如何确定函数的解析式
初中求函数解析式的四种常用方法
初中求函数解析式的四种常用方法
嘿,同学们!今天咱就来讲讲初中求函数解析式的四种常用方法,这可超级重要,一定要认真听哦!
第一种方法就是待定系数法啦!比如说有个一次函数,它过点(1,2)和(3,4),那咱就可以设这个函数解析式是 y=kx+b,然后把这两个点代进去,不就可以求出 k 和 b 的值啦,很神奇吧!你看,用这个方法是不是一下子
就能把函数解析式给确定下来啦!
再来说说第二种,那就是根据函数图像来求呀!如果给你一幅函数图像,哇,那里面藏着好多信息呢。
就像探险一样,从图像上找出关键的点,然后利用这些点来确定函数解析式。
好比说,图像上有个最高点或者最低点,嘿,那可是宝藏信息呀!你能放过吗?肯定不能呀!
第三种方法也超有意思,就是根据实际问题来建立函数模型。
比如说,
你去买文具,一支笔 2 块钱,那买 x 支笔的总价 y 不就是 y=2x 嘛!是不
是很简单,但又很实用呢!这不就跟咱们生活联系起来啦,多有意思呀!
最后一种呢,就是通过已知函数的性质来求了。
比如说已知一个函数是偶函数,那它就有特别的性质哦,利用这些性质就能求出解析式啦。
哎呀,这四种方法真的是各有各的奇妙之处呀!就像武林秘籍里的不同招式,学会了它们,对付函数解析式的问题那就是小菜一碟啦!同学们,一定要好好掌握呀,这样在数学的世界里才能游刃有余呢!
我的观点结论就是:这四种求函数解析式的方法很重要,掌握好它们,对我们初中数学的学习有极大的帮助,相信你们一定可以的!加油!。
函数解析式的求解及常用方法
函数解析式的求解及常用方法
1.直接法:当函数的表达式比较简单时,可以通过观察函数在一些特定点上的值来找到函数的解析式。
例如,给定函数的函数值和定义域,通过观察函数的值与自变量之间的关系来确定函数的解析式。
2. 反函数法:对于一些特殊函数,可以通过求解函数的反函数来得到函数的解析式。
例如,对于幂函数y=x^n,可以通过求解其反函数
y=\sqrt[n]{x}来得到幂函数的解析式。
3.已知条件法:对于一些已知条件,可以通过利用这些条件来求解函数的解析式。
例如,已知函数的导函数或者积分表达式,可以利用这些条件来求解函数的解析式。
4.递归法:有些函数可以通过递归的方式来定义,即函数的值依赖于前面的函数值。
例如,斐波那契数列就是通过递归来定义的,可以通过递归的方式来求解函数的解析式。
5.求导和积分法:对于一些函数,可以通过求导和积分的方式来求解函数的解析式。
特别是对于一些常见的函数,可以通过求导和积分的规则来求解函数的解析式。
以上是常用的函数解析式求解方法,不同函数的特点和已知条件可能需要采用不同的方法来求解函数的解析式。
在实际问题中,需要根据具体情况选择合适的方法来求解函数的解析式。
考点02 求函数解析式的3种方法(解析版)
专题二 函数考点2 求函数解析式的3种方法【方法点拨】求函数解析式的常用方法1. 待定系数法:已知函数的类型,利用所给条件,列出方程或方程组,用待定系数法确定系数.2. 配凑法或换元法:已知复合函数f[g(x)]=F(x)的解析式,把F(x)配凑成关于g(x)的表达式,再用x 代替g(x),称为配凑法;或者,直接令g(x)=t ,解方程把x 表示成关于t 的函数,再代回,称为换元法,此时要注意新元t 的取值范围.3解方程组法(或赋值法):已知关于f(x)与f(1/x)或f(-x)的表达式,可通过对自变量的不同赋值构造出不同的等式通过解方程组求出f(x).【高考模拟】1.已知()f x 是偶函数,且当0x >时,2()f x x x =-,则当0x <时,()f x 的解析式为( ) A .2()f x x x =-B .2()f x x x =--C .2()f x x x =+D .2()f x x x =-+【答案】C【分析】利用()f x 是偶函数,()()f x f x -=,当0x <,()2f x x x -=+,即可求得答案 【解析】设0x <,则0x ->,当0x >时,()2f x x x =- ()2f x x x ∴-=+,()f x 是偶函数,则()()f x f x -=()2f x x x ∴=+ ()0x <故选C【点睛】本题主要考查了利用函数的奇偶性求函数的解析式,掌握解题方法,较为简单.2.已知幂函数()f x 的图象经过点()327,,则()f x 的解析式()f x =( ).A .3xB .3xC .9xD .3log x【答案】A【分析】 设幂函数解析式为()f x x α= ,将点()327,代入即可求解. 【解析】设幂函数为()f x x α= 函数经过点(3,27),273α∴= 解得3α=故()f x 的解析式()3f x x = 故选A【点睛】本题考查幂函数解析式的确定,是基础题;解题时需要认真审题,准确代入数值.3.若函数2()1x a f x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为( ). A .2()1x f x x =-+ B .2()1x f x x =+ C .21()1x f x x +=+ D .2()1x f x x x =++ 【答案】B【解析】【分析】由奇函数得()()f x f x -=-,代入后求出解析式【解析】函数()21x a f x x bx +=++在[]1,1-上是奇函数 ()()f x f x ∴-=-,即()()00f f -=-,()00f =,001a a ==, 即()21x f x x bx =++()()11f f -=-,1122b b -=--+ 解得0b =则()21x f x x =+ 故选B【点睛】 本题考查了函数奇偶性的运用,当奇函数定义域取到零时有()00f =,然后再赋值法求出解析式,较为基础。
确定一次函数解析式的五种方法
五种类型一次函数解析式的确定确定一次函数的解析式,是一次函数学习的重要内容。
下面就确定一次函数的解析式的题型作如下的归纳,供同学们学习时参考。
一、根据直线的解析式和图像上一个点的坐标,确定函数的解析式例1、若函数y=3x+b经过点(2,-6),求函数的解析式。
分析:因为,函数y=3x+b经过点(2,-6),所以,点的坐标一定满足函数的关系式,所以,只需把x=2,y=-6代入解析式中,就可以求出b的值。
函数的解析式就确定出来了。
解:因为,函数y=3x+b经过点(2,-6),所以,把x=2,y=-6代入解析式中,得:-6=3×2+b,解得:b=-12,所以,函数的解析式是:y=3x-12.二、根据直线经过两个点的坐标,确定函数的解析式例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),求函数的表达式。
