经济数学基础试卷及答案
经济数学基础及参考答案
作业(一)(一)填空题3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 21. 函数212-+-=x x x y 的连续区间是( )答案:D ,可能是cA .),1()1,(+∞⋃-∞B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1l i m=+→xxxC.11sinlim 0=→xx x D.1si n l i m=∞→xx x3. 设y x =lg 2,则d y =( ).答案:B A .12d xx B .1d x x ln 10C .ln 10xx d D .1d xx4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x 2 B .xx sinC .)1ln(x +D .x cos(三)解答题问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在;1lim ()lim (sin)x x f x x b b x--→→=+=,0sin lim ()lim 1x x x f x x++→→==,有极限存在,lim ()lim ()1x x f x f x b +-→→===(2)当1==b a 时,)(x f 在0=x 处连续。
(完整word版)经济数学基础试题及答案
经济数学基础(05)春模拟试题及参考答案一、单项选择题(每小题3分,共30分)1.下列各函数对中,( )中的两个函数是相等的.A .11)(2--=x x x f ,1)(+=x x g B .2)(x x f =,x x g =)( C .2ln )(x x f =,x x g ln 2)(= D .x x x f 22cos sin )(+=,1)(=x g2.设函数⎪⎩⎪⎨⎧=≠+=0,10,2sin )(x x k x x x f 在x = 0处连续,则k = ( ). A .—2 B .—1 C .1 D .23. 函数x x f ln )(=在1=x 处的切线方程是( ).A.1=-y x B 。
1-=-y xC 。
1=+y x D. 1-=+y x4.下列函数在区间(,)-∞+∞上单调减少的是( ).A .x sinB .2 xC .x 2D .3 - x5。
若c x F x x f +=⎰)(d )(,则x x xf d )1(2⎰-=( ).A 。
c x F +-)1(212B 。
c x F +--)1(212 C 。
c x F +-)1(22 D. c x F +--)1(226.下列等式中正确的是( ).A . )cos d(d sin x x x =B 。
)1d(d ln xx x = C. )d(ln 1d x x a a x a =D 。
)d(d 1x x x =二、填空题(每小题2分,共10分)7.若函数54)2(2++=+x x x f ,则=)(x f.8.设需求量q 对价格p 的函数为2e100)(p p q -=,则需求弹性为E p = .9.=⎰x x c d os d .三、极限与微分计算题(每小题6分,共12分)10.)3sin(32lim 23+-+-→x x x x 11.设函数)(x y y =由方程222e e =++xy y x 确定,求)(x y '.四、积分计算题(每小题6分,共12分)12.x x x d 2cos 20⎰π13.求微分方程12+=+'x xy y 的通解. 七、应用题(8分) 14.设生产某商品每天的固定成本是20元,边际成本函数为24.0)(+='q q C (元/单位),求总成本函数)(q C 。
经济数基础学试题及答案
经济数基础学试题及答案一、单项选择题(每题2分,共10分)1. 经济学中,需求曲线通常呈现为:A. 向上倾斜的直线B. 向下倾斜的直线C. 水平直线D. 垂直直线答案:B2. 边际成本与平均成本的关系是:A. 边际成本始终高于平均成本B. 边际成本始终低于平均成本C. 边际成本与平均成本无固定关系D. 边际成本等于平均成本时,平均成本最小答案:D3. 完全竞争市场中,企业在短期内的供给曲线是:A. 边际成本曲线B. 平均成本曲线C. 总成本曲线D. 固定成本曲线答案:A4. 价格弹性的计算公式是:A. (价格变化/需求量变化)×100%B. (需求量变化/价格变化)×100%C. (价格变化/需求量变化)D. (需求量变化/价格变化)答案:B5. 根据洛伦兹曲线,收入分配的不平等程度可以通过:A. 基尼系数来衡量B. 洛伦兹曲线与45度线之间的面积来衡量C. 洛伦兹曲线与45度线之间的距离来衡量D. 洛伦兹曲线与45度线之间的交点来衡量答案:A二、多项选择题(每题3分,共15分)6. 以下哪些因素会影响供给曲线的移动?A. 生产成本的变化B. 消费者偏好的变化C. 相关产品的价格变化D. 技术水平的变化答案:A, C, D7. 宏观经济学中的总需求包括:A. 消费B. 投资C. 政府支出D. 净出口答案:A, B, C, D8. 货币政策工具包括:A. 调整利率B. 公开市场操作C. 调整存款准备金率D. 调整税收答案:A, B, C9. 以下哪些属于宏观经济学中的失业类型?A. 摩擦性失业B. 结构性失业C. 周期性失业D. 非自愿失业答案:A, B, C10. 根据菲利普斯曲线,通货膨胀率与失业率之间的关系是:A. 正相关B. 负相关C. 无相关D. 长期内无相关答案:B, D三、简答题(每题5分,共20分)11. 简述边际效用递减原理。
答案:边际效用递减原理指的是随着消费某种商品的数量增加,消费者从每增加一单位商品中获得的额外满足(即边际效用)逐渐减少。
经济数学基础试题及答案
经济数学基础试题及答案一、选择题1、在下列数学家中,哪一位是第一个把圆周率精确到小数点后7位的人?A.阿基米德B.牛顿C.欧拉D.祖冲之答案:D.祖冲之2、在下列四个方程中,哪一个不是一元二次方程?A. 2x^2 + 3x - 5 = 0B. x^3 - 2x^2 + x = 0C. ax^2 + bx + c = 0(a≠0)D. (x + 3)(x - 2) = x^2 - x - 6答案:B. x^3 - 2x^2 + x = 03、在下列四个函数中,哪一个是偶函数?A. y = x^3B. y = x^2 + 1C. y = cosxD. y = lg|x|答案:D. y = lg|x|4、在下列四个命题中,哪一个是真命题?A.若a是正数,则a>0B.若a是负数,则a<0C.若a是零,则a=0D.若a是正数,则|a|=a答案:D.若a是正数,则|a|=a5、在下列四个数中,哪一个是无理数?A. π/4B. √9C. eD. ln10答案:A. π/4二、填空题1、若函数f(x) = x^2 - 2x - 8的函数值小于0,则相应的x的取值范围是_____.答案:(-2, 4)2、若函数f(x)在区间[0, 1]上单调递增,则f(0)=-1,f(1)=-3,则该函数的最大值和最小值分别为_____.答案:-1, -33、若直线y=ax+b(a、b为常数)与两坐标轴所围成的面积为1,则_____.答案:b=-1或b=14、若函数f(x)在区间[0, 1]上单调递减,且f(x)的函数值介于-1和1之间,则称f(x)为“弱减函数”。
若对于任意实数x都有f(x)=f(2-x),则____(填“是”或“不是”)“弱减函数”。
答案:是5、若函数f(x)在区间[0, 1]上单调递增,且f(0)=0,f(1)=1,则该函数的最大值和最小值分别为_____.答案:1, 0《经济数学基础12》期末试题及答案一、单项选择题(每题2分,共20分)1、下列哪个选项正确地描述了函数的概念?(A)映射(B)关系(C)变量(D)公式2、下列哪个选项是方程x2 + 2x + 1 = 0的根?(A)x = 1(B)x = -1(C)x = 2(D)x = -23、下列哪个选项正确地描述了导数的应用?(A)优化问题(B)概率问题(C)代数问题(D)几何问题4、下列哪个选项正确地描述了微分的概念?(A)无穷小量(B)导数(C)极限(D)积分5、下列哪个选项正确地描述了不定积分的概念?(A)原函数(B)导函数(C)定积分(D)微分方程6、下列哪个选项正确地描述了定积分的概念?(A)原函数(B)导函数(C)定积分(D)变上限积分7、下列哪个选项正确地描述了二重积分的概念?(A)二重积分是两个积分的和(B)二重积分是两个积分的差(C)二重积分是一个积分的平方(D)二重积分是一个积分的多次积分8、下列哪个选项正确地描述了级数的概念?(A)级数是无穷多个数的和(B)级数是无穷多个数的积(C)级数是无穷多个数的商(D)级数是无穷多个数的差9、下列哪个选项正确地描述了微分方程的概念?(A)包含导数的方程(B)包含变量的等式(C)包含积分的方程(D)包含微分的方程10、下列哪个选项正确地描述了经济数学的概念?(A)经济数学是数学在经济中的应用(B)经济数学是数学在社会科学中的应用(C)经济数学是数学在物理中的应用(D)经济数学是数学在哲学中的应用二、填空题(每题3分,共30分)1、函数f(x) = x2 + 2x + 1的最小值是________。
经济数学试题及答案
经济数学试题及答案一、选择题1. 假设市场需求曲线为Qd=100-2P,市场供给曲线为Qs=-20+4P,求平衡价格和平衡数量。
答案:平衡价格为20,平衡数量为40。
2. 若某商品的需求弹性为-2,需求量为10时,价格为20,求需求量变化1%时的价格变化百分比。
答案:需求量变化1%时,价格变化百分比为2%。
3. 某企业生产一种商品,已知其总生产成本函数为C(Q)=100+2Q+0.5Q^2,求当产量为10时,平均成本和边际成本。
答案:当产量为10时,平均成本为25,边际成本为13。
二、计算题1. 已知一家工厂的生产函数为Q=10L^0.5K^0.5,其中L为劳动力投入,K为资本投入。
若工厂每年投入的劳动力为100人,资本为400万元,劳动力每人每年工作2000小时,资本的年利率为10%,求工厂的年产量和总成本。
答案:工厂的年产量为2万单位,总成本为500万元。
2. 假设某商品的总收益函数为R(Q)=500Q-0.5Q^2,总成本函数为C(Q)=100+40Q,求当产量为20时,利润最大化的产量和利润。
答案:当产量为20时,利润最大化的产量为10,利润为250。
三、证明题1. 某商品的边际收益递减法则是指随着生产规模的扩大,每增加一单位产量所带来的边际收益递减。
证明边际收益递减法则成立。
证明:当企业的产品产量增加时,企业需要增加投入以提高产量,但边际收益会递减。
假设某企业当前产量为Q,边际收益为MR,增加一单位产量后,产量为Q+1,边际收益为MR+ΔMR。
由于边际收益递减,ΔMR<0。
所以,边际收益递减法则成立。
四、应用题某公司生产A、B两种产品,已知产品A每单位成本为10元,产品B每单位成本为20元。
市场上A、B产品的需求量分别为1000和500,价格分别为15和25。
若公司希望通过调整价格来提高总利润,应如何调整?答案:根据产品的成本和需求量,计算可得产品A的利润为5000元((15-10)*1000),产品B的利润为2500元((25-20)*500)。
大学经济数学基础考试题及答案
大学经济数学基础考试题及答案一、选择题(每题2分,共20分)1. 经济学中的边际成本是指:A. 总成本除以产量B. 增加一单位产量所带来的成本增加C. 固定成本D. 总成本答案:B2. 在完全竞争市场中,企业面临的需求曲线是:A. 水平的B. 垂直的C. 向右下倾斜的D. 向右上倾斜的答案:A3. 下列哪项不是宏观经济学的研究内容?A. 通货膨胀B. 失业率C. 个人收入D. 经济增长答案:C4. 边际效用递减原理指的是:A. 随着商品数量的增加,其边际效用递增B. 随着商品数量的增加,其边际效用递减C. 商品价格越高,边际效用越大D. 商品价格越低,边际效用越大答案:B5. 如果一个企业处于垄断地位,它将:A. 总是生产最少的产品以最大化利润B. 总是生产最多的产品以最大化利润C. 选择一个产量水平,使得边际收入等于边际成本D. 选择一个价格水平,使得消费者剩余最大答案:C6. 在下列哪种情况下,消费者剩余最大?A. 完全竞争市场B. 垄断市场C. 垄断竞争市场D. 寡头市场答案:A7. 机会成本是指:A. 放弃的下一个最佳选择的价值B. 放弃的总成本C. 放弃的固定成本D. 放弃的可变成本答案:A8. 如果两种商品是互补品,那么其中一种商品价格上升将导致:A. 另一种商品的需求量增加B. 另一种商品的需求量减少C. 互补商品的供应量增加D. 互补商品的供应量减少答案:B9. 根据科斯定理,如果产权界定清晰,并且交易成本为零,则:A. 资源配置将达到社会最优B. 资源配置将达到个人最优C. 资源配置将达到政府最优D. 资源配置将达到企业最优答案:A10. 在下列哪种情况下,政府可能会实施价格上限?A. 商品供应过剩B. 商品需求过剩C. 商品供应不足D. 商品需求不足答案:B二、简答题(每题10分,共30分)11. 简述边际分析在经济学中的应用。
答案:边际分析是经济学中一种重要的分析方法,它通过比较额外一单位的投入(边际成本)与额外一单位的产出(边际收益)来帮助企业或个人做出决策。
经济数学基础试题及答案
经济数学基础试题及答案I. 选择题1. 在经济学中,边际成本指的是:A. 总成本与产量之间的比率B. 达到某一产量水平所需的额外成本C. 固定成本的变化程度D. 不需支付的成本费用答案:B. 达到某一产量水平所需的额外成本2. 在市场需求曲线下,垄断行为会导致:A. 价格和数量增加B. 价格和数量减少C. 价格增加,数量减少D. 价格减少,数量增加答案:C. 价格增加,数量减少3. 边际收益递减指的是:A. 达到最大产量后,每单位产量的成本逐渐降低B. 达到最大产量后,每单位产量的成本逐渐增加C. 达到最大产量后,每单位产量的收益逐渐降低D. 达到最大产量后,每单位产量的收益逐渐增加答案:C. 达到最大产量后,每单位产量的收益逐渐降低II. 计算题1. 假设市场需求曲线为Qd = 100 - 2P,市场供给曲线为Qs = 2P - 20,则市场均衡价格和数量分别是多少?答案:将市场需求曲线和市场供给曲线相等,得到:100 - 2P = 2P - 204P = 120P = 30将P = 30代入市场供给曲线,得到:Qs = 2P - 20Qs = 2(30) - 20Qs = 40所以,市场均衡价格为30,数量为40。
