准重量比较,这20筐葡萄总计超过或不足多少千克?15.日照高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?16.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下.(单位:km)(1)求收工时,检修小组在A地的哪个方向?距离A地多远?(2)在第几次记录时距A地最近?(3)若汽车行驶每千米耗油0.2升,问从A地出发,检修结束后再回到A地共耗油多少升?17.一辆汽车在一东西走向的街道上修路灯,以车站为出发点,向东走记为正.向西走记为负(单位:千米),以先后次序记录如下:﹣4、+4、﹣5、+10、+5、﹣8.试回答下列问题:(1)最后一次修完路灯后,汽车在出发点的那一边,距离出发点多远?(2)如果汽车每走10千米耗油1升,汽车上的人修完路灯后,回出发点之前共用了多少油?18.小虫从某点O出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+4,﹣3,+10,﹣8,﹣5,+12,﹣10 问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻?19.世界杯比赛中,根据场上攻守形势,守门员会在门前来回跑动,如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m):+10,﹣2,+5,﹣6,+12,﹣9,+4,﹣14.(假定开始计时时,守门员正好在球门线上)(1)守门员最后是否回到球门线上?(2)守门员离开球门线的最远距离达多少米?(3)如果守门员离开球门线的距离超过10米(不包括10米),则对方球员挑射极可能造成破门.请问在这一时间段内,对方球员有几次挑射破门的机会?。
初中数学苏科版七年级上册第二章 有理数2.5 有理数的加法与减法-章节测试习题(32)
章节测试题1.【答题】某城市三月末连续四天的天气情况如图所示,这四天中温差(最高气温与最低气温的差)最大的是()A. 星期一B. 星期二C. 星期三D. 星期四【答案】D【分析】根据有理数的减法法则:减去一个数等于加上这个数的相反数,分别计算出每天的温差,然后比较大小即可.【解答】每天的温差分别为:A.星期一:5-(-6)=5+6=11;B.星期二:7-(-5)=7+5=12;C.星期三:8-(-2)=8+2=10;D.星期四:6-(-7)=6+7=13;星期四的温差最大.选D.2.【答题】随着北京公交票制票价调整,公交集团换成了新版公交站牌,乘客在乘车时可以通过新版公交站牌计算乘车费用.新版公交站牌每一个站名上方都有一个对应的数,将上下车站站名所对应数相减取绝对值就是乘车路程,再按照其所在计价区段,参照票制规则计算票价.具体内容如下:乘车路程计价区段0~10 11~15 16~20 …对应票价(元) 2 3 4 …另外,一卡通普通卡刷卡实行五折优惠,学生卡实行二五折优惠.小明用学生卡乘车,上车时站名上对应的数是5,下车时站名上对应的数是22,那么小明乘车的费用是______元.【答案】1【分析】先用下车时站名上对应的数减去上车时站名上对应的数,求出小明乘车的路程是多少,进而得到对应的票价,然后用它乘以0.25,即可得到小明的乘车费用.【解答】小明的乘车路程为:22-5=17,故小明的乘车费用为4×0.25=1(元).故答案为1.3.【题文】全班同学分成五个组进行游戏,每个组的基本分为100分,答对一题加50分,答错一题扣50分,游戏结束时,各组的分数如下:第一组第二组第三组第四组第五组100 150 -400 350 -100若按成绩从高到低排列.(1)第一名超出第四名多少分?(2)第四名超出第五名多少分?【答案】(1)450分;(2)300分.【分析】本题考查有理数的比较大小和有理数的减法法则,根据题题意先比较有理数的大小,再进行有理数的减法即可.先对五个组进行排名的350>150>100>-100>-400,然后用对应的名次相减即可得到结果.【解答】(1)∵350>150>100>-100>-400,∴第一名超出第四名的分数为350-(-100)=350+100=450(分).(2)第四名超出第五名的分数为-100-(-400)=-100+400=300(分).答:第一名超出第四名的分数为450(分);第四名超出第五名的分数为-300(分).4.【题文】把几个数用大括号括起来,中间用逗号断开,如:{1,2,-3},{-2,7,,19},我们称之为集合,其中的数称为集合的元素.如果一个集合满足:当有理数a是集合的元素时,有理数5-a也必是这个集合的元素,这样的集合我们称为好的集合.例如集合{5,0}就是一个好的集合.(1)请你判断集合{1,2},{-2,1,2.5,4,7}是不是好的集合?(2)请你再写出两个好的集合(不得与上面出现过的集合重复);(3)写出所有好的集合中,元素个数最少的集合.【答案】(1){1,2}不是好的集合,{-2,1,2.5,4,7}是好的集合;(2)答案不唯一,如{8,-3};{8,2.5,-3};(3)元素个数最少的好的集合是{2.5}.【分析】本题考查有理数的减法以及新定义问题.(1)根据“好集合”的定义:a,5-a都是这个集合的元素检验即可;(2)满足“好集合”的条件即可;(3)元素个数最少的集合即只有一个数,∴a=5-a,∴a=2.5.【解答】(1)∵5-1=4,5-2=3,4,3不在集合{1,2}中,∴{1,2}不是“好集合”;{-2,1,2.5,4,7}是“好集合”;(2)答案不唯一,如{2,3,1,4}、{2.5,10,﹣5};满足“好集合”的条件即可;(3)元素个数最少的集合即只有一个数,∴a=5-a,∴a=2.5.∴元素个数最少的集合为{2.5}.5.【答题】把-6-(+7)+(-2)-(-9)写成省略加号和括号的和的形式是()A. -6-7+2-9B. -6-7-2+9C. -6+7-2-9D. -6+7-2+9【答案】B【分析】本题考查有理数的加减混合运算.【解答】原式=-6-7-2+9.选B.6.【答题】式子-20+3-5+7的正确读法是()A. 负20加3减5加7的和B. 负20加3减负5加正7C. 负20加3减5加7D. 负20加正3减负5加正7【答案】C【分析】本题考查有理数的加减混合运算.正负数加减运算时,负号要读出来,正号不需要读出来.【解答】式子-20+3-5+7的正确读法是负20加3减5加7.故答案选C.7.【答题】下列交换加数位置的变形中,正确的是()A. 1﹣4+5﹣4=1﹣4+4﹣5B. 1﹣2+3﹣4=2﹣1+4﹣3C. 4﹣7﹣5+8=4﹣5+8﹣7D. ﹣3+4﹣1﹣2=2+4﹣3﹣1【答案】C【分析】本题考查有理数的加减混合运算.【解答】A.1﹣4+5﹣4=1﹣4-4+5,故原选项错误;B.1﹣2+3﹣4=-2+1-4+3,故原选项错误;C.4﹣7﹣5+8=4﹣5+8﹣7,正确;D.﹣3+4﹣1﹣2=-2+4﹣3﹣1,故原选项错误.选C.8.【答题】某地冬季一天中午的气温是5℃,下午上升到7℃,受冷空气影响,到夜间气温最低时又下降了9℃,则这天夜间的最低气温是______℃.【答案】-2【分析】有关温度的计算时,上升为加法,下降为减法,再列式计算即可.本题要注意温度是上升到,不是上升,要仔细审题.根据题意温度最高为7℃,下降为减法,然后列式计算即可得到结果.【解答】根据题意得:7-9=-2℃.故答案为-2.9.【答题】在算式-1+7-()=-3中,括号里应填()A. +2B. -2C. +9D. -9【答案】C【分析】本题考查有理数的加减混合运算.根据题意可知括号里的数等于-1+7-(-3),通过计算即可得到结果.【解答】根据题意得:-1+7-(-3)=-1+7+3=9.选C.10.【答题】下列各式中,与式子-1-2+3不相等的是()A. (-1)+(-2)+(+3)B. (-1)-2+(+3)C. (-1)+(-2)-(-3)D. (-1)-(-2)-(-3)【答案】D【分析】本题考查有理数的加减混合运算.根据有理数的减法法则,将各个选项去括号,再与原式进行比较即可得解.【解答】A.(-1)+(-2)+(+3)=-1-2+3,与原式相等;B.(-1)-2+(+3)=-1-2+3,与原式相等;C.(-1)+(-2)-(-3)=-1-2+3,与原式相等;D.(-1)-(-2)-(-3)=-1+2+3,与原式不相等.选D.11.【答题】若x是最大的负整数,y是最小的正整数,z是绝对值最小的数,w是相反数等于它本身的数,则x-z+y-w的值是()A. 0B. -1C. 1D. -2【答案】A【分析】本题考查有理数的加减混合运算.本题根据题意结合整数的分类和绝对值的知识,得到每个字母所代表的数,然后再进行有理数的加减法计算即可.先根据题意得,最大的负整数x为-1,最小的正整数y为1,绝对值最小的数z为0,相反数等于它本身的数w为0,再进行计算即可得解.【解答】根据题意得:x=-1,y=1,z=0,w=0,则x-z+y-w=-1-0+1-0=0.选A.12.【答题】运用去括号法则和加法交换律后,8-(-3)+(-5)+(-7)等于()A. 8-3+5-7B. 3+8-7-5C. -5-7-3+8D. 8+3-5+7【答案】B【分析】本题考查有理数的加减混合运算.根据有理数的减法法则,将原式去括号得8+3-5-7,再与各个选项进行比较即可.【解答】8-(-3)+(-5)+(-7)=8+3-5-7.选B.13.【答题】若表示运算x+z-(y+w),则的值是()A. 5B. 7C. 9D. 11【答案】C【分析】本题是一道新定义类型的题目,关键是要理解定义表示的运算,然后根据有理数的加减法法则进行运算即可.根据题意将数字代入对应字母得到算式3-1-(-2-5),再求出式子的值即可.【解答】由题意得=3+(-1)-[(-2)+(-5)]=3-1+7=9.选C.14.【答题】请指出下面的计算从哪一步开始出现错误()1-(+1)-(-1)-(+1)=1-1+1-1①=(1+1)-(1-1)②=2-(1-1)③=2-0=2④.A. ①B. ②C. ③D. ④【答案】B【分析】本题考查有理数的减法运算.此题错在(1+1)-(1-1)②,把(1+1)写成了(1-1),应该是(1+1)-(1+1).【解答】1-(+1)-(-1)-(+1)=1-1+1-1①=(1+1)-(1+1)②=2-(1+1)③=2-2=0④.错在②.选B.15.【答题】1减去-5与5的和,所得的差是______.【答案】1【分析】本题考查有理数的减法运算.两个互为相反数的数相加为零,1减去0还是为1.【解答】根据题意得1-(-5+5)=1-0=1.故答案为1.16.【答题】已知有理数-1,-8,+11,-2,请你设计一种有理数的加减混合运算,使这四个数的运算结果最大,则列式为______.【答案】答案不唯一,如-(-1)-(-8)+(+11)-(-2).【分析】本题的解题思路为:要使运算结果最大,则正数前面应取“+”,负数前面应取“-”.要使四个数的运算最大,相当于让它们的绝对值相加,负数的绝对值等于它的相反数,如:-1,-8,-2,就是加上它们的相反数,然后再加上+11即可.【解答】答案不唯一,如-(-1)-(-8)+(+11)-(-2).17.【题文】计算:-20+(-14)-(-18)-13.【答案】-29.【分析】本题考查有理数的加减混合运算. 利用有理数加减运算法则:同号两数相加,取相同符号,并把绝对值相加;绝对值不相等异号两数相加,取绝对值较大的加数的符号,并用加大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;从而求解.【解答】-20+(-14)-(-18)-13=-20-14+18-13=-34+18-13=-16-13=-29.18.【答题】大家都知道,八点五十五可以说成九点差五分,有时这样表达更清楚.这启发人们设计了一种新的加减记数法,比如:9可以写成,=10-1;198可以写成,=200-2;7683可以写成,=10000-2320+3.总之,数字上画一杠表示减去它,按这个方法请计算的结果为()A. 1990B. 2068C. 2134D. 3024【答案】B【分析】本题考查新定义运算,要理解并准确按照新定义写出算式,再根据有理数的加减法法则进行计算.根据题意数字上画一杠表示减去它,分别求出的值各是多少,然后用即可得到结果.【解答】根据题意得:=(5000-201+30)-(3000-240+1)=4829-2761=2068.选B.19.【题文】请根据如图所示的对话解答下列问题.求:(1)a,b,c的值;(2)8-a+b-c的值.【答案】(1)a=-3,b=±7;(2)33或5.【分析】本题考查有理数的加减混合运算,掌握相反数和绝对值的概念是解题关键.(1)首先根据相反数的概念求得a的值,根据绝对值求得b,b的值有了两个;(2)根据b的两个取值,分别求出两个c的值,再分别代入8-a+b-c,求值即可.【解答】(1)∵a的相反数是3,b的绝对值是7,∴a=-3,b=±7;(2)∵a=-3,b=±7,c和b的和是-8,∴当b=7时,c=-15,当b=-7时,c=-1,当a=-3,b=7,c=-15时,8-a+b-c=8-(-3)+7-(-15)=33;当a=-3,b=-7,c=-1时,8-a+b-c=8-(-3)+(-7)-(-1)=5.20.【题文】在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示.设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p的值.【答案】(1)-1,-4;(2)-88.【分析】本题考查有理数的加减混合运算.(1)根据以B为原点,则C表示1,A表示-2,进而得到p的值;根据以C为原点,则A表示-3,B表示-1,进而得到p的值;(2)根据原点O在图中数轴上点C的右边,且CO=28,可得C表示-28,B表示-29,A 表示-31,据此可得p的值.【解答】(1)若以B为原点,则C表示1,A表示−2,∴p=1+0−2=−1;若以C为原点,则A表示−3,B表示−1,∴p=−3−1+0=−4;(2)若原点O在图中数轴上点C的右边,且CO=28,则C表示−28,B表示−29,A表示−31,∴p=−31−29−28=−88.。
初中数学苏科版七年级上册第二章 有理数2.5 有理数的加法与减法-章节测试习题(44)