分析:把点的坐标分别代入函数的表达式,用含k的代数式分别表示b,因为b是同一个,这样建立起一个关于k的一元一次方程,这样就可以把k的值求出来,然后,就转化成例1的问题了。
解:因为,直线y=kx+b的图像经过A(3,4)和点B(2,7),所以,4=3k+b,7=2k+b,所以,b=4-3k,b=7-2k,所以,4-3k=7-2k,解得:k=-3,所以,函数变为:y=-3x+b,把x=3,y=4代入上式中,得:4=-3×3+b,解得:b=13,所以,一次函数的解析式为:y=-3x+13。
三、根据函数的图像,确定函数的解析式例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。
分析:根据图形是线段,是直线上的一部分,所以,我们可以确定油箱里所剩油y(升)是行驶时间x(小时)的一次函数,明白这些后,就可以利用设函数解析式的方法去求函数的解析式。
解:因为,函数的图像是直线,所以,油箱里所剩油y(升)是行驶时间x(小时)的一次函数,设:一次函数的表达式为:y=kx+b,因为,图像经过点A(0,40),B(8,0),所以,把x=0,y=40,x=8,y=0,分别代入y=kx+b中,得:40=k×0+b,0=8k+b解得:k=-5,b=40,所以,一次函数的表达式为:y=-5x+40。
函数解析式求解常用的方法
函数解析式求解常用的方法1. 根据已知点的坐标求解:这是最常见的方法之一,假设已知函数通过点(x1, y1)、(x2, y2)、(x3, y3)等,可以根据这些点的坐标关系列出方程组,然后通过求解方程组的方法得到函数解析式。
例如,已知函数通过点(1, 3)和(2, 5),可以列出方程y=mx+b,然后代入已知点的坐标求解出m和b的值,从而得到函数的解析式。
2. 根据已知函数特点求解:有些函数具有特定的性质和规律,可以通过观察和推导来求解函数解析式。
例如,对于线性函数y=kx+b,可以通过观察斜率k和截距b的特点来确定函数的解析式。
类似地,对于二次函数、指数函数、对数函数等,也可以通过观察其特点来求解函数解析式。
3. 根据函数的定义域和值域求解:定义域是指函数的自变量的取值范围,值域是指函数的因变量的取值范围。
通过分析函数的定义域和值域的特点,可以得到函数解析式的一些限制条件。
例如,对于反三角函数y=sin^(-1)x,其定义域为[-1, 1],值域为[-π/2,π/2],因此函数的解析式必须满足这些条件。
4.根据已知函数的导数求解:导数是函数在其中一点的变化率,通过求解函数的导数可以得到函数的变化趋势和特点。
对于已知函数的导数,可以通过积分的方法求解出函数的解析式。
例如,对于导数为f'(x)的函数f(x),可以通过积分来求解出函数f(x)的解析式。
这是一种比较常用的方法,尤其对于复杂的函数,通过求导和求积分可以得到函数的解析式。
总之,求解函数解析式的方法有很多种,根据不同的函数特点和已知条件选择合适的方法可以更快地得到函数的解析式。
在实际应用中,还可以结合数值计算和图形分析等方法来求解函数解析式,以便更加全面地了解函数的性质和特点。
【高中数学】三角函数中根据图象求解析式的几种方法
【高中数学】三角函数中根据图象求解析式的几种方法已知函数y =Asin(ωx+φ)+k(A >0,ω>0)的部分图象,求其解析式,与用“五点法”作函数y =Asin(ωx+φ)+k的图象有着密切联系,最主要的是看图象上的“关键点”与“特殊点”.本文就一般情况例析如下.一、A 值的确定方法:A 等于图象中最高点的纵坐标减去最低点的纵坐标所得差的一半.二、 ω值的确定方法:方法1.在一个周期内的五个“关键点”中,若任知其中两点的横坐标,则可先求出周期T,然后据ω=Tπ2求得ω的值. 方法2:“特殊点坐标法”。
特殊点包括曲线与坐标轴的交点、最高点和最低点等。
在求出了A 与φ的值之后,可由特殊点的坐标来确定ω的值.三、 φ值的确定方法:方法1:“关键点对等法”.确定了ω的值之后,把已知图象上五个关键点之一的横坐标代人ωx+φ,它应与曲线y=sinx 上对应五点之一的横坐标相等,由此可求得φ的值.此法最主要的是找准“对等的关键点”,我们知道曲线y =sinx 在区间[0,2π]上的第一至第五个关键点的横坐标依次为0、2π、π、23π、2π,若设所给图象与曲线y=sinx 上对应五点的横坐标为x J (J =1,2,3,4,5), 则顺次有ωx 1+φ=0、 ωx 2+φ=2π、ωx 3+φ=π、ωx 4+φ=23π、ωx 5+φ=2π,由此可求出φ的值。
方法2:“筛选选项法”,对于选择题,可根据图象的平移方向经过筛选选项来确定φ的值.方法3:“特殊点坐标法”.(与2中的方法2类同).四、 k 值的确定方法: K 等于图象向上或向下平移的长度,图象上移时k 为正值,下移时k 为负值.另外A 、ω、φ的值还可以通过“解方程(组)法”来求得. 例1.图1是函数y=2sin (ωx+φ)(ω>0,φ≤2π)的图象,那么正确的是( )A.ω=1110, φ=6π B.ω=1110, φ=-6π C.ω=2,φ=6π D.ω=2,φ=-6π, 解:可用“筛选选项法”.题设图象可看作由y =2sin ωx 的图象向左平移而得到,所以φ>0排除B 和D ,由A,C 知φ=6π;ω值的确定可用“关键点对等法”, 图1因点(1211π,0)是“五点法”中的第五个点,∴ω·1211π+6π=2π 解得ω=2, 故选C .例2.图2是函数y =Asin(ωx+φ)图象上的一段,(A >0,ω>0,φ∈(0,2π)),求该函数的解析式.解法一:观察图象易得A =2,∴T =2×(87π-83π)=π,∴ω=ππ2=2. ∴y =2sin(2x+φ).下面用“关键点对等法”来求出 图2φ的值,由2×83π+φ=π(用“第三点”) 得φ=4π∴所求函数解析式为y =2sin(2x+4π).说明:若用“第二点”,可由2×8π +φ=2π求得φ的值;若用“第五点”,可由2×87π+φ=2π求得φ的值.解法二:由解法一得到T= π,ω=2后,可用“解方程组法”求得φ与A 的值,∵点(0,2)及点(83π,0)在图象上, ∴ Asin φ=2 (1)1211π1211πxy0 2-XY 2Asin(2×83π+φ)=0 (2) 由(2)得 φ=k π-43π(k ∈Z), 又φ∈(0,2π), ∴只有K =1,得φ=4π, 代人(1)得A =2.∴所求函数解析式为 y =2sin(2x+4π).例3.