2. 一个企业的总成本函数为TC = 1000 + 10Q + 0.2Q^2,其中Q代表产量。
每单位产品的售价为20。
求该企业的最优产量和利润。
答案:企业的利润为总收入减去总成本,即Profit = TR - TC。
总收入为售价乘以产量,即TR = 20Q。
代入总成本函数,得到Profit = 20Q - (1000 + 10Q + 0.2Q^2)。
为求最优产量,对利润函数求导数并令其等于0:d(Profit)/dQ = 20 - 10 - 0.4Q = 0-0.4Q = -10Q = 25最优产量为25,将其代入总成本函数,得到:TC = 1000 + 10(25) + 0.2(25^2)TC = 1000 + 250 + 125TC = 1375最优利润为20Q - TC = 20(25) - 1375 = 125 - 1375 = -1250。
(完整版)经济数学基础试题及答案
经济数学基础(05)春模拟试题及参考答案、单项选择题(每小题 3分,共30分)1.下列各函数对中,()中的两个函数是相等的.2C. f (x) In x , g(x) 2ln x22,、D. f (x) sin x cos x , g(x)A. x y 1 C. x y 1B. x y 1 D. x y14 .下列函数在区间(,)上单调减少的是( ).A. sin xB. 2 xC. x 25 .若 f(x)dx F (x) c,则 xf (1 x 2)dx=()12 xA. - F (1 x ) c___ 2C. 2F(1 x ) c 6.下列等式中正确的是( A . sin xdx d(cos x)~ 1 …C.a dx d(a ) ln a1 2、8. - F (1 x ) c____2D. 2F(1 x ) c8. ln xdx d(-) x1 . D. dx d(、, x) .x25, 22, 35, 20, 24是一组数据,则这组数据的中位数是(B. 23C. 22.5D. 2228.设随机变量X 的期望E(X) 1,万差D(X) = 3,则E[3(X2)]=()9.设A, B 为同阶可逆矩阵,则下列等式成立的是( )A. f(x) x 2 1 x 1,g(x) x 1B. f(x) xx 2 , g(x) x2.设函数f(x ) xsin — k,x 1,在x = 0处连续,则k =()•A. -2B. -1C. 1D. 23.函数f (x)ln x 在x 1处的切线方程是(A. 36B. 30C. 6D. 9D. 3 - x7.设 23, A. 23.5 ).2.-一11.若函数 f(x 2) x 4x 5,则 f (x)13 . d cosxdx .14 .设A,B,C 是三个事件,则 A 发生,但B,C 至少有一个不发生的事件表示 为. 15 .设A, B 为两个n 阶矩阵,且I B 可逆,则矩阵方程 A BX X 的解X三、极限与微分计算题(每小题 6分,共12分)17 .设函数y y(x)由方程x 2 y 2 e xy e 2确定,求y(x).四、积分计算题(每小题6分,共12分)18 .2xcos2xdx19 .求微分方程 y Y x 21的通解. x五、概率计算题(每小题 6分,共12分)20 .设A, B 是两个相互独立的随机事件,已知 P(A) = 0.6 , P(B) = 0.7 ,求A 与B 恰有 一个发生的概率.一 一一 2._ . 一 — 一 一一 一21 .设 X ~ N(2,3 ),求 P( 4 X 5)。
《经济数学基础》习题答案及试卷(附答案)
习题解答第一章 经济活动中的函数关系分析实训一(A )1.填空题:(1)(,2][2,)-∞-+∞ ; (2)()3,5; (3)1x; (4)2x e ;2x e ; (5)473x -,提示:由()()47433433g f x x x =+=+-⎡⎤⎣⎦,所以()473x g x -=.2.(1)tan(2)y x =;(2)(3)y=;(4)y=lg(sin 2)x .3.(1)cos y u =,1xu e =-; (2)ln y u =,222u x x =-+;(3)y =1u x =+;(4)y lg u v =,v =实训一(B )1.由已知可知2110x -<-<,得到201x <<,即定义域为()()1,00,1- .2.由()21f x x -=,可得()()2111f x x -=-+,所以()()21f x x =+.也可令1x t -=.3.(1)u y e =,sin u v =,2v x =;(2)log uv ay =,21u x =+,sin v w =,2w x =. 4. ()()()log log log a a a f x f y x y xy f xy +=+==;()()log log log a a axx f x f y x y f y y ⎛⎫-=-== ⎪⎝⎭. 实训二 (A )1.填空题:(1)y =(2)[]1,3-; (3)2π-,4π; (4)12,π. 2.(1)⨯;(2)⨯;(3)⨯;(4)√.3.(1)由()cos 21y x =+,解得21arccos x y +=,()1arccos 12x y =-, 所以,()()11arccos 12fx x -=-.定义域:[]1,1x ∈-;值域:11,22y π-⎡⎤∈-⎢⎥⎣⎦(2)由()1ln 2y x =++,解得12y x e -+=,12y x e -=-,所以,()112x fx e --=-定义域:(),x ∈-∞+∞;值域:()2,y ∈-+∞ 4.【水面波纹的面积】设面积为S (2cm ),时间为t (s ),则()22502500S t t ππ==【仪器初值】()0.04200.800208986.58Q Q e Q e -⨯-===解得0.808986.582000Q e =≈.实训二(B )1.由()x a f x x b +=+,解得反函数为()11a bx f x x --=-. 由已知()1x a f x x b -+=+,可得1a bx x a x x b-+=-+,相比较,可得a 为任意实数,1b =-.2.由()ln x x ϕ=,()21ln 3g x x ϕ=++⎡⎤⎣⎦,可得()221ln 3ln 3x x g x e e e ϕ+=⋅⋅=⎡⎤⎣⎦所以,()213x g x e+=.实训三【商品进货费用】 设批次为x ,由题意: 库存费:11250030000242C x x=⋅⋅=; 订货费:2100C x =. 【原料采购费用】设批量为x ,库存费用为1C ,进货费用为2C ,进货总费用为12C C C =+.1122C x x=⋅⋅= 23200640000200C xx=⋅=所以进货总费用为:12640000C C C x x=+=+. 【商品销售问题】设需求函数关系式为:d Q ap b =+,其中p 为定价. 由已知可得:1000070700073a ba b=+⎧⎨=+⎩,解得1000a =-,80000b =,所以100080000d Q p =-+; 供给函数为:1003000s Q p =+平衡状态下:价格70p =;需求量10000d Q =. 【商品盈亏问题】设()()()()2015200052000L x R x C x x x x =-=-+=-.()6001000L =; 无盈亏产量:()0L x =,解得400x =. 【供给函数】答案:1052PQ =+⋅. 【总成本与平均成本】总成本()1306C Q Q =+,[]0,100Q ∈. 平均成本()13061306Q C Q Q Q+==+,[]0,100Q ∈.第一章自测题一、填空题1、[2,1)(1,1)(1,)---+∞2、(,)-∞+∞3、(,1)a a --4、23x x -5、2ln(1)x -6、arcsin 2x7、cos(ln )x8、2142R Q Q =-+9、22()2505;()6248100R x x x L x x x =-=-+- 10、6P = 二、选择题1、C2、B3、B4、D5、C三、计算解答题1、(1)22log , 1y u u x ==+(2)1x y u e ==+ 2、1()1 , ()1f x x f x x -=+=- 四、应用题1、(1) 6 , 8P Q == (2) 3.5 , 3P Q == (3) 6.5 , 7P Q ==2、(1)()10200C x x =+,()200()10C x C x x x==+ (2)()15R x x =(3)()()()5200L x R x C x x =-=-,无盈亏点:40x =五、证明题(略)第二章 极限与变化趋势分析实训一(A )1.(1)×;(2)√;(3)×;(4)×;(5)√. 2.(1)收敛,且lim 0n n x →∞=;(2)发散,lim n n x →∞=∞;(3)收敛,且lim 2n n x →∞=;(4)发散.3.(1)收敛,且lim 2x y →∞=;(2)收敛,且0lim 1x y →=;(3)收敛,且lim 1x y →+∞=;(4)发散.【产品需求量的变化趋势】lim lim 0t t t Q e -→+∞→+∞==.实训一(B )(1)无穷大;(2)无穷大;(3)无穷大;(4)无穷大. 【人影长度】越靠近路灯,影子长度越短,越趋向于0.实训二 (A )1.填空题(1)5;(2)2;(3)1;(4)13;(5)∞;(6)∞;(7)2. 2.(1)()()()()2211111112lim lim lim 21121213x x x x x x x x x x x x →→→-+-+===---++; (2)(222211lim2x x x x x x →→→===--;(3)()()2322000222lim lim lim 211x x x x x x x x x x x x x →→→---===---; (4)()()211121111lim lim lim 111112x x x x x x x x x →→→--⎛⎫-===-⎪---++⎝⎭. 3.(1)222112lim lim 2111x x x x x x x →+∞→+∞-⎛⎫-==- ⎪+--⎝⎭; (2)()()()1121lim lim lim 22222222n n n n n n n n n n n n →∞→∞→∞⎛⎫++++-⎛⎫-=-==- ⎪⎪ ⎪+++⎝⎭⎝⎭. 【污染治理问题】由题意可知,该问题为等比级数问题,首项为a ,公比为45,则设n 周后所剩污染物为n a ,则45nn a a ⎛⎫= ⎪⎝⎭,因为4lim 05nn a →∞⎛⎫= ⎪⎝⎭,所以,可以确定随着时间的推移能将污染物排除干净.【谣言传播】 (1)1lim (t)lim11ktt t P ae -→∞→∞==+;(2)121(t)0.8110t P e-==+,可解得2ln 407.38t =≈.实训二(B )1.填空题(1)32π-; (2)0;0.(无穷小与有界函数的乘积为无穷小)(3)0a =,2b =-.2.(1)()3320lim3h x h x x h→+-=;(2)442x x x →→→===.3.由()3lim 30x x →-=,且232lim 43x x x kx →-+=-,可得()23lim 20x x x k →-+=,解得3k =-.4.由题意可知()()21116lim lim 511x x x x x ax bx x→→--++==--,可得7a =-,6b =.实训三 (A )1.填空题(1)1e -;(2)3e -;(3)e ;(4)e ;(5)3k =;(6)5050.1230⨯⨯=万元,()55010.125038.1⨯+-=万元,50.125041.1e ⨯=万元. 2.(1)6e -;(2)1e -;(3)2e -;(4)01e =. 3.(1)0.042003 6.68rtPe e ⨯==万元; 2.25o P =万元.(2)24.38t p =万元;24.43t p =万元.实训三(B )1.(1)(()0111lim 1lim 1lim 11x x x x x x e x x x --→∞→∞→∞⎡⎤⎛⎛⎫⎛⎫-=-=-==⎢⎥⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦;(2)()15lim 15xx x x e →→∞=+=;(3)()1111111lim lim 11xxx x xx e ---→→=+-=;(4)()()()1000ln 121limlim ln 12limln 12x x x x x x x xx →→→+=+=+ ()()112limln 12lnlim 12ln 2x xx x x x e →→=+=+==.2.322lim lim 122x xc x x x c c e e x c x c →∞→∞+⎛⎫⎛⎫=+== ⎪ ⎪--⎝⎭⎝⎭,所以3c =. 实训四 (A )1.填空题 (1)(]0,3;(2)()243,110,1x x x f x x ⎧-+≤-=⎨>⎩;(3)()0lim 1x f x -→=-,()0lim 0x f x +→=,()0lim x f x →不存在; (4)()(),22,-∞--+∞ ; (5)1x =,2x =;(6)1k =.2.图略,()0lim 1x f x -→=,()0lim 0x f x +→=,()0lim x f x →不存在. 3.()()1lim 11x f x f -→==,()1lim 2x f x +→=,因为()()11lim lim x x f x f x -+→→≠,所以()f x 在1x =处不连续.【个人所得税计算】个人所得税的起征点为月收入3500元.850035005000-=,50000.2555455⨯-=;1200035008500-=,85000.25551145⨯-=.【出租车费用】图略,()8, 322, 3836, 8x f x x x x x ≤⎧⎪=+<≤⎨⎪->⎩.实训四 (B )1.