章节测试题1.【答题】计算:2-(-3)的结果是()A. 5B. 1C. -1D. -5【答案】A【分析】本题考查了有理数的减法运算,熟记减去一个数等于加上这个数的相反数是解题的关键.【解答】2-(-3)=2+3=5.选A.2.【答题】计算-2-3的结果是()A. 5B. -5C. -1D. 1【答案】B【分析】根据有理数的减法运算法则进行计算即可.【解答】-2-3=-5.选B.3.【答题】-1-2的结果是()A. -1B. -3C. 1D. 3【答案】B【分析】根据有理数减法法则:减去一个数等于加上它的相反数,计算即可.【解答】-1-2=-1+(-2)=-(1+2)=-3,选B.4.【答题】2-3的值等于()A. 1B. -5C. 5D. -1【分析】本题考查了有理数的减法,比较简单,是一个基础的题目.根据有理数的减法法则:减去一个数等于加上这个数的相反数.【解答】2-3=2+(-3)=-(3-2)=-1.选D.5.【答题】昆明小学1月份某天的最高气温为5℃,最低气温为-1℃,则昆明这天的气温差为()A. 4℃B. 6℃C. -4℃D. -6℃【答案】B【分析】本题考查了有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.依题意,这天的温差就是最高气温与最低气温的差,列式计算.【解答】这天的温差就是最高气温与最低气温的差,即5-(-1)=5+1=6℃.选B.6.【答题】某市2010年元旦这天的最高气温是8℃,最低气温是-2℃,则这天的最高气温比最低气温高()A. 10℃B. -10℃C. 6℃D. -6℃【答案】A【分析】本题利用有理数的减法运算法则求解.用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”计算求解.【解答】8-(-2)=8+2=10℃.选A.7.【答题】2010年元月19日,山东省气象局预报我市元月20日的最高气温是4℃,最低气温是-6℃,那么我市元月20日的最大温差是()A. 10℃B. 6℃C. 4℃D. 2℃【分析】本题是与生活实际相联系,列式后利用有理数的减法运算法则计算求解.用最高气温减去最低气温,根据有理数的减法法则减去一个数等于加上这个数的相反数计算即可.【解答】4-(-6)=4+6=10℃.选A.8.【答题】计算:0-=()A. B. -2 C. D. 2【答案】C【分析】本题是对有理数减法的考查,减去一个数等于加上这个数的相反数.【解答】0-=0+(-)=-(-0)=-.选C.9.【答题】计算1-(-2)的结果是()A. 3B. -3C. 1D. -1【答案】A【分析】本题是对有理数减法的考查,减去一个数等于加上这个数的相反数.【解答】1-(-2)=1+2=3.选A.10.【答题】计算-2-6的结果是()A. -8B. 8C. -4D. 4【答案】A【分析】本题考查有理数的减法运算法则,减去一个数等于加上这个数的相反数.【解答】-2-6=-(2+6)=-8.选A.11.【答题】冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,则房屋内的温度比冰箱冷冻室的温度高()A. 26℃B. 14℃C. -26℃D. -14℃【答案】A【分析】本题考查了有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.求房屋内的温度比冰箱冷冻室的温度高多少,即是求房屋内的温度与冰箱冷冻室的温度差,列式计算即可.【解答】用房屋内的温度减去冰箱冷冻室的温度,即20-(-6)=20+6=26℃.选A.12.【答题】某年哈尔滨市一月份的平均气温为-18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A. 16℃B. 20℃C. -16℃D. -20℃【答案】B【分析】本题考查有理数的减法运算法则.根据题意用三月份的平均气温气温减去一月份的平均气温气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”计算求解.【解答】2-(-18)=2+18=20℃.选B.13.【答题】某天的最高气温是7℃,最低气温是-5℃,则这一天的最高气温与最低气温的差是()A. 2℃B. -2℃C. 12℃D. -12℃【答案】C【分析】本题考查了有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.这天的温差就是最高气温与最低气温的差,列式计算.【解答】这天的温差就是最高气温与最低气温的差,即7-(-5)=7+5=12℃.选C.14.【答题】某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高()A. -10℃B. -6℃C. 6℃D. 10℃【答案】D【分析】本题考查了有理数的意义和实际应用,运算过程中应注意有理数的减法法则.这天的最高气温比最低气温高多少,即是求最高气温与最低气温的差.【解答】∵2-(-8)=10,∴这天的最高气温比最低气温高10℃.选D.15.【答题】比1小2的数是()A. -3B. -1C. 1D. 3【答案】B【分析】本题考查了有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.比1小2的数是多少,即求1与2的差是多少.【解答】1-2=-1.选B.16.【答题】我市某天的最高气温是6℃,最低气温是﹣2℃,那么当天的日温差是______℃.【答案】8【分析】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】6﹣(﹣2)=6+2=8℃.故答案为8.17.【答题】气象部门测定,高度每增加1千米,气温大约下降5℃,现在地面气温是15℃,那么4千米高空的气温是______℃.【答案】-5【分析】本题考查有理数的减法运算.根据题意列出算式,计算即可得到结果.【解答】根据题意得:15﹣4×5=15﹣20=﹣5,则4千米高空的气温是﹣5℃.故答案为﹣5.18.【答题】存折中有2676元,取出1082元,又存入600元,在不考虑利息的情况下,你能算出存折中还有______元.【答案】2194【分析】本题考查有理数的加减混合运算.根据题意列出算式2676﹣1082+600,然后计算即可.【解答】根据题意得:2676﹣1082+600=2194,∴存折中还有2194元.19.【答题】“早穿皮袄午穿纱”这句民谣形象地描绘了新疆奇妙的气温变化现象.乌鲁木齐五月的某天,最高气温17℃,最低气温-2℃,则当天的最大温差是______℃.【答案】19【分析】本题考查有理数的减法运算.【解答】17-(-2)=19(℃).20.【答题】-21-11=______.【答案】-32【分析】本题考查有理数的减法运算. 【解答】-21-11=-(21+11)=-32.。
苏科版七年级数学上册 第2章 有理数 单元复习 讲义设计(无答案)
有理数章节复习考点一 正数与负数、有理数与无理数例1.李白出生于公元701年,我们记作+701,那么秦始皇出生于公元前256年,可记作 ( ) A . B .256 C . D .445例2.把下列各数填入表示它所在的数集的大括号: π3,2-,12-, 3.020020002,0,227,()3--,0.333,314-,17-.整数集合:{ …} 分数集合:{ …} 负有理数集合:{ …} 无理数集合:{ …} 变式1. 4.2-,50%,0,227--,2.12, 3.1010010001,24-,π2,12⎛⎫-- ⎪⎝⎭. 正数集合:{ }; 分数集合:{ };负有理数集合:{ }; 无理数集合:{ }.考点二 数轴例1.在数轴上表示a 的点到原点的距离为3,则3a -的值为___________.变式1.已知数轴上有A 、B 两点,点A 与原点的距离为3,A 、B 两点间的距离为1,满足条件的点B 所表示的数是_______________变式2.如图,数轴上的A 、B 、C 三点所表示的数分别是a 、b 、c ,其中AB BC =,如果a b c >>,那么该数轴的原点O 的位置可能在( )A.点A 左边B.点A 与点B 之间C.点B 与点C 之间D.点B 与点C 之间或点C 右边变式3.如下图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个256-957-C A单位长度,可以看到终点表示的数是2-.已知点A ,B 是数轴上的点,完成下列各题:(1)如果点A 表示数3-,将点A 向右移动7个单位长度,那么终点B 表示的数是_______,A 、B 两点间的距离是___________.(2)如果点A 表示数是3,将点A 向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是________,A 、B 两点间的距离是_________.(3)一般地,如果点A 表示数为a ,将点A 向右移动b 个单位长度,再向左移动c 个单位长度,那么请你猜想终点B 表示的数是________,A 、B 两点间的距离是___________.例2.长为2016个单位长度的线段放在数轴上,能覆盖_____________个表示整数的点.例3.如图所示,直径为单位1的圆从数轴上表示1的点沿着数轴无滑动地逆时针滚动一周到达A 点,则A 点表示的数是( )A.π1--B.π1-+C.π1+D.π1-变式1.一只蜗牛从数轴的原点出发,第一次向正方向移动1个单位,第二次向反方向移动2个单位,第三次向正方向移动3个单位,第四次向反方向移动4个单位,…,按这样的规律则蜗牛第101次移动后在数轴上的位置所表示的有理数是 ( ) A .-50 B .50 C .-51 D .51考点三 绝对值与相反数例1.如果a a =-,下列成立的是( )A.0a >B.0a <C.0a ≥D.0a ≤变式1.下列说法正确的是( )A.a -一定是负数B.两个数的和一定大于每一个加数C.若2m =,则2m =±D.若0ab =,则0a b -= 例2.下列各组数相等的是( )A.()2--和()2-B.()2+-和()2--C.()2--和2-D.()2--和2-- 变式1.若()2210a b ++-=,则a b +的值是_________变式2.已知3x =,1y =,且0x y <+,则x y -的值是_________变式 3.下列说法:①若0x x +=,则x 为负数;②若a -不是负数,则a 为非正数;③()22a a -=-;④若0a b a b +=,则1ab ab=-;⑤若a b =-,b b =,则a b =,其中正确的结论有( )A.2个B.3个C.4个D.5个例3.画一条数轴,然后将22-,()1--,324-,3-+在数轴上表示出来,并用“>”将这些数连接起来例4.同学们都知道,52-表示5与2的差的绝对值,实际上也可理解为5与2两数在数轴上所对应的两点之间的距离,试探索 (1)用文字表达式子2x +表示的实际意义(2)式子23x x -++是否有最大或最小值?如果有,请写出;如果没有,请说明理由变式1.结合数轴与绝对值的知识回答下列问题:(8分)ba(1)数轴上表示5和1的两点之间的距离是 ;表示—3和2两点之间的距离是 ; 一般地,数轴上表示数m 和数n 的两点之间的距离等于m n -.如果表示数a 和—2的两点之间的距离是3,那么a = .(2)若数轴上表示数a 的点位于—4与2之间,则42a a ++-的值为 ; (3)利用数轴找出所有符合条件的整数点...x ,使得25x x ++-=7,这些点表示的数的和是 .(4)当a = 时,314a a a ++-+-的值最小,最小值是 .变式2.点A 、B 在数轴上分别表示有理数a ,b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离AB a b =-. 利用数形结合思想回答下列问题:(1)数轴上表示2和10两点之间的距离是________,数轴上表示2与10-的两点之间的距离是__________.(2)数轴上表示x 和2-的两点之间的距离表示为___________. (3)若x 表示一个有理数,且125x x -++=,则x =___________. (4)若x 表示一个有理数,求123420142015x x x x x x -+-+-+-++-+-的最小值.(只需写当x取何值时,代入求出此代数式的最小值.)变式3.阅读下面材料:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,AB OB b a b ===-当A 、B 两点都不在原点时,①如图2,点A 、B 都在原点的右边AB OB OA b a b a a b =-=-=-=-;②如图3,点A 、B 都在原点的左边,()AB OB OA b a b a a b a b =-=-=---=-=-;③如图4,点A 、B 在原点的两边,AB OB OA b a b a a b =+=+=-+=-;综上,数轴上A 、B 两点之间的距离AB a b =-. 回答下列问题:①数轴上表示2-和5-的两点之间的距离是___,数轴上表示2和3-的两点之间的距离是___;②数轴上表示x 和2-的两点A 和B 之间的距离是_______,如果2AB =,那么x 为________; ③若5211x x ++-=成立,在数轴上找出所有符合条件的x 为___________; ④求52x x ++-的最小值.图1b0a ()B 图2ba 0B O 图30ba B A 图4ba变式4.若点A 、B 在数轴上分别表示实数a 、b ,则A 、B 两点之间的距离表示为AB a b =-,回答下列问题:(1)数轴上表示2和5的两点之间的距离是___,数轴上表示1和3-的两点之间的距离是___; (2)数轴上表示x 和1-的两点A 和B 之间的距离是______,如果2AB =,那么x =________; (3)12x x ++-的最小值为________,相应x 的取值范围是___________;(4)已知21951x x y y ++-=---+,则x y +的最大值为_______,最小值为_________.例5.已知整数a 1,a 2,a 3,a 4,… 满足下列条件:a 1=0,a 2=-||a 1+1,a 3=-||a 2+2, a 4=-||a 3+3,… 依次类推,则a 2017的值为 .例6.若a ,b 互为相反数,则下列各对数中不是互为相反数的是( )A.2a -和2b -B.1a +和1b +C.1a +和1b -D.2a 和2b考点四 有理数的运算例1.一个有理数的平方是正数,那么这个有理数的立方是( )A.整数B.正数C.负数D.正数或负数 变式1.下列说法中正确的是( )A.0是最小的有理数B.0的相反数、绝对值、倒数都为0C.0不是正数也不是负数D.0不是分数也不是整数例2.若01a <<,则a ,2a ,1a的大小关系是( ) A.21a a a << B.21a a a << C.21a a a << D.21a a a <<变式1.若a 、b 互为相反数,则下列等式:①0a b +=;②a b =;③22a b =;④33a b =⑤2ab b =-,其中一定成立的个数为( )A.2B.3C.4D.5例 3.