已知函数y =Asin(ωx+φ) (A >0,ω>0, φ<2π)图象上的一部分如图3所示,则必定有( )(A) A=-2 (B )ω=1 (C )φ=3π(D )K =-2解:观察图象可知 A =2,k =2. ∴y =2sin(ωx+φ)+2 下面用“解方程组法”求φ与ω的值.∵ 图象过点(0,2+3)、(-6π,2) ∴ 2+3=2sin φ+2 图32=2sin(-6πω+φ)+2解得ω=2,φ=3π故选C.例4.如图4给出了函数y =Asin(ωx+φ)(A >0,ω>0, φ <2π)图象的一段,求这个函数的解析式.解:由图象可知 T=2×(4-1)=6,∴ω=62π=3π,∴y =2sin (3πx +φ)下面用“特殊点坐标法”求φ,∵ 图象过点(1,2)∴2=2sin(3π×1+φ), 又 φ <2π图4x2+3y0 4 6π-20 1 4 2xy∴只有φ=6π∴所求函数解析式为y =2sin(3πx +6π).说明:本题φ的值也可由“关键点对等法”来求得,如令3π×1+φ=2π 或3π×4+φ=23π等均可求得φ的值.。
如何求函数的解析式
细谈函数的解析式江苏 袁军求函数的解析式是函数中比较重要的一类题型,如何去求函数的解析式,下面就求函数的解析式的三种方法举例讲解,希望对同学们的学习有所帮助。
一.代入法求函数的解析式已知()f x 的解析式,求(())f g x 的解析式通常用代入法解决。
例1. 已知()43f x x =+,求(32)f x +的解析式。
分析:本题将“32x +”看成x ,代入即可.解:本题用代入法,可以将32x +看成是()f x 中的x ,直接代入即可解决(32)4(32)31211f x x x +=++=+。
随堂训练1.已知21()x f x x +=(0)x ≠,求(1)f x +的解析式。
答案:23(1)1x f x x ++=+(1)x ≠-。
提示:本题容易忽视定义域。
二.换元法求函数的解析式已知(())f g x 的解析式,求()f x 的解析式常用换元法解决。
例2. 已知2(21)32f x x x +=++,求()f x 的解析式。
分析:本题利用换元法来解决.解:由已知2(21)32f x x x +=++,令21t x =+,则12t x -=,∴,23()44x f x x =++。
点评:本种类型的问题还可以用“拼凑法”解决,比如本题还可以这样解决:∵2(21)32f x x x +=++,将232x x ++凑成21x +的形式,然后用x 替换21x +即可。
∵213(21)(441)2144f x x x x +=+++++,∴23()44x f x x =++。
随堂训练2.已知2211(),11xx f x x --=++求()f x 的解析式. 答案:22().1x f x x =+提示:用换元法解决.三.待定系数法求函数的解析式对有些给出函数的特征,求函数的解析式可用待定系数法。
例3. 若()f x 是一次函数,且[]()44f f x x =+;求()f x 的解析式.分析:因为()f x 是一次函数,所以设出()f x 的解析式用代入法解决即可.解:设()(0),f x kx b k =+≠则[]2()().f f x kf x b k kb b =+=++∴244,k x kb b x ++=+比较系数有24,4,k kb b ⎧=⎨+=⎩解得2,4,3k b =⎧⎪⎨=⎪⎩或2,4,k b =-⎧⎨=-⎩ ∴4()23f x x =+或()2 4.f x x =--点评:本题利用()f x 是一次函数,将()f x 的解析式设出,从而代入根据待定系数法的原理从而求出参数的值.随堂训练3.若[]{}()2726,f f f x x =+求一次函数()f x 的解析式.答案:()3 2.f x x =+四.用消去法求函数的解析式对已知()f x 及与()f x 相关的代数式可用消去法解决例4. 如果函数()f x 满足()2()3,f x f x x +-=求()f x .分析:将()f x 和()f x -看成是两个未知数,采用解方程组的思想去求()f x 的表达式. 解:设()f x 的定义域为C ,由()2()3,f x f x x +-=知:,,x C x C ∈-∈则将原式中的x 换成x -,原式任然成立,即有()2()3,f x f x x -+=-与原式联立,得:()2()3,()2()3,f x f x x f x f x x +-=⎧⎨-+=-⎩解得()3.f x x =- 点评:本题利用了方程的思想,将()f x 和()f x -视为两个未知数,采用解方程组的方法消去()f x -,而得到()f x 的解析式.随堂训练4.设函数()f x 满足214()()15(,0),f x f x x R x x -=∈≠求()f x 的解析式. 答案:221()4f x x x =+.求一个函数的解析式,关键是弄清和找出对接受法则的对象实施怎样的运算.以上各题中,我们使用的方法可以总结为①代入法;②换元法;③待定系数法;④消去法,这些都是求函数解析式的常用方法,今后随着学习的深入,还会学习其它方法,要注意随时总结,灵活运用.。
函数解析式的七种求法
一)求函数的解析式1、函数的解析式表示函数与自变量之间的一种对应关系,就是函数与自变量建立联系的一座桥梁,其一般形式就是y =f(x),不能把它写成f(x,y)=0;2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形;3、求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y 。
(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;(3)换元法:若给出了复合函数f [g(x)]的表达式,求f(x)的表达式时可以令t =g(x),以换元法解之;(4)构造方程组法:若给出f(x)与f(-x),或f(x)与f(1/x)的一个方程,则可以x 代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y 的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。