图略,()()0lim 10x f x f -→=-=,()0lim 0x f x +→=,因为()()11lim lim x x f x f x -+→→≠,所以()f x 在0x =处不连续.2.由连续的定义可知:()()220lim 1xx k f x e →==+=.3.因为()01f =,()01lim sin00x x f x→=≠(无穷小与有界函数的乘积), 所以0x =为第一类的可去间断点.第二章自测题一、填空题 1、1- 2、1 3、12- 4、345、221,02,0x x x x ⎧+=⎪⎨≠⎪⎩6、1-7、100 ; 0 8、0.035; 5.15e(万)(万)二、选择题1、C2、A3、C4、A5、B 三、计算解答题1、(1)原式=211(1)1 lim lim0(1)(1)1x xx xx x x→→--==+-+(2)原式=lim lim x x=1lim2x==-(3)设1xe t-=,则ln(1)x t=+,0x→时,0t→,原式=10011lim lim1ln(1)ln(1)limln(1)t ttttt ttt→→→==+⋅++1111lnln[lim(1)]ttet→===+(4)原式=sin[lim sin[limx x→+∞=s i n[l]s i n00x===2、(0)2f=00l i m()l) x x xf x---→→→==00lim lim(12x x--→→==+=00lim()lim(2)2x xf x x++→→=+=lim()2(0)xf x f→∴==()f x∴在0x=点连续,从而()f x在(,)-∞+∞内连续.四、应用题第三章经济最优化问题分析实训一(A )1.填空题(1)45x ; (2)2313x -; (3)23x ; (4)5232x --;(5)2ln 2x ; (6)1ln10x ; (7)0; (8)0.2.2log y x =,1ln 2y x '=.212ln 2x y ='=,122ln 2x y ='=.3.(1)()141y x -=-,即43y x =-; (2)()222y x +=--,即22y x =-+; (3)cos y x '=,312x k y π='==,切线方程为123y x π⎛⎫=- ⎪⎝⎭,即126y x π=-. 实训一(B )1.()()()20001sin010limlim lim sin 00x x x x f x f x f x x x x→→→-'====-.2.()()()()000002lim h f x h f x f x h f x h →+-+--()()()()0000022lim2h f x h f x hh f x h f x h →+-=+--()()()()00000022limlim 12h h f x h f x hh f x h f x h →→+-=⋅=+--. 其中()()()00002lim2h f x h f x f x h→+-'=,()()()()()00000021limh h f x f x h f x f x h f x →='+----⎡⎤⎡⎤⎣⎦⎣⎦. 3.因为3,02⎛⎫⎪⎝⎭不在21y x =上,不是切点.设过点3,02⎛⎫⎪⎝⎭与21y x =相切的切线的切点坐标为21,a a ⎛⎫ ⎪⎝⎭,则切点为21,a a ⎛⎫ ⎪⎝⎭的切线方程为:()2312Y X a a a -=--,有已知3,02⎛⎫ ⎪⎝⎭在切线上,带入可得1a =,所以切线方程为:()121y x -=--,即23y x =-+.实训二 (A )1.(1)223146y x x x '=+-; (2)11'ln n n y nx x x --=+; (3)21'41y x x =++; (4)2cosx cosx sinx'(x 1)x y +-=+. 2.(1)22'1xy x =+; (2)22'2sin3x 3cos3x x x y e e =+; (3)'y = (4)22sec cos122'csc sinx 2tan 2cos sin222x x y x x x x ====.3.(1)''2y =; (2)''2x x y e xe --=-+(3)222222(1x )2(2x)''224(1x )x y x x --+-==-+--; (4)2322222(1x)2''2arctanx 1(1x )x x x y x +-=++++. 4.(1)2212dy x xdx y y --+==;(2)x y x y dy y e y xy dx e x xy x++--==--. 【水箱注水】由24r h =,12r h =,22311133212h v r h h h πππ⎛⎫=== ⎪⎝⎭,两边求导得214v h h π''=,由已知2v '=,3h =,带入可得: 1294h π'=,89h π'=所以水位上升的速度为89π米/分.【梯子的滑动速度】由题意可得22100x y +=,两边求导可得:220dx dy xy dt dt +=,即dx y dy dt x dt=-, 将8y =,6x =,0.5dy dt =带入可得:820.563dy dt =-⨯=-.所以梯子的另一端华东的速度为23米/秒.负号表示运动方向. 实训二 (B )1.(1)11(1ln )e x e x y x x x e -=+++; (2)()()1112121y x x x ⎫'=--⎪⎪-+⎭. 2.()()cos sin x x y e x f e x ''=++. 3.将1y y xe -=两边对x 求导可得:0y y dy dy e xe dx dx --=,即1y ydy e dx xe =-.…………(1) 将0,1x y ==带入(1)可得:y e '=. 对(1)继续求导,()()()22121y y y y y y y e xe e e xy e y e xe ''----''==-.4.(1)22x z z xy x ∂'==∂, 22y zz yx y ∂'==∂; (2)2xy x z z ye xy x ∂'==+∂,2xy y z z xe x y∂'==+∂. 实训三 (A )1.填空题(1)单调递增区间,(),0-∞;单调递减区间()0,+∞. (2)6a =-.(3)驻点. (4)()00f x ''<.2.()()3444110y x x x x x '=-=-+=,得驻点1230,1,1x x x ==-=,单调递增区间:()()1.0 1.-+∞ ,单调递减区间:()().10.1-∞- .3.()()23693310y x x x x '=--=-+=,得驻点121,3x x =-=.又由于:66y x ''=-,()1120y ''-=-<,所以11x =-为极大点,极大值为0; ()360y ''=>,所以23x =为极小点,极小值为32-.【定价问题】21200080R PQ P P ==-,25000502500050(1200080)6250004000C Q P P =+=+-=-, 224000160T Q P ==-,21200080625000400024000160L R C T P P P P =--=--+-+28016160649000P P =-+-160161600L P '=-+=,解得:101P =, 167080L =.【售价与最大利润】1100200Q p =-,21100200R PQ P P ==-;220019004400L R C P P =-=+-,40019000L P '=-+=,解得 4.75P =此时:150Q =,112.5L =. 【最小平均成本】210000501000050x x c x x x ++==++;21000010c x '=-+=,解得100x =.【最大收入】315x R px xe -==,33155x x R exe--'=-3(155)0x x e-=-=,解得:3x =,此时115p e -=,145R e -=.实训三 (B )1.(1)设()1xf x e x =--,()10xf x e '=->(0x >),说明()f x 在0x >时单调递增,又()00f =,所以,当0x >时,()()00f x f >=,所以不等式成立. (2)设()()ln 1f x x x =-+,()1101f x x'=->+(0x >),说明()f x 在0x >时单调递增,又()00f =,所以,当0x >时,()()00f x f >=,所以不等式成立. 2.()cos cos3f x a x x '=+,没有不可导点,所以cos cos 033f a πππ⎛⎫'=+=⎪⎝⎭,得2a =.又()2sin 3sin3f x x x ''=--,03f π⎛⎫''=<⎪⎝⎭,所以3x π=为极大值点,极大值为3f π⎛⎫= ⎪⎝⎭【采购计划】 设批量为x ,采购费:132********200C x x =⨯=; 库存费:222xC x =⨯=;总费用:12640000C C C x x=+=+; 264000010C x'=-+=,解得800x =唯一驻点, 所以采购分4次,每次800吨,总费用最小.第三章自测题一、填空题 1. 2 2. 12-3. 21x -4. 1-5. 212c o s x xx+ 6. 17. 2l n3x + 8. 2 ; 09. 11ln ; ln y x y x yxy y x x xy --+⋅⋅+10. 12x =二、选择题1、C2、A3、A4、D5、A 三、计算解答题1、(1)([1]y x '''=+=+[12]()1x =⋅⋅⋅==(2)222()()2x x x x y e x e x xe e --'''=⋅+⋅-=- 2、方程221x y xy +-=两边对x 求导,得22()0x y y y x y ''+⋅-+= 解得:22y xy y x-'=-,将0,1x y ==代入,得切线斜率12k =,所以,切线方程为:11(0)2y x -=-,即:220x y -+=. 3、定义域(,)-∞+∞2363(2)y x x x x '=-=- 令0y '=,得驻点120,2x x ==递增区间:(,0)-∞、(2,)+∞ 递减区间:(0,2)极大值:(0)7f = 极小值:(2)3f = 四、应用题1、50S t ==(50)50dSt dt'== 所以,两船间的距离增加的速度为50千米/小时. 2、第四章 边际与弹性分析实训一(A )1.填空题(1)0.2x ∆=, 2.448y ∆=, 2.2dy =. (2)1x dy edx ==. (3)12dy x dx x ⎛⎫=+⎪⎝⎭. (4)cos(21)x +,2cos(21)x +. (5)[]()f g x ',[]()()f g x g x ''.2.(1)(12)dy x dx =+; (2)221dy dx x =+; (3)222(22)x x dy xe x e dx --=-; (4)322(1)dy x x dx -=-+; (5)23(1)1dy dx x =-+; (6)1dx dy x nx=. 3.()ln 11x y x x '=+++,11ln 22x y ='=+,所以11ln 22x dy dx =⎛⎫=+ ⎪⎝⎭. 【金属圆管截面积】2s r π=,2200.05ds r r πππ=∆=⨯=.实训一(B )1.(1)2sec x ;(2)1sin 5x 5;(3)2x ;(4)232x ;(5)21x +;(6)arctan x . 2.将x yxy e+=两边对x 求导,()1x yy xy ey +''+=+,解得:x y x ye yy x e ++-'=-,所以x y x ye ydy dx x e++-=-.3.(1110.001 1.00052≈+⨯=;(20.02221 2.001783⎛⎫==≈+= ⎪⨯⎝⎭; (3)()ln 1.01ln(10.01)0.01=+≈; (4)0.0510.05 1.05e ≈+=. 【圆盘面积的相对误差】2s r π=,0.2r ∆≤()'2s ds s r r r r π∆≈=∆=∆(1)()()22482240.29.65s ds cm cm πππ∆≈=⨯⨯==; (2)2220.22 1.67%24r r r s ds s s r r ππ∆∆∆≈===⨯≈. 实训二 (A )1.(1)()2'2x f x xe =;(2)[]1'()(1)a bf x x e a x ac --=++.2.(1)()21900110090017751200C =+⨯=;17757190036C ==. (2)()39002C '=,表示第901件产品的成本为32个单位;()51000 1.673C '=≈,表示第1001件产品的成本为53个单位. 3.(1)(50)9975R =;9975199.550R ==. (2)()502000.0250199R '=-⨯=,表示第51件产品的收入为199个单位. 4.22()()100.01520050.01200L R x C x x x x x x =-=---=--,50.020L x '=-=,解得唯一驻点250x =,所以当每批生产250个单位产品时,利润达到最大.实训二(B )1.()()()()()242,04282, 4x x x x L x R x C x x x ⎧--+≤≤⎪=-=⎨⎪-+>⎩, 即()232,0426, 4x x x L x x x ⎧-+-≤≤⎪=⎨⎪->⎩,求导()3,041, 4x x L x x -+≤<⎧'=⎨->⎩,令()0L x '=解得3x =百台(唯一驻点) 所以每年生产300台时,利润达到最大.()()430.5L L -=-万元,在最大利润的基础上再生产1百台,利润将减少0.5万元.2.()0.50.25C a a =+(万元)()2152R a aa =- ()22150.50.25 4.750.522a L a a a a a =---=-+-令() 4.750L a a '=-+=,解得 4.75a =(百台)又()10L a ''=-<,有极值的第二充分条件,可知当 4.75a =为最大值(唯一驻点) 所以该产品每年生产475台时,利润最大.实训三 (A )1.填空题 (1)1axy=;(2)21x Ey Ex ==;(3)1ln()4p η=-;(4)()334η=,()41η=,()554η=. 