计算11111111111111111111234523456234562345⎛⎫⎛⎫⎛⎫⎛⎫----++++------+++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的结果是_________.例 4.已知a ,b 互为相反数且0a ≠,c 、d 互为倒数,m 的绝对值是最小的正整数,求()220072008a b a m cd b +-+-的值.变式1.已知:a 与b 互为相反数,c 与d 互为倒数,x 的平方是16,y 是最大的负整数.求:()201526x cd a b y -++-的值.例5.计算,能简便的要简便()11084÷⨯- ()1231044--⨯÷⎡⎤⎣⎦ ()()0.6 2.40.4 1.4-+-++-()111284147⎛⎫+-⨯- ⎪⎝⎭ ()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭ ()1822⎛⎫-÷⨯- ⎪⎝⎭()555251115777⎛⎫⎛⎫⨯+-⨯-+-⨯ ⎪ ⎪⎝⎭⎝⎭()285150.813-÷-⨯+-()1799918⨯- 235423-⨯+-⨯()12324238⎛⎫-⨯+- ⎪⎝⎭ ()2449525⨯- 223172447373⎛⎫⎛⎫⎛⎫⎛⎫-+++-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭64267⎛⎫-÷ ⎪⎝⎭()2411236⎡⎤--⨯--⎣⎦ 82790.8518180.85177917⎛⎫-⨯-⨯+÷-⨯ ⎪⎝⎭()1371242812⎛⎫-+⨯- ⎪⎝⎭ 121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭()()()2284313⎛⎫----⨯- ⎪⎝⎭+ 155112121277225⎛⎫⎛⎫⨯--⨯-÷ ⎪ ⎪⎝⎭⎝⎭+()1321423147⎛⎫--⨯- ⎪⎝⎭()()241110.5233⎡⎤---⨯⨯--⎣⎦()8)52(4.025.1-⨯-÷⨯- )743(17)743()9()743(5-⨯++⨯-+-⨯-)75.2()412(21152--+--- ⎪⎭⎫⎝⎛+-⨯-721436142111111112016201520141007⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭例6.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A 地出发,晚上最后到达B 地,约定向东为正方形,当天航行依次记录如下(单位:千米)14,9-,18,7-,13,6-,10,5-,问:(1)B 地在A 地的东面,还是西面?与A 地相距多少千米? (2)这一天冲锋舟离A 最远多少千米?(3)若冲锋舟每千米耗油2升,邮箱容量为100升,求途中至少需要补充多少升油?变式1.自行车厂某周计划生产2100辆电动车,平均每天生产电动车300辆,由于各种原因,实际每天的生产量与计划每天的生产量相比有出入,下表是该周的实际生产情况(超产记为正、减产记为负,单位:辆):(1)该厂星期一生产电动车____________辆;(2)生产量最多的一天比生产量最少的一天多生产电动车________辆;(3)该厂实行记件工资制,每生产一辆车可得60元,那么该厂工人这一周的工资总额是多少元?变式2.2016年9月30日杭州西湖景区某公园人流量约为7万,每张门票80元,“十一黄金周”景区迎来了旅游高峰期,游客从各个省市来到杭州.该公园统计:十一黄金周期间,游客人数比前一天相比,增加和减少的情况如下表:(记增加为正).(1)10月2日该公园的人流量是多少万人?(2)“十一黄金周”期间,人流量最多和最少分别出现在哪一天?(3)该公园的所有门票收入均要缴纳百分之五的税,求“十一黄金周”期间,该公园的实际收入.变式3.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负来表示,记录如下:(1)20筐白菜中,最重的一筐比最轻的一筐重多少千克?(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?例7.定义新运算:对于任意有理数a 、b ,都有2a b a b ⊗=-,例如:232327⊗=-=,那么()()231-⊗⊗-=⎡⎤⎣⎦___________.变式1.探索规律观察下面由※组成的图形和算式,解答问题(1)请计算1357911+++++=____________;(2)请猜想1357919++++++=___________; (3)请猜想()135721n +++++-=____________;(4)请用上述规律计算:21232599++++.1+3+5+7+9=25=521+3+5+7=16=421+3+5=9=321+3=4=2213579※※※※※※※※※※※※※※※※※※※※※※※※※考点五 新题型例1.阅读理解:如图,A 、B 、C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离的2倍,我们就称点C 是【A ,B 】的巧妙点,例如,如图1,点A 表示的数为1-,点B 表示的数为2,表示数1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是【A ,B 】的巧妙点;又如,表示数0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是【A ,B 】的巧妙点,但点D 是【B ,A 】的巧妙点.知识运用:如图2,M 、N 为数轴上两点,点M 所表示的数为2-,点N 所表示的数为4.(1)数__________所表示的点是【M ,N 】的巧妙点;(2)现有一只电子蚂蚁P 从点N 出发,以每秒2个单位的速度沿数轴向左运动,运动时间为t ,当t 为何值时,P 、M 、N 中恰有一个点为其余两点的巧妙点?例2.把几个数用大括号括起来,中间用逗号断开,如:{}1,2,8、32,7,,194⎧⎫-⎨⎬⎩⎭,我们称之为集合,其中的数称其为集合的元素,如果一个集合满足;当有理数a 是集合的元素时,有理数10a -也必是这个集合的元素,这样的集合我们称为“好的集合”、例如集合{}10,0就是一个“好的集合”.(1)集合{}2,1,8,12-____________(填“是”或“不是”)“好的集合”.(2)请你再写出两个好的集合(不得与上面出现过的集合重复).(3)在所有“好的集合”中,元素个数最少的集合是____________.图1D C B A 3210-1-2-3图24-3-2-10123N M例3.将15、12、9、6、3、0、3-、6-、9-填入下列方格内,使大方格的横、竖、斜对角的三个数字之和都相等例4.观察1111111113111223342233444⎛⎫⎛⎫⎛⎫++=-+-+-=-= ⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭, 请你计算:(1)111112233420102011++++⨯⨯⨯⨯;(2)111135577920092011++++⨯⨯⨯⨯.例5.观察下列算式,122=,224=,328=,4216=,5232=,6264=,72128=,82256=,用你所发现的规律得出12320182222++++的末位数字是__________.例6.如图所示的数阵叫“莱布尼兹调和三角形”,他们是由正整数的倒数组成的,第n 行有n 个数且两端的数均为()12n n≥,每个数是它下一行左右相邻两数的和,如:111=122+,111=236+,111=3412+,…那么第6行第3个数字是________3变式 1.表二、表三、表四都是从表一中截取的一部分,根据你发现的规律,则a b c -=+______。
苏科版数学七年级上册第二章有理数有理数比大小(习题)
1.3.4 有理数加减混合运算【夯实基础】1.把(−2)−(+3)−(−5)+(−4)+(+3)统一成几个有理数相加的形式,正确的为( )A.(−2)+(+3)+(−5)+(−4)+(+3)B. (−2)+(−3)+(+5)+(−4)+(+3)C. (+2)+(+3)+(+5)+(+4)+(+3)D. (−2)−(+3)−(−5)+(−4)+(+3)2.下列各式不成立的是( )A.20+(−9)−7+(−10)=20−9−7−10B.−1+3+(−2)−11=−1+3−2−11C.−3.1+(−4.9)+(−2.6)−4=−3.1−4.9−2.6−4D.−7−(−18)+(−21)−34=−7−(18−21)−343.张大叔家共有十块麦田,今年的收成与去年相比(增产为正,减产为负)情况如下(单位:千克):+32,+17,−39,−11,+15,−13,+8,+3,+11,−21.则今年小麦的总产量与去年相比( ).A.增产2千克B.减产2千克C.增产12千克D.减产12千克4.把(+6)−(−10)+(−3)−(+2)写成省略括号和加号的形式为__________________.5.小食堂会计某天办理了以下业务:支出150元,收入300元,支出210元,收入150元,支出65元,收入80元,问食堂这一天共收入____元.6.计算(1) (2)(3) (4)(+9)−(+10)+(−2)−(−8)+3−−−−+−(7)9(3)(5)−+−+4.2 5.78.410−++−14562312(5)|−0.75|+(−3)−(−0.25)+|−18|+78 (6)−478−(−512)+(−412)−318(7)−156+(−523)+2434+312 (8)634+313−514−312+123【能力提升】7.计算(1)1−2−3+4+5−6−7+8+⋯+97−98−99+100(2)12+16+112+120+130+142+156+1728.当a=23,b=−45,c=−34时,分别求下列式子的值:(1)a+b−c;(2)a−b+c;(3)a−b−c.9.若a、b、c是有理数,|a|=3,|b|=10,|c|=5,且a、b异号,b、c同号,求a−b−(−c)的值.【思维挑战】10.有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,-1,8,这称为第一次操作;第二次同样的操作后也可产生一个新数串:3,3,6,3,9,-10,-1,9,8;继续依次操作下去.问:(1)第一次操作后,增加的所有新数之和是多少?(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和是多少?(3)猜想:第一百次操作后得到的新数串比第九十九次操作所得的数串增加的所有新数之和是多少?。
数学:第二章《有理数》单元测试(苏科版七年级上)
数学:第二章《有理数》单元测试(苏科版七年级上)一、选择题(每题3分,共30分) 1.下列说法中,不正确的是( )(A )0既不是正数,也不是负数 (B )0不是整数 (C )0的相反数是0 (D )0的绝对值是0 2.温度上升-3后,又下降2实际上就是 ( ) A. 上升1 B. 上升5 C.下降5 D. 下降-13.数轴上点A 表示-4,点B 表示2,则表示A 、B 两点间的距离的算式是( ) A. -4+2 B. -4-2 C. 2―(―4) D. 2-4 . 4.两个有理数的和为负数,那么这两个数一定( ) (A )都是负数 (B )至少有一个负数 (C )有一个是0 (D )绝对值不相等 5.如果|a|=7,|b|=5,试求a-b 的值为( ) (A )2(B )12(C )2和12(D )2;12;-12;-2 6.用计算器求25的值时,按键的顺序是( )A.5、y x 、2、=B. 2、y x、5、= C. 5、2、y x、= D. 2、3、y x、=7.如果a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,那么 a+b+m 2-cd 的值为( )A.3B.±3C.3±21 D.4±21 8. 若0<a<1,则a ,) (,12从小到大排列正确的是a a A 、a 2<a<a 1 B 、a < a 1< a 2 C 、a 1<a< a 2 D 、a < a 2<a19.学校为了改善办学条件,从银行贷款100万元,盖起了实验大楼,贷款年息为12%,房屋折旧每年2%,学校约1400名学生,仅贷款付息和房屋折旧两项,每个学生每年承受的实验费用为( ) A 、约104元; B 、1000元 C 、100元 D 、约21.4元 10计算(-2)2004+(-2)2003的结果是( )A 、-1B 、-2C 、-22003D 、-22004二、填空题(每题3分,共30分)11.某种零件,标明要求是φ20±0.02(φ表示直径,单位:毫米),经检查,一个零件的直径是19.9mm ,它 (“填合格” 或“不合格”).12.在太阳系九大行星中,离太阳最近的水星由于没有大气,白天在阳光的直接照射下,表面温度高达4270C ,夜晚则低至-1700C ,则水星表面昼夜的温差为____________.13.数轴上的一点由+3出发,向左移动4个单位,又向右移动了5个单位,两次移动后,这一点所表示的数是14.一个水利勘察队,第一天沿江向下游走313km ,第二天又向下游走325km ,第三天向上游走517km ,第四天向上游走534km ,这时勘察队在出发点的上游 千米? 15.一口深井,井底有一只青蛙,这只青蛙白天沿着井壁向上爬3米,夜间又落下2米,到了第十天的下午,这只青蛙恰好爬到井口,则这口井的深度是 米。
苏科版七年级数学上册第二章 有理数 单元测试题及答案
2
23. 按下面的程序计算,若开始输入的值 10,最后输出的结果为
.
24.若 a 6 ,则 a ________;若 a 2 9 ,则 a =________.
25.
1 5
2003
52002
()
A. 32 和 23 ;
B.- 23 和 23 ;
-32 和 32 ; D. 2 32 和 -3× 22
;
6.(2017•泰安)“2014 年至 2016 年,中国同‘一带一路’沿线国家贸易总额超过 3 万亿
美元”.将数据 3 万亿美元用科学记数法表示为……………………………………………
( )
A. 31014 美元;
B. 31013 美元;
C. 31012 美元;
D. 31011 美元;
7.已 知 , x 0 , y 0 , x y , 则 x y 的 值 是 … … … … … … … … … … … … …
()
A. 正数;
B. 负数;
C. 非正数;
D.0;
B. m2 1总是正数;
C. m 12 总是负数 ;
D. 1 m2 的值总比 1 小;
10.三个数:
7 8
、
6 7
、
1 的大小关系是………………………………(
)
A.
6 7
7 8
1 ;
B.
