2019-2020年高中数学阶段质量检测二推理与证明新人教A版选修

合集下载

2019-2020数学人教A版选修2-2课件:第二章推理与证明单元质量测评

2019-2020数学人教A版选修2-2课件:第二章推理与证明单元质量测评
答案
解析 “至少有一个”的反面为“一个也没有”,即“x,y 均不大于 1”,亦即“x≤1 且 y≤1”.
解析
14.四棱锥 P-ABCD 中,O 为 CD 上的动点,四边形 ABCD 满足条件 ________时,VP-AOB 恒为定值(写出一个你认为正确的一个条件即可).
答案 四边形 ABCD 为平行四边形或矩形或正方形或 AB∥CD
解 在四面体 V-BCD 中,任取一点 O,连接 VO,DO,BO,CO 并延 长分别交四个面于 E,F,G,H 点,
则OVEE+ODFF+OBGG+OCHH=1.
答案
证明:在四面体 O-BCD 与 V-BCD 中,设底面 BCD 上的高分别 为 h1,h,则
1 OVEE=hh1=313SS△△BBCCDD··hh1=VVOV--BBCCDD. 同理有:ODFF=VVDO--VVBBCC;OBGG=VVOB--VVCCDD;OCHH=VVOC--VVBBDD. 所以OVEE+ODFF+OBGG+OCHH
第二章 单元质量测评
点击进入Word文稿
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分 150 分,考试 时间 120 分钟.
第Ⅰ卷 (选择题,共 60 分) 一、选择题(本大题共 12 小题,每小题 5 分,共 60 分) 1.下列几种推理是演绎推理的是( ) A.在数列{an}中,a1=1,an=12an-1+an1-1(n≥2),由此归纳出{an}的通 项公式
答案
解析
2.下面四个推理不是合情推理的是( ) A.由圆的性质类比推出球的有关性质 B.由直角三角形、等腰三角形、等边三角形的内角和都是 180°,归纳 出所有三角形的内角和都是 180° C.某次考试张军的成绩是 100 分,由此推出全班同学的成绩都是 100 分 D.蛇、海龟、蜥蜴是用肺呼吸的,蛇、海龟、蜥蜴是爬行动物,所以所 有的爬行动物都是用肺呼吸的

2019-2020数学人教A版选修2-2讲义:第二章推理与证明2.3 Word版含答案

2019-2020数学人教A版选修2-2讲义:第二章推理与证明2.3 Word版含答案

姓名,年级:时间:1.数学归纳法的内容如下:一个错误!与正整数有关的命题,如果(1)错误!当n取第一个值n0(例如n0=1或n0=2等)时结论正确,(2)错误!假设当n=k(k∈N*,且k≥n0)时结论正确,能够证明当n=k+1时结论也正确,那么可以断定错误!这个命题对n∈N*且n≥n0的所有正整数都成立.2.数学归纳法的步骤中,第一步的作用是错误!递推的基础,第二步的作用是错误!递推的依据.3.数学归纳法实质上是错误!演绎推理法的一种,它是一种错误!严格的证明方法,它只能错误!证明结论,不能发现结论,并且只能证明错误!与正整数相关的命题.4.常把归纳法和数学归纳法结合起来,形成错误!归纳—猜想—证明的思想方法,既可以错误!发现结论,又能错误!给出严格的证明,组成一套完整的数学研究的思想方法.5.用数学归纳法证明命题时,两步错误!缺一不可,并且在第二步的推理证明中必须用错误!归纳假设,否则不是数学归纳法.对数学归纳法本质的理解数学归纳法可能与同学们以前所接触的证明方法差别很大,为了达到“知其然,知其所以然”的效果,可对比以下问题理解数学归纳法的实质.(1)有n个骨牌排成如图所示的一排,现推倒第一张骨牌,会有什么现象?(2)要使骨牌全部倒下,骨牌的摆放有什么要求?(骨牌的间距不大于骨牌的高(3)这样做的原因是什么?这样摆放可以达到什么样的效果?(前一张骨牌倒下,适当的间距导致后一张骨牌也倒下)(4)如果推倒的不是第一张骨牌,而是其他位置上的某一张骨牌,能使所有的骨牌倒下吗?(5)能够成功地推倒排成一排的骨牌的条件是什么?(通过观察和思考,可以得到的结论是:①第一张骨牌被推倒;②若某一张骨牌倒下,则其后面的一张骨牌必定倒下)错误!错误!错误!错误!错误!错误!…运用类比的方法,我们不难将推倒骨牌的原理进行迁移、升华,进而得到数学归纳法证明的步骤:(1)当n =1时,结论成立;(2)假设当n =k 时结论成立,证明n =k +1时结论也必定成立. 当n =1时,结论成立――→,利用2错误!错误!错误!错误!…1.判一判(正确的打“√”,错误的打“×”)(1)与正整数n 有关的数学命题的证明只能用数学归纳法.( )(2)数学归纳法的第一步n 0的初始值一定为1.( )(3)数学归纳法的两个步骤缺一不可.( )答案 (1)× (2)× (3)√ 2.做一做(1)已知f (n )=1n+错误!+错误!+…+错误!,则f (n )共有________项,f (2)=________.(2)定义一种运算“*”,对于正整数n ,满足以下运算性质:①1] 。