2.(1)15x η=; (2)3(3)5η=,价格为3时,价格上涨1%,需求下降0.6%,缺乏弹性;(5)1η=,价格为5时,价格上涨1%,需求下降1%,单位灵敏性; 6(6)5η=,价格为6时,价格上涨1%,需求下降1.2%. 3.(1)500P =元时,100000Q =张. (2)18002ppη=-.(3)1η=时,18002600p p p =-⇒=所以:当0600p ≤<时,1η<;当600900p <≤时,1η>.实训三 (B )1.(1)224202EQ x x Q Ex Q x '==--,243x EQ Ex ==-,所以价格增长5%,需求量减少6.7%;(2)()()3220R x xQ x x x ==--,x =403Q =.2.(1)2Q P '=-,48P Q ='=-,经济意义:在价格4P =的基础上,增加一个单位,需求量减少8个单位.(2)22275P P Q Q P η'=-=-,4320.542359P η===,经济意义,在4P =的基础上涨1%,需求减少0.54%.(3)375R PQ p p ==-,3375375p p p pη-=-,(4)0.46η=,经济意义,在4P =的基础上,若价格上涨1%,收入上涨0.46%.(4)198(6)0.46234η-=≈-,经济意义,在6P =的基础上,若价格上涨1%,收入减少0.46%. (5)375R p p =-,275305R p p '=-=⇒=,又6R p ''=-,()5300R ''=-<,所以由极值的第二充分条件,可知5P =时,总收入最大.第四章自测题一、填空题 1. 22 ; 2xxe e2.212x 3. arctan x4. 0.1 ; 0.63 ; 0.6 5. 45 ; 11 ; 456.10 ; 10% ; 变动富有弹性 7. 15%20% 8. 10% 二、选择题1、C2、B3、D4、A5、C 三、计算解答题1、(1)2222222()()2(2)x x x x y x e x e xe x e x ''''=⋅+⋅=+⋅2222222(1)x x x x e x e x e x =+=+ 22(1)xd y y d x xe x d x'∴==+ (2)222sin(12)[sin(12)]y x x ''=+⋅+2222s i n (12)c o s (12)(12)x x x '=+⋅+⋅+ 24s i n (24)x x =+ 24s i n (24)d y y d x x x d x'∴==+ 2、方程242ln y y x -=两边对x 求导,得31224dy dyy x dx y dx⋅-⋅⋅= 解得,3221dy x y dx y =-,3221x y dy dx y ∴=-3、四、应用题1、(1)()60.04C Q Q '=+ ()300()60.02C Q C Q Q Q Q==++(2)2300()0.02C Q Q'=-+令()0C Q '=,得Q = (3)2()()(204)204R Q P Q Q Q Q Q Q =⋅=-⋅=-2()()() 4.0214300L Q R Q C Q Q Q =-=-+- ()8.0414L Q Q '=-+ 令()0L Q =,得Q =2、 4Q P '=-(1)(6)24Q '=-,6P =时,价格上升1个单位,需求量减少24个单位.(2)22224(1502)15021502P P P Q P Q P P η''=-⋅=-⋅-=-- 24(6)13η=6P =时,价格变动1%,需求量变动2413% (3)23()()(1502)1502R P Q P P P P P P =⋅=-⋅=-33(1502)1502E R P PR P P E P R P P''=⋅=⋅--2215061502P P -=-61113P EREP==-6P =时,若价格下降2%,总收入将增加2213%第五章 经济总量问题分析实训一(A )1.填空题(1)3x ,3x C +; (2)3x ,3x C +; (3)cos x -,cos x C -+;(4C ; (5)arctan x ,arctan x C +.2.(1)B ; (2)C ; (3)D ; (4)A .3.(1)5322225x x C -+;(2)31cos 3xx e x C --+;(3)21x x C x-++; (4)(2)ln 2xe C e+. 4.(1)1arctan x C x--+;(2)sin cos x x C ++. 【曲线方程】由题意()21f x x '=+,所以()()()23113f x f x dx x dx x x C '==+=++⎰⎰,又过点()0,1带入,得到1C =,所以曲线方程为:()3113f x x x =++. 【总成本函数】由题意可得()220.01C x x x a =++,又固定成本为2000元,所以 ()220.012000C x x x =++. 【总收入函数】()()278 1.2780.6R x x dx x x C =-=-+⎰,由()000R C =⇒=,所以总收入函数为()2780.6R x x x =-.实训一(B )1.填空题(1)sin 2ln x x x +;(2)223cos3x e x +;(3)ln x x C +. 2.(1)D ; (2)B .3.(1)322233331u u u I du u du u u u -+-⎛⎫==-+- ⎪⎝⎭⎰⎰ 2133ln 2u u u C u=-+++; (2))32332333I dx x x C ===-+⎰;(3)()222222121212arctan 11x x I dx dx x C x x x x x ++⎛⎫==+=-++ ⎪++⎝⎭⎰⎰; (4)()()()1111tttt te e I dt edt e t C e +-==-=-++⎰⎰.实训二 (A )1.填空题 (1)212x ; (2)x e --; (3)ln x ; (4)arctan x ; (5)23x x +; (6)arcsin x . 2.(1)B ; (2)B .3.(1)()()()11cos 2121sin 2122I x d x x C =++=++⎰; (2)()()3212313139I x x C =+=++;(3)()()231ln ln ln 3I x d x x C ==+⎰;(4)111xx I e d e C x ⎛⎫=-=-+ ⎪⎝⎭⎰.4.(1)sin sin sin x xI e d x eC ==+⎰; (2)()()11ln 11x xx I d e e C e =+=+++⎰;(3)()()2222ln 22d x x I x x C x x -+==-++-+⎰;(4)22221111111x x x I dx dx x x x ++-⎛⎫==+- ⎪+++⎝⎭⎰⎰ 21l n (1)a r c t a n 2x x x C=++-+. 5.(1)()x x x x x I xd e xe e dx xe e C -----=-=-+=--+⎰⎰;(2)()()()ln 1ln 1ln 1I x dx x x xd x =+=+-+⎰⎰()()11ln 1ln 111x x x x dx x x dx x x +-=+-=+-++⎰⎰()()l n 1l n 1x x x x C =+-+++. 【需求函数】由已知,()111000ln3100033p pQ p dp C ⎛⎫⎛⎫=-⨯=+ ⎪ ⎪⎝⎭⎝⎭⎰ 又因为0p =时,1000Q =,代入上式,得到0C =.所以,()110003pQ p ⎛⎫= ⎪⎝⎭.【资本存量】由已知,32()2(1)y I t dt t C ===++⎰⎰因为0t =时,2500498y C C =+=⇒= 所以,322(1)498y t =++.实训二 (B )1.填空题(1)ln ()f x C +;(2)arctan(())f x C +;(3)'()()xf x f x C -+. 2.(1)()()2arctan 1x x x d e I e C e ==++⎰;(2)()()11131431dx I dx x x x x ⎛⎫==-⎪-+-+⎝⎭⎰⎰113l n 3l n 1l n 441x I x x C C x -=⎡--+⎤+=+⎣⎦+;(3)()()2arctan 111dxI x C x ==++++⎰;(4)()22222x x x x x I x d e x e e dx x e xe dx -----=-=-+=--⎰⎰⎰()22222x x x x x x I x e xe e C x e xe e C ------=----+=-+++. 【物体冷却模型】设()T t 为t 时刻物体的温度,由冷却定律可得:0()dTk T T dt=-, 分离变量0dT kdt T T =-,两边积分0dTkdt T T =-⎰⎰,可得:()0ln ln T T kt c -=+,0()kt T t T ce =+.由已知()0100T =,()160T =,020T =,带入得到:80c =,ln 2k =-, 所以ln2()2080t T t e -⋅=+, 当ln 23020803te t -⋅=+⇒=.实训三 (A )1.填空题 (1)122lim(1)nn i i n n→∞=+∑;(2)2)x dx -;(3)2π;(4)0. 2.(1)12010(3)3S x dx =+=⎰; (2)12218(2)3S x x dx -=--=⎰;(3)1303(1)4S x dx =-=⎰或034S ==⎰.实训三 (B )1.(1)分割:将[]0,4n 等分,每份长度为4n ;(2)近似代替:2412823i i n iA n n n⎡⎤+⎛⎫∆=⋅+= ⎪⎢⎥⎝⎭⎣⎦;(3)求和:()2212221111281281282nnni ii i n n n in n iA A n nn===++++≈∆===∑∑∑; (4)取极限:()2211282lim16n n n n A n→∞++==. 2.1sin xdx π⎰.3.22211113ln ln 222x dx x x x ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭⎰.实训四 (A )1.填空题(1)64;(2)1;(3)2π;(4)3;(5)1. 2.(1)()()()44341118111144I x d x x =--=-=⎰; (2)()()44223328I x dx xx =+=+=⎰;(几何上为直角三角形的面积)(3)22242200111222x x e I e dx e -===⎰; (4)2112111xx I e d e e x =-=-=⎰(5)01cos sin 222x x x I dx πππ++===⎰; (6)0;(利用当积分区间为对称区间,被积函数为奇函数时定积分的性质) (7)121211122222235I xdx xdx xdx xdx -=+=+=+=⎰⎰⎰⎰;(8)02sin 4I xdx π==⎰.(利用定积分的周期性)【资本存量问题】 (1)434211214I t ===⎰(万元);(4)33224422820 6.87x xtx x ⎛⎫==-=⇒=≈ ⎪⎝⎭⎰.【投资问题】01000P =,200A = 0.05()200T t tdP e dt-= 0.05()0.05020040004000TT t T t P edt e -==-+⎰ 10t =,0.5400040002595t P e=-+= 因为0.515741600T P e-≈<,所以,此项投资不恰当.实训四 (B )1.因为()1229214x dx --+=-⎰,()1129214x dx -+=⎰,()20216x dx +=⎰,()21214x dx +=⎰, ()3222213x dx +=⎰, 所以应该分两种情况: (1)因为()3403kf x dx =⎰,()()332240221816333k f x dx x dx -+=-==⎰⎰ 所以,0k =; (2)因为()()102112f x dx f x dx ---=⎰⎰,由对称性可知1k =-.2.对()21f x dx -⎰作代换令1x t -=(切记:定积分的换元要换限,积分值不变),则有:()()21011f x dx f t dt --=⎰⎰,所以,()()21101101112tte f x dx f t dt dt dt e t ---==+++⎰⎰⎰⎰ ()()()()001101011132ln 1ln 2ln 121t t td e ed te t e t e --+=++=+++=+++⎰⎰. 3.()()()()11111111I xf x dx xdf x x f x f x dx ----'===-⎰⎰⎰()()()()21111110x f f e f f --=+--=+-=.因为()()222x x f x e xe --'==-,()f x 为奇函数,所以()()110f f +-=.【储存费用问题】第五章自测题一、填空题 1.sin x x e c ++2.5314453x x x c -++ 3.ln xdx4.21ln 2x c +5.196.327.94π8.21200 ;200Q Q - 9.二、选择题1、D2、B3、A4、B5、C 三、计算解答题 1、(1)原式=1111()(3)(2)532dx dx x x x x =--+-+⎰⎰ 113[l n 3l n 2]l n 552x x x c cx -=--++=++ (2)原式=22111112sin ()cos cos cos1d x x x πππ-==-⎰2、(1)222222212(1)()()(1)(1)x x x F x G x dx dx x x x x ++++==++⎰⎰22111()arctan 1dx x c x x x=+=-+++⎰(2)222222212(1)3()()(1)(1)x x x F x G x dx dx x x x x -+--==++⎰⎰ 22131()3arctan 1dx x c x x x=-=--++⎰3、原式=31222(1)(1)1)33x x =+=+=⎰⎰四、应用题 1、(1)32412)2(24S x x dx x x =-=-=(2)1100()()1x x S e e dx ex e =-=-=⎰2、(1)2()()(100020)C Q C Q dQ Q Q dQ '==-+⎰⎰2311000103Q Q Q c =-++(0)9000C = ,9000c ∴=, 321()10100090003C Q Q Q Q ∴=-++ ()3400R Q Q = 321()()()10240090003L Q R Q C Q Q Q Q =-=-++- (2)令()()R Q C Q ''=,得60Q = 最大利润(60)99000L =(元) 3、.期末考试(90分钟)一、选择题(每题3分,共9分)1、设()0, 0x f x k x ≠=⎪=⎩在0x =处连续,问k =( )。