1
7 8
6 7
苏科版七年级数学上册第二章有理数测试题及答案(6套)
苏科版七年级数学上册第二章有理数测试题及答案(6套)2.1 比零小的数◆知识平台 1.正数、负数的概念:大于0的数叫正数;在正数前面加“-”号的数叫负数. 2.有理数的分类(1)按整数、分数分:有理数(2)按数的正负分:有理数◆思维点击有理数的概念和分类:要求在理解基础上进行记忆.对负数的理解:在现实生活中,为了能表达具有相反意义的量,所以引进了负数,在正数前加上“-”就得负数.对有理数“0”的理解:①0既不是正数,也不是负数;②0 除了表示一个也没有外,还表示正数与负数的分界,在实际问题中有明确意义.◆考点浏览有理数的有关概念和有理数的分类,大多以填空、判断、选择题的形式出现.例1 把下列各数填在相应的集合内. 7,-5,-0.3,,0,- ,8.6,-1 ,151,-32 正数集合{ };负数集合{ };正整数集合{ } 整数集合{ };负整数集合{ };分数集合{ } 【解析】正数包括正整数、正分数,负数包括负整数、负分数.整数包括正整数、负整数以及零.分数包括正分数、负分数,小数属于分数.零既不是正数,也不是负数,零是整数、偶数、有理数.答案是:正数集合{7,,8.6,151…};•负数集合{-5,-0.3,- ,-1 ,-32…};正整数集合{7,151…};整数集合{7,-5,0,151,-32…};负整数集合{-5,-32…};分数集合{-0.3,,- ,8.6,-1 …}.例2 下列说法中正确的是() A.在有理数中,零的意义仅表示没有; B.一个数不是负数就是正数 C.正有理数和负有理数组成全体有理数;D.零是整数【解析】零的一个基本作用表示没有,零又是正负数的界限.答案是D.◆在线检测 1.如果零上8℃记作8℃,那么零下5℃记作__________. 2.如果温度上升2℃记作2℃,那么温度下降3℃记作_________. 3.如果向西走6米记作-6米,那么向东走10米记作_________. 4.如果产量减少5%记作-5%,那么20%表示_________. 5.判断题:(1)一个整数不是正数就是负数.()(2)最小的整数是零.()(3)负数中没有最大的数.()(4)自然数一定是正整数.()(5)有理数包括正有理数、零和负有理数.() 6.下列说法中正确的是() A.有最小的正数; B.有最大的负数;C.有最小的整数; D.有最小的正整数 7.零是() A.最小的正数 B.最大的负数 C.最小的有理数 D.整数 8.下列一组数:-8,2.6,-3 ,2 ,-5.7中负分数有() A.1个 B.2个 C.3个 D.4个 9.把下列各数填在相应的集合内. -3,7,- ,-0.86,0,,0.7523,-2.3536.整数集合{ …};负数集合{ …}. 10.在下表适当的空格里打上“∨”号.整数分数正数负数自然数有理数 1 0 -3.14 -12 11.一零件的长度在图纸上标为10±0.05(单位:毫米),表示这种零件的长度为10毫米,则加工时要求最大不超过多少?最小不少于多少?实际生产时,测得一零件的长为9.9毫米,问此零件合格吗?12.在明尼苏达州的一个城市,1月1日上午6:00的温度是-30华氏度,•在接下来的8小时里,温度上升了38华氏度,在紧接之后的12小时里,温度下降了12•华氏度,最后4小时内,温度上升了15华氏度,那么在1月2日上午6:00的温度是多少?13.在美国有记载的最高温度是56.7℃(约合134F),发生在1913年7月10•日加利福尼亚的死亡之谷.有记载的最低温度是-62.2℃(约合-80F)是在1971年1月23日.(1)以摄氏度为单位,有记录的最高温度和最低温度相差多少?(2)以华氏度为单位,有记录的最高温度和最低温度相差多少?答案 1.-5℃ 2.-3℃ 3.10米 4.增产20% 5.(1)× (2)× (3)∨ (4) × (5)∨ 6.D 7.D 8.B 9.略 10.略 11.10.05毫米 9.95毫米 • 12.11华氏度 13.118.9℃ 214F。
苏科版七年级数学上册第二章有理数综合测试卷
新苏科版七年级数学上册第二章有理数综合测试卷一、选择题 :1.以下说法正确的选项是()A .全部的整数都是正数B .不是正数的数必定是负数C. 0 不是最小的有理数 D .正有理数包含整数和分数2.1的相反数的绝对值是()211B .2C.一 2A .- D .223.实数 a, b 在数轴上的对应点以下图,则以下不等式中错误..的是()A .aB. a b 0. ab 0D. a b 0 1Cba b04.在数轴上,原点及原点右侧的点表示的数是()A .正数B.负数C.非正数D.非负数5.假如一个有理数的绝对值是正数,那么这个数必然是()A .是正数B .不是 0C.是负数D.以上都不对6.以下各组数中,不是互为相反意义的量的是()A .收入 200 元与支出20 元B.上涨 l0 米和降落7 米C.超出 0.05mm 与不足 D .增大 2 岁与减少 2 升7.以下说法正确的选项是()A .- a 必定是负数;B .a定是正数;C.a必定不是负数; D .-a必定是负数8.假如一个数的平方等于它的倒数.那么这个数必定是()A .0B.1C.- 1 D.± 19.假如两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数()A .互为相反数但不等于零B .互为倒数C.有一个等于零 D .都等于零10.若 0< m<1, m、 m2、1的大小关系是()A .m < m 2<1B . m 2< m <1C .1< m < m2D . 1<m 2< mmmmm11. 4604608 取近似值,保存三个有效数字,结果是()A .4.60 × 106B .4600000C . 4.61 ×106D . 4.605 × 10612.以下各项判断正确的选项是()A .a + b 必定大于 a - bB .若- ab < 0,则 a 、 b 异号C .若 a 3= b 3,则 a = bD .若 a 2= b 2,则 a = b 13.以下运算正确的选项是()1 31A .- 22÷(一 2) 2= lB .2 =- 8327C .- 5÷1× 3=-25D . 3 1×(-)- 6 3×=-.3544222()14.若 a =- 2× 3 ,b =(- 2×3),c =-(2× 4),则以下大小关系中正确的选项是A .a > b > 0B . b > c >aC . b >a > cD . c > a > b15.若 x = 2,y = 3,则 x y 的值为()A .5B .- 5C .5或1D .以上都不对二、填空题1.某地气温不稳固,开始是6℃,一会儿高升 4℃,再过一会儿又降落 1l ℃,这时气温是____ 。
七年级数学上第二章有理数单元测试卷(苏教版附答案和解释)
七年级数学上第二章有理数单元测试卷(苏教版附答案和解释)苏教版七年级上册第二单元单元检测总分:100分日期:____________ 班级:____________ 姓名:____________ 一、单选题(每小题4分,共6题,共24分) 1、2017的倒数是()A. B.�2017 C.2017 D.2、实数a,b在数轴上的对应点的位置如图所示,把�a,b,0按照从小到大的顺序排列,正确的是() A.�a<b<0 B.0<�a <b C.b<0<�a D.0<b<�a3、已知a=�2,则代数式a+1的值为() A.�3 B.�2 C.�1 D.14、下列说法:①有理数是指整数和分数;②有理数是指正数和负数;③没有最大的有理数,最小的有理数是0;④有理数的绝对值都是非负数;⑤几个数相乘,当负因数的个数为奇数时,积为负;⑥倒数等于本身的有理数只有1.其中正确的有() A.2个 B.3个 C.4个 D.多于4个5、下列各数:�5,,4.11212121212…,0,,3.14,其中无理数有() A.1个 B.2个 C.3个 D.4个6、已知ab≠0,则 + 的值不可能的是() A.0 B.1 C.2 D.�2 二、填空题(每小题3分,共10题,共30分)7、如图是一个程序运算,若输入的x为�5,则输出y的结果为______.8、试举一例,说明“两个无理数的和仍是无理数”是错误的:.9、中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为________. 10、如果|y�3|+(2x�4)2=0,那么3x�y的值为. 11、把下列各数填在相应的大括号里(将各数用逗号分开):�4,0.62,,18,0,�8.91,+100 正数:{_______________________} 负数:{_________________} 整数:{______________________} 分数:{_____________________}. 12、若a、b互为相反数,c、d互为倒数,|m|=2,则 +m2�3cd=______. 13、有理数a、b、c在数轴上的位置如图所示,化简|a+b|�|a�c|+|b�c|的结果是___________. 14、在学习了《有理数及其运算》以后,小明和小亮一起玩“24点”游戏,规则如下:从一副扑克牌(去掉大、小王)中任意抽取4张,根据牌面上的数字进行混合运算(每张牌只能用一次),使得运算结果为24或�24,其中红色扑克牌代表负数,黑色扑克代表正数,J,Q,K分别代表11,1,13.现在小亮抽到的扑克牌代表的数分别是:3,�4,�6,10.请你帮助他写出一个算式,使其运算结果等于24或�24:. 15、若有理数a、b,满足,和,试用“<”号连接、b、:____ 16、1加上它的得到一个数,再加上所得数的又得到一个数,再加上这个数的又得到一个数,……以此类推,一直加到上一个数的,那么最后得到的数为____ 三、解答题(共5题,共46分) 17、(6分)已知快递公司坐落在一条东西向的街道上,某快递员从快递公司取件后在这条街道上送快递,他先向东骑行1km到达A店,继续向东骑行2km到达B店,然后向西骑行5km到达C店,最后回到快递公司.(1)以快递公司为原点,以向东方向为正方向,用1cm表示1km,画出数轴,并在数轴上表示出A、B、C三个店的位置;(2)C店离A店有多远?(3)快递员一共骑行了多少千米?18、(6分)已知a的2倍比b的相反数少4.(1)求4+4a+2b的值;(2)若b为负整数,代数式(2a+b)�3(2a+b)+2a�b表示整数吗?若是,是奇数还是偶数,若不是,请说明理由.19、(10分)小红爸爸上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况.(单位:元)(1)通过上表你认为星期三收盘时,每股是多少?(2)本周内每股最高是多少?最低是多少元?(3)已知小红爸爸买进股票时付了1.5‰的手续费,卖出时还需付1.5‰的手续费和1‰的交易税,如果小红爸爸在星期五收盘时将全部股票卖出,请你对他的收益情况进行简单的评价?20、(10分)(1)请用“>”、“<”、“=”填空:①32+2 2×3×2;②()2+()2 2× × ;③52+52 2×5×5;④(�2)2+(�2)2 2×(�2)×(�2)(2)观察以上各式,请猜想a2+b2与2ab 的大小;(3)请你借助完全平方公式证明你的猜想.21、(14分)数学问题:计算数列8,5,2,…前n项的和.探究问题:为解决上面的问题,我们从最简单的问题进行探究.探究一:首先我们来认识什么是等差数列.数学上,称按一定顺序排列的一列数为数列,其中排在第一位的数称为第一项,用a1表示;排在第二位的数称为第二项,用a2表示;…:排在第n位的数称为第n项,用an表示,并称an为数列的通项,如果一个数列从第二项起,每一项与它的前一项的差都等于同一个常数,那么这个数叫做等差数列,这个常数叫等差数列的公差,公差通常用d表示.(1)根据以上表述:可得:a2=a1+d,a3=a1+2d,a4=a1+3d,…;则通项an=__________________;(2)已知数列8,5,2,…为等差数列,请判断�100是否是此等差数列的某一项,若是,请求出是第几项;若不是,说明理由;探究二:200多年前,数学王子高斯用他独特的方法快速计算出1+2+3+…+100的值.我们从这个算法中受到启发,用先方法计算数列1,2,3,…,n0…的前n项和;由可知1+2+3+…+n= .(3)请你仿照上面的探究方式,解决下面的问题:若a1,a2,a3…,an为等差数列的前n项,前n项和Sn=a1+a2+a3+…+an.证明:Sn=na1+ d.解决问题:(4)计算:数列8,5,2,…前n项的和Sn(写出计算过程).答案解析一、单选题(每小题4分,共6题,共24分) 1 【答案】A 【解析】2017得到数是2 【答案】A 【解析】∵b<0<a,|a|>|b|,∴�a<b<0.故选:A.3 【答案】C 【解析】当a=�2时,原式=�2+1=�1,4 【答案】A 【解析】①正确,符合有理数定义;②错误,还有0;③错误,没有最大的有理数,也没有最小的有理数;④正确,符合绝对值的性质;⑤错误,存在0时错误;5 【答案】A 【解析】无理数有,共1个,故选A.6 【答案】B 【解析】①当a、b同号时,原式=1+1=2;或原式=�1�1=�2;②当a、b异号时,原式=�1+1=0.故 + 的值不可能的是1.二、填空题(每小题3分,共10题,共30分) 7 【答案】-10 【解析】根据题意可得,y=[x+4�(�3)]×(�5),当x=�5时,y=[�5+4�(�3)]×(�5) =(�5+4+3)×(�5)=2×(�5)=�10. 8 【答案】等(互为相反数的两个无理数之和)答案不唯一【解析】如果两个无理数互为相反数,则这两个无理数的和就不是无理数如,答案不唯一.∴两个无理数的和仍是无理数是错误的.故答案为:∵ ,0是有理数,9 【答案】�3 【解析】图②中表示(+2)+(�5)=�3. 10 【答案】3. 【解析】∵|y�3|+(2x�4)2=0,∴y=3,x=2.∴3x�y=3×2�3=6�3=3. 11 【答案】0.62,,18,+100;�4,�8.91;�4,18,0,+100;0.62,,�8.91 【解析】正数:{0.62,,18,+100};负数:{�4,�8.91};整数:{�4,18,0,+100};分数:{0.62,,�8.91};12 【答案】1 【解析】由题意得:a+b=0,cd=1,m=2或�2,则原式=0+4�3=1 13 【答案】�2a 【解析】先根据数轴判断出a、b、c 的正负情况以及绝对值的大小,然后判断出(a+b),(a�c),(b�c)的正负情况,再根据绝对值的性质去掉绝对值号,合并同类项即可.解:根据图形,c<b<0<a,且|a|<|b|<|c|,∴a+b<0,a�c>0,b�c>0,∴原式=(�a�b)�(a�c)+(b�c),=�a�b�a+c+b�c, =�2a 14 【答案】3×{10�[�4�(�6)]}=24(答案不唯一)【解析】3×{10�[�4�(�6)]}=24. 