2019_2020学年高中数学学期综合测评(二)(含解析)新人教A版选修2_2

2019_2020学年高中数学学期综合测评(二)(含解析)新人教A版选修2_2

学期综合测评(二)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分) 1.下列说法正确的是( ) A .2>2i B .2>(3i)2C .2+3i <3+3iD .2+2i >2+i 答案 B解析 本题主要考查复数的性质.不全为实数的两个复数不能比较大小,故排除A ,C ,D ;而B 中(3i)2=-9<2,故选B.2.用反证法证明命题“若直线AB ,CD 是异面直线,则直线AC ,BD 也是异面直线”的过程分为三步:①则A ,B ,C ,D 四点共面,所以AB ,CD 共面,这与AB ,CD 是异面直线矛盾; ②所以假设错误,即直线AC ,BD 也是异面直线; ③假设直线AC ,BD 是共面直线. 则正确的顺序为( ) A .①→②→③ B .③→①→② C .①→③→② D .②→③→① 答案 B解析 本题主要考查反证法的步骤.反证法的步骤是:反设→归谬→结论.结合本题,知选B .3.用反证法证明“若a +b +c<3,则a ,b ,c 中至少有一个小于1”时,应( ) A .假设a ,b ,c 至少有一个大于1 B .假设a ,b ,c 都大于1 C .假设a ,b ,c 至少有两个大于1 D .假设a ,b ,c 都不小于1 答案 D解析 假设a ,b ,c 中至少有一个小于1不成立,即a ,b ,c 都不小于1,故选D . 4.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n 2n 2+13时,从n =k 到n =k +1时,等式左边应添加的式子是( )A .(k -1)2+2k 2B .(k +1)2+k 2C .(k +1)2 D.13(k +1)[2(k +1)2+1] 答案 B解析 n =k 时,左边=12+22+…+(k -1)2+k 2+(k -1)2+…+22+12,n =k +1时,左边=12+22+…+(k -1)2+k 2+(k +1)2+k 2+(k -1)2+…+22+12,∴从n =k 到n =k +1,左边应添加的式子为(k +1)2+k 2.5.定义在R 上的可导函数f (x ),已知y =e f ′(x )的图象如图所示,则y =f (x )的增区间是( )A .(-∞,1)B .(-∞,2)C .(0,1)D .(1,2) 答案 B解析 由题中图象知ef ′(x )≥1,即f ′(x )≥0时,x ≤2,∴y =f (x )的增区间为(-∞,2).6.已知x >0,不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,…,可推广为x +axn ≥n +1,则a的值为( )A .n 2B .n nC .2nD .22n -2答案 B解析 由x +1x ≥2,x +4x 2=x +22x2≥3,x +27x 3=x +33x3≥4,…,可推广为x +n n xn ≥n +1,故a =n n.7.如图,抛物线y =-x 2+2x +1与直线y =1形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是( )A .1 B.43C. 3 D .2 答案 B解析 由⎩⎪⎨⎪⎧y =1,y =-x 2+2x +1,知⎩⎪⎨⎪⎧x =0,y =1或⎩⎪⎨⎪⎧x =2,y =1.故所求面积S =⎠⎛02(-x 2+2x+1)d x -⎠⎛021d x =(-13x 3+x 2+x )||20-x 20=43.故选B .8.设f(x)=x (ax 2+bx +c )(a ≠0)在x =1和x =-1处均有极值,则下列各点一定在y 轴上的是( )A .(b ,a )B .(a ,c )C .(c ,b )D .(a +b ,c )答案 A解析 f′(x)=3ax 2+2bx +c ,由题意知1,-1是方程3ax 2+2bx +c =0的两根,则1-1=-2b3a=0,所以b =0.故选A.9.已知函数f (x )(x ∈R )满足f (2)=3,且f (x )在R 上的导数满足f ′(x )-1<0,则不等式f (x 2)<x 2+1的解集为( )A .(-∞,-2)B .(2,+∞)C .(-∞,-2)∪(2,+∞)D .(-2,2) 答案 C解析 令g (x )=f (x )-x ,则g ′(x )=f ′(x )-1<0,∴g (x )在R 上单调递减.由f (x 2)<x 2+1,得f (x 2)-x 2<1,即g (x 2)<1.又g (2)=f (2)-2=1,∴g (x 2)<g (2),∴x 2>2,解得x >2或x <- 2.故选C.10.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1. 其中能推出“a ,b 中至少有一个大于1”的条件是( ) A .②③ B.①②③ C.③ D.③④⑤ 答案 C解析 若a =12,b =23,则a +b >1,但a <1,b <1,故①推不出;若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,若a +b >2,则a ,b 中至少有一个大于1.可用反证法证明:假设a ≤1且b ≤1,则a +b ≤2,与a +b >2矛盾,因此假设不成立,故a ,b 中至少有一个大于1.故选C.11.定义复数的一种运算z 1]|z 1|+|z 2|,2)(等式右边为普通运算),若复数z =a +b i ,且正实数a,b满足a+b=3,则z *z的最小值为( )A.92B.322C.32D.94答案 B解析z*z=|z |+|z|2=2a2+b22=a2+b2=a+b2-2ab,又∵ab≤⎝⎛⎭⎪⎫a+b22=9 4,∴-ab≥-94,z*z≥ 9-2×94=92=322.12.若0<x<π2,则2x与3sin x的大小关系( )A.2x>3sin x B.2x<3sin xC.2x=3sin x D.与x的取值有关答案 D解析令f(x)=2x-3sin x,则f′(x)=2-3cos x.当cos x<23时,f′(x)>0,当cos x=23时,f′(x)=0,当cos x>23时,f′(x)<0.即当0<x<π2时,f(x)先递减再递增,而f(0)=0,f⎝⎛⎭⎪⎫π2=π-3>0.故f(x)的值与x取值有关,即2x与sin x的大小关系与x取值有关.故选D.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.i是虚数单位,复数1-3i1-i的共轭复数是________.答案2+i解析∵1-3i1-i=1-3i1+i1-i1+i=4-2i2=2-i,∴1-3i1-i的共轭复数是2+i.14.通过类比长方形,由命题“周长为定值l的长方形中,正方形的面积最大,最大值为l216”,可猜想关于长方体的相应命题为________.答案表面积为定值S的长方体中,正方体的体积最大,最大值为⎝⎛⎭⎪⎫S632解析正方形有4条边,正方体有6个面,正方形的面积为边长的平方,正方体的体积为边长的立方.由正方体的边长为⎝⎛⎭⎪⎫S 6 12,通过类比可知,表面积为定值S 的长方体中,正方体的体积最大,最大值为⎝ ⎛⎭⎪⎫S 632.15.若函数f (x )的导函数f ′(x )=x 2-4x +3,则函数f (1+x )的单调递减区间是________.答案 (0,2)解析 由f ′(x )=x 2-4x +3<0得1<x <3,即函数f (x )的单调递减区间为(1,3).又∵函数f (1+x )的图象是由f (x )的图象向左平移1个单位长度得到的,∴函数f (1+x )的单调递减区间为(0,2).16.如图所示的数阵中,第20行第2个数字是________.答案1191解析 设第n (n ≥2且n ∈N *)行的第2个数字为1a n,其中a 1=1,则由数阵可知a n +1-a n=n ,∴a 20=(a 20-a 19)+(a 19-a 18)+…+(a 2-a 1)+a 1=19+18+…+1+1=19×202+1=191,∴1a 20=1191. 三、解答题(本大题共6小题,共70分)17.(本小题满分10分)已知复数z 满足|z |=2,z 的虚部为1,且在复平面内表示的点位于第二象限.(1)求复数z ;(2)若m 2+m +mz 2是纯虚数,求实数m 的值. 解 (1)设z =a +b i ,(a ,b ∈R ), 则a 2+b 2=2,b =1.因为在复平面内表示的点位于第二象限,所以a <0,所以a =-1,b =1, 所以z =-1+i. (2)由(1)得z =-1+i , 所以z 2=(-1+i)2=-2i , 所以m 2+m +mz 2=m 2+m -2m i. 又因为m 2+m +mz 2是纯虚数,所以⎩⎪⎨⎪⎧m 2+m =0,-2m ≠0,所以m =-1.18.(本小题满分12分)已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝ ⎛⎭⎪⎫23.(1)求a 的值;(2)求函数f (x )的单调区间. 解 (1)f ′(x )=3x 2+2ax -1,∴f ′(x )=3x 2+2f ′⎝ ⎛⎭⎪⎫23x -1,∴f ′⎝ ⎛⎭⎪⎫23=3×49+2f ′⎝ ⎛⎭⎪⎫23×23-1,∴f ′⎝ ⎛⎭⎪⎫23=-1,∴a =-1.(2)由(1)得f (x )=x 3-x 2-x +c , ∴f ′(x )=3x 2-2x -1=(3x +1)(x -1). 令f ′(x )>0得x <-13或x >1,令f ′(x )<0得-13<x <1,∴f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-∞,-13和(1,+∞);单调递减区间为⎝ ⎛⎭⎪⎫-13,1. 19.(本小题满分12分)求由曲线xy =1及直线x =y ,y =3所围成的平面图形的面积. 解 作出曲线xy =1,直线x =y ,y =3的草图,如图:所求面积为图中阴影部分的面积.由⎩⎪⎨⎪⎧xy =1,y =3,得⎩⎪⎨⎪⎧x =13,y =3,故A ⎝ ⎛⎭⎪⎫13,3;由⎩⎪⎨⎪⎧ xy =1,y =x ,得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =-1,y =-1(舍去),故B (1,1);由⎩⎪⎨⎪⎧y =x ,y =3,得⎩⎪⎨⎪⎧x =3,y =3,故C (3,3).20.(本小题满分12分)若函数f(x)=ax 3-bx +4,当x =2时,函数f (x )有极值-43.(1)求函数的解析式;(2)若方程f (x )=k 有3个不同的根,求实数k 的取值范围. 解 f′(x )=3ax 2-b . (1)由题意得⎩⎪⎨⎪⎧f′2=12a -b =0,f 2=8a -2b +4=-43,解得⎩⎪⎨⎪⎧a =13,b =4,故所求函数的解析式为f (x )=13x 3-4x +4.(2)由(1)可得f′(x )=x 2-4=(x -2)(x +2), 令f′(x )=0,得x =2或x =-2.当x 变化时,f′(x ),f (x )的变化情况如下表: x (-∞,-2)-2 (-2,2) 2 (2,+∞)f′(x) + 0 - 0 + f(x)283-43因此,当x =-2时,f (x )有极大值3,当x =2时,f (x )有极小值-43,所以函数f (x )=13x 3-4x +4的图象大致如图所示.若f (x )=k 有3个不同的根,则直线y =k 与函数f (x )的图象有3个交点,所以-43<k <283.21.(本小题满分12分)水以20米3/分的速度流入一圆锥形容器,设容器深30米,上底直径12米,试求当水深10米时,水面上升的速度.解 设容器中水的体积在t 分钟时为V ,水深为h ,则V =20t , 又V =13πr 2h ,由图知r h =630,所以r =15h ,所以V =13π·⎝ ⎛⎭⎪⎫152·h 3=π75h 3,所以20t =π75h 3,所以h =31500πt ,于是h ′=31500π·13·t - 23.当h =10时,t =23π,此时h ′=5π,所以当h =10米时,水面上升速度为5π米/分.22.(本小题满分12分)已知数列{a n }的前n 项和S n 满足:S n =a n 2+1a n-1,且a n >0,n∈N *.(1)求a 1,a 2,a 3;(2)猜想{a n }的通项公式,并用数学归纳法证明.解 (1)a 1=S 1=a 12+1a 1-1,所以a 1=-1± 3.又因为a n >0,所以a 1=3-1.S 2=a 1+a 2=a 22+1a 2-1,所以a 2=5- 3.S 3=a 1+a 2+a 3=a 32+1a 3-1,所以a 3=7- 5.(2)由(1)猜想a n =2n +1-2n -1,n ∈N *. 下面用数学归纳法加以证明:①当n =1时,由(1)知a 1=3-1成立. ②假设n =k (k ∈N *)时,a k =2k +1-2k -1成立.当n =k +1时,a k +1=S k +1-S k =⎝⎛⎭⎪⎫a k +12+1a k +1-1-⎝ ⎛⎭⎪⎫a k 2+1a k -1=a k +12+1a k +1-2k +1,所以a 2k +1+22k +1a k +1-2=0, 所以a k +1=2k +1+1-2k +1-1,即当n =k +1时猜想也成立. 综上可知,猜想对一切n ∈N *都成立.。