(二)求函数定义域1、函数定义域就是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型就是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y =f [g(x)]的定义域的求解,应先由y =f(u)求出u 的范围,即g(x)的范围,再从中解出x 的范围I1;再由g(x)求出y =g(x)的定义域I2,I1与I2的交集即为复合函数的定义域;5、分段函数的定义域就是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;(三)求函数的值域1、函数的值域即为函数值的集合,一般由定义域与对应法则确定,常用集合或区间来表示;2、在函数f:A→B 中,集合B 未必就就是该函数的值域,若记该函数的值域为C,则C 就是B 的子集;若C =B,那么该函数作为映射我们称为“满射”;3、分段函数的值域就是各个区间上值域的并集;4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;6、求函数值域的方法十分丰富,应注意总结函 数 解 析 式 的 七 种 求 法一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。
代入系数法求函数解析式
代入系数法求函数解析式1.引言1.1 概述函数解析式是数学中的重要概念,可以用来描述函数的数学性质和规律。
在实际问题的求解过程中,我们常常需要根据已知条件来确定函数的解析式,以便进行进一步的分析和计算。
代入系数法是一种常用的方法,用于求解函数的解析式。
该方法的基本原理是利用已知的条件和方程等式,将待求的函数解析式代入其中,通过确定待求函数的系数,进而得到函数的具体表达式。
代入系数法在数学领域有着广泛的应用场景。
例如,在求解特定的数值问题中,常常需要通过已知数据和条件,推导出数学模型,并进一步根据这些模型求解未知数值。
其中,代入系数法可以帮助我们通过已知条件和方程,得到其他未知变量之间的关系,从而求解出未知数值。
值得一提的是,代入系数法具有一定的优点和缺点。
优点是它相对简单易行,适用于各种数学问题的求解,尤其在计算复杂的函数解析式时表现突出。
缺点是在问题较为复杂时,需要进行多次代入和计算,可能会增加计算的难度和复杂度。
尽管如此,代入系数法在函数解析式求解中具有广阔的应用前景。
它可以帮助我们建立数学模型,解决实际问题,并在科学研究和工程领域中发挥重要作用。
通过将已知条件代入方程,进行系数的确定,我们能够得到更加精确和准确的函数解析式,从而为问题的研究和分析提供更加坚实的基础。
总之,代入系数法是一种有效的求解函数解析式的方法。
它在数学领域有着广泛的应用,并具有良好的应用前景。
在进一步研究和应用中,我们需要充分理解代入系数法的基本原理和应用场景,以更好地运用它解决实际问题。
1.2文章结构文章结构部分的内容:本文主要分为引言、正文和结论三个部分。
引言部分概述了文章的内容和目的。
其中概述部分将介绍代入系数法的基本原理以及其在函数解析式求解中的应用场景。
文章结构部分将对整篇文章的框架进行介绍,以帮助读者了解本文的组织结构。
正文部分将详细阐述代入系数法的基本原理和工作原理。
首先,将介绍代入系数法的定义和具体步骤,包括如何代入系数、如何求解方程等内容。
求函数解析式的六种常用方法
求函数解析式的六种常用方法函数解析式指的是用代数式或公式来表示函数的方式。
以下是六种常用方法:一、明确函数定义域和值域在确定函数解析式之前,首先需要明确函数的定义域和值域。
函数的定义域是指函数可以取值的自变量的范围,而值域则是函数的函数值可以取的范围。
明确函数的定义域和值域可以帮助我们确定函数解析式的形式和特点。
二、利用已知条件和性质确定函数解析式在求函数解析式时,可以利用已知条件和性质来确定函数解析式的形式。
例如,已知函数的导函数,可以通过求导的逆运算确定原函数的解析式。
又如,已知函数的周期性质,可以利用周期性质来确定函数解析式的形式。
三、从实际问题中建立函数关系函数解析式可以从实际问题中建立起来。
在解决实际问题时,可以首先建立自变量和函数值之间的关系,然后根据问题中给出的条件来确定函数解析式。
例如,求解经济学中的需求函数、生长模型等。
四、利用已知函数的性质和运算建立函数解析式在求函数解析式时,可以利用已知函数的性质和运算来建立函数解析式。
例如,可以利用已知函数的线性性质、对称性质、指数性质等来建立函数解析式。
又如,可以利用已知函数的运算性质,如加减乘除、复合等来建立函数解析式。
五、利用恒等式和方程组建立函数解析式在求解一些复杂的函数问题时,可以利用恒等式和方程组来建立函数解析式。
通过列方程并求解,可以得到函数解析式中的一些未知系数。
例如,可以通过建立差分方程求解离散函数的解析式。
六、利用已知函数的级数展开建立函数解析式在求解一些函数的解析式时,可以利用已知函数的级数展开式来建立函数解析式。
通过逐项求和,可以得到函数解析式的形式。
例如,可以利用幂级数展开来确定一些特殊函数的解析式。
求函数f(x)的解析式
二、【配凑法(整体代换法)】
把形如f(g(x))内的g(x)当做整体,在解析式的右端整理成只含 有g(x)的形式,再把g(x)用x代替。 一般的利用完全平方公式
例二:已知
f
(x
1) x
x2
1 x2
(x
0)
,求f(x)的解析式
解: f (x 1) (x 1)2 2
ax 5a ab[a(2axx1b7) b] b a3x a2b ab b 8x 7
a b 故f ( Fra bibliotekx)72 2xaa327b8ab
b
7则ba
2 1
故f (x) 2x 1
求函数解析式的题型有:
解:令 t x 1,则 t 1 ,x (t 1)2
Q f ( x 1) x 2 x
f (t) (t 1)2 2(t 1) t 2 1,
f (x) x 2 1 (x 1)
f (x 1) (x 1)2 1 x2 2x (x 0)
求f (x)的解析式。
1、解:2设、f (解x): a设x f
b((xa)0a),x则f
b(a
(x 1)
0),则
a(x 1)
b,
f
(
x
1)
a(
x
1)
b,
3 f (x f1{) f [2ff ((xx)]}1) 3f[{a(fx[a1x) bb]]}2[af(x{a(1a) xb] b) b}
ab b 3
函数解析式的求法
函数解析式的求法1.待定系数法例1.求一次函数y=f(x)解析式,使f(f(x))=4x+3.解:设f(x)=ax+b(a≠0).∴f(f(x))==af(x)+b=a(ax+b)+b=a^2x+ab+b∴a^2x+ab+b=4x+3∴a^2=4,ab+b=3解得a=2,b=1或a=-2,b=-3.∴f(x)=2x+1或f(x)=-2x-3.总结:当已知函数类型时,求函数解析式,常用待定系数法。
其基本步骤:设出函数的一般式,代入已知条件通过解方程(组)确定未知系数。