15 【答案】【解析】该题考查的是比大小.∵ ,,∴ ,∴ ,∵ ,∴ ,∴ 故.16 【答案】【解析】该题考查的是实数运算.根据题意得:.三、解答题(共5题,共46分) 17 【答案】(1)如图所示:(2)3km;(3)10km 【解析】1)根据题意画出数轴,在数轴上表示出A、B、C三点即可;(2)根据数轴上两点间的距离公式即可得出结论;(3)把各数的绝对值相加即可.解:(1)如图所示:(2)C 店离A店:1�(�2)=3km;(3)快递员一共行了:|1+|+|2|+|�5|+|2|=10km 18 【答案】(1)b(2)�2b�2为偶数.【解析】(1)∵a的2倍比b的相反数少4,∴2a=�b�4,∴4+4a+2b =4+(�b�4)+2b =b;(2)(2a+b)�3(2a+b)+2a�b = (�b�4+b)�3(�b�4+b)+(�b�4�b) =�10+12�2b�4 =�2b�2.∵b 为负整数,∴�2b�2也为整数,又�2b�2=2(�b�2),∴�2b�2为偶数. 19 【答案】(1)34.5(2)周二最高,35.5元;周五最低,26元(3)小红的爸爸赔了【解析】(1)27+4+4.5�1 =35.5�1 =34.5;(2)由表可知,周二最高,27+4+4.5=35.5元,周五最低,35.5�1�2.5�6=26元;(3)∵26<27,∴小红的爸爸赔了. 20 【答案】(1)①>;②>;③=;④=;(2)a2+b2≥2ab;(3)见解析【解析】(1)①∵32+22=13,2×3×2=12,∴32+22>2×3×2,故答案为:>;②∵()2+()2=5,2× × =2 = ,∴()2+()2>2× × ,故答案为:>;③∵52+52=50,2×5×5=50,∴52+52=2×5×5,故答案为:=;④∵(�2)2+(�2)2=8,2×(�2)×(�2)=8,∴(�2)2+(�2)2=2×(�2)×(�2),故答案为:=;(2)a2+b2≥2ab;(3)证明:∵(a+b)2≥0,∴a2�2ab+b2≥0,∴a2+b2≥2ab. 21 【答案】见解析【解析】(1)答案为:an=a1+(n�1)d (2)�100是此数列的某一项.理由如下:∵在通项公式an=a1+(n�1)d中,an=�100,a1=8,d=5�8=�3,∴8�3(n�1)=�100,解之得:n=37 即:�100是此数列的第37项(3)证明:∵Sn=a1+a2+a3+…+an�1+an…①∴Sn=an+an�1+an�2+…+a2+a1…② 则:①+②得:2Sn=n(a1+an),又∵an=a1+(n�1)d,∴2Sn=n[a1+a1+(n�1)d],∴Sn=na1+ d.(4)∵a1=8,d=�3,∴由前n项和的公式Sn=na1+ d得: Sn=8n�∴Sn= 即:此数列前n项的和Sn= .。
2019年苏科新版数学七年级上册《第2章有理数》单元测试卷(解析版)
2019年苏科新版数学七年级上册《第2章有理数》单元测试卷一.选择题(共15小题)1.如果盈利2元记为“+2元”,那么“﹣2元”表示()A.亏损2元B.亏损﹣2元C.盈利2元D.亏损4元2.下列说法中正确的是()A.任何有理数的绝对值都是正数B.最大的负有理数是﹣1C.0是最小的数D.如果两个数互为相反数,那么它们的绝对值相等3.如图,数轴上的A、B、C三点所表示的数分别为a,b,c,点A与点C到点B的距离相等,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在()A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边4.相反数等于其本身的数是()A.1B.0C.±1D.0,±15.一个正数的绝对值小于另一个负数的绝对值,则两数和一定是()A.正数B.负数C.零D.不能确定和的符号6.已知|a+3|+|b﹣1|=0,则a+b的值是()A.﹣4B.4C.2D.﹣27.的倒数是()A.B.﹣C.2019D.﹣20198.绝对值小于5的所有整数的和为()A.0B.﹣8C.10D.209.在π,,1.732,3.14四个数中,无理数的个数是()A.4个B.3个C.2个D.没有10.在3.14,,,﹣,2π,中,无理数有()个.A.1个B.2个C.3个D.4个11.下列实数,﹣,0.,,,(﹣1)0,﹣,0.1010010001中,其中无理数共有()A.2个B.3个C.4个D.5个12.在下列五个数中①,②,③,④0.777…,⑤2π,是无理数的是()A.①③⑤B.①②⑤C.①④D.①⑤13.在1.732,﹣,,,3﹣,3.02中,无理数的个数是()A.1B.2C.3D.414.在实数﹣1.414,,π,3.,2+,3.212212221…,3.14中,无理数的个数是()个.A.1B.2C.3D.415.下列实数中,无理数是()A.2B.﹣C.3.14D.二.填空题(共6小题)16.吐鲁番盆地低于海平面155米,记作﹣155m,南岳衡山高于海平面1900米,则衡山比吐鲁番盆地高m.17.在有理数集合中,最小的正整数是,最大的负整数是.18.在数轴上将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是.19.请写出一个比3大比4小的无理数:.20.请写出一个无理数.21.下列各数中:0.3、、π﹣3、、3.14、1.51511511…,有理数有个,无理数有个.三.解答题(共3小题)22.蜗牛从某点0开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)求蜗牛最后是否回到出发点?(2)蜗牛离开出发点0最远时是多少厘米?(3)在爬行过程中,如果每爬1厘米奖励一粒芝麻,则蜗牛一共得到多少粒芝麻?23.(1)将下列各数填入相应的圈内:2,5,0,1.5,+2,﹣3.(2)说出这两个圈的重叠部分表示的是什么数的集合:.24.定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为无理数.如不能表示为两个互质的整数的商,所以,是无理数.可以这样证明:设与b是互质的两个整数,且b≠0.则a2=2b2因为b是整数且不为0,所以,a是不为0的偶数,设a=2n,(n是整数),所以b2=2n2,所以b也是偶数,与a,b是互质的正整数矛盾.所以,是无理数.仔细阅读上文,然后,请证明:是无理数.2019年苏科新版数学七年级上册《第2章有理数》单元测试卷参考答案与试题解析一.选择题(共15小题)1.如果盈利2元记为“+2元”,那么“﹣2元”表示()A.亏损2元B.亏损﹣2元C.盈利2元D.亏损4元【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵盈利2元记为“+2元”,∴“﹣2元”表示亏损2元.故选:A.【点评】本题考查了正数和负数的定义.解本题的根据是掌握正数和负数是互为相反意义的量.2.下列说法中正确的是()A.任何有理数的绝对值都是正数B.最大的负有理数是﹣1C.0是最小的数D.如果两个数互为相反数,那么它们的绝对值相等【分析】根据有理数的定义和特点,绝对值、互为相反数的定义及性质,对选项进行一一分析,排除错误答案.【解答】解:A、0的绝对值是0,故选项A错误;B、没有最大的负有理数也没有最小的负有理数,故选项B错误;C、没有最大的有理数,也没有最小的有理数,故选项C错误;D、根据绝对值的几何意义:互为相反数的两个数绝对值相等,故选项D正确.故选:D.【点评】本题考查了绝对值的几何意义及互为相反数的两个数在数轴上的位置特点,以及有理数的概念,难度适中.3.如图,数轴上的A、B、C三点所表示的数分别为a,b,c,点A与点C到点B的距离相等,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在()A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【解答】解:∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,又∵AB=BC,∴原点O的位置是在点B、C之间且靠近点B的地方.故选:C.【点评】本题考查了实数与数轴,理解绝对值的定义是解题的关键.4.相反数等于其本身的数是()A.1B.0C.±1D.0,±1【分析】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:根据相反数的定义,则相反数等于其本身的数只有0.故选:B.【点评】主要考查了相反数的定义,要求掌握并灵活运用.5.一个正数的绝对值小于另一个负数的绝对值,则两数和一定是()A.正数B.负数C.零D.不能确定和的符号【分析】根据有理数的加法运算法则进行计算即可得解.【解答】解:∵一个正数的绝对值小于另一个负数的绝对值,∴两数和一定是负数.故选:B.【点评】本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.已知|a+3|+|b﹣1|=0,则a+b的值是()A.﹣4B.4C.2D.﹣2【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,a+3=0,b﹣1=0,解得a=﹣3,b=1,所以,a+b=﹣3+1=﹣2.故选:D.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7.的倒数是()A.B.﹣C.2019D.﹣2019【分析】根据倒数的定义解答.【解答】解:的倒数是=2019.故选:C.【点评】考查了倒数的定义,考查了学生对概念的记忆,属于基础题.8.绝对值小于5的所有整数的和为()A.0B.﹣8C.10D.20【分析】找出绝对值小于5的所有整数,求出之和即可.【解答】解:绝对值小于5的所有整数为:0,±1,±2,±3,±4,之和为0.故选:A.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.9.在π,,1.732,3.14四个数中,无理数的个数是()A.4个B.3个C.2个D.没有【分析】根据无理数的定义得到无理数有π,共两个.【解答】解:无理数有:π,故选:C.【点评】本题考查了无理数的定义:无限不循环小数叫无理数,常见形式有:①开方开不尽的数,如等;②无限不循环小数,如0.101001000…等;③字母,如π等.10.在3.14,,,﹣,2π,中,无理数有()个.A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:﹣,2π共2个.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.11.下列实数,﹣,0.,,,(﹣1)0,﹣,0.1010010001中,其中无理数共有()A.2个B.3个C.4个D.5个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:,﹣,共有3个.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.在下列五个数中①,②,③,④0.777…,⑤2π,是无理数的是()A.①③⑤B.①②⑤C.①④D.①⑤【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【解答】解:=2,所给数据中无理数有:①,⑤2π.故选:D.【点评】本题考查了无理数的定义,属于基础题,解答本题的关键是熟练掌握无理数的三种形式.13.在1.732,﹣,,,3﹣,3.02中,无理数的个数是()A.1B.2C.3D.4【分析】根据无理数就是无限不循环小数即可解答.【解答】解:在1.732,﹣,,,3﹣,3.02中,无理数有:﹣,,3﹣共3个.【点评】此题主要考查了无理数的定义.判断一个数是否是无理数时,可紧密联系无理数的概念以及无理数常见的几种形式进行判断.14.在实数﹣1.414,,π,3.,2+,3.212212221…,3.14中,无理数的个数是()个.A.1B.2C.3D.4【分析】无理数常见的三种类型(1)开不尽的方根(2)特定结构的无限不循环小数(3)含有π的绝大部分数,如2π.【解答】解:﹣1.414是有限小数,是有理数,是无理数,π是无理数,3.无限循环小数是有理数,2+是无理数,3.212212221…是无限不循环小数是无理数,3.14有限小数是有理数.故选:D.【点评】本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.15.下列实数中,无理数是()A.2B.﹣C.3.14D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、2是整数,是有理数,选项不符合题意;B、﹣是分数,是有理数,选项不符合题意;C、3.14是有限小数,是有理数,选项不符合题意;D、是无理数,选项符合题意.故选:D.【点评】本题考查了无理数的定义:无限不循环小数叫无理数,常见形式有:开方开不尽的数,如等;无限不循环小数,如0.1010010001…等;字母表示的无理数,如π等.二.填空题(共6小题)16.吐鲁番盆地低于海平面155米,记作﹣155m,南岳衡山高于海平面1900米,则衡山比吐鲁番盆地高2055m.【分析】根据正负数的意义,把比海平面低记作“﹣”,则比海平面高可记作“+”,求高度差用“作差法”,列式计算.【解答】解:吐鲁番盆地低于海平面155米,记作﹣155m,则南岳衡山高于海平面1900米,记作+1900米;∴衡山比吐鲁番盆地高1900﹣(﹣155)=2055(米).【点评】先根据数的意义确定两个读数,再列式计算.17.在有理数集合中,最小的正整数是1,最大的负整数是﹣1.【分析】根据正整数和负整数的定义来得出答案.正整数:+1,+2,+3,…叫做正整数.负整数:﹣1,﹣2,﹣3,…叫做负整数.特别注意:0是整数,既不是正数,也不是负数.【解答】解:在有理数集合中,最小的正整数是1,最大的负整数是﹣1.故答案为1;﹣1.【点评】本题主要考查了有理数的分类及定义.认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.特别注意:整数和正数的区别,注意0是整数,但不是正数.18.在数轴上将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是﹣3.【分析】设点A表示的数为x,根据向右平移加,向左平移减列出方程,然后解方程即可.【解答】解:设点A表示的数为x,由题意得,x+7﹣4=0,解得x=﹣3,所以,点A表示的数是﹣3.故答案为:﹣3.【点评】本题考查了数轴,主要利用了向右平移加,向左平移减,熟记并列出方程是解题的关键.19.请写出一个比3大比4小的无理数:π.【分析】由于带根号的要开不尽方是无理数,无限不循环小数为无理数,根据无理数的定义即可求解.【解答】解:比3大比4小的无理数很多如π.