经济数学基础自测题及参考答案
经济数学基础自测题及参考答案第一部分 微分学一、单项选择题1.函数()1lg +=x xy 的定义域是( ).A .1->xB .0≠xC .0>xD .1->x 且0≠x2. 设需求量q 对价格p 的函数为p p q 23)(-=,则需求弹性为E p =( ).A .p p32- B .--pp32 C .32-ppD .--32pp3.下列各函数对中,()中的两个函数相等.A .2)()(x x f =,x x g =)( B .11)(2--=x x x f ,x x g =)(+ 1C .2ln x y =,x x g ln 2)(=D .x x x f 22cos sin )(+=,1)(=x g4.设11)(+=xx f ,则))((x f f =( ).A .11++x xB .x x +1C .111++xD .x+11 5.下列函数中为奇函数的是().A .x x y -=2B .x x y -+=e eC .11ln +-=x x y D .x x y sin = 6.下列函数中,( )不是基本初等函数.A .102=y B .xy )21(= C .)1ln(-=x y D .31xy = 7.下列结论中,( )是正确的. A .基本初等函数都是单调函数 B .偶函数的图形关于坐标原点对称 C .奇函数的图形关于坐标原点对称 D .周期函数都是有界函数8. 当x →0时,下列变量中( )是无穷大量.A .001.0x B . x x 21+ C . x D . x-29. 已知1tan )(-=xxx f ,当( )时,)(x f 为无穷小量. A . x →0 B . 1→x C . -∞→x D . +∞→x10.函数sin ,0(),0xx f x x k x ⎧≠⎪=⎨⎪=⎩ 在x = 0处连续,则k = ( ).A .-2B .-1C .1D .211. 函数⎩⎨⎧<-≥=0,10,1)(x x x f 在x = 0处( ).A . 左连续B . 右连续C . 连续D . 左右皆不连续 12.曲线11+=x y 在点(0, 1)处的切线斜率为( ).A .21-B .21C .3)1(21+x D .3)1(21+-x13. 曲线x y sin =在点(0, 0)处的切线方程为( ).A . y = xB . y = 2xC . y = 21x D . y = -x14.若函数x xf =)1(,则)(x f '=( ).A .21xB .-21xC .x 1D .-x 115.若x x x f cos )(=,则='')(x f ( ).A .x x x sin cos +B .x x x sin cos -C .x x x cos sin 2+D .x x x cos sin 2-- 16.下列函数在指定区间(,)-∞+∞上单调增加的是( ).A .sin xB .e xC .x 2D .3 - x 17.下列结论正确的有( ).A .x 0是f (x )的极值点,且f '(x 0)存在,则必有f '(x 0) = 0B .x 0是f (x )的极值点,则x 0必是f (x )的驻点C .若f '(x 0) = 0,则x 0必是f (x )的极值点D .使)(x f '不存在的点x 0,一定是f (x )的极值点二、填空题1.需求量q 对价格p 的函数为2e 100)(p p q -⨯=,则需求弹性为E p =.2.函数x x x f --+=21)5ln()(的定义域是 . 3.若函数52)1(2-+=+x x x f ,则=)(x f. 4.设函数1)(2-=u u f ,xx u 1)(=,则=))2((u f.5.设21010)(xx x f -+=,则函数的图形关于 对称.6.已知生产某种产品的成本函数为C (q ) = 80 + 2q ,则当产量q = 50时,该产品的平均成本为 .7.已知某商品的需求函数为q = 180 – 4p ,其中p 为该商品的价格,则该商品的收入函数R (q ) = .8. =+∞→xxx x sin lim.9.已知x xx f sin 1)(-=,当 时,)(x f 为无穷小量.10. 已知⎪⎩⎪⎨⎧=≠--=1111)(2x a x x x x f ,若f x ()在),(∞+-∞内连续,则=a .11.已知需求函数为p q 32320-=,其中p 为价格,则需求弹性E p = . 12.函数)2)(1(1)(-+=x x x f 的连续区间是.13.曲线y 在点)1,1(处的切线斜率是 . 14.函数y = x 2 + 1的单调增加区间为.15.已知x x f 2ln )(=,则])2(['f = . 16.函数y x =-312()的驻点是 .三、计算题1.423lim 222-+-→x x x x 2.231lim 21+--→x x x x 3.已知2sin 2cos x y x -=,求)(x y ' .4.已知xx y 53e ln -+=,求)(x y ' .11.设x y x5sin cos e+=,求y d . 12.设xx y -+=2tan 3,求y d7.已知y x x xcos 2-=,求)(x y ' .8.已知)(x f x x xln sin 2+=,求)(x f ' .9.已知x y cos 25=,求)2π(y ';10.已知y =32ln x ,求y d . .四、应用题1.设生产某种产品x 个单位时的成本函数为:x x x C 625.0100)(2++=(万元), 求:(1)当10=x 时的总成本、平均成本和边际成本; (2)当产量x 为多少时,平均成本最小?2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q p =-100010(q 为需求量,p 为价格).试求: (1)成本函数,收入函数; (2)产量为多少吨时利润最大?3.设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元.又已知需求函数p q 42000-=,其中p 为价格,q 为产量,这种产品在市场上是畅销的,试求:(1)价格为多少时利润最大?(2)最大利润是多少?4.某厂生产某种产品q 件时的总成本函数为C (q ) = 20+4q +0.01q 2(元),单位销售价格为p = 14-0.01q (元/件),试求:(1)产量为多少时可使利润达到最大?(2)最大利润是多少?5.某厂每天生产某种产品q 件的成本函数为9800365.0)(2++=q q q C (元).为使平均成本最低,每天产量应为多少?此时,每件产品平均成本为多少?6.已知某厂生产q 件产品的成本为C q q q ()=++25020102(万元).问:要使平均成本最少,应生产多少件产品?试题答案一、 单项选择题1.D 2.B 3.D 4.A 5.C 6.C 7.C 8. B 9. A 10. C 11. B 12.A 13. A 14. B 15. D 16. B 17. A 二、填空题1.2p -2. (-5, 2 )3. 62-x 4.43- 5. y 轴 6.3.6 7. 45q – 0.25q 2 8. 1 9. 0→x 10. 2 11. 10-p p12.)1,(--∞,)2,1(-,),2(∞+ 13.(1)0.5y '= 14.(0, +∞) 15. 0 16.x =1三、极限与微分计算题1.解 423lim 222-+-→x x x x =)2)(2()1)(2(lim 2+---→x x x x x = )2(1lim 2+-→x x x = 412.解:231lim21+--→x x x x =)1)(2)(1(1lim1+---→x x x x x =21)1)(2(1lim 1-=+-→x x x3.解 )(cos )2(2sin )(22'-'-='x x x y x x 2cos 22ln 2sin 2x x xx--= 4.解:)5(e )(ln ln 3)(52'-+'='-x x x x y xx xx525e ln 3--= 5.解 因为 )(cos cos 5)(sin e 4sin '+'='x x x y xx x x xsin cos 5cos e 4sin -= 所以 x x x x y xd )sin cos 5cose (d 4sin -=6.解 因为 )(2ln 2)(cos 1332'-+'='-x x x y x2ln 2cos 3322x x x --= 所以 x xx y xd )2ln 2cos 3(d 322--= 7.解:y '(x )=)cos 2('-x x x=2cos sin 2ln 2x xx x x --- =2cos sin 2ln 2xxx x x++ 8.解 xx x x f x x1c o s 2s i n2ln 2)(++⋅=' 9.解 因为 5ln 5sin 2)cos 2(5ln 5)5(cos 2cos 2cos 2x x xx x y -='='='所以 5ln 25ln 52πsin 2)2π(2πcos 2-=⋅-='y10.解 因为 )(ln )(ln 3231'='-x x y331ln 32)(ln 32xx x x ==- 所以 x xx y d ln 32d 3=四、应用题1.解(1)因为总成本、平均成本和边际成本分别为:x x x C 625.0100)(2++=625.0100)(++=x xx C ,65.0)(+='x x C所以,1851061025.0100)10(2=⨯+⨯+=C5.1861025.010100)10(=+⨯+=C , 116105.0)10(=+⨯='C(2)令 025.0100)(2=+-='xx C ,得20=x (20-=x 舍去)因为20=x 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当=x 20时,平均成本最小.2.解 (1)成本函数C q ()= 60q +2000.因为 q p =-100010,即p q =-100110, 所以 收入函数R q ()=p ⨯q =(100110-q )q =1001102q q -. (2)因为利润函数L q ()=R q ()-C q () =1001102q q --(60q +2000) = 40q -1102q -2000 且 'L q ()=(40q -1102q -2000')=40- 0.2q 令'L q ()= 0,即40- 0.2q = 0,得q = 200,它是L q ()在其定义域内的唯一驻点. 所以,q = 200是利润函数L q ()的最大值点,即当产量为200吨时利润最大.3.解 (1)C (p ) = 50000+100q = 50000+100(2000-4p ) =250000-400pR (p ) =pq = p (2000-4p )= 2000p -4p 2 利润函数L (p ) = R (p ) - C (p ) =2400p -4p 2 -250000,且令 )(p L '=2400 – 8p = 0得p =300,该问题确实存在最大值. 所以,当价格为p =300元时,利润最大. (2)最大利润 1100025000030043002400)300(2=-⨯-⨯=L (元). 4.解 (1)由已知201.014)01.014(q q q q qp R -=-==利润函数22202.0201001.042001.014q q q q q q C R L --=----=-= 则q L 04.010-=',令004.010=-='q L ,解出唯一驻点250=q .因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大, (2)最大利润为1230125020250025002.02025010)250(2=--=⨯--⨯=L (元) 5. 解 因为 C q ()=C q q ()=05369800.q q++ (q >0) q ()=(.)05369800q q ++'=0598002.-q令'C q ()=0,即0598002.-q =0,得q 1=140,q 2= -140(舍去). q 1=140是C q ()在其定义域内的唯一驻点,且该问题确实存在最小值.所以q 1=140是平均成本函数q ()的最小值点,即为使平均成本最低,每天产量应为140件. 此时的平均成本为C ()140=0514*******140.⨯++=176 (元/件) 6.解 (1) 因为 C q ()=C q q ()=2502010q q++ 'C q ()=()2502010q q ++'=-+2501102q 令'C q ()=0,即-+=25011002q ,得q 1=50,q 2=-50(舍去), q 1=50是C q ()在其定义域内的唯一驻点.所以,q 1=50是C q ()的最小值点,即要使平均成本最少,应生产50件产品.经济数学基础自测题及参考答案第二部分 积分学一、单项选择题1.在切线斜率为2x 的积分曲线族中,通过点(1, 4)的曲线为( ).A .y = x 2 + 3B .y = x 2+ 4 C .y = 2x + 2 D .y = 4x 2. 若⎰+10d )2(x k x = 2,则k =( ). A .1 B .-1 C .0 D .21 3.