2019-2020年高中数学 第二章 推理与证明测评B 新人教A版选修2-2

2019-2020年高中数学 第二章 推理与证明测评B 新人教A版选修2-2

2019-2020年高中数学第二章推理与证明测评B 新人教A版选修2-2 一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(xx·山东高考)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根解析:因为至少有一个的反面为一个也没有,所以要做的假设是方程x3+ax+b=0没有实根.答案:A2.(xx·北京高考)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有()A.2人B.3人C.4人D.5人解析:用A,B,C分别表示优秀、及格和不及格.显然,语文成绩得A的学生最多只有一人,语文成绩得B的也最多只有1人,得C的也最多只有1人,所以这组学生的成绩为(AC),(BB),(CA)满足条件,故学生最多为3人.答案:B3.(xx·湖北高考)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A.B.C.D.解析:由题意可知:L=2πr,即r=,圆锥体积V=Sh=πr2h=π·h=L2h≈L2h,故,π≈,故选B.答案:B4.(xx·广东高考)设l为直线,α,β是两个不同的平面.下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β解析:如图,在正方体A1B1C1D1-ABCD中,对于A,设l为AA1,平面B1BCC1,平面DCC1D1为α,β.A1A∥平面B1BCC1,A1A∥平面DCC1D1,而平面B1BCC1∩平面DCC1D1=C1C;对于C,设l为A1A,平面ABCD为α,平面DCC1D1为β.A1A⊥平面ABCD,A1A∥平面DCC1D1,而平面ABCD∩平面DCC1D1=DC;对于D,设平面A1ABB1为α,平面ABCD为β,直线l为D1C1,平面A1ABB1⊥平面ABCD,D1C1∥平面A1ABB1,而D1C1∥平面ABCD.故A,C,D都是错误的.而对于B,根据垂直于同一直线的两平面平行,知B正确.答案:B5.(xx·辽宁高考)已知点O(0,0),A(0,b),B(a,a3).若△OAB为直角三角形,则必有()A.b=a3B.b=a3+C.(b-a3)=0D.|b-a3|+=0解析:若∠OBA为直角,则=0,即a2+(a3-b)·a3=0,又a≠0,故b=a3+;若∠OAB为直角时,则=0,即b(a3-b)=0,得b=a3;若∠AOB为直角,则不可能.所以b-a3-=0或b-a3=0,故选C.答案:C6.(xx·浙江高考)设a,b∈R,定义运算“∧”和“∨”如下:a∧b=a∨b=若正数a,b,c,d满足ab≥4,c+d≤4,则()A.a∧b≥2,c∧d≤2B.a∧b≥2,c∨d≥2C.a∨b≥2,c∧d≤2D.a∨b≥2,c∨d≥2解析:由题意知,运算“∧”为两数中取小,运算“∨”为两数中取大,由ab≥4知,正数a,b中至少有一个大于等于2.由c+d≤4知,c,d中至少有一个小于等于2,故选C.答案:C7.(xx·陕西高考)设[x]表示不大于x的最大整数,则对任意实数x,有()A.[-x]=-[x]B.=[x]C.[2x]=2[x]D.[x]+=[2x]解析:令x=1.1,[-1.1]=-2,而-[1.1]=-1,所以A错;令x=-=0,=-1,所以B错;令x=0.5,[2x]=1,2[x]=0,所以C错;故选D.答案:D8.(xx·四川高考)设函数f(x)=(a∈R,e为自然对数的底数),若存在b∈[0,1]使f(f(b))=b成立,则a的取值范围是()A.[1,e]B.[1,1+e]C.[e,1+e]D.[0,1]解析:当a=0时,f(x)=为增函数,∴b∈[0,1]时,f(b)∈[1,].∴f(f(b))≥>1.∴不存在b∈[0,1]使f(f(b))=b成立,故D错;当a=e+1时,f(x)=,当b∈[0,1]时,只有b=1时,f(x)才有意义,而f(1)=0,∴f(f(1))=f(0),显然无意义,故B,C错.故选A.答案:A9.(xx·浙江高考)设a>0,b>0,e是自然对数的底数,()A.若e a+2a=e b+3b,则a>bB.若e a+2a=e b+3b,则a<bC.若e a-2a=e b-3b,则a>bD.若e a-2a=e b-3b,则a<b解析:考查函数y=e x+2x为单调增函数,若e a+2a=e b+2b,则a=b;若e a+2a=e b+3b,∴a>b.故选A.答案:A10.(xx·江西高考)观察下列事实:|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12,…,则|x|+|y|=20的不同整数解(x,y)的个数为()A.76B.80C.86D.92解析:由已知条件得,|x|+|y|=n(n∈N*)的不同整数解(x,y)的个数为4n,所以|x|+|y|=20的不同整数解(x,y)的个数为80,故选B.答案:B第Ⅱ卷(非选择题共70分)二、填空题(本大题共5小题,每小题4分,共20分.把答案填在题中的横线上)11.(xx·陕西高考)观察分析下表中的数据:多面体面数(F)顶点数(V)棱数(E)三棱柱5 6 9五棱锥6 6 10立方体6 8 12猜想一般凸多面体中F,V,E所满足的等式是.解析:因为5+6-9=2,6+6-10=2,6+8-12=2,故可猜想F+V-E=2.答案:F+V-E=212.(xx·课标全国Ⅰ高考)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为.解析:根据甲、乙、丙说的可列表得A B C甲√×√乙√××丙√答案:A13.(xx·山东高考)观察下列各式:=40;=41;=42;=43;……照此规律,当n∈N*时,+…+=.解析:观察各式有如下规律:等号左侧第n个式子有n项,且上标分别为0,1,2,…,n-1,第n行每项的下标均为2n-1.等号右侧指数规律为0,1,2,…,n-1.所以第n个式子为+…+=4n-1.答案:4n-114.(xx·陕西高考)已知f(x)=,x≥0,若f1(x)=f(x),f n+1(x)=f(f n(x)),n∈N*,则f2 014(x)的表达式为.解析:依题意,f1(x)=f(x)=,f2(x)=f(f1(x))=f,f3(x)=f(f2(x))=f,…,由此可猜测f n(x)=,故f2 014(x)=.答案:15.(xx·福建高考)一个二元码是由0和1组成的数字串x1x2…x n(n∈N*),其中x k(k=1,2,…,n)称为第k位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x1x2…x7的码元满足如下校验方程组:其中运算 义为:00=0,01=1,10=1,11=0.现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于.解析:若1≤k≤3,则x4=1,x5=1,x6=0,x7=1,不满足x4x5x6x7=0;若k=4,则二元码为1100101,不满足x1x3x5x7=0;若k=5,则二元码为1101001,满足方程组,故k=5.答案:5三、解答题(本大题共5小题,共50分.解答时应写出文字说明、证明过程或演算步骤)16.(本小题8分)(xx·安徽高考)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(1)求数列{x n}的通项公式;(2)记T n=,证明:T n≥.(1)解:y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y-2=(2n+2)(x-1).令y=0,解得切线与x轴交点的横坐标x n=1-.