2.换元法换元法就是引进一个或几个新的变量来替换原来的某些量的解题方法,它的目的是化繁为简、化难为易,以快速的实现从未知向已知的转换,从而达到顺利解题的目的。
常见换元法是多种多样的,如局部换元、整体换元、分母换元、平均换元等,应用极为广泛。
例2.已知f(1-√x)=x.求f(x).解:设1-√x=t,则x=(1-t)^2∵x≥0,∴t≤1,∴f(t)=(1-t)^2(t≤1)∴f(x)=(1-x)^2(x≤1)(函数变量的无关性)总结:(1)利用换元法解题时,要注意在换元时易引起定义域的变化,所以最后的结果要注意所求函数的定义域。
(2)函数变量的无关性,变量无论是用x还是用t表示,都无关紧要,函数依然成立。
3.配凑法例3.已知f(3x+1)=9x^2-6x+5,求f(x).解:∵f(3x+1)=9x^2-6x+5=(3x+1)^2-12x+4=(3x+1)^2-4(3x+1)+8∴f(x)=x^2-4x+8总结:当已知函数表达式比较简单时,可直接应用配凑法,即根据具体的解析式凑出复合变量的形式,从而求出函数解析式。
4.消元法(又叫解方程组法)例4.已知函数f(x)满足条件:f(x)+2f(1/x)=x,求f(x).分析:用1/x代替条件方程中的x得:f(1/x)+2f(x)=1/x.把它与原条件式联立。
用消元法消去f(1/x),即得f(x)的解析式。
求函数解析式的四种常用方法
求函数解析式的四种常用方法函数是数学中的重要概念,它描述了变量之间的关系。
函数解析式是用代数表达式来表示函数的定义域、值域和具体的变化规律。
常用的四种方法来得到函数的解析式是:通过公式、通过图像、通过数据和通过给定条件。
一、通过公式:一些函数的解析式可以通过简单的数学公式来得到。
例如,直线函数y = kx + b、二次函数y = ax^2 + bx + c以及指数函数y = a^x等。
这些函数可以根据已知的系数和常数来确定解析式。
例如,对于直线函数y = 2x + 3,我们可以知道它的斜率是2,截距是3,因此解析式为y = 2x + 3二、通过图像:函数的解析式可以通过观察图像来确定。
例如,可以根据函数的特点,如对称性、切线的斜率等,来确定解析式。
对于一元函数来说,可以通过绘制函数的图像来判断函数的特点,从而得到函数的解析式。
例如,对于一次函数来说,可以通过观察图像的直线特点来确定解析式;对于二次函数来说,可以根据开口方向、抛物线的顶点位置等来确定解析式。
三、通过数据:有时候可以通过给定的数值表格或函数的值来确定函数的解析式。
通过列举一组合适的输入和输出值,然后观察数值的规律,可以找到函数的解析式。
例如,已知函数的自变量为x,函数的值为y,通过给定一些具体的x和对应的y值,可以通过观察它们之间的关系来确定函数的解析式。
四、通过给定条件:在一些具体的问题中,函数的解析式可以通过给定的条件来确定。
例如,在几何问题中,根据给定的几何条件和函数的特性,可以建立函数的解析式。
例如,根据直线过点的条件和斜率的特性,可以确定直线的解析式。
综上所述,函数解析式的四种常用方法是通过公式、通过图像、通过数据和通过给定条件。
通过这些方法,可以确定函数的解析式,进而研究函数的性质和变化规律,以及解决一些实际问题。
确定一次函数解析式的五种方法
五种类型一次函数解析式的确定确定一次函数的解析式,是一次函数学习的重要内容。
下面就确定一次函数的解析式的题型作如下的归纳,供同学们学习时参考。
一、根据直线的解析式和图像上一个点的坐标,确定函数的解析式例1、若函数y=3x+b经过点(2,-6),求函数的解析式。
分析:因为,函数y=3x+b经过点(2,-6),所以,点的坐标一定满足函数的关系式,所以,只需把x=2,y=-6代入解析式中,就可以求出b的值。
函数的解析式就确定出来了。
解:因为,函数y=3x+b经过点(2,-6),所以,把x=2,y=-6代入解析式中,得:-6=3×2+b,解得:b=-12,所以,函数的解析式是:y=3x-12.二、根据直线经过两个点的坐标,确定函数的解析式例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),求函数的表达式。
分析:把点的坐标分别代入函数的表达式,用含k的代数式分别表示b,因为b是同一个,这样建立起一个关于k的一元一次方程,这样就可以把k的值求出来,然后,就转化成例1的问题了。
解:因为,直线y=kx+b的图像经过A(3,4)和点B(2,7),所以,4=3k+b,7=2k+b,所以,b=4-3k,b=7-2k,所以,4-3k=7-2k,解得:k=-3,所以,函数变为:y=-3x+b,把x=3,y=4代入上式中,得:4=-3×3+b,解得:b=13,所以,一次函数的解析式为:y=-3x+13。
三、根据函数的图像,确定函数的解析式例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。
分析:根据图形是线段,是直线上的一部分,所以,我们可以确定油箱里所剩油y(升)是行驶时间x(小时)的一次函数,明白这些后,就可以利用设函数解析式的方法去求函数的解析式。
解:因为,函数的图像是直线,所以,油箱里所剩油y(升)是行驶时间x(小时)的一次函数,设:一次函数的表达式为:y=kx+b,因为,图像经过点A(0,40),B(8,0),所以,把x=0,y=40,x=8,y=0,分别代入y=kx+b中,得:40=k×0+b,0=8k+b解得:k=-5,b=40,所以,一次函数的表达式为:y=-5x+40。
确定函数解析式的方法
确定函数解析式的方法嘿,朋友们!今天咱就来唠唠确定函数解析式这个事儿。
你说函数解析式像不像一个神秘的密码呀?咱得想法子把它给破解喽!这可不是一件容易的事儿,但别怕,咱一步一步来。
就好比咱要找一个人的电话号码,得先有点线索吧。
确定函数解析式也是一样的道理。
有时候题目会直接给咱一些条件,就像有人直接告诉你一部分数字。
比如说,告诉你函数经过哪些点,这就好比知道了这个人在哪些地方出现过。
那咱就得把这些点代到函数里去,看看能不能找出规律来。
这不是挺有意思的嘛!还有啊,有时候会告诉你函数的一些性质,比如单调性啦、奇偶性啦。
这就好像知道这个人的一些特点,是个急性子还是慢性子,是个大方的人还是小气的人。
然后咱根据这些特点去猜这个密码。
咱再想想,要是给你一堆数字,让你找出规律来,是不是得动点小脑筋呀?确定函数解析式也是这样,得不断地尝试、思考。
比如说,有的函数图像看起来像条直线,那咱就可以试试用一次函数来表示呀。
这就像你看到一个人走路直直的,就猜他可能是个军人,有那种挺拔的气质。