下列等式不成立的是().A .)d(e d e xx x = B .)d(cos d sin x x x =-C .x x xd d 21= D .)1d(d ln x x x =4.若c x x f x +-=-⎰2ed )(,则)(x f '=( ).A . 2e x-- B . 2e 21x- C . 2e 41x- D . 2e 41x--5.=-⎰)d(exx ().A .c x x+-e B .c x xx++--e e C .c x x+--eD .c x x x +---e e6.下列定积分中积分值为0的是( ).A .x xx d 2e e 11⎰--- B .x xx d 2e e 11⎰--+ C .x x xd )cos (3⎰-+ππ D .x x x d )sin (2⎰-+ππ7. 若)(x F 是)(x f 的一个原函数,则下列等式成立的是( ).A .)(d )(x F x x f xa =⎰ B .)()(d )(a F x F x x f xa -=⎰C .)()(d )(a f b f x x F ba-=⎰D .)()(d )(a F b F x x f b a-='⎰二、填空题 1.=⎰-x x d ed 2. 2.函数x x f 2sin )(=的原函数是.3.若c x x x f ++=⎰2)1(d )(,则=)(x f .4.若c x F x x f +=⎰)(d )(,则x f x x)d e (e--⎰= .5.=+⎰e12dx )1ln(d d x x . 6.=+⎰-1122d )1(x x x.三、计算题⒈ ⎰x x x d 1sin22.⎰x x xd 23. x x d )1ln(1e 0⎰-+ 4.⎰+x x x d 1)ln (5.x x xd )e 1(e 3ln 02⎰+ 6.x xx d ln e 1⎰7.2e 1x ⎰四、应用题1.投产某产品的固定成本为36(万元),且边际成本为)(x C '=2x + 40(万元/百台). 试求产量由4百台增至6百台时总成本的增量,及总成本函数. 2.已知某产品的边际成本C '(x )=2(元/件),固定成本为0,边际收益R '(x )=12-0.02x ,问产量为多少时利润最大?在最大利润产量的基础上再生产50件,利润将会发生什么变化?3.生产某产品的边际成本为C '(x )=8x (万元/百台),边际收入为R '(x )=100-2x (万元/百台),其中x 为产量,问产量为多少时,利润最大?从利润最大时的产量再生产2百台,利润有什么变化?4.设生产某产品的总成本函数为 x x C +=3)((万元),其中x 为产量,单位:百吨.销售x 百吨时的边际收入为x x R 215)(-='(万元/百吨),求: (1) 利润最大时的产量;(2) 在利润最大时的产量的基础上再生产1百吨,利润会发生什么变化?试题答案二、单项选择题1. A 2.A 3. D 4. D 5. B 6. A 7. B 二、填空题 1. x x d e 2- 2. -21cos2x + c (c 是任意常数) 3. )1(2+x 4. c F x+--)e ( 5. 0 6. 0 三、计算题⒈ 解 c x x x x x x +=-=⎰⎰1cos )1(d 1sin d 1sin22.解c x xx xx x +==⎰⎰22ln 2)(d 22d 23.解法一x x x x x x x d 1)1l n (d )1l n (1e 01e 01e 0⎰⎰---+-+=+ =x x d )111(1e 1e 0⎰-+---=1e 0)]1ln([1e -+---x x =e ln =1解法二 令1+=x u ,则u u u u u u u x x d 1ln d ln d )1ln(e1e1e11e 0⎰⎰⎰-==+-=11e e e e1=+-=-u4.解 ⎰+x xx d 1)l n (=⎰+-+x xx x x d 1)(21ln 1)(2122=c x x x x x +--+4)ln 2(2122 5.解x x x d )e 1(e 3ln 02⎰+=⎰++3ln 02)e d(1)e 1(x x =3ln 03)e 1(31x +=356 6.解)(ln d 2ln 2)2(d ln d ln e 1e1e 1e 1x x x x x x x xx ⎰⎰⎰-==e1e 14e 2d 2e 2x x x -=-=⎰e 24d 2e 2e 1-=-=⎰x x7.解 x xx d ln 112e 1⎰+=)ln d(1ln 112e 1x x++⎰=2e 1ln 12x+=)13(2-四、应用题1.解 当产量由4百台增至6百台时,总成本的增量为 ⎰+=∆64d )402(x x C =642)40(x x += 100(万元)又 ⎰+'=x c x x C x C 0d )()(=36402++x x2.解 因为边际利润)()()(x C x R x L '-'='=12-0.02x –2 = 10-0.02x令)(x L '= 0,得x = 500x = 500是惟一驻点,而该问题确实存在最大值. 所以,当产量为500件时,利润最大. 当产量由500件增加至550件时,利润改变量为 5505002550500)01.010(d )02.010(x x x x L -=-=∆⎰=500 - 525 = - 25 (元)即利润将减少25元.3. 解 L '(x ) =R '(x ) -C '(x ) = (100 – 2x ) – 8x =100 – 10x令L '(x )=0, 得 x = 10(百台)又x = 10是L (x )的唯一驻点,该问题确实存在最大值,故x = 10是L (x )的最大值点,即当产量为10(百台)时,利润最大. 又 x x x x L L d )10100(d )(12101210⎰⎰-='=20)5100(12102-=-=x x即从利润最大时的产量再生产2百台,利润将减少20万元.4.解:(1) 因为边际成本为 1)(='x C ,边际利润)()()(x C x R x L '-'=' = 14 – 2x 令0)(='x L ,得x = 7由该题实际意义可知,x = 7为利润函数L (x )的极大值点,也是最大值点. 因此,当产量为7百吨时利润最大.(2) 当产量由7百吨增加至8百吨时,利润改变量为 87287)14(d )214(x x x x L -=-=∆⎰=112 – 64 – 98 + 49 = - 1 (万元)即利润将减少1万元.经济数学基础线性代数部分练习及参考答案(一)单项选择题1.设线性方程组b AX =有唯一解,则相应的齐次方程组O AX =( ).A .无解B .有非0解C .只有0解D .解不能确定 答案:C2. 线性方程组⎪⎩⎪⎨⎧=+-=-=++43362323232321x x x x x x x ( ). A .有唯一解 B .无解 C .只有0解 D .有无穷多解.答案:B二、填空题1.设⎥⎦⎤⎢⎣⎡--=2131A ,则A I 2-= .填写:⎥⎦⎤⎢⎣⎡--5261 2.矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--330204212的秩为 .填写:23.已知n 元线性方程组AX b =有解,且n A r <)(,则该方程组的一般解中自由未知量的个数为 . 填写:)(A r n -4.当λ= 时,方程组⎩⎨⎧-=--=+112121x x x x λ有无穷多解.填写:15.线性方程组O AX =的系数矩阵A 化成阶梯形矩阵后为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→100140121d A则当d 时,方程组O AX =有非0解. 填写:1-三、计算题1.设矩阵 ⎥⎦⎤⎢⎣⎡-=021201A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200010212B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=242216C ,计算C BA +T. 解:C BA +T=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200010212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+242216=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-042006⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+242216 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200210 问:?)(T =+C BA r2.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---112401211,I 为单位矩阵,求逆矩阵1)(-+A I . 解 因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+012411210A I ,且 (I +A I ) =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-120001010830210411100010001012411210⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→123124112200010001123001011200210201⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→21123124112100010001所以 A -1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----21123124112 3.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=500050002,322121011B A ,求B A 1-.解:利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--102340011110001011100322010********* ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→14610135010001011146100011110001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→146100135010134001 即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1461351341A 由矩阵乘法得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-520125151051585000500021461351341B A4.求线性方程组⎪⎩⎪⎨⎧=-+=++-=++032038204214321321x x x x x x x x x x 的一般解.解: 因为系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=000012101301121036300111103238120111A 所以一般解为:⎩⎨⎧+=--=43243123x x x x x x , 其中3x ,4x 是自由未知量.5.求线性方程组⎪⎩⎪⎨⎧=-+--=+-+-=-+53523232243214321431x x x x x x x x x x x 的一般解解 因为系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=111101111021201535123231121201A⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000001111021201所以一般解为⎩⎨⎧-+-=+-=432431122x x x x x x (其中3x ,4x 是自由未知量)6.当λ取何值时,线性方程组⎪⎩⎪⎨⎧=++=++=++0303202321321321x x x x x x x x x λ 有非0解?并求一般解.解 因为增广矩阵 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=35011012113132121λλA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→200110101λ所以当λ= -2时,线性方程组有无穷多解,且一般解为: ⎩⎨⎧-==3231x x x x (x 3是自由未知量)7.当λ取何值时,线性方程组⎪⎩⎪⎨⎧=-+=++=++λ3213213212323212x x x x x x x x x 有解?并求一般解.解 因为增广矩阵 ⎪⎪⎪⎭⎫ ⎝⎛-=λ21321321121A ⎪⎪⎪⎭⎫ ⎝⎛-----→355001101121λ ⎪⎪⎪⎭⎫ ⎝⎛--→300001101101λ ∴当λ=3时,线性方程组有无穷多解,且一般解为: ⎩⎨⎧-=+=32311x x x x(x 3是自由未知量)注意:经济数学基础综合练习及模拟试题(含答案)一、单项选择题 1.若函数xxx f -=1)(, ,1)(x x g +=则=-)]2([g f ( ). A .-2 B .-1 C .-1.5 D .1.5 正确答案:A2.下列函数中为偶函数的是( ).A .x x y -=2B .xxy --=eeC .11ln +-=x x y D .x x y sin = 正确答案:D3.函数)1ln(1-=x y 的连续区间是( ).A .),(),(∞+⋃221B .),(),∞+⋃221[C .),(∞+1D .),∞+1[ 正确答案:A李蓉:为什么是A ,答案B 的前面有中括号的定义与答案A 区别是?顾静相:答案B 左边的是方括号[,表示能取到端点,在左端点处函数没有意义。