故答案为:π.【点评】此题主要考查了无理数的定义,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.20.请写出一个无理数.【分析】根据无理数定义,随便找出一个无理数即可.【解答】解:是无理数.故答案为:.【点评】本题考查了无理数,牢记无理数的定义是解题的关键.21.下列各数中:0.3、、π﹣3、、3.14、1.51511511…,有理数有3个,无理数有3个.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可得到正确答案.【解答】解:0.3、=2、3.14这三个数是有理数,π﹣3、、1.51511511…这三个数是无理数,故答案为3、3.【点评】此题主要考查了无理数和有理数的知识点,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.三.解答题(共3小题)22.蜗牛从某点0开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)求蜗牛最后是否回到出发点?(2)蜗牛离开出发点0最远时是多少厘米?(3)在爬行过程中,如果每爬1厘米奖励一粒芝麻,则蜗牛一共得到多少粒芝麻?【分析】(1)把爬过的路程记录相加,即可得解;(2)求出各段距离,然后根据正负数的意义解答;(3)求出爬行过的各段路程的绝对值的和,然后解答即可.【解答】解:(1)5﹣3+10﹣8﹣6+12﹣10,=27﹣27,=0,所以,蜗牛最后能回到出发点;(2)蜗牛离开出发点0的距离依次为:5、2、12、4、2、10、0,所以,蜗牛离开出发点0最远时是12厘米;(3)|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|,=5+3+10+8+6+12+10,=54厘米,∵每爬1厘米奖励一粒芝麻,∴蜗牛一共得到54粒芝麻.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.23.(1)将下列各数填入相应的圈内:2,5,0,1.5,+2,﹣3.(2)说出这两个圈的重叠部分表示的是什么数的集合:正整数.【分析】按照有理数的分类填写:有理数,整数,分数.【解答】解:(1);(2)由图形可得,两个圈的重叠部分表示的是正整数的集合.【点评】本题考查了有理数的分类.认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.24.定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为无理数.如不能表示为两个互质的整数的商,所以,是无理数.可以这样证明:设与b是互质的两个整数,且b≠0.则a2=2b2因为b是整数且不为0,所以,a是不为0的偶数,设a=2n,(n是整数),所以b2=2n2,所以b也是偶数,与a,b是互质的正整数矛盾.所以,是无理数.仔细阅读上文,然后,请证明:是无理数.【分析】先设=,再由已知条件得出,a2=5b2,又知道b是整数且不为0,所以a不为0且为5的倍数,再设a=5n,(n是整数),则b2=5n2,从而得到b也为5的倍数,与a,b是互质的正整数矛盾,从而证明了答案.【解答】解:设与b是互质的两个整数,且b≠0.则,a2=5b2,因为b是整数且不为0,所以a不为0且为5的倍数,设a=5n,(n是整数),所以b2=5n2,所以b也为5的倍数,与a,b是互质的正整数矛盾.所以是无理数.【点评】本题考查了无理数的概念,解题的关键是根据所给事例模仿去做,做到举一反三.。
第二章 有理数 综合测试卷(原卷版)-2024-2025学年七年级数学上册同步精讲精练(苏科版)
(苏科版)七年级上册数学《第二章有理数》综合测试卷时间:100分钟试卷满分:120分一、选择题(每小题3分,共10个小题,共30分)1.(2023春•望奎县期末)规定10吨记为0吨,11吨记为+1吨,则下列说法错误的是()A.9吨记为﹣9吨B.12吨记为+2吨C.6吨记为﹣4吨D.+3吨表示重量为13吨2.(2022秋•佛山期末)四个有理数−12,﹣0.8,−14,0中,最小的数是()A.−12B.﹣0.8C.−14D.03.(2022秋•连山区期末)《葫芦岛市第七次全国人口普查公报》发布,全市常住人口约为271.4万人,271.4万用科学记教法表示为()A.271.4×104B.2.714×106C.2.714×107D.2.714×1084.(2023春•镇江期末)将一把刻度尺按如图所示的方式放在数轴上(数轴的单位长度是1cm),刻度尺上的“1cm”和“6cm”分别对应数轴上“﹣1.2cm”和“xcm”,则x的值为()A.3.8B.2.8C.4.8D.65.(2022秋•丰都县期末)若m、n是有理数,满足|m|>|n|,且m>0,n<0,则下列选项中,正确的是()A.n<﹣m<m<﹣n B.﹣m<n<﹣n<m C.﹣n<﹣m<n<m D.﹣m<﹣n<n<m6.(2022秋•西安期中)一只蚂蚁沿数轴从点A 向一个方向移动了3个单位长度到达点B ,若点B 表示的数是﹣2,则点A 所表示的数是( ) A .1 B .﹣5 C .﹣1或5 D .1或﹣57.下列各对数中,互为相反数的是( ) A .﹣23与﹣32 B .(﹣2)3与﹣23C .(﹣3)2与﹣32D .−223与(23)28.(2023•贵阳模拟)有理数a ,b 在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .a +b >0B .a ﹣b >0C .ab >0D .ab<09.(2023春•东湖区校级期末)若a ,b 为有理数,则下列说法中正确的是( ) A .若a ≠b ,则a 2≠b 2 B .若a >|b |,则a 2>b 2 C .若|a |>|b |,则a >b D .若a 2>b 2,则a >b10.(2022秋•龙岗区校级期末)2022减去它的12,再减去余下的13,再减去余下的14⋯⋯以此类推,一直减到余下的12022,则最后剩下的数是( )A .20212022B .0C .20222021D .1二、填空题(每小题3分,共8个小题,共24分)11.(2023•临沂模拟)﹣2023的绝对值是 .12.(2022秋•渌口区期末)有理数+3,7.5,﹣0.05,0,﹣2019,23中,非负数有 个.13.小超同学在计算30+A 时,误将“+”看成了“﹣”算出结果为12,则正确答案应该为 .14.(2022秋•南充期末)两个数的积是−29,其中一个是−16,则另一个是 .15.(2022秋•赣县区期末)草莓开始采摘啦!每筐草莓以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图所示,则这4筐草莓的总质量是 千克.16.(2023春•南岗区校级月考)已知|a |=5,|b |=7,且|a +b |=a +b ,则a +b 的值为 .17.定义一种运算:|a c bd |=ad ﹣bc ,如:|1−3−20|=1×0﹣(﹣2)×(﹣3)=﹣6.那么当a =﹣12,b =(﹣2)2﹣1,c =﹣32+5,d =14−|−34|时,则|a cbd|的值是 .18.(2023春•惠阳区校级月考)已知x ,y ,z 都是有理数,x +y +z =0,xyz ≠0,则|x|y+z+|y|x+z+|z|x+y的值是 .三、解答题(共8个小题,共66分)19.(每小题4分,共8分)(2022秋•和平区校级期末)计算 ①(13−18+16)×24; ②(﹣2)4÷(﹣223)2+512×(−16)﹣0.25.20.(8分)(2022秋•立山区期中)如图,直线上的相邻两点的距离为1个单位,如果点A、B表示的数是互为相反数,请回答下列问题:(1)那么点C表示的数是多少?(2)把如图的直线补充成一条数轴,并在数轴上表示:314,﹣3,﹣(﹣1.5),﹣|﹣1|.(3)将(2)中各数按由小到大的顺序用“<”连接起来.21.(8分)(2022秋•天门期中)已知有理数x、y满足|x|=9,|y|=5.(1)若x<0,y>0,求x+y的值;(2)若|x+y|=x+y,求x﹣y的值.22.(8分)(2022秋•潮安区期末)已知:a,b互为相反数,c,d互为倒数,x的绝对值是2,求x2﹣(a+b+cd)x+(a+b)2021+(﹣cd)2022的值.23.(8分)(2022秋•雁塔区校级期末)一架飞机进行特技表演,起飞后的高度变化如下表:高度变化上升4.5km下降3.2km上升1.1km下降1.5km上升0.8km 记作+4.5km﹣3.2km+1.1km﹣1.5km+0.8km (1)求此时飞机比起飞点高了多少千米?(2)若飞机平均上升1千米需消耗6升燃油,平均下降1千米需消耗4升燃油,那么这架飞机在这5个特技动作表演过程中,一共消耗多少升燃油?24.(8分)(2022秋•永川区期末)某辆出租车一天下午以公园为出发地在东西方向行驶,向东走为正,向西走为负,行车里程(单位:千米)依先后次序记录如下:+15,﹣2,﹣6,+7,﹣18,+12,﹣4,﹣5,+24,﹣3.(1)将最后一名乘客送到目的地时,出租车离公园多远?在公园的什么方向?(2)若出租车每千米耗油量为0.1升,每升油7元,则这辆出租车这天下午耗油费用多少元?(3)若出租车起步价为10元,起步里程为3千米(包括3千米),超过部分每千米2.4元,问这天下午这辆出租车司机的营业额是多少元?25.(8分)(2022秋•东昌府区校级期末)观察下列等式:第一个等式:a1=11×3=12(1−13);第二个等式:a2=13×5=12(13−15);第三个等式:a3=15×7=12(15−17);第四个等式:a4=17×9=12(17−19);…回答下列问题:(1)按以上规律列出第6个等式:a6=.(2)若n是正整数,请用含n的代数式表示第n个等式,a n==.(3)a1+a2+a3+…+a2022+a2023.26.(10分)老王在上星期五以每股10元的价格买进某种股票1000股,该股票的涨跌情况如下表(单位:元)(注:每天的涨跌价是以上一天的收盘价为基础)星期一二三四五每股涨跌﹣0.19+0.16﹣0.18+0.25+0.06(1)星期五收盘时,每股是元;(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知股票卖出时需付成交额3‰的手续费和2‰的交易税,如果老王在星期五以收盘价将股票全部卖出,他的收益情况如何?。
2021-2022学年苏科版七年级数学上册 第二章 有理数 单元检测含答案
第二章有理数单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计9 小题,每题 3 分,共计27分,)1. 已知代数式(x−a)2+b的值恒为正,那么b的值应该为()A.负数B.非负数C.非正数D.正数2. 中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10103. 下列说法中,正确的是()A.任何实数的平方都是正数B.正数的倒数必小于这个正数C.绝对值等于它本身的数必是非负数D.零除以任何一个实数都等于零4. 下列计算正确的是()÷(−7)=7×(−7) B.(−2)+2=4A.17C.(−3)−(+3)=0D.2−8=2+(−8),√2,−π中,无理数的个数有()5. 实数−2,0.3,17A.1个B.2个C.3个D.4个6. a、b互为倒数,x、y互为相反数,且y≠0,则(a+b)(x+y)−ab−x的y值为()A.−1B.0C.1D.无法确定7. 数轴上点所表示的数是整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为18厘米的线段AB ,则线段AB 盖住的整点数是( )A.17个或18个B.17个或19个C.18个或19个D.18个或20个8. 下列式子中,−(−3),−|−3|,−(−2)3,3−5,−1−5,是负数的有( )A.1个B.2个C.3个D.4个9. 在0、1、−3、4这四个数中,是负数的是( )A.4B.0C.−3D.1二、 填空题 (本题共计 9 小题 ,每题 3 分 ,共计27分 , )10. −125 的相反数是________,倒数是________,绝对值是________.11. 下列各数3.1415926,√9,1.212212221⋯,17,2−π,−2020,√43中,无理数有________个.12. 若(m −4)2+|5−n|=0,则m +n =________.13. 在数轴上,有一点M 表示的数是−5,则它到原点的距离是________.14. 若|x −3|+(y +2)2=0,则x −2y =________.15. 若|2x −1|+|3y −4|=0,则x +y =________.16. 已知|5x −y +9|与(3x +y −1)2互为相反数,则x +y =________.17. |a+1|与|b−2|互为相反数,则a=________,b=________.18. 从−1中减去−34,−23,与−12的和,列式为:________,所得的差是________.三、解答题(本题共计7 小题,共计66分,)19. (−7)×(−0.25)×(−4).20. 计算:(1)(−12557)÷(−5);(2)−23÷94×(−23)2.21. 若|x−2|+(3y+2)2=0,求x+y的值.22. 已知|a|=5,|b|=3,回答下列问题:(1)由|a|=5,可得a=________;由|b|=3,可得b=________;(2)求a⋅b的值.23. 一根木棍原长为m米,如果从第一天起每天折断它的一半.(1)请写出木棍第一天,第二天,第三天的长度分别是多少?(2)试推断第n天木棍的长度是多少?24. 某粮油店有8袋大米,以每袋50千克为准,超过的千克记作正数,不足的千克记作负数,它们分别为:−2,+1,+4,+6,−3,−4,+5,−3.(1)最重的一袋大米与最轻的一袋大米相差多少千克?(2)这8袋大米总共重多少?25. 某地区水泥厂仓库6天内进出水泥的吨数如下(“+”表示进库,“−”表示出库):+50、−45、−33、+48、−49、−36.(1)经过这6天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这6天,仓库管理员结算发现库里还存200吨水泥,那么6天前,仓库里存有水泥多少吨?(3)如果进出仓库的水泥装卸费都是每吨5元,那么这6天要付多少元装卸费.答案一、选择题(本题共计9 小题,每题 3 分,共计27分)1.【答案】D【解答】解:∵ (x−a)2+b的值恒为正,(x−a)2的值最小为0,∵ b的值应该为正数.故选D.2.【答案】B【解答】解:根据科学记数法的定义可知,4 400 000 000=4.4×109.故选B.3.【答案】C【解答】解:对于A,由于0的平方是0,而不是正数,故A错误;对于B,由于1的倒数是1,故B错误;对于C,由绝对值的性质可知,绝对值等于它本身的数必是非负数,故C正确;对于D,当除数为0时,没有意义,故D错误.故选C.4.【答案】D【解答】解:17÷(−7)=17×(−17),故A错误,(−2)+2=2−2=0,故B错误,(−3)−(+3)=−3−3=−6,故C错误,2−8=2+(−8),D正确。