(2)证明:由题设和(1)中的计算结果知T n=.当n=1时,T1=.当n≥2时,因为,所以T n>×…×.综上可得对任意的n∈N*,均有T n≥.17.(本小题8分)(xx·山东高考)在等差数列{a n}中,已知公差d=2,a2是a1与a4的等比中项.(1)求数列{a n}的通项公式;(2)设b n=,记T n=-b1+b2-b3+b4-…+(-1)n b n,求T n.解:(1)由题意知(a1+d)2=a1(a1+3d),即(a1+2)2=a1(a1+6),解得a1=2,所以数列{a n}的通项公式为a n=2n.(2)由题意知b n==n(n+1),所以T n=-1×2+2×3-3×4+…+(-1)n n·(n+1).因为b n+1-b n=2(n+1),可得当n为偶数时,T n=(-b1+b2)+(-b3+b4)+…+(-b n-1+b n)=4+8+12+…+2n=,当n为奇数时,T n=T n-1+(-b n)=-n(n+1)=-.所以T n=18.(本小题10分)(xx·北京高考)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E-ABC的体积.(1)证明:在三棱柱ABC-A1B1C1中,BB1⊥底面ABC.所以BB1⊥AB.又因为AB⊥BC,所以AB⊥平面B1BCC1.所以平面ABE⊥平面B1BCC1.(2)证明:取AB的中点G,连接EG,FG.因为E,F分别是A1C1,BC的中点,所以FG∥AC,且FG=AC.因为AC∥A1C1,且AC=A1C1,所以FG∥EC1,且FG=EC1.所以四边形FGEC1为平行四边形.所以C1F∥EG.又因为EG⊂平面ABE,C1F⊄平面ABE,所以C1F∥平面ABE.(3)解:因为AA1=AC=2,BC=1,AB⊥BC,所以AB=.所以三棱锥E-ABC的体积V=S△ABC·AA1=×1×2=.19.(本小题12分)(xx·江苏高考)已知集合X={1,2,3},Y n={1,2,3,…,n}(n∈N*),设S n={(a,b)|a整除b或b整除a,a∈X,b∈Y n}.令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.解:(1)f(6)=13.(2)当n≥6时,f(n)=(t∈N*).下面用数学归纳法证明:①当n=6时,f(6)=6+2+=13,结论成立;②假设n=k(k≥6)时结论成立,那么n=k+1时,S k+1在S k的基础上新增加的元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t-1)+5,此时有f(k+1)=f(k)+3=k+2++3=(k+1)+2+,结论成立;2)若k+1=6t+1,则k=6t,此时有f(k+1)=f(k)+1=k+2++1=(k+1)+2+,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2++2=(k+1)+2+,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2++2=(k+1)+2+,结论成立;5)若k+1=6t+4,则k=6t+3,此时有f(k+1)=f(k)+2=k+2++2=(k+1)+2+,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f(k+1)=f(k)+1=k+2++1=(k+1)+2+,结论成立.综上所述,结论对满足n≥6的自然数n均成立.20.(本小题12分)(xx·陕西高考)设f n(x)是等比数列1,x,x2,…,x n的各项和,其中x>0,n∈N,n≥2.(1)证明:函数F n(x)=f n(x)-2在内有且仅有一个零点(记为x n),且x n=;(2)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为g n(x),比较f n(x)和g n(x)的大小,并加以证明.(1)证明:F n(x)=f n(x)-2=1+x+x2+…+x n-2,则F n(1)=n-1>0,F n=1++…+-2=-2=-<0,所以F n(x)在内至少存在一个零点.又F n'(x)=1+2x+…+nx n-1>0,故F n(x)在内单调递增,所以F n(x)在内有且仅有一个零点x n.因为x n是F n(x)的零点,所以F n(x n)=0,即-2=0,故x n=.(2)解法一:由假设,g n(x)=.设h(x)=f n(x)-g n(x)=1+x+x2+…+x n-,x>0.当x=1时,f n(x)=g n(x).当x≠1时,h'(x)=1+2x+…+nx n-1-.若0<x<1,h'(x)>x n-1+2x n-1+…+nx n-1-x n-1=x n-1-x n-1=0.若x>1,h'(x)<x n-1+2x n-1+…+nx n-1-x n-1=x n-1-x n-1=0.所以h(x)在(0,1)上递增,在(1,+∞)上递减,所以h(x)<h(1)=0,即f n(x)<g n(x).综上所述,当x=1时,f n(x)=g n(x);当x≠1时,f n(x)<g n(x).解法二:由题设,f n(x)=1+x+x2+…+x n,g n(x)=,x>0.当x=1时,f n(x)=g n(x).当x≠1时,用数学归纳法可以证明f n(x)<g n(x).①当n=2时,f2(x)-g2(x)=-(1-x)2<0,所以f2(x)<g2(x)成立.②假设n=k(k≥2)时,不等式成立,即f k(x)<g k(x).那么,当n=k+1时,f k+1(x)=f k(x)+x k+1<g k(x)+x k+1=+x k+1=.又g k+1(x)-=,令h k(x)=kx k+1-(k+1)x k+1(x>0),则h k'(x)=k(k+1)x k-k(k+1)x k-1=k(k+1)x k-1(x-1).所以,当0<x<1时,h k'(x)<0,h k(x)在(0,1)上递减;当x>1时,h k'(x)>0,h k(x)在(1,+∞)上递增.所以h k(x)>h k(1)=0,从而g k+1(x)>.故f k+1(x)<g k+1(x),即n=k+1时不等式也成立.由①和②知,对一切n≥2的整数,都有f n(x)<g n(x).解法三:由已知,记等差数列为{a k},等比数列为{b k},k=1,2,…,n+1.则a1=b1=1,a n+1=b n+1=x n,所以a k=1+(k-1)·(2≤k≤n),b k=x k-1(2≤k≤n),令m k(x)=a k-b k=1+-x k-1,x>0(2≤k≤n),当x=1时,a k=b k,所以f n(x)=g n(x).当x≠1时,m k'(x)=·nx n-1-(k-1)x k-2=(k-1)x k-2(x n-k+1-1).而2≤k≤n,所以k-1>0,n-k+1≥1.若0<x<1,x n-k+1<1,m k'(x)<0;若x>1,x n-k+1>1,m k'(x)>0,从而m k(x)在(0,1)上递减,在(1,+∞)上递增, 所以m k(x)>m k(1)=0.所以当m>0且m≠1时,a k>b k(2≤k≤n),又a1=b1,a n+1=b n+1,故f n(x)<g n(x).综上所述,当x=1时,f n(x)=g n(x);当x≠1时,f n(x)<g n(x).2019-2020年高中数学第二章 推理与证明章末小结 新人教A 版选修1-2合情推理与演绎推理运用合情推理时,要认识到观察、归纳、类比、猜想、证明是相互联系的.在解决问题时,可以先从观察入手,发现问题的特点,形成解决问题的初步思路;然后用归纳、类比的方法进行探索,提出猜想;最后用演绎推理的方法进行验证.观察下图中各正方形图案,每条边上有n (n ≥2)个点,第n 个图案中圆点的总数是S n .••••, • • •• •• • •, • • • •• •• •• • • •,… n =2,S 2=4;n =3,S 3=8;n =4,S 4=12;…,按此规律,推出S n 与n 的关系式为________.