国家开放大学《经济数学基础》期末考试复习题及参考答案
题目1:函数的定义域为().答案:题目1:函数的定义域为().答案:题目1:函数的定义域为().答案:题目2:下列函数在指定区间上单调增加的是().答案:题目2:下列函数在指定区间上单调增加的是().答案:题目2:下列函数在指定区间上单调减少的是().答案:题目3:设,则().答案:题目3:设,则().答案:题目3:设,则=().答案:题目4:当时,下列变量为无穷小量的是().答案:题目4:当时,下列变量为无穷小量的是().答案:题目4:当时,下列变量为无穷小量的是().答案:题目5:下列极限计算正确的是().答案:题目5:下列极限计算正确的是().答案:题目5:下列极限计算正确的是().答案:题目6:().答案:0题目6:().答案:-1题目6:().答案:1题目7:().答案:题目7:().答案:().题目7:().答案:-1题目8:().答案:题目8:().答案:题目8:().答案:().题目9:().答案:4题目9:().答案:-4题目9:().答案:2题目10:设在处连续,则().答案:1 题目10:设在处连续,则().答案:1 题目10:设在处连续,则().答案:2题目11:当(),()时,函数在处连续.答案:题目11:当(),()时,函数在处连续.答案:题目11:当(),()时,函数在处连续.答案:题目12:曲线在点的切线方程是().答案:题目12:曲线在点的切线方程是().答案:题目12:曲线在点的切线方程是().答案:题目13:若函数在点处可导,则()是错误的.答案:,但题目13:若函数在点处可微,则()是错误的.答案:,但题目13:若函数在点处连续,则()是正确的.答案:函数在点处有定义题目14:若,则().答案:题目14:若,则().答案:1题目14:若,则().答案:题目15:设,则().答案:题目15:设,则().答案:题目15:设,则().答案:题目16:设函数,则().答案:题目16:设函数,则().答案:题目16:设函数,则().答案:题目17:设,则().答案:题目17:设,则().答案:题目17:设,则().答案:题目18:设,则().答案:题目18:设,则().答案:题目18:设,则().答案:题目19:设,则().答案:题目19:设,则().答案:题目19:设,则().答案:题目20:设,则().答案:题目20:设,则().答案:题目20:设,则().答案:题目21:设,则().答案:题目21:设,则().答案:题目21:设,则().答案:题目22:设,方程两边对求导,可得().答案:题目22:设,方程两边对求导,可得().答案:题目22:设,方程两边对求导,可得().答案:题目23:设,则().答案:题目23:设,则().答案:题目23:设,则().答案:-2题目24:函数的驻点是().答案:题目24:函数的驻点是().答案:题目24:函数的驻点是().答案:题目25:设某商品的需求函数为,则需求弹性().答案:题目25:设某商品的需求函数为,则需求弹性().答案:题目25:设某商品的需求函数为,则需求弹性().答案:题目1:下列函数中,()是的一个原函数.答案:题目1:下列函数中,()是的一个原函数.答案:题目1:下列函数中,()是的一个原函数.答案:题目2:若,则(). 答案:题目2:若,则().答案:题目2:若,则(). 答案:题目3:(). 答案:题目3:().答案:题目3:(). 答案:题目4:().答案:题目4:().答案:题目4:().答案:题目5:下列等式成立的是().答案:题目5:下列等式成立的是().答案:题目5:下列等式成立的是().答案:题目6:若,则(). 答案:题目6:若,则().答案:题目6:若,则(). 答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目10:(). 答案:0题目10:().答案:0题目10:(). 答案:题目11:设,则(). 答案:题目11:设,则().答案:题目11:设,则(). 答案:题目12:下列定积分计算正确的是().答案:题目12:下列定积分计算正确的是().答案:题目12:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目14:计算定积分,则下列步骤中正确的是().答案:题目14:().答案:题目14:().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目17:下列无穷积分中收敛的是().答案:题目17:下列无穷积分中收敛的是().答案:题目17:下列无穷积分中收敛的是().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().答案:题目20:微分方程满足的特解为().答案:题目20:微分方程满足的特解为().答案:题目20:微分方程满足的特解为().答案:题目1:设矩阵,则的元素().答案:3题目1:设矩阵,则的元素a32=().答案:1题目1:设矩阵,则的元素a24=().答案:2题目2:设,,则().答案:题目2:设,,则()答案:题目2:设,,则BA =().答案:题目3:设A为矩阵,B为矩阵,且乘积矩阵有意义,则为()矩阵.答案:题目3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题目3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题目4:设,为单位矩阵,则()答案:题目4:设,为单位矩阵,则(A - I )T =().答案:题目4:,为单位矩阵,则A T–I =().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目6:下列关于矩阵的结论正确的是().答案:对角矩阵是对称矩阵题目6:下列关于矩阵的结论正确的是().答案:数量矩阵是对称矩阵题目6:下列关于矩阵的结论正确的是().答案:若为可逆矩阵,且,则题目7:设,,则().答案:0题目7:设,,则().答案:0题目7:设,,则().答案:-2, 4题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目9:下列矩阵可逆的是().答案:题目9:下列矩阵可逆的是().答案:题目9:下列矩阵可逆的是().答案:题目10:设矩阵,则().答案:题目10:设矩阵,则().答案:题目10:设矩阵,则().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目12:矩阵的秩是().答案:2题目12:矩阵的秩是().答案:3题目12:矩阵的秩是().答案:3题目13:设矩阵,则当()时,最小.答案:2题目13:设矩阵,则当()时,最小.答案:-2题目13:设矩阵,则当()时,最小.答案:-12题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量答案:题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.答案:题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.选择一项:A.B.C.D.答案:题目15:设线性方程组有非0解,则().答案:-1 题目15:设线性方程组有非0解,则().答案:1题目15:设线性方程组有非0解,则().答案:-1题目16:设线性方程组,且,则当且仅当()时,方程组有唯一解.答案:题目16:设线性方程组,且,则当()时,方程组没有唯一解.答案:题目16:设线性方程组,且,则当()时,方程组有无穷多解.答案:题目17:线性方程组有无穷多解的充分必要条件是().答案:题目17线性方程组有唯一解的充分必要条件是().:答案:题目17:线性方程组无解,则().答案:题目18:设线性方程组,则方程组有解的充分必要条件是().答案:题目18:设线性方程组,则方程组有解的充分必要条件是().答案:题目18:设线性方程组,则方程组有解的充分必要条件是()答案:题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组无解.答案:且题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组有无穷多解.答案:且题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组有唯一解.答案:题目20:若线性方程组只有零解,则线性方程组()答案:解不能确定题目20:若线性方程组有唯一解,则线性方程组().答案:只有零解题目20:若线性方程组有无穷多解,则线性方程组().答案:有无穷多解一、计算题(每题6分,共60分)1.解:综上所述,2.解:方程两边关于求导:,3.解:原式=。
经济数学基础试题及答案
经济数学基础试题及答案一、单项选择题(每题2分,共10分)1. 下列函数中,哪一个是偶函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = x^2 + x \)D. \( f(x) = \sin(x) \)答案:A2. 微积分中,求定积分 \(\int_{0}^{1} x^2 dx\) 的值是多少?A. 0B. 1C. \(\frac{1}{3}\)D. 2答案:C3. 线性代数中,矩阵 \( A \) 与矩阵 \( B \) 相乘,结果矩阵的行列数是什么?A. \( A \) 的行数与 \( B \) 的列数B. \( A \) 的行数与 \( B \) 的行数C. \( A \) 的列数与 \( B \) 的列数D. \( A \) 的列数与 \( B \) 的行数答案:D4. 概率论中,如果事件 \( A \) 和事件 \( B \) 是互斥的,那么\( P(A \cup B) \) 等于什么?A. \( P(A) + P(B) \)B. \( P(A) - P(B) \)C. \( P(A) \times P(B) \)D. \( P(A) / P(B) \)答案:A5. 经济学中,边际效用递减原理指的是什么?A. 随着消费量的增加,每增加一单位商品带来的额外满足感逐渐减少B. 随着消费量的增加,每增加一单位商品带来的额外满足感逐渐增加C. 随着消费量的增加,每增加一单位商品带来的额外满足感保持不变D. 随着消费量的减少,每增加一单位商品带来的额外满足感逐渐增加答案:A二、填空题(每题3分,共15分)1. 函数 \( f(x) = 2x + 3 \) 的反函数是 ________。
答案:\( f^{-1}(x) = \frac{x - 3}{2} \)2. 函数 \( y = x^2 \) 在 \( x = 1 \) 处的导数是 ________。
经济数学答案(完整)
经济数学基础作业1及解答(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:13.曲线x y =在)2,1(的切线方程是 .答案:2321+=x y4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f .答案:2π-(二)单项选择题1. 当+∞→x 时,下列变量是无穷小量的是( ).答案:DA .()x +1lnB .12+x xC .21x e- D .xxsin 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设y x =lg2,则d y =( ).答案:B A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.若x x f =⎪⎭⎫ ⎝⎛1,则()()='x f .A.21x B.21x- C.x 1 D.x 1- 答案:B(三)解答题 1.计算极限(1)123lim 221-+-→x x x x 解:2112lim )1()1()2()1(lim 123lim 11221-=+-=+⋅--⋅-=-+-→→→x x x x x x x x x x x x (2)8665lim 222+-+-→x x x x x解:2143lim )4()2()3()2(lim 8665lim 22222=--=-⋅--⋅-=+-+-→→→x x x x x x x x x x x x x(3)xx x 11lim--→ 解:)11(11lim)11()11)(11(lim 11lim000+---=+-+---=--→→→x x x x x x x x x x x x 21111l i m-=+--=→x x(4)423532lim 22+++-∞→x x x x x解:32423532lim 423532lim 2222=+++-=+++-∞→∞→xx x x x x x x x x(5)xxx 5sin 3sin lim 0→解: 535355sin 33sin lim 5sin 3sin lim00=⋅=→→xx x xx x x x (6))2sin(4lim 22--→x x x解:41222)2sin(2lim )2sin()2()2(lim )2sin(4lim2222=+=--+=-+⋅---→→→x x x x x x x x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续. 解: b b xx x f x x =+⋅=--→→)1sin (lim )(lim 01sin lim )(lim 0==++→→xxx f x x ∴(1)当1=b 时,1)(lim )(lim 00==+-→→x f x f x x )(x f 在0=x 处有极限存在,此时a 可取任何值。
经济数学基础试题及答案