苏科新版 七年级上册数学 第2章有理数 单元测试卷
苏科新版七年级上册数学第2章有理数单元测试卷一.选择题(共10小题).1.检测4个排球,其中超过标准的克数记为正数,低于标准的克数记为负数,从轻重的角度来看,最接近标准的球是()A.B.C.D.2.在下列实数:、、、、﹣1.010010001…中,无理数有()A.2个B.3个C.4个D.5个3.﹣的相反数是()A.B.﹣C.D.﹣4.下列说法中,正确的是()A.因为相反数是成对出现的,所以0没有相反数B.数轴上原点两旁的两点表示的数是互为相反数C.符号不同的两个数是互为相反数D.正数的相反数是负数,负数的相反数是正数5.a为有理数,下列说法正确的是()A.﹣a为负数B.a一定有倒数C.|a+2|为正数D.|﹣a|+2为正数6.下列数:﹣0.5,,0.1,﹣3,0,﹣(﹣0.7),其中负分数有()A.2个B.3个C.4个D.5个7.两个有理数a,b在数轴上的位置如图,下列四个式子中运算结果为正数的式子是()A.a+b B.a﹣b C.ab D.﹣b﹣a8.一种零件的直径尺寸在图纸上是30±0.03(单位:mm),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过()A.0.03B.0.02C.30.03D.29.979.下面的说法错误的是()A.0是最小的整数B.1是最小的正整数C.0是最小的自然数D.自然数就是非负整数10.在数轴上,点A对应的数是﹣6,点B对应的数是﹣2,点O对应的数是0.动点P、Q 分别从A、B同时出发,以每秒3个单位,每秒1个单位的速度向右运动.在运动过程中,线段PQ的长度始终是另一线段长的整数倍,这条线段是()A.PB B.OP C.OQ D.QB二.填空题11.某商店出售的某种品牌的面粉袋上,标有质量为(50±0.2)千克的字样,从中任意拿出两袋,他们的质量最多相差千克.12.对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么﹣3克表示.13.有理数中,是整数而不是正数的数是,是负数而不是分数的是.14.在数轴上点P到原点的距离为5,点P表示的数是.15.数轴上距离原点2.4个单位长度的点有个,它们分别是.16.a﹣b的相反数是;|3.14﹣π|=.17.化简:=,﹣{﹣[+(﹣2.6)]}=.18.一次数学测试,如果96分为优秀,以96分为基准简记,例如106分记为+10分,那么85分应记为分.19.在有理数3.14,3,﹣,0,+0.003,﹣3,﹣104,6005中,负分数的个数为x,正整数的个数为y,则x+y的值等于.20.阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.三.解答题21.2018年国庆节放假八天,高速公路免费通行,各地风景区游人如织其中,其中闻名于世的“三孔”,在10月1日的游客人数就已经达到了10万人,接下来的七天中,每天的游客人数变化(单位:万人)如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期10月2日10月3日10月4日10月5日10月6日10月7日10月8日人数变化+0.6+0.2+0.1﹣0.2﹣0.8﹣1.6﹣0.1(1)10月3日的人数为万人;(2)这八天,游客人数最多的是多少万人?最少呢?(3)这8天参观的总人数约为多少万人?22.把下列各数填入相应的大括号里.﹣0.78,3,+,﹣8.47,10,﹣,0,﹣4.正数:{…};分数:{…};非负整数:{…};负有理数:{…}.23.把下列各数分别填在相应的集合中:﹣,,﹣,0,﹣,、,0.,3.1424.请把下列各数填在相应的集合内:,﹣5,0.34,,20,﹣3.14,﹣1,正数集合{ }负整数集合{ }整数集合{ }分数集合{ }非正数集合{ }非负整数集合{ }.25.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值﹣3﹣2﹣1.501 2.5(单位:千克)筐数142328(1)20筐白菜中,最重的一筐比最轻的一筐重千克.(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2元,则出售这20筐白菜可卖多少元?26.出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,以他接到的第一位乘客开始计算,他这天上午连续所接六位乘客的行车里程(单位:km)如下:﹣2,+5,﹣1,+1,﹣6,﹣2,问:(1)将最后一位乘客送到目的地时,小李在第一位乘客上车点哪个方位?多远?(2)若汽车耗油量为0.15L/km(升/千米),这天上午小李接送乘客,出租车共耗油多少升?(3)若出租车起步价为8元,起步里程为3km(包括3km),超过部分每千米2元,问小李这天上午共得车费多少元?27.云云的爸爸驾驶一辆汽车从A地出发,且以A为原点,向东为正方向.他先向东行驶15千米,再向西行驶25千米,然后又向东行驶20千米,再向西行驶40千米,问汽车最后停在何处?已知这种汽车行驶100千米消耗的油量为8.9升,问这辆汽车这次消耗了多少升汽油?参考答案与试题解析一.选择题1.解:通过求四个排球的绝对值得,D球的绝对值最小.所以D球是接近标准的球.故选:D.2.解:无理数有:,,﹣1.020010001…,共有3个.故选:B.3.解:根据相反数的含义,可得﹣的相反数等于:﹣(﹣)=.故选:A.4.解:A、0的相反数为0,所以A选项错误;B、数轴上原点两旁且到原点的距离的点所表示的数是互为相反数,所以B选项错误;C、符号不同且绝对值相等的两个数是互为相反数,所以C选项错误;D、正数的相反数是负数,负数的相反数是正数,所以D选项正确.故选:D.5.解:当a=0时,﹣a也等于0,不是负数,因此选项A不正确;当a=0时,0没有倒数,因此选项B不正确;当a=﹣2时,|a+2|=0,因此选项C不正确;|a|≥0,|a|+2≥2,因此选项D正确;故选:D.6.解:﹣0.5,﹣是负分数,故选:A.7.解:由有理数a,b在数轴上的位置可得,a<﹣1,0<b<1,∴a+b<0;a﹣b<0;ab<0;﹣a﹣b>0;故选:D.8.解:根据正数和负数的意义可知,图纸上是30±0.03(单位:mm),它表示这种零件的标准尺寸是30mm,误差不超过0.03mm;加工要求尺寸最大不超过30.03mm.故选:C.9.解:A、没有最小的整数,故错误;B、1是最小的正整数,正确;C、0是最小的自然数,正确;D、自然数是0和正整数的统称,即自然数就是非负整数,正确.故选:A.10.解:设运动的时间为t秒,则运动后点P所表示的数为﹣6+3t,点Q表示的数为﹣2+t,PQ=|﹣6+3t﹣(﹣2+t)|=2|t﹣2|;OQ=|﹣2+t﹣0|=|t﹣2|,故选:C.二.填空题11.解:根据题意得:标有质量为(50±0.2)的字样,∴最大为50+0.2=50.2,最小为50﹣0.2=49.8,故他们的质量最多相差0.4千克.故答案为:0.4.12.解:“正”和“负”相对,若一盒装牛奶超出标准质量2克,记作+2克,那么﹣3克表示低于标准质量3克.13.解:零既不是正数也不是负数.故在理数中,是整数而不是正数的数是0和负整数;是负数而不是分数的是负整数.故答案为:0和负整数;负整数.14.解:∵在数轴上点P到原点的距离为5,即|x|=5,∴x=±5.故答案为:±5.15.解:设数轴上距离原点2.4个单位长度的点为a,则|a|=2.4,解得a=±2.4.故答案为:2;+2.4,﹣2.4.16.解:a﹣b的相反数是b﹣a;|3.14﹣π|=π﹣3.14.故答案为:b﹣a;π﹣3.14.17.解:﹣|﹣(﹣)|=﹣;﹣{﹣[+(﹣2.6)]}=﹣2.6.故答案为:﹣;﹣2.6.18.解:85﹣96=﹣11,故答案为:﹣11.19.解:负分数为:,,共2个;正整数为:3,6005,共2个,则x+y=2+2=4.故答案为:4.20.解:设=x=0.777…①,则10x=7.777…②则由②﹣①得:9x=7,即x=;根据已知条件=0.333…=.可以得到=1+=1+=.故答案为:;.三.解答题21.解:(1)2日的人数为:10+0.6=10.6万人,3日的人数为:10.6+0.2=10.8万人.故答案为10.8;(2)4日的人数为:10.8+0.1=10.9万人,5日的人数为:10.9﹣0.2=10.7万人,6日的人数为:10.7﹣0.8=9.9万人,7日的人数为:9.9﹣1.6=8.3万人,8日的人数为:8.3﹣0.1=8.2万人,所以这八天,游客人数最多的是10月4日,达到10.9万人.游客人数最少的是10月8日,达到8.2万人.(3)10+10.6+10.8+10.9+10.7+9.9+8.3+8.2=79.422.解:在﹣0.78,3,+,﹣8.47,10,﹣,0,﹣4中,分类如下:正数:{3,+,10,…};分数:{﹣0.78,+,﹣8.47,﹣,…};非负整数:{3,10,0,…};负有理数:{﹣0.78,﹣8.47,﹣,﹣4,…}.故答案为:3,+,10;﹣0.78,+,﹣8.47,﹣;3,10,0;0.78,﹣8.47,﹣,﹣4.23.解:有理数集合:(﹣,﹣,0,,0.,3.14,…),无理数集合:(,﹣,,…).24.解:正数集合{,0.34,20…};负整数集合{﹣5,﹣1…};整数集合{﹣5,0,20,﹣1…};分数集合{,0.34,﹣2,﹣3.14…};非正数集合{﹣5,﹣2,0,﹣3.14,﹣1…};非负整数集合{0,20…}.25.解:(1)最重的一筐超过2.5千克,最轻的差3千克,求差即可2.5﹣(﹣3)=5.5(千克),故最重的一筐比最轻的一筐重5.5千克.故答案为:5.5;(2)1×(﹣3)+4×(﹣2)+2×(﹣1.5)+3×0+1×2+8×2.5=﹣3﹣8﹣3+2+20=8(千克).故20筐白菜总计超过8千克;(3)2×(25×20+8)=2×508=1016(元).故出售这20筐白菜可卖1016元.26.解:(1)﹣2+5﹣1+1﹣6﹣2=﹣5.故此时小李在第一位乘客上车点的西边5km的位置;(2)|﹣2|+|+5|+|﹣1|+|+1|+|﹣6|+|﹣2|=2+5+1+1+6+2=17(千米),0.15×17=2.55(L).答:出租车共耗油2.55L;(3)根据题意可得:6×8+(2+3)×2=48+10=58(元).答:小李这天上午共得车费58元.27.解:根据题意得:15﹣25+20﹣40=35﹣65=﹣30,即汽车最后同在A西边30米处;根据题意得:(15+25+20+40)÷100×8.9=8.9(升),即这辆汽车这次消耗了8.9升汽油.。
初中数学苏科版七年级上册第二章 有理数2.5 有理数的加法与减法-章节测试习题(33)
章节测试题1.【答题】某超市出售的三种品牌月饼袋上分别标有质量为(500±5)g,(500±10)g,(500±20)g的字样,从中任意拿出两袋,它们的质量最多相差()A. 10gB. 20gC. 30gD. 40g【答案】D【分析】本题考查有理数的减法运算.【解答】由题意知:任意拿出两袋,最重的是520g,最轻的是480g,∴质量相差520−480=40(g).选D.2.【题文】一家饭店,地面上18层,地下1层.地面上1楼为接待处,顶楼为公共设施处,其余16层为客房;地下1层为停车场.(1)客房7楼与停车场相差几层楼?(2)某会议接待员把汽车停在停车场,进入该层电梯,往上14层,又下5层,再下3层,最后上6层,你知道他最后在哪里吗?(3)某日,电梯检修,一名服务生在停车场停好汽车后,只能走楼梯,他先去客房,依次到了8楼、接待处、4楼,又回接待处,最后回到停车场,他共走了几层楼梯?【答案】(1)地面上7楼与停车场相差7层楼;(2)他最后在地面上12层;(3)他总共走了22层楼梯.【分析】本题考查有理数的加减混合运算.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.(1)层数相减,即可求出客房7楼与停车场相差层数;(2)上加下减,列式即可求出最后停的位置;(3)绝对值相加即可求出共走的层数.【解答】记地上为正,地下1楼为0.由此做此题即可.故(1)7-0=7(层).答:客房7楼与停车场相差7层楼.(2)+14-5-3+6=12(层).答:他最后停在12层.(3)8+7+3+3+1=22(层).答:他共走了22层楼梯.3.【题文】钟面上有1,2,3,…,11,12,共12个数字.(1)试在这些数前面加上正、负号,使它们的和为0;(2)在解题的过程中,你能总结出什么规律?请用文字叙述出来.【答案】(1)答案不唯一,示例:-1-2-3-4-5+6-7-8-9+10+11+12=0;(2)见解答.【分析】本题考查的是一组数的和为零,只需先算出这组数的总和,再取和的一半,在和为总和一半的几个数前面加正号,其余的数前面加负号即可.先算出1,2,3,…,11,12,这12个数的总和为78,将78÷2得出4个正数绝对值的和为39,然后在12个数中剩下8个数绝对值的和也等于39的数前面添加负号即可.【解答】(1)答案不唯一,示例:-1-2-3-4-5+6-7-8-9+10+11+12=0.(2)规律:先算出总和,再取和的一半,在和为总和一半的几个数前面加正号,其余的数前面加负号.4.【题文】问题:能否将1,2,3,4,…,10这10个数分成两组,使它们的差为5.解:1+2+3+…+10=55,要使差为5,需将这10个数分成两组,一组的和为30,另一组的和为25,然后把它们相减.下面给出一种分法,例如:(6+7+8+9)-(1+2+3+4+5+10)=5.应用:在1,2,3,4,5,6,7,8,9,10这10个数前面任意添上“+”号或“-”号.(1)能否使它们的和等于-7?若能,请给出一种分法;若不能,请说明理由.(2)能否使它们的和等于-2?若能,请给出一种分法;若不能,请说明理由.【答案】(1)能使它们的和等于-7,分法不唯一,如:1-2+3-4+5-6+7-9+8-10=-7;(2)不能,理由见解答.【分析】本题考查一组数拆分为两组得差值,只需先求出这组数的总和,将总和拆分为题目所求的差值的两组即可,需要注意的是,根据数的和的奇偶性原则,一组数的和的奇偶性是不变的.(1)1+2+3+…+10=55,要使差为-7,需将这10个数分成两组,一组的和为31,另一组的和为24,然后用24-31即可;(2)55是一个奇数,无论怎样分,结果都不可能为偶数-2.【解答】(1)能使它们的和等于-7.分法不唯一,如:1-2+3-4+5-6+7-9+8-10=-7.(2)不能.