解析:依图的构造规律可以看出:S 2=2×4-4, S 3=3×4-4,S 4=4×4-4(正方形四个顶点重复计算一次,应减去).…猜想:S n =4n -4(n ≥2,n ∈N *).答案:S n =4n -4(n ≥2,n ∈N *)若数列{a n }是等比数列,且a n >0,则有数列b n =na 1·a 2·…·a n (n ∈N *)也为等比数列,类比上述性质,相应地,数列{c n }是等差数列,则有d n =________也是等差数列.解析:类比猜想可得d n =c 1+c 2+…+c nn也成等差数列,若设等差数列{c n }的公差为x ,则d n =c 1+c 2+…+c nn=nc 1+n (n -1)2xn=c 1+(n -1)·x2.可见{d n }是一个以c 1为首项,x2为公差的等差数列,故猜想是正确的.答案:c 1+c 2+…+c nn已知函数f (x )=x 13-x -135,g (x )=x 13+x -135.(1)证明f (x )是奇函数,并求f (x )的单调区间;(2)分别计算f (4)-5f (2)·g (2)和f (9)-5f (3)·g (3)的值,由此概括出涉及函数f (x )和g (x )的对所有不等于零的实数x 都成立的一个等式,并加以证明.(1)证明:函数f (x )的定义域(-∞,0)∪(0,+∞)关于原点对称,又f (-x )=(-x )13-(-x )-135=-x 13-x -135=-f (x ),∴f (x )是奇函数.任取x 1,x 2∈(0,+∞),设x 1<x 2,f (x 1)-f (x 2)=x 131-x -1315-x 132-x -1325=15(x 131-x 132)⎝⎛⎭⎪⎪⎫1+1x 131·x 132. ∵x 131-x 132<0,1+1x 131·x 132>0,∴f (x 1)-f (x 2)<0.∴f (x )在(0,+∞)上单调递增.∴f (x )的单调递增区间为(-∞,0)和(0,+∞).(2)解析:计算得f (4)-5f (2)·g (2)=0,f (9)-5f (3)·g (3)=0. 由此概括出对所有不等于零的实数x 有f (x 2)-5f (x )·g (x )=0.∵f (x 2)-5f (x )·g (x )=x 23-x -235-5·x 13-x -135·x 13+x -135=15(x 23-x -23)-15(x 23-x -23)=0, ∴该等式成立.点评:问题(1)的大前提为函数奇偶性和单调性的定义.问题(2)实际上是合情推理在高考中的体现,有一定的创新性.►变式训练1.已知数列{a n }的相邻两项a 2k -1,a 2k 是关于x 的方程x 2-(3k +2k )x +3k ·2k=0的两个根且a 2k -1≤a 2k (k =1,2,3,…).(1)求a 1,a 3,a 5,a 7及a 2n (n ≥4),不必证明; (2)求数列{a n }的前2n 项和S 2n .解析:(1)方程x 2-(3k +2k )x +3k ·2k =0的两根为x 1=3k ,x 2=2k.当k =1时,x 1=3,x 2=2,∴a 1=2; 当k =2时,x 1=6,x 2=4,∴a 3=4; 当k =3时,x 1=9,x 2=8,∴a 5=8; 当k =4时,x 1=12,x 2=16,∴a 7=12. ∵当n ≥4时,2n>3n ,∴a 2n =2n(n ≥4).(2)S 2n =a 1+a 2+…+a 2n=(3+6+9+…+3n )+(2+22+ (2))=3n 2+3n 2+2n +1-2.直接证明综合法和分析法是直接证明中最基本的两种证明方法,也是解决数学问题常用的思维方式.如果从解题的切入点的角度细分,直接证明方法可具体分为:比较法、代换法、放缩法、判别式法、构造函数法等.应用综合法证明问题时,必须首先想到从哪里开始起步,分析法就可以帮助我们克服这种困难,在实际证明问题时,应当把分析法和综合法综合起来使用.设a >0,b >0,a +b =1,求证:1a +1b +1ab≥8.证明:证法一(综合法) ∵a >0,b >0,a +b =1,∴1=a +b ≥2ab ,ab ≤12,ab ≤14,∴1ab≥4. 又1a +1b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b≥4, ∴1a +1b +1ab≥8. 证法二(分析法)∵a >0,b >0,a +b =1,∴要证1a +1b +1ab≥8, 只需证⎝ ⎛⎭⎪⎫1a +1b +a +b ab≥8, 即证⎝ ⎛⎭⎪⎫1a +1b +⎝ ⎛⎭⎪⎫1b +1a ≥8, 即证1a +1b≥4,即证a +b a +a +b b≥4, 即证b a +a b ≥2. 由基本不等式可知,当a >0,b >0时,b a +a b≥2成立,∴原不等式成立.如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直,EF ∥AC ,AB =2,CE =EF =1.(1)求证:AF ∥平面BDE ;(2)求证:CF ⊥平面BDE .证明:(1)设AC 与BD 交于点G .∵EF ∥AG ,且EF =1,AG =12AC =1, ∴四边形AGEF 为平行四边形.∴AF ∥EG .∵EG ⊂平面BDE ,AF ⊄平面BDE ,∴AF ∥平面BDE .(2)连接FG ,∵EF ∥CG ,EF =CG =1,且CE =1,∴四边形CEFG 为菱形,∴CF ⊥EG .∵四边形ABCD 为正方形,∴BD ⊥AC .又∵平面ACEF ⊥平面ABCD ,且平面ACEF ∩平面ABCD =AC ,∴BD ⊥平面ACEF ,∴CF ⊥BD .又BD ∩EG =G .∴CF ⊥平面BDE .►变式训练2.在等差数列{a n }中,首项a 1=1,数列{b n }满足b n =⎝ ⎛⎭⎪⎫12a n ,且b 1·b 2·b 3=164. (1)求数列{a n }的通项公式;(2)求证:a 1b 1+a 2b 2+…+a n b n <2.(1)解析:设等差数列{a n }的公差为d ,因为a 1=1,b n =⎝ ⎛⎭⎪⎫12an , 所以b 1=12,b 2=⎝ ⎛⎭⎪⎫121+d ,b 3=⎝ ⎛⎭⎪⎫121+2d . 由b 1b 2b 3=164,解得d =1, 所以a n =1+(n -1)·1=n . (2)证明:由(1)得b n =⎝ ⎛⎭⎪⎫12n . 设T n =a 1b 1+a 2b 2+…+a n b n =1×12+2×⎝ ⎛⎭⎪⎫122+3×⎝ ⎛⎭⎪⎫123+…+n ·⎝ ⎛⎭⎪⎫12n ,① 则12T n =1×⎝ ⎛⎭⎪⎫122+2×⎝ ⎛⎭⎪⎫123+3×⎝ ⎛⎭⎪⎫124+…+n ·⎝ ⎛⎭⎪⎫12n +1.② ①-②得12T n =12+⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫12n -n ·⎝ ⎛⎭⎪⎫12n +1. 所以T n =2×12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12-2n ·⎝ ⎛⎭⎪⎫12n +1 =2-12n -1-n 2n , 又因为2-12n -1-n2n <2,所以a 1b 1+a 2b 2+…+a n b n <2.点评:本题考查了等差数列的性质以及利用综合法证题的过程.反证法反证法的理论基础是互为逆否命题的等价性,从逻辑的角度看,命题:“若p 则q ”的否定是“若p 则¬q ”由此进行推理,如果发生矛盾,那么就说明“若p 则¬q ”为假,从而可以导出“若p 则q ”为真,从而达到证明的目的,反证法是高中数学的一种重要的证明方法,在不等式和立体几何的证明中经常用到,在高考题中也经常出现,它所反映出的“正难则反”的解决问题的思想方法更为重要。