有时候呢,题目会绕几个弯子,就像故意逗你玩似的。
但咱可不能被它吓住,得鼓起勇气去挑战。
你想想,要是你好不容易解出来一个函数解析式,那种成就感,是不是比吃了一顿大餐还爽呀!咱还可以通过一些实际的例子来理解。
比如一辆汽车行驶的路程和时间的关系,那根据不同的条件,咱不就能确定出一个函数解析式来描述它嘛。
总之,确定函数解析式就像是一场有趣的冒险,需要我们细心、耐心,还要有点小机灵。
别害怕犯错,错了就改嘛,谁还能一次就成功呀!大家加油哦,相信你们一定能搞定那些神秘的函数解析式!这就是我的看法啦,大家好好琢磨琢磨吧!。
正弦型函数解析式的确定
正弦型函数解析式的确定正弦函数是一种周期性函数,它的图像呈现出波动的特点。
在数学中,正弦函数可以用解析式来表示,其一般形式为:y = A * sin(B * (x + C)) + D其中,A表示振幅,它表示正弦曲线在垂直方向上最大的偏移量;B表示周期,即正弦曲线在水平方向上重复的距离;C表示相位,它表示正弦曲线在水平方向上的平移;D表示垂直方向上的偏移量,即正弦曲线的纵坐标的平移。
接下来,将详细解释如何确定这四个参数。
首先,我们从振幅A谈起。
振幅表示正弦曲线在垂直方向上最大的偏移量,它的取值范围是非负实数。
当A为正时,正弦曲线在正弦函数值的上方产生波峰;当A为负时,正弦曲线在正弦函数值的下方产生波谷。
振幅A的绝对值决定了正弦曲线的振幅大小。
如果A=0,那么正弦函数的图像在y=D的水平线上不再波动,即为一条直线。
其次,我们来谈论周期B。
周期表示正弦曲线在水平方向上重复的距离,它的取值范围是正实数。
周期B的倒数是频率,也就是正弦曲线每秒钟重复的次数。
周期B决定了正弦曲线波动的速度。
当B增大时,波动速度变快,曲线的周期变短;当B减小时,波动速度变慢,曲线的周期变长。
然后,我们来讨论相位C。
相位表示正弦曲线在水平方向上的平移,它的取值范围是实数。
相位C决定了正弦曲线的水平位置。
当C>0时,正弦曲线向左平移;当C<0时,正弦曲线向右平移。
注意,相位C的绝对值越大,平移的距离越远。
最后,我们讨论垂直方向上的偏移量D。
偏移量表示正弦曲线的纵坐标的平移,它的取值范围是实数。
偏移量D决定了正弦曲线的垂直位置。
当D>0时,正弦曲线在y轴的正方向上平移;当D<0时,正弦曲线在y轴的负方向上平移。
偏移量D的绝对值越大,平移的距离越远。
总结起来,通过调整振幅A、周期B、相位C和偏移量D这四个参数的取值,可以得到不同形状和位置的正弦曲线。
这四个参数分别决定了正弦曲线的振幅大小、波动速度、水平位置和垂直位置。
求函数解析式的几种常用方法
求函数解析式的几种常用方法函数解析式是用来描述一个函数的数学表达式,它是数学中非常重要的概念。
在数学中,我们常常使用函数解析式来描述一个函数的性质、图像以及其他相关信息。
下面介绍几种常用的方法来求函数解析式。
一、观察法观察法是最常见的一种方法,它适用于一些简单的函数。
通过观察函数的各个特点,我们可以推测出函数的解析式。
例如,对于线性函数y = kx + b来说,我们可以通过观察到该函数的图像是一条直线,并且通过截距b可以确定直线的位置。
同时,我们还可以通过观察到斜率k来确定直线的斜率。
二、代入法代入法是一种常用的方法,它可以通过代入已知的数据来求得函数的解析式。
例如,假设我们已知一个函数满足条件f(0) = 2,f(1) = 3,f(2) = 4,我们可以通过代入这些数据来求得函数的解析式。
首先,我们可以设函数的解析式为f(x) = ax + b,然后代入第一个条件f(0) = 2,得到2 = a * 0 + b,从而得到b = 2、接着,我们再代入第二个条件f(1) = 3,得到3 = a * 1 + 2,从而得到a = 1、最后,代入第三个条件f(2) = 4,得到4 = 1 * 2 + 2,从而验证了我们的答案。
三、求导和积分法对于一些复杂的函数,我们可以利用求导和积分的方法来求函数的解析式。
首先,我们可以通过求导的方法来求得函数的导函数,然后再通过积分的方法来求得函数的解析式。
例如,对于函数f(x)=x^2+2x+1来说,我们可以通过求导的方法来求得导函数f'(x)=2x+2,然后再通过积分的方法来求得函数的解析式。
具体的方法和步骤可以根据函数的特点来确定。
四、简化法简化法是一种常用的方法,它适用于一些复杂的函数。
通过对函数的特征进行简化,我们可以得到函数的解析式。
例如,对于一个多项式函数f(x)=2x^3+3x^2+4x+5来说,我们可以通过简化法来求得函数的解析式。
首先,我们可以对多项式进行化简,得到f(x)=x^2*(2x+3)+4x+5,然后再进行进一步的化简。
求函数解析式的方法和例题
求函数解析式的方法和例题一、常见的求函数解析式的方法:1. 图像法,通过观察函数的图像特点,可以推测出函数的解析式。
例如,对于一次函数y=kx+b,可以通过观察函数的图像特点来确定k和b的值。
2. 常数法,对于一些特殊的函数,可以通过代入不同的自变量值,利用函数的性质和已知条件来求解函数的解析式。
例如,对于指数函数y=a^x,可以通过代入x=0、x=1等值来求解a的值。
3. 反函数法,对于已知函数的反函数,可以通过求解反函数来得到原函数的解析式。
例如,对于对数函数y=loga(x),可以通过求解反函数来得到对数函数的解析式。
4. 组合函数法,对于复杂的函数,可以通过将函数进行分解,然后分别求解各个部分函数的解析式,最后组合得到原函数的解析式。
例如,对于复合函数y=f(g(x)),可以先求解g(x)和f(x),然后将其组合得到y的解析式。
二、求函数解析式的例题:例题1,已知一次函数y=2x+3,求函数的解析式。
解,根据一次函数的一般形式y=kx+b,可以得到k=2,b=3,因此函数的解析式为y=2x+3。
例题2,已知指数函数y=2^x,且y(1)=4,求函数的解析式。
解,代入x=1,得到2^1=2,因此a=2,所以函数的解析式为y=2^x。
例题3,已知对数函数y=log2(x),求函数的解析式。
解,对数函数的底数为2,因此函数的解析式为y=log2(x)。
例题4,已知复合函数y=(x+1)^2,求函数的解析式。
解,将函数进行分解,得到g(x)=x+1,f(x)=x^2,因此函数的解析式为y=(x+1)^2。
以上就是关于求函数解析式的方法和例题的介绍。
希望对大家有所帮助,也希望大家在学习数学的过程中能够灵活运用这些方法,提高数学解题能力。
函数解析式的求法