经济数学基础一、单项选择题(每小题3分,共15分)1.下列函数中为偶函数的是( ).A .x x y -=2B .11ln +-=x x y C .2e e xx y -+= D .x x y sin 2= 2.设需求量q 对价格p 的函数为p p q 23)(-=,则需求弹性为E p =( ).A .pp 32- B . 32-ppC .--32pp D .--p p32 3.下列无穷积分中收敛的是( ).A .⎰∞+0d e x xB . ⎰∞+13d 1x xC .⎰∞+12d 1x xD .⎰∞+1d sin x x 4.设A 为43⨯矩阵,B 为25⨯矩阵,且T T B AC 有意义,则C 是 ( )矩阵.A .24⨯B .42⨯C .53⨯D .35⨯5.线性方程组⎩⎨⎧=+=+32122121x x x x 的解得情况是( ). A . 无解 B . 只有O 解 C . 有唯一解 D . 有无穷多解二、填空题(每小题3分,共15分)6.函数)5ln(21)(++-=x x x f 的定义域是 . 7.函数1()1e xf x =-的间断点是 . 8.若c x x x f x ++=⎰222d )(,则=)(x f .9.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=333222111A ,则=)(A r . 10.设齐次线性方程组O X A =⨯⨯1553,且r (A ) = 2,则方程组一般解中的自由未知量个数为 .三、微积分计算题(每小题10分,共20分)11.设x y x cos ln e -=,求y d .12.计算定积分 ⎰e1d ln x x x .四、代数计算题(每小题15分,共30分)13.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=143102010A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010001I ,求1)(-+A I . 14.求齐次线性方程组⎪⎩⎪⎨⎧=-++=+--=-++03520230243214314321x x x x x x x x x x x 的一般解. 五、应用题(本题20分)15.某厂生产某种产品q 件时的总成本函数为C (q ) = 20+4q +0.01q 2(元),单位销售价格为p = 14-0.01q (元/件),问产量为多少时可使利润达到最大?最大利润是多少?参考解答一、单项选择题(每小题3分,共15分)1.C 2. D 3. C 4. B 5. A二、填空题(每小题3分,共15分)6. ),2()2,5(∞+-7. 0x =8. x x 42ln 2+9. 1 10.3三、微积分计算题(每小题10分,共20分)11.解:因为 x x xy x x tan e )sin (cos 1e +=--=' 所以 x x y x d )tan e (d +=12.解: ⎰⎰-=e 12e12e1)d(ln 21ln 2d ln x x x x x x x 414e d 212e 2e 12+=-=⎰x x . 四、线性代数计算题(每小题15分,共30分)13.解:因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+243112011A I 所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=+-115127126)(1A I . 14.解:因为系数矩阵所以一般解为⎩⎨⎧-=+-=43243123x x x x x x (其中3x ,4x 是自由未知量) 五、应用题(本题20分)15.解:由已知收入函数 201.014)01.014(q q q q qp R -=-==利润函数 22202.0201001.042001.014q q q q q q C R L --=----=-= 于是得到 q L 04.010-='令004.010=-='q L ,解出唯一驻点250=q .因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大. 且最大利润为1230125020250025002.02025010)250(2=--=⨯--⨯=L (元)。
经济数学基础试题及答案
经济数学基础试题及答案一、选择题(每题2分,共10分)1. 以下哪个选项是微分的定义?A. 函数在某一点的极限B. 函数在某一点的导数C. 函数在某一点的切线斜率D. 函数在某一点的切线方程答案:B2. 已知函数f(x) = 3x^2 - 2x + 1,求f'(x)。
A. 6x - 2B. 6x^2 - 2C. 3x^2 - 2D. 3x + 1答案:A3. 以下哪个选项是积分的定义?A. 函数在某一点的极限B. 函数在某一段区间的面积C. 函数在某一点的导数D. 函数在某一段区间的切线斜率答案:B4. 已知曲线y = x^3 + 2x^2 - 5x + 1,求其在x=1处的切线斜率。
A. 7B. 9C. 11D. 13答案:B5. 以下哪个选项是泰勒级数的定义?A. 函数在某一点的极限B. 函数在某一点的导数C. 函数在某一点的切线方程D. 函数在某一点的展开式答案:D二、填空题(每题3分,共15分)1. 函数f(x) = sin(x)的导数是_________。
答案:cos(x)2. 函数f(x) = e^x的不定积分是_________。
答案:e^x + C3. 函数f(x) = ln(x)的不定积分是_________。
答案:x * ln(x) - x + C4. 函数f(x) = x^3的二阶导数是_________。
答案:6x5. 函数f(x) = x^2 + 3x + 2的极值点是_________。
答案:-3/2三、解答题(每题10分,共30分)1. 求函数f(x) = x^3 - 6x^2 + 11x - 6的极值点。
答案:首先求导数f'(x) = 3x^2 - 12x + 11,令f'(x) = 0,解得x = 1 或 x = 11/3。
检查二阶导数f''(x) = 6x - 12,当x = 1时,f''(1) = -6 < 0,所以x = 1是极大值点;当x = 11/3时,f''(11/3) = 2 > 0,所以x = 11/3是极小值点。
经济数学试题及答案大全
经济数学试题及答案大全一、选择题1. 在经济学中,边际成本是指:A. 总成本除以产量B. 增加一单位产出所增加的成本C. 固定成本D. 总成本答案:B2. 如果一个企业的边际收益大于其边际成本,那么:A. 企业应该减少生产B. 企业应该增加生产C. 企业应该保持当前产量D. 企业应该关闭答案:B二、填空题1. 经济学中的________是指在其他条件不变的情况下,一种商品的价格变化对其需求量的影响。
答案:需求弹性2. 当一个市场处于完全竞争状态时,单个企业的市场力量________。
答案:很小或几乎为零三、简答题1. 简述什么是消费者剩余,并给出一个例子。
答案:消费者剩余是指消费者愿意为一种商品支付的价格与他们实际支付的价格之间的差额。
例如,如果一个消费者愿意为一杯咖啡支付5元,但实际只支付了3元,那么消费者剩余就是2元。
2. 解释什么是市场均衡,并说明其对经济的意义。
答案:市场均衡是指供给量等于需求量的状态,此时市场价格达到稳定。
市场均衡对经济的意义在于资源的有效分配,确保生产者和消费者的利益最大化。
四、计算题1. 假设一个完全竞争市场中,某企业的成本函数为C(q) = 10 + 2q,其中q是产量。
如果市场价格为12元,求该企业的最优产量。
答案:首先计算边际成本,MC = dC/dq = 2。
然后设置边际收益等于边际成本,MR = MC = 12。
由于完全竞争市场中,企业的边际收益等于市场价格,所以MR = 12。
最优产量q是MR = MC时的产量,即q = (12 - 10) / 2 = 1。
2. 如果上述企业面临市场价格下降到10元,且固定成本不变,求新的最优产量。
答案:同样设置MR = MC = 10。
最优产量q是MR = MC时的产量,即q = (10 - 10) / 2 = 0。
这意味着在新的价格下,企业将不会生产任何产品。
五、论述题1. 论述垄断市场与完全竞争市场的区别,并分析垄断市场可能带来的经济问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电大2012-2013学年度第一学期经济数学基础期末试卷
2013.1
导数基本公式 积分基本公式:
0)('=C ⎰=c dx
1
'
)(-=αααx
x c x dx x ++=
+⎰1
1
ααα
)1且,0(ln )('
≠>=a a a a a x
x c a
a dx a x
x
+=
⎰ln x x e e =')(
c e dx e
x x
+=⎰
)1,0(ln 1
)(log '≠>=
a a a
x x a
x
x 1
)(ln '=
c x dx
x +=⎰ln 1
x x cos )(sin '= ⎰+=c x xdx sin cos x x sin )(cos '-=
⎰+-=c x xdx cos sin
x
x 2
'cos 1
)(tan =
⎰+=c x dx x
tan cos 1
2
x
x 2
'sin 1
)(cot -
= c x dx x
+-=⎰
cot sin 1
2
一、单项选择题(每小题3分,共15分) 1.下列各函数对中,( )中的两个函数相等.
x x g x x f A ==)(,)()(.2
1)(,1
1)(.2+=--=x x g x x x f B
x x g x x f C ln 2)(,ln )(.2== 1)(,cos sin )(.22=+=x g x x x f D
2.⎪⎩
⎪
⎨⎧=≠=0,0,sin )(函数x k x x x
x f 在x=0处连续,则k=( )
A. -2
B. -1
C. 1
D. 2
3.下列定积分中积分值为0的是( )
dx e e A x
x ⎰
---1
1
2
. ⎰
--+1
1
2
.dx e e B x
x dx x x C )cos (.3+⎰-ππ dx x x D )sin (.2
+⎰-π
π
4.,3-1-4231-003-021设⎥⎥⎥
⎦
⎤
⎢⎢⎢⎣⎡=A 则r(A)=( )
A. 1
B. 2
C. 3
D. 4
5.若线性方程组的增广矩阵为=⎥⎦⎤
⎢⎣⎡--=λλλ则当,421021A ( )时,该
线性方程组无解.
21
.A B. 0 C. 1 D. 2 二、填空题(每小题3分,共15分)
的定义域是2
4
函数.62--=
x x y
7.设某商品的需求函数为2
10)(p e p q -
=,则需求弹性E p =
8.=+=⎰⎰--dx e f e C x F dx x f x x )(则,)()(若
9.当a 时,矩阵A=⎥⎦
⎤⎢⎣⎡-a 131可逆.
10.已知齐次线性方程组AX=O 中A 为3x5矩阵,则r(A)≤ 三、微积分计算题(每小题10分,共20分)
dy x x y 求,ln cos 设.112+= dx e e x x 23ln 0
)1(计算定积分.12+⎰
四、线性代数计算题(每小题15分,共30分)
1)(,计算21-1-001,211010设矩阵.13-⎥⎥⎥
⎦
⎤
⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=B A B A T
.的一般解5
532322求线性方程组.144321
4321421⎪⎩⎪
⎨⎧=++-=++-=+-x x x x x x x x x x x
五、应用题(本题20分)
15.设生产某种产品q 个单位时的成本函数为:C(q)=100+0.25q 2+6q (万元),求: (1)当q=10时的总成本、平均成本和边际成本;
(2)当产量q 为多少时,平均成本最小?
参考答案
一、单项选择题(每小题3分,共15分) 1. D 2. C 3. A 4. B 5. A
二、填空题(每小题3分,共15分) 6. ),2(]2,(+∞--∞ 7. 2
p
-
8. C e F x +--)( 9. 3-≠ 10. 3 三、微积分计算题(每小题10分,共20分) 11.解:x
x x y 1
ln 2sin '•
+-=,所以dx x x
x dx y dy )ln 2
sin ('+
-==
3
5632343)1(3)1(3
)1()
1()1()1(解:.12333033ln 3
ln 0
3
23
ln 0
2
3
ln 0=
-=+-+=+=
++=+⎰
⎰
e e e e d e dx e e x x x x x
四、线性代数计算题(每小题15分,共30分)
⎥⎦
⎤⎢⎣⎡=⎥⎥
⎥
⎦
⎤
⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=31-21-21-1-001211100解:.13B A T 所以由公式得⎥⎦
⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡---⨯-⨯-=
-11231123)1(2311
)(1B A T ⎥⎥⎥
⎦
⎤
⎢⎢⎢⎣
⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢
⎣⎡--→⎥⎥⎥
⎦⎤
⎢⎢⎢
⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣
⎡---000001311
0121010000013110210111311013110
21011551323412
12101
1解:.14
故方程组的一般解为:
是自由未知量),其中(1
31
243432431x x x x x x x x ⎩⎨
⎧-+=++=
五、应用题(本题20分)
15.解:(1)总成本、平均成本和边际成本分别为:
q q q C 625.0100)(2++=,625.0100
)(++=
q q
q C ,65.0)('+=q q C
所以185601025.0100)10(2=+⨯+=C ,
5.1861025.010
100
)10(=+⨯+=
C 116105.0)10('=+⨯=C (2)舍去)20(20得,025.0100
)(令2
‘-===+-
=q q q
q C
因为q=20是其在定义域内唯一驻点,且该问题确实存在最小值,所以当q=20
时,平均成本最小.。