2020秋高中数学评估验收卷二第二章推理与证明达标练习含解析新人教A版选修2_2

2020秋高中数学评估验收卷二第二章推理与证明达标练习含解析新人教A版选修2_2

评估验收卷(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.下面是某电影中的一个片段:女主人欲输入由十个数字组成的密码,当她依次输入了前八个数字11235813后,欲输入最后两个数字时她犹豫了,也许是忘记了最后两个数字,也许……请你根据上述相关数据信息推测最后两个数字最有可能是( )A .2,1B .2,0C .1,3D .3,1解析:前八个数字11235813,发现1+1=2,1+2=3,2+3=5,3+5=8,5+8=13,又8+13=21,所以最后两个数字最有可能是2,1.答案:A2.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形内角和是180°归纳出所有三角形的内角和都是180°;③由f (x )=sin x 满足f (-x )=-f (x ),x ∈R ,推出f (x )=sin x 是奇函数;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n -2)·180°.A .①②B .①③④C .①②④D .②④解析:合情推理分为类比推理和归纳推理,①是类比推理,②④是归纳推理,③是演绎推理.答案:C3.用数学归纳法证明“对一切n ∈N *,都有2n >n 2-2”这一命题,证明过程中应验证( ) A .n =1时命题成立 B .n =1,n =2时命题成立 C .n =3时命题成立D .n =1,n =2,n =3时命题成立解析:假设n =k 时不等式成立,即2k >k 2-2,当n =k +1时,2k +1=2·2k >2(k 2-2),2(k 2-2)≥(k +1)2-2⇒k 2-2k -3≥0⇔ (k +1)(k -3)≥0⇒k ≥3,因此需要验证n =1,2,3时命题成立.答案:D4.已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2⎝ ⎛⎭⎪⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2且k 为偶数)时等式成立,则还需要用归纳假设再证n =________时等式成立.( )A .k +1B .k +2C .2k +2D .2(k +2)解析:根据数学归纳法的步骤可知,n =k (k ≥2且k 为偶数)的下一个偶数为n =k +2,故选B.答案:B5.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )A .a 1a 2a 3…a 9=29B .a 1+a 2+…+a 9=29C .a 1a 2a 3…a 9=2×9D .a 1+a 2+…+a 9=2×9解析:由等差数列性质,有a 1+a 9=a 2+a 8=…=2a 5.易知选项D 正确. 答案:D6.下面是一段“三段论”推理过程:若函数f (x )在(a ,b )内可导且单调递增,则在(a ,b )内,f ′(x )>0恒成立.因为f (x )=x 3在(-1,1)内可导且单调递增,所以在(-1,1)内,f ′(x )=3x 2>0恒成立.以上推理中( )A .大前提错误B .小前提错误C .结论正确D .推理形式错误解析:f (x )在(a ,b )内可导且单调递增,则在(a ,b )内,f ′(x )≥0恒成立,故大前提错误,故选A.答案:A7.要证a 2+b 2-1-a 2b 2≤0,只需证明( ) A .2ab -1-a 2b 2≤0 B .a 2+b 2-1-a 4+b 42≤0C.(a +b )22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0解析:因为a 2+b 2-1-a 2b 2≤0⇐(a 2-1)(b 2-1)≥0,所以由分析法知选D. 答案:D8.下列各图中线段的条数用a n 表示,如a 1=1,a 2=5,若如此作下去,则第8个图中的线段条数a 8=( )A .508B .509C .511D .512解析:由题图知,a 1=1,a 2=1+22,a 3=1+22+23,a 4=1+22+23+24,…,所以a 8=1+22+23+…+28=(2+22+23+…+28)-1=2(1-28)1-2-1=509.答案:B9.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=( )A.28 B.76 C.123 D.199解析:记a n+b n=f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11.通过观察不难发现f(n)=f(n-1)+f(n-2)(n∈N*,n≥3),则f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123.所以a10+b10=123.答案:C10.观察数表:123 4234 5345 64567根据数表中反映的规律,第( )A.2n-1 B.2n+1C.n2-1 D.n2解析:根据题中数表可知,第1行第1列交叉点上的数为1,第2行第2列交叉点上的数为3,第3行第3列交叉点上的数为5,第4行第4列交叉点上的数为7,那么,由此可以推导出第n行第n列交叉点上的数应该是2n-1.答案:A11.如图所示,半径为1的圆O内有n个半径相等的圆依次相切且都与圆O相切,若n =10,则这些等圆的半径为( )A.sinπ51+sinπ5B.sinπ10 1+sinπ10C.cosπ51+cosπ5D.cosπ101+cosπ10解析:如图所示,设相邻两圆的圆心分别为O1,O2,圆半径为r,连接OO1,OO2,O1O2,作OA⊥OO2于点A,则A为OO2的中点,因为这样的圆有10个,所以∠O1OO2=2π10=π5,所以∠O1OA=π10,在Rt△O1OA中,sin∠O1OA=O1AOO1=r1-r,即sinπ10=r1-r,解得r=sinπ101+sinπ10.答案:B12.甲、乙、丙三人用擂台赛形式进行训练.每局每人单打比赛,另一人当裁判.每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战.半天训练结束时,发现甲共打12局,乙共打21局,而丙共当裁判8局.那么整个比赛的第10局的输方( ) A.必是甲B.必是乙C.必是丙D.不能确定解析:根据题意,知丙共当裁判8局,所以甲乙之间共有8局比赛.又甲共打了12局,乙共打了21局,所以甲和丙打了4局,乙和丙打了13局,三人之间总共打了(8+4+13)=25局.对于甲,总共打了12局,当了13次裁判,所以他输了12次,所以当n是偶数时,第n局比赛的输方为甲,从而整个比赛的第10局的输方必是甲.答案:A二、选择题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.“因为AC ,BD 是菱形ABCD 的对角线,所以AC ,BD 互相垂直且平分.”补充以上推理的大前提是____________________.解析:大前提是“菱形的对角线互相垂直且平分”. 答案:菱形的对角线互相垂直且平分14.在平面几何中,△ABC 的内角平分线CE 分AB 所成线段的比为AE EB =ACBC,把这个结论类比到空间:在三棱锥A ­BCD 中(如图所示),平面DEC 平分二面角A ­CD ­B 且与AB 相交于E ,则得到的类比的结论是___________________________________________.解析:CE 平分∠ACB ,而平面CDE 平分二面角A ­CD ­B . 所以AC BC 可类比成S △ACDS △BCD, 故结论为AE EB =S △ACDS △BCD.答案:AE EB =S △ACDS △BCD15.下列给出一个“三角形数阵”,已知每一列数成等差数列,从第三行起,每一行数成等比数列,而且每一行的公比都相等,记第i 行第j 列的数为a ij (i ≥j ,i ,j ∈N *),则a 53等于________,a mn =________(m ≥3).14, 12,14, 34,38,316, …解析:由题意可知,第一列首项为14,公差d =12-14=14;第二列的首项为14,公差d =38-14=18,所以a 51=14+4×14=54,由题意知,每行的公比都是12,所以a 53=a 51q 2=54×⎝ ⎛⎭⎪⎫122=516. 由题意知a m 1=14+(m -1)×14=m 4,a mn =m 4×⎝ ⎛⎭⎪⎫12n -1=m2n +1,m ≥3.答案:516 m2n +116.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.解析:丙的卡片上的数字之和不是5,则丙有两种情况:①丙的卡片上的数字为1和2,此时乙的卡片上的数字为2和3,甲的卡片上的数字为1和3,满足题意;②丙的卡片上的数字为1和3,此时乙的卡片上的数字为2和3,甲的卡片上的数字为1和2,这时甲与乙的卡片上有相同的数字2,与已知矛盾,故情况②不符合,所以甲的卡片上的数字为1和3.答案:1和3三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知0<a <1,求证:1a +41-a ≥9.证明:因为0<a <1,所以1-a >0.要证1a +41-a ≥9成立,只需证1-a +4a ≥9a ·(1-a ),即证9a 2-6a +1≥0,即证(3a-1)2≥0,该式显然成立,故1a +41-a≥9成立.18.(本小题满分12分)已知A +B =π3,且A ,B ≠k π+π2(k ∈Z).求证:(1+3tan A )(1+3tan B )=4.证明:由A +B =π3得tan (A +B )=tan π3,即tan A +tan B1-tan A tan B=3,所以tan A +tan B =3-3tan A tan B .所以(1+3tan A )(1+3tan B )=1+3(tan A +tan B )+ 3tan A tan B =1+3(3-3tan A tan A )+3tan A tan B =4. 故原等式成立.19.(本小题满分12分)已知实数p 满足不等式(2p +1)·(p +2)<0,用反证法证明,关于x 的方程x 2-2x +5-p 2=0无实数根.证明:假设方程x 2-2x +5-p 2=0有实数根, 则该方程的根的判别式Δ=4-4(5-p 2)≥0, 解得p ≥2或p ≤-2.①而由已知条件得实数p 满足不等式(2p +1)(p +2)<0, 解得-2<p <-12.②数轴上表示①②的图形无公共部分,故假设不成立,从而关于x 的方程x 2-2x +5-p 2=0无实数根.20.(本小题满分12分)已知a ,b ,c 都是不为零的实数,求证:a 2+b 2+c 2>45(ab +bc+ca ).证明:要证a 2+b 2+c 2>45(ab +bc +ca ) ,只需证5(a 2+b 2+c 2)>4(ab +bc +ca ), 只需证5a 2+5b 2+5c 2-(4ab +4bc +4ca )>0,只需证(a 2-4ab +4b 2)+(b 2-4bc +4c 2)+(c 2-4ca +4a 2)>0,只需证(a -2b )2+(b -2c )2+(c -2a )2>0.因为(a -2b )2≥0,(b -2c )2≥0,(c -2a )2≥0 ,且这三个不等式中等号不可能同时成立(若同时成立等号,则必有a =b =c =0), 所以(a -2b )2+(b -2c )2+(c -2a )2>0, 所以原不等式成立.21.(本小题满分12分)十字绣有着悠久的历史,如下图,(1)、(2)、(3)、(4)为十字绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图案包含f (n )个小正方形.(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”,归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式;(3)求1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1(n ≥2)的值. 解:(1)按所给图案的规律画出第五个图如图:由图可得f (5)=41.(2)由图可得f (2)-f (1)=4×1;f (3)-f (2)=8=4×2; f (4)-f (3)=12=4×3; f (5)-f (4)=16=4×4;…由上式规律,可得f (n +1)-f (n )=4n ,所以f (n )-f (n -1)=4(n -1).即f (n )=f (n -1)+4(n -1)=f (n -2)+4(n -2)+4(n -1) =f (1)+4(n -1)+4(n -2)+…+4 =1+4[1+2+…+(n -1)] =2n 2-2n +1.又f (1)=1,所以f (n )=2n 2-2n +1. (3)当n ≥2时,1f (n )-1=12n 2-2n =12n (n -1)=12⎝ ⎛⎭⎪⎫1n -1-1n ,所以原式=11+12⎝ ⎛1-12+12-13+13-14+…+⎭⎪⎫1n -1-1n =1+12⎝ ⎛⎭⎪⎫1-1n =32-12n. 22.(本小题满分12分)已知函数f (x )=22-x,记数列{a n }的前n 项和为S n ,且有a 1=f (1).当n ≥2时,S n -2f (a n )=12(n 2+5n -2).(1)计算a 1,a 2,a 3,a 4;(2)求出数列{a n }的通项公式,并给予证明. 解:(1)a 1=2,a 2=3,a 3=4,a 4=5.(2)由(1)猜想a n =n +1,下面用数学归纳法证明: ①当n =1时,由(1)可知猜想成立;②假设n =k (k ∈N *)时猜想成立,即a k =k +1,此时s k =12(k 2+5k -2)+2-a k ,当n =k +1时,S k +1-2f (a k +1)=12[(k +1)2+5(k +1)-2],即S k +a k +1-(2-a k +1)=12[(k +1)2+5(k +1)-2],即12(k 2+5k -2)+2-a k +a k +1-(2-a k +1)=12[(k +1)2+5(k +1)-2], 结合a k =k +1,化简整理得a k +1=k +2,所以当n=k+1时猜想成立,综上所述,对任意n∈N*,a n=n+1成立.。