函数解析式的求法 2014年1月16求函数的解析式的常用方法有:(1)代入法:如已知f (x )=x 2-1,求f (x +x 2)时,有f (x +x 2)=(x 2+x )2-1.(2)待定系数法:已知f (x )的函数类型,要求f (x )的解析式时,可根据类型设其解析式,确定其系数即可.例如,一次函数可以设为f (x )=kx +b (k ≠0);二次函数可以设为f (x )=ax 2+bx +c (a≠0)等.(3)拼凑法:已知f (g (x ))的解析式,要求f (x )时,可从f (g (x ))的解析式中拼凑出“g (x )”,即用g (x )来表示,再将解析式两边的g (x )用x 代替即可.(4)换元法:令t =g (x ),再求出f (t )的解析式,然后用x 代替f (g (x ))解析式中所有的t 即可.(5)方程组法:已知f (x )与f (g (x ))满足的关系式,要求f (x )时,可用g (x )代替两边的所有的x ,得到关于f (x )及f (g (x ))的方程组.解之即可得出f (x );例如,已知f (x )+2f (-x )=4x 2-x ,求f (x )的解析式.(6)赋值法:给自变量赋予特殊值,观察规律,从而求出函数的解析式.(7)由具体的实际问题建立函数关系求解析式,一般是通过研究自变量、函数及其他量之间的等量关系,将函数用自变量和其他量的关系表示出来,但不要忘记确定自变量的取值范围.【例4】求下列函数的解析式.(1)已知f (x )是二次函数,且满足f (0)=1,f (x +1)-f (x )=2x ,求f (x );(2)已知f1)=x+f (x );(3)已知2f)1x (+f (x )=x (x ≠0),求f (x ); (4)已知对任意实数x ,y 都有f (x +y )-2f (y )=x 2+2xy -y 2+3x -3y ,求f (x ). 分析:(1)已知f (x )是二次函数,可用待定系数法设出函数解析式,然后利用已知条件求出待定系数即可;(2)1=t ;也可用拼凑法,将x+1的式子;(3)用x 替换1x,构造关于f (x )与f )1x (的方程组,解方程组求出f (x );(4)利用赋值法,令x -y =0,求出f (0)的值,再令y =0,求得f (x ),也可令x =0,求出f (y ),进而可得f (x ).解:(1)设所求的二次函数为f (x )=ax 2+bx +c (a ≠0),∵f (0)=1,∴c =1,则f (x )=ax 2+bx +1.又∵f (x +1)-f (x )=2x 对任意x ∈R 成立,∴a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x ,即2ax +a +b =2x .由恒等式性质,得220a a b =⎧⎨+=⎩,,∴11.a b =⎧⎨=-⎩,∴所求二次函数为f (x )=x 2-x +1. (2)(方法一)1=t ,则t ≥1,即x =(t -1)2,则f (t )=(t -1)2+2(t -1)=t2-1.故f (x )=x 2-1(x ≥1).(方法二)∵1)2=x+1, ∴x+1)2-1. ∴f1)=1)2-11≥1.∴f (x )=x 2-2,x ≥1.(3)(4)(方法一)∵f (x +y )-2f (y )=x 2+2xy -y 2+3x -3y 对任意x ,y ∈R 都成立,故可令x =y =0,得f (0)-2f (0)=0,即f (0)=0.再令y =0,得f (x )-2f (0)=x 2+3x ,∴f (x )=x 2+3x .(方法二)令x =0,得f (y )-2f (y )=-y 2-3y ,即-f (y )=-y 2-3y .因此f (y )=y 2+3y .故f (x )=x 2+3x .点技巧 解含有两个变量的解析式的方法—赋值法 所给函数方程含有两个变量时,可对这两个变量交替用特殊值代入,或使这两个变量相等代入,再用已知条件,可求出未知的函数,至于取什么特殊值,可以根据函数特征来45.函数图象的作法(1)作函数图象的常用方法:①描点法:描点法是作函数图象的基本方法.根据函数解析式,列出函数中x 与y 的一些对应值的表,然后分别以它们为横、纵坐标,在坐标系中描出点,最后用平滑的曲线将这些点连起来,就是函数的图象,即“列表—描点—连线”.②利用基本函数图象作出所求的图象,已学过的基本函数图象有:常数函数的图象,例如f (x )=1的图象为平行于x 轴的一条直线;一次函数的图象,例如f (x )=-3x +1的图象是一条经过一、二、四象限的直线;二次函数的图象,例如f (x )=2x 2-x +1的图象是一条抛物线;反比例函数的图象,f (x )=k x(k ≠0,且k 为常数),当k >0时,其图象是在一、三象限内,以原点为对称中心的双曲线;当k <0时,其图象是在二、四象限内,以原点为对称中心的双曲线.③变换作图法:1°平移:y =f (x )y =f (x +a )y =f (x )y =f (x -a )y =f (x )y =f (x )+by =f (x )y =f (x )-b2°对称:y =f (x )y =-f (x )y =f (x )y =f (-x )y =f (x )y =-f (-x )y =f (x )――-------------→保留x 轴上方图象,再把x 轴下方图象对称到上方y =|f (x )|; y =f (x )――-------------→保留y 轴右边的图象,再在y 轴左边作其关于y 轴的对称图象y =f (|x |). (2)分段函数图象的作法画分段函数y =⎩⎪⎨⎪⎧ f 1(x ),x ∈D 1,f 2(x ),x ∈D 2,…(D 1,D 2,…,两两交集是空集)的图象步骤是:①画函数y =f 1(x )的图象,再取其在区间D 1上的图象,其他部分删去不要;②画函数y =f 2(x )的图象,再取其在区间D 2上的图象,其他部分删去不要;③依次画下去;④将各个部分合起来就是所要画的分段函数的图象.注意:在作每一段的图象时,先不管自变量的限制条件,作出其图象,再保留自变量限制条件内的一段图象即可,作图时要特别注意接点处点的虚实,若端点包含在内,则用实点表示;若端点不包含在内,则用虚点表示,要保证不重不漏.【例5-1】作出下列函数的图象:(1)y =1+x ,x ∈Z ;(2)y =x 2-2x ,x ∈[0,3).【例5-2】作下列各函数的图象. (1)1,01,,1x y x x x ⎧<<⎪=⎨⎪≥⎩;y=(2)y =|x -1|;(3)y =|x |-1.解:(2)(方法一)所给函数可写成1111x x y x x -≥⎧=⎨-<⎩,,,,是端点为(1,0)的两条射线,如图②. (方法二)可以先画函数y =x -1的图象,然后把其在x 轴下方的图象对称到上方.