∵1+2+3+…+10=55,55是一个奇数,∴无论怎样分,结果都不可能为偶数-2.5.【答题】下列说法正确的是()A. 零减去一个数,仍得这个数B. 负数减去负数,结果是负数C. 正数减去负数,结果是正数D. 被减数一定大于差【答案】C【分析】本题考查有理数的减法,熟练掌握减法法则是解本题的关键.【解答】A.零减去一个数,得到这个数的相反数,不符合题意;B.负数减去负数,结果不一定是负数,不符合题意;C.正数减去负数,结果是正数,符合题意;D.被减数不一定大于差,不符合题意,选C.6.【答题】下列计算错误的是()A. 3–7=–4B. –8–(–8)=0C. 8–(–8)=16D. –8–8=0 【答案】D【分析】本题考查有理数的减法,熟练掌握减法法则是解本题的关键.【解答】A.3–7=–4,故本选项不符合题意;B.–8–(–8)=0,故本选项不符合题意;C.8–(–8)=8+8=16,故本选项不符合题意;D.–8–8=–16,故本选项符合题意;选D.7.【答题】在(–4)–(______)=–9中的括号里应填()A. –5B. 5C. 13D. –13【答案】B【分析】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.【解答】–4–(–9)=–4+9=5.选B.8.【答题】–5的绝对值与5的相反数的差是()A. 0B. 10C. –10D. 20【答案】B【分析】本题考查了有理数的减法.【解答】|–5|–(–5)=5+5=10.选B.9.【答题】如图是某市连续四天的天气预报图,根据图中的信息可知这四天中温差最大的是()A. 周日B. 周一C. 周二D. 周三【答案】D【分析】本题考查了有理数的减法.【解答】周日:10–(–1)=10+1=11(°C);周一:9–(–2)=9+2=11(°C);周二:11–(–1)=11+1=12(°C);周三:12–(–3)=12+3=15(°C).故这四天中温差最大的是周三.选D.10.【答题】计算:7–(–4)=______.【答案】11【分析】本题考查了有理数的减法.【解答】7–(–4)=7+4=11.故答案为11.11.【答题】比0小10的数是______;比–24大6的数是______;比9的相反数小11的数是______.【答案】–10 –18 –20【分析】本题考查了有理数的减法.【解答】比0小10的数是–10;比–24大6的数是–18;比9的相反数小11的数是–20,故答案为–10,–18,–20.12.【答题】小明同学的存折上原有640元,上午去银行取出200元,下午又存回80元,则存折现有______.【答案】520元【分析】本题考查了有理数的加法、有理数的减法,要熟练掌握,解答此题的关键是要明确:(1)同号相加,取相同符号,并把绝对值相加.(2)绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.(3)减去一个数,等于加上这个数的相反数.【解答】640–200+80=440+80=520(元).∴存折现有520元.故答案为520元.13.【答题】已知:|m–n|=n–m,|m|=4,|n|=3,则m–n=______.【答案】–7或–1【分析】本题考查有理数的减法.【解答】∵|m|=4,|n|=3,∴m=±4,n=±3,∵|m–n|=n–m,∴m–n≤0,即m≤n,∴m=–4,n=±3,当m=–4,n=3时,m–n=–7;当m=–4,n=–3时,m–n=–1;故答案为:–7或–1.14.【题文】计算:(1)2+(–8)–(–7)–5;(2)3+2+(–)–(–).【答案】(1)–4;(2)6.【分析】本题考查有理数的加减混合运算.【解答】(1)原式=2–8+7–5=9–13=–4;(2)原式=3–+2+=3+3=6.15.【题文】先列式再计算:–1减去–与的和所得差是多少?【答案】–.【分析】本题考查有理数的加减混合运算.【解答】–1–(–+)=–1–(–)=–1+=–.16.【题文】某储蓄所,某日办理了7项储蓄业务:取出9.6万元,存入5万元,取出7万元,存入12万元,存入22万元,取出10.25万元,取出2.4万元,求储蓄所该日现金增加多少万元?【答案】9.75万元.【分析】本题考查有理数的加减混合运算.【解答】(5+12+22)–(9.6+7+10.25+2.4)=39–29.25=9.75(万元).答:储蓄所该日现金增加9.75万元.17.【题文】阅读理解:数轴上线段的长度可以用线段端点表示的数进行减法运算得到,如下图,线段AB=1=0–(–1);线段BC=2=2–0;线段AC=3=2–(–1).问题:(1)数轴上点M、N代表的数分别为–9和1,则线段MN=______;(2)数轴上点E、F代表的数分别为–6和–3,则线段EF=______;(3)数轴上的两个点之间的距离为5,其中一个点表示的数为2,则另一个点表示的数为m,求m的值.【答案】(1)10;(2)3;(3)–3或7.【分析】本题考查有理数的减法运算以及数轴上两点间的距离.【解答】(1)∵点M、N代表的数分别为–9和1,∴线段MN=1–(–9)=10;故答案为10;(2)∵点E、F代表的数分别为–6和–3,∴线段EF=–3–(–6)=3;故答案为3;(3)由题可得,|m–2|=5,解得m=–3或7,∴m的值为–3或7.18.【答题】计算:﹣2+(﹣3)=______.【答案】﹣5【分析】本题考查了有理数加法的应用,注意:同号两数相加,取原来的符号,并把绝对值相加.【解答】(﹣2)+(﹣3)=﹣5.19.【答题】计算的结果是()A. -1B.C. 1D. 2【答案】A【分析】本题考查有理数的减法.根据“减去一个数,等于加上这个数的相反数”的有理数的减法计算即可.【解答】.20.【答题】下面的数中,与﹣2的和为0的是()A. 2B. -2C.D.【答案】A【分析】本题考查有理数的加法.【解答】设这个数为x,由题意得:x+(﹣2)=0,x=2.。
苏科版七年级数学上册第二章 有理数 单元测试卷5套卷
17.(1)0 (2) 1 61 (3)一 4(4) 41
64
6
18.解:故 a b c 3 1 . 3
19.解:如答图所示.
20.解:[5 一(一 2)]÷6×1= 7 ≈1.17(千米). 6
21.解:6×2+5×0 一 4×2=4(分),所以七年级(5)班得 4 分.
22.解 l(1)小虫最后回到了出发点 O (2)小虫距离出发点 O 最远是 16 cm.
23. 2008 2009
第二章 有理数 单元测试卷
(时间:90 分钟 满分:100 分)
一、选择题(每题 2 分,共 16 分)
1.-0.2 的倒数是
A.0.2
B.5
C.-0.2
2.下列式子的结果是负数的是
A. 3
B.-(-3)
C.(-3)2
D.-5
()
()
D.-(-1)2021
3.下列计算正确的是 A.0-(-8)=- 8
()
A.一 3 B.3 C.一 10 D.10
5. a 与 一 2 互 为 相 反 数 , 那 么 a 等 于
()
A.一 2
B.2
C. 1 2
6.若 a a ,则 a 一定是
D. 1 2
()
A.正数
B.负数
C.非负数
7.4.7 ( 8.9) 7.5+( 6)的值等于
A.12.1
B.0.1
9. 1 的绝对值是_________. 4
10.如果运进粮食 200 t 记作+200 t,那么-80 t 表示______________.
11.数轴上到原点的距离为 2 3 的点所表示的数为________. 4
数学七年级上册苏科版第二章有理数单元测试
∵ a< b,
∴ a=﹣ 4, b=±2, ∴ a﹣ b=﹣4﹣ 2=﹣ 6,
或 a﹣ b=﹣ 4﹣(﹣ 2)=﹣ 4+2=﹣2, 所以, a﹣ b 的值为﹣ 2 或﹣ 6.
【考点】 有理数的减法 【解析】 【分析】根据绝对值的性质求出
a、 b,再判断出 a、 b 的对应情况,然后根据有理数的减法运算法则进
故选 B. 【分析】正数和负数是两种相反意义的量,如果向北走
3m,记作 +3m,即可得出﹣ 10m 的意义.
二、填空题
11、 【答案】 2 或 0 【考点】 有理数的混合运算
【解析】 【解答】解:∵ |a|=1 ,|b|=2 , |c|=3 , ∴ a=±1, b=±2, c=±3,
∵ a> b> c, ∴ a=﹣ 1, b=﹣ 2, c=﹣ 3 或 a=1, b=﹣ 2, c=﹣ 3,
故答案为﹣ ; 2.
【分析】分别根据倒数的定义以及绝对值的意义即可得到答案.
15、 【答案】 4 【考点】 有理数的减法
【解析】 【解答】解: 1﹣(﹣ 3)
=1+3
=4. 故答案为: 4. 【分析】根据有理数的减法法则,求出
1﹣(﹣ 3)的值是多少即可.
16、 【答案】 ﹣ 2m 【考点】 正数和负数
【解析】 【解答】解:高于正常水位记作正,那么低于正常水位记作负.低于正常水位 故答案为:﹣ 2m
【分析】弄清楚规定,根据规定记数低于正常水位
2m .
17、 【答案】 5 或﹣ 3 【考点】 绝对值
【解析】 【解答】解:∵ |a ﹣1|=4 , ∴ a﹣ 1=4 或 a﹣ 1=﹣4, 解得: a=5 或 a=﹣ 3.
则 a+b﹣ c=2 或 0. 故答案为: 2 或 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科版七年级数学上册第二章 有理数 单元检测卷
一、选择题
1.如果收入200元记作+200元,那么支出150元记作 ( )
A .+150元
B .-150元
C .+50元
D .-50元
2.若两个非零有理数互为相反数,则下列说法错误的是 ( )
A .这两个有理数的和一定为零
B .这两个有理数的差一定为正数
C .这两个有理数的积一定为负数
D .这两个有理数的商一定为-1
3.下列四个数中,在-2到0之间的数是 ( )
A .-1
B .1
C .-3
D .3
4.下列说法中正确的是( )
A.不带“-”的数都是正数
B.不存在既不是正数,也不是负数的数
C.如果是正数,那么一定是负数
D.表示没有温度
5.下列计算:①0-(-5)=-5;②(-3)+(-9)=-12;③393342
⎛⎫⨯−=− ⎪⎝⎭; ④(-36)÷(-9)=-4.其中正确的个数是 ( )
A .1个
B .2个
C .3个
D .4个
6.这步运算运用了( ) A.加法结合律 B.乘法结合律 C.乘法交换律
D.乘法分配律 7.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨.把数3120000用科学记数法表示为 ( )
A .3.12×105
B .3.12×106
C .31.2×105
D .0.312×107
8.如图,数轴上A 、B 两点所表示的两数的 ( )
a a −0C ︒,4
51021)245321121(6−+−=+−⨯−
A.和为正数B.和为负数C.积为正数D.积为负数
9.吋是电视机常用规格之一,1吋约为拇指上面一节的长,则8吋长相当于( ) A.课本的宽度B.课桌的宽度
C.黑板的高度D.粉笔的长度
10.学校为了改善办学条件,从银行贷款100万元,盖起了实验大楼,贷款年息为12%,房屋折旧每年2%,学校约1400名学生,仅贷款付息和房屋折旧两项,每个学生每年承受的实验费用为( )
A、约104元;
B、1000元
C、100元
D、约21.4元
二、填空题
11.若一运动员某次跳水的最高点离跳台2m,记作+2m,则水面离跳台10m可以记作_______。
12.绝对值为5的有理数是_______.
13.比较大小:(1)-7
8
_______-
6
7
;(2)-(-3)_______-3−.
14.在数轴上,-4与-6之间的距离是_______个单位长度.
15.如果x<0,且x2=36,那么x=_______.
16.数轴上的一点由+3出发,向左移动4个单位,又向右移动了5个单位,两次移动后,这一点所表示的数是
17.观察下列各式:
152=1×(1+1)×100+52=225;252=2×(2+1)×100+52=625;352=3×(3+1)×100+52=1225;……依此规律,第n个等式(n为正整数)为_______.
18.如图所示,数轴上标出若干个点,每相邻两点相距一个单位长度,点A,B,C,D对
应的数分别是数a ,b ,c ,d ,且d-2a=10,那么数轴的原点应是_______
三、解答题
19.计算下列各题:
(1)1-1÷
14×4; (2)12124234⎛⎫−+−+− ⎪⎝⎭;
(3)
12112334⎛⎫⎛⎫⎛⎫+−−−++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
(4) |-6
83+221|+(-887)+|-3-2
1|.
20.在数轴上画出表示下列各数的点,并用“<”号把这些数连接起来:
()()101213,3,0,2, 1.5,12⎛⎫+−−−−−−− ⎪⎝⎭
.
D
21.小王和小张在玩“24”点游戏,他们互相抽出对方四张牌,要求根据牌上的数字凑成“24”(每张牌只能用一次,可以用加、减、乘、除等运算).他们互抽对方的牌如下:①黑桃1,方块2,红桃3,黑桃3;②方块1,草花3,草花7和红桃12.请你帮他们各写出两个算式,使运算结果为24.
①算式一:
算式二:
②算式一:
算式二:
22.商场为了促销,推出两种促销方式:
方式一:所有商品打7.5折销售:
方式二:一次购物满200元送60元现金.
(1)杨老师要购买标价为628元和788元的商品各一件,现有四种购买方案:方案一:628元和788元的商品均按促销方式①购买;
方案二:628元的商品按促销方式①购买,788元的商品按促销方式②购买;
方案三:628元的商品按促销方式②购买,788元的商品按促销方式①购买;
方案四:628元和788元的商品均按促销方式②购买.
你给杨老师提出的最合理购买方案是.
(2)通过计算下表中标价在600元到800元之间商品的付款金额,你总结出商品的购买规律是.
23.如图,
(1)以30为一个单位长度建立数轴,则图中点A、B、C分别表示数______________;
(2)在一段笔直的东西大道上从西往东依次有A、B、C、D、E五个站点,它们相邻两
站之间的距离依次为34千米、49千米、40千米和27千米.又知在A、E两站的中点处,路边建有一个加油站.请你以加油站为原点,以正东为正方向,以20千米为一个单位长度建立数轴,并分别标出这A、B、C、D、E五个站点的位置.
24.结合数轴与绝对值的知识回答下列问题:
(1)数轴上表示4和1的两点之间的距离是_______;表示-3和2两点之间的距离是_______.一般地,数轴上表示数m 和数n 的两点之间的距离等于m n −如果表示数a 和-2的两点之间的距离是3,那么a =_______.
(2)若数轴上表示数n 的点位于-4与2之间,求42a a ++−的值.
(3)当a 取何值时,514a a a ++−+−的值最小,最小值是多少?请说明理由.。