2020学年高中数学第2章推理与证明单元质量测评(二)新人教A版选修2-2(2021-2022学年)

2020学年高中数学第2章推理与证明单元质量测评(二)新人教A版选修2-2(2021-2022学年)

第二章推理与证明单元质量测评(二)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)1.有一段“三段论”,推理是这样的:对于可导函数f(x),如果f′(x0)=0,那么x=x0是函数f (x)的极值点.因为f(x)=x3在x=0处的导数值f′(0)=0,所以x=0是函数f(x)=x3的极值点.以上推理中( )A.小前提错误B.大前提错误C.推理形式错误 D.结论正确答案B解析可导函数f(x),若f′(x0)=0且x0两侧导数值异号,则x=x0是函数f(x)的极值点,故选B.2.观察下列各等式:错误!+错误!=2,错误!未定义书签。

+错误!=2,错误!+错误!=2,错误!未定义书签。

+错误!未定义书签。

=2,依照以上各式成立的规律,得到一般性的等式为()A。

错误!未定义书签。

+错误!=2B.n+1(n+1)-4+错误!=2C.错误!+错误!未定义书签。

=2D。

\f(n+1,(n+1)-4)+错误!未定义书签。

=2答案A解析观察分子中2+6=5+3=7+1=10+(-2)=8.3.观察下面图形的规律,在其右下角的空格内画上合适的图形为( )A.■ B.△ C.□ D.○答案Aﻬ解析由每一行中图形的形状及黑色图形的个数,则知A正确.4.用反证法证明命题:“若函数f(x)=x2+px+q,那么|f(1)|,|f(2)|,|f(3)|中至少有一个不小于错误!”时,反设正确的是()A.假设|f(1)|,|f(2)|,|f(3)|都不小于错误!未定义书签。

B.假设|f(1)|,|f(2)|,|f(3)|都小于错误!C.假设|f(1)|,|f(2)|,|f(3)|中至多有两个小于错误!D.假设|f(1)|,|f(2)|,|f(3)|中至多有一个小于\f(1,2)答案B解析“|f(1)|,|f(2)|,|f(3)|中至少有一个不小于错误!”的反设为“|f(1)|,|f(2)|,|f(3)|都小于错误!未定义书签。