如图③.(3)(方法一)所给函数可写成1010x x y x x -≥⎧=⎨--<⎩,,,,如图④. (方法二)可以先画出函数y =|x |-1在y 轴右侧,即y =x -1(x ≥0)的图象,然后按照关于y 轴对称作出函数y =|x |-1在y 轴左侧的图象即可.如图⑤.【例5-3】作出下列函数的图象.(1)y =|x +2|-|x -5|;(2)y =|x -5|+|x +3|.点技巧 含绝对值的函数图象的作法 含有绝对值的函数,可以根据去绝对值的法则去掉绝对值符号,将函数化为分段函数的形式,然后根据定义域的分段情况,选择相应的解析式画出图象.6.与分段函数有关的问题(1)已知自变量的取值,求函数值.(2)已知函数值,求自变量的取值.(3)已知f (x ),解不等式f (x )>a .【例2】已知函数f (x )=21222221 2.x x x x x x x +≤-⎧⎪+-<<⎨⎪-≥⎩,,,,, (1)求f (-5),f (,f(f(25)的值;(2)若f (a )=3,求实数a 的值.【例3】已知f (x )=222 2.x x x x +≥-⎧⎨--<-⎩,,,若f (x )>2,求x 的取值范围. 7.函数图象的简单应用函数图象可以直观地显示函数的变化规律,使抽象的问题变得更加形象.图形与数的结合(数形结合)是解决数学问题的一件利器.函数图象的应用主要体现在以下几个方面:(1)由图象确定解析式解决“已知函数图象,求函数的解析式”的问题关键在于充分挖掘图形信息,也就是曲线的形状如何(据此设定相应的函数解析式的类型——定性),图象有关特征点坐标如何(据此确定解析式的系数——定量).例如,若函数y =f (x )的图象如图所示,则其表达式f (x )为__________.解析:此函数在三个区间上的图象各不相同,故分别在各区间内写出其函数表达式.答案:f (x )=[)[)[)33,2,0,213,0,2,22,2,4.x x x x x ⎧+∈-⎪⎪⎪-+∈⎨⎪⎪∈⎪⎩(2)根据具体问题所表示的函数关系判断函数的图象解决此类问题应结合图象的特征,观察坐标轴所代表的含义,紧扣题目的语言描述,把它转化为曲线的变化情况,问题即可解决.(3)利用函数的图象,求函数的值域或最值.解决这类问题的关键在于能正确作出函数的图象.例如,若x ∈R ,f (x )是y =2-x 2,y =x 这两个函数中的较小者,则f (x )的最大值为( )A .2B .1C .-1D .无最大值解析:由题目可获取的信息是:①两个函数一个是二次函数,一个是一次函数;②f (x )是两个函数中的较小者.解答此题可先画出两个函数的图象,然后找出f (x )的图象,再求其最大值.在同一坐标系中画出函数y =2-x 2,y =x 的图象,如图,根据题意,坐标系中实线部分即为函数f (x )的图象.故x =1时,f (x )max =1,应选B .答案:B(4)研究函数图象的交点个数 解决这类问题的关键是正确画出函数的图象,结合图象分析.【例7-1】已知函数y =f (x )的图象由图中的两条射线和抛物线的一部分组成,求函数的解析式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数内容很丰富,它可以和方程、坐标、几何综合起来,涉及的知识也很多。
尤其是确定二次函数解析式是相当重要的一个内容。
我们如何利用二次函数所具备的三个条件来待定解析式y ax bx c =++2中三个参数a b c 、、的值,是我们掌握的必备知识和方法。
下面我们仅举以下例题:学习如何确定函数的解析式;使同学悟出其中的道理及思想。
重点、难点:
重点:函数有关概念的应用。
难点:函数的概念的灵活运用,解决有关问题。
1. 求满足下列条件的二次函数解析式:
例1. 已知:二次函数y ax bx c a =++≠20(),当x =
32时,有最小值-34
,又方程ax bx c 20++=两根为x x 12,且满足x x 13239+=。
分析:已知x =32函数有最小值-34,说明抛物线顶点坐标为()3234
,-,所以设二次函数解析式为顶点式比较方便。
又知x x 13239+=,显然要用韦达定理待定系数。
解:设二次函数解析式为y a x ax ax a =--=-+-()()323439434
22 则x x x x a 1212394341+=⋅=-⎧⎨⎪⎩
⎪() 由x x x x x x x x 132312122
1239+=++-⋅=()[()]
将()1式代入计算求得a =3
∴二次函数解析式为y x x =-+3962
例2. 抛物线的顶点坐标为()-23,,且与x 轴交于()()x x 1200,,且||x x 126-=。
分析:本题的条件与例1基本相同,方法也大致类似,同学们可以自己完成。
解:设y a x ax ax a =++=+++()2344322 ||()x x x x x x x x x x a 1212212121246
443-=+-=+=-⋅=+⎧⎨⎪⎩
⎪ 代入后,解得a =-
13
∴二次函数解析式为y x x =-
-+134353
2 例3. 抛物线经过()()-1121,,且与x 轴只有一个公共点。
分析:已知抛物线过两点,可以设一般式,后将两点代入,再由抛物线与x 轴只有一个公共点说明∆=0,列a b c 、、的三元方程组来求参数值。
解:设二次函数为y ax bx c =++2
代入()()-1121,,,后得
a b c a b c b ac -+=-+=-=⎧⎨⎪⎩
⎪1421402
解方程组为a b c =
=-=494919
,, ∴=-+y x x 4949192 小结:这种方法虽然正确,但运算较大,我们分析两点的特点,当x =-1时,y =1,x =2时,y =1,说明这两点关于抛物线对称轴对称,则对称轴可求得x =
12
,即顶点的横坐标为x =12
,纵坐标为0,这样可以设顶点式为好。
解法2:设抛物线解析式为y a x =-()12
2 将()-11,代入,求得a =49
∴=-=-+y x x x 491249491922()
例4. 二次函数在y 轴上的截距为-6,而当-≤≤31x 时,y ≤0。
分析:由已知-≤≤31x ,则y ≤0,说明当x =-3时,y =0,x =1时y =0,可以设解析式为二根式,又过()06,-点,问题可以解决。
解:设抛物线的解析式为y a x x =+-()()31
将()06,-代入后,-=-36a ,a =2
∴解析式为y x x =+-231()()
即y x x =+-2462。