高中数学人教A版选修1-2:阶段质量检测(二) 推理与证明含解析

高中数学人教A版选修1-2:阶段质量检测(二) 推理与证明含解析

阶段质量检测(二)推理与证明(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.根据偶函数定义可推得“函数f(x)=x2在R上是偶函数”的推理过程是()A.归纳推理B.类比推理C.演绎推理D.非以上答案解析:选C根据演绎推理的定义知,推理过程是演绎推理,故选C.2.自然数是整数,4是自然数,所以4是整数.以上三段论推理()A.正确B.推理形式不正确C.两个“自然数”概念不一致D.“两个整数”概念不一致解析:选A三段论中的大前提、小前提及推理形式都是正确的.3.设a,b,c都是非零实数,则关于a,bc,ac,-b四个数,有以下说法:①四个数可能都是正数;②四个数可能都是负数;③四个数中既有正数又有负数.则说法中正确的个数有()A.0 B.1C.2 D.3解析:选B可用反证法推出①,②不正确,因此③正确.4.下列推理正确的是()A.把a(b+c)与log a(x+y)类比,则有log a(x+y)=log a x+log a yB.把a(b+c)与sin(x+y)类比,则有sin(x+y)=sin x+sin yC.把a(b+c)与a x+y类比,则有a x+y=a x+a yD.把(a+b)+c与(xy)z类比,则有(xy)z=x(yz)解析:选D(xy)z=x(yz)是乘法的结合律,正确.5.已知“整数对”按如下规律排列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第70个“整数对”为()A.(3,9) B.(4,8)C.(3,10) D.(4,9)解析:选D因为1+2+…+11=66,所以第67个“整数对”是(1,12),第68个“整数对”是(2,11),第69个“整数对”是(3,10),第70个“整数对”是(4,9),故选D.6.求证:2+3> 5.证明:因为2+3和5都是正数, 所以为了证明2+3>5,只需证明(2+3)2>(5)2,展开得5+26>5,即26>0,此式显然成立,所以不等式2+3>5成立. 上述证明过程应用了( ) A .综合法B .分析法C .综合法、分析法配合使用D .间接证法解析:选B 证明过程中的“为了证明……”,“只需证明……”这样的语句是分析法所特有的,是分析法的证明模式.7.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )A .a 1a 2a 3…a 9=29B .a 1+a 2+…+a 9=29C .a 1a 2…a 9=2×9D .a 1+a 2+…+a 9=2×9解析:选D 由等差数列性质,有a 1+a 9=a 2+a 8=…=2a 5.易知D 成立. 8.若数列{a n }是等比数列,则数列{a n +a n +1}( ) A .一定是等比数列 B .一定是等差数列C .可能是等比数列也可能是等差数列D .一定不是等比数列解析:选C 设等比数列{a n }的公比为q ,则a n +a n +1=a n (1+q ).∴当q ≠-1时,{a n+a n +1}一定是等比数列;当q =-1时,a n +a n +1=0,此时为等差数列. 9.已知a +b +c =0,则ab +bc +ca 的值( ) A .大于0 B .小于0 C .不小于0D .不大于0解析:选D 法一:∵a +b +c =0,∴a 2+b 2+c 2+2ab +2ac +2bc =0,∴ab +ac +bc =-a 2+b 2+c 22≤0.法二:令c =0,若b =0,则ab +bc +ac =0,否则a ,b 异号,∴ab +bc +ac =ab <0,排除A 、B 、C ,选D.10.已知1+2×3+3×32+4×33+…+n ×3n -1=3n (na -b )+c 对一切n ∈N *都成立,那么a ,b ,c 的值为( )A .a =12,b =c =14B .a =b =c =14C .a =0,b =c =14D .不存在这样的a ,b ,c解析:选A 令n =1,2,3, 得⎩⎪⎨⎪⎧3(a -b )+c =1,9(2a -b )+c =7,27(3a -b )+c =34.所以a =12,b =c =14.11.已知数列{a n }的前n 项和S n ,且a 1=1,S n =n 2a n (n ∈N *),可归纳猜想出S n 的表达式为( )A .S n =2nn +1B .S n =3n -1n +1 C .S n =2n +1n +2D .S n =2nn +2解析:选A 由a 1=1,得a 1+a 2=22a 2,∴a 2=13,S 2=43;又1+13+a 3=32a 3,∴a 3=16,S 3=32=64;又1+13+16+a 4=16a 4,得a 4=110,S 4=85.由S 1=22,S 2=43,S 3=64,S 4=85可以猜想S n =2n n +1.12.设函数f (x )定义如下表,数列{x n }满足x 0=5,且对任意的自然数均有x n +1=f (x n ),则x 2 016=( )A.1 C .4D .5解析:选D x 1=f (x 0)=f (5)=2,x 2=f (2)=1,x 3=f (1)=4,x 4=f (4)=5,x 5=f (5)=2,…,数列{x n }是周期为4的数列,所以x 2 016=x 4=5,故应选D.二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中的横线上) 13.已知x ,y ∈R ,且x +y <2,则x ,y 中至多有一个大于1,在用反证法证明时,假设应为________.解析:“至多有一个大于1”包括“都不大于1和有且仅有一个大于1”,故其对立面为“x ,y 都大于1”.答案:x ,y 都大于114.已知a >0,b >0,m =lga +b 2,n =lg a +b2,则m ,n 的大小关系是________. 解析:ab >0⇒ab >0⇒a +b +2ab >a +b ⇒ (a +b )2>(a +b )2⇒a +b >a +b ⇒ a +b 2>a +b 2⇒lg a +b2>lg a +b2. 答案:m >n 15.已知 2+23=223, 3+38=338, 4+415= 4415,…, 6+a b =6ab ,a ,b 均为正实数,由以上规律可推测出a ,b 的值,则a +b =________.解析:由题意归纳推理得6+a b =6a b ,b =62-1=35,a =6.∴a +b =6+35=41. 答案:4116.现有一个关于平面图形的命题:如图,同一平面内有两个边长都是a 的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a 24.类比到空间,有两个棱长为a 的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为________.解析:解法的类比(特殊化),易得两个正方体重叠部分的体积为a 38.答案:a 38三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)用综合法或分析法证明: (1)如果a ,b >0,则lg a +b 2≥lg a +lg b2; (2)6+10>23+2. 证明:(1)当a ,b >0时,有a +b2≥ab , ∴lg a +b 2≥lg ab ,∴lg a +b 2≥12lg ab =lg a +lg b 2.(2)要证 6+10>23+2, 只要证(6+10)2>(23+2)2,即260>248,这是显然成立的, 所以,原不等式成立.18.(本小题满分12分)若a 1>0,a 1≠1,a n +1=2a n1+a n(n =1,2,…). (1)求证:a n +1≠a n ;(2)令a 1=12,写出a 2,a 3,a 4,a 5的值,观察并归纳出这个数列的通项公式a n (不要求证明).解:(1)证明:若a n +1=a n ,即2a n1+a n =a n, 解得a n =0或1.从而a n =a n -1=…=a 2=a 1=0或1, 这与题设a 1>0,a 1≠1相矛盾, 所以a n +1=a n 不成立. 故a n +1≠a n 成立.(2)由题意得a 1=12,a 2=23,a 3=45,a 4=89,a 5=1617,由此猜想:a n =2n -12n -1+1.19.(本小题满分12分)下列推理是否正确?若不正确,指出错误之处. (1)求证:四边形的内角和等于360°.证明:设四边形ABCD 是矩形,则它的四个角都是直角,有∠A +∠B +∠C +∠D =90°+90°+90°+90°=360°,所以四边形的内角和为360°.(2)已知 2 和 3 都是无理数,试证:2+3也是无理数.证明:依题设2和3都是无理数,而无理数与无理数之和是无理数,所以2+3必是无理数.(3)已知实数m 满足不等式(2m +1)(m +2)<0,用反证法证明:关于x 的方程x 2+2x +5-m 2=0无实根.证明:假设方程x 2+2x +5-m 2=0有实根.由已知实数m 满足不等式(2m +1)(m +2)<0,解得-2<m <-12,而关于x 的方程x 2+2x +5-m 2=0的判别式Δ=4(m 2-4),∵-2<m <-12,∴14<m 2<4,∴Δ<0,即关于x 的方程x 2+2x +5-m 2=0无实根.解:(1)犯了偷换论题的错误,在证明过程中,把论题中的四边形改为矩形. (2)使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不一定是无理数,因此原题的真实性仍无法判定.(3)利用反证法进行证明时,要把假设作为条件进行推理,得出矛盾,本题在证明过程中并没有用到假设的结论,也没有推出矛盾,所以不是反证法.20.(本小题满分12分)等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ; (2)设b n =S nn(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.解:(1)由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,∴d =2.故a n =2n -1+2,S n =n (n +2). (2)由(1)得b n =S nn =n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r , 即(q +2)2=(p +2)(r +2), ∴(q 2-pr )+(2q -p -r )2=0,∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,∴⎝⎛⎭⎫p +r 22=pr ,(p -r )2=0. ∴p =r ,与p ≠r 矛盾.∴数列{b n }中任意不同的三项都不可能成等比数列.21.(本小题满分12分)已知:sin 2 30°+sin 2 90°+sin 2 150°=32,sin 2 5°+sin 2 65°+sin 2125°=32,通过观察上述两等式的规律,请你写出对任意角度α都成立的一般性的命题,并给予证明.解:一般形式为:sin 2α+sin 2(α+60°)+sin 2(α+120°)=32.证明:左边=1-cos 2α2+1-cos (2α+120°)2+1-cos (2α+240°)2=32-12[cos 2α+cos(2α+120°)+cos(2α+240°)] =32-12(cos 2α+cos 2αcos 120°-sin 2αsin 120°+cos 2αcos 240°-sin 2αsin 240°) =32-12cos 2α-12cos 2α-32sin 2α-12cos 2α+32sin 2α=32=右边.将一般形式写成sin2(α-60°)+sin2α+sin2(α+60°)=32也正确22.(本小题满分12分)根据要求证明下列各题:(1)用分析法证明:已知非零向量a,b,且a⊥b,求证:|a|+|b||a+b|≤2;(2)用反证法证明:1,2,3不可能是一个等差数列中的三项.证明:(1)a⊥b⇔a·b=0,要证|a|+|b||a+b|≤ 2.只需证|a|+|b|≤2|a+b|,只需证|a|2+2|a||b|+|b|2≤2(a2+2a·b+b2),只需证|a|2+2|a||b|+|b|2≤2a2+2b2,只需证|a|2+|b|2-2|a||b|≥0,即(|a|-|b|)2≥0,上式显然成立,故原不等式得证.(2)假设1,2,3是某一个等差数列中的三项,且分别是第m,n,k项(m,n,k∈N*),则数列的公差d=2-1n-m=3-1k-m,即2-1=2(n-m)k-m,因为m,n,k∈N*,所以(n-m)∈Z,(k-m)∈Z,所以2(n-m)k-m为有理数,所以2-1是有理数,这与2-1是无理数相矛盾.故假设不成立,所以1,2,3不可能是一个等差数列的三项.。

2019-2020学年数学人教A版选修2-2检测:第二章 推理与证明测试卷 Word版含解析

2019-2020学年数学人教A版选修2-2检测:第二章 推理与证明测试卷 Word版含解析

第二章 推理与证明测试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.a +b >c +d 的一个必要不充分条件是( )A .a >cB .b >cC .a >c 且b >dD .a >c 或b >d解析:若a +b >c +d ,则a ,b 中必有一个数大于c ,d 中一个数;∴a >c 或b >d ;而a >c ,或b >d 得不到a +b >c +d ,比如取a =3,c =2,b =1,d =5,得到的是a +b <c +d ,所以a >c 或b >d 是a +b >c +d 的必要不充分条件,故选D.答案:D2.若S k =1k +1+1k +2+1k +3+…+12k ,则S k +1为( ) A .S k +12k +2B .S k +12k +1+12k +2C .S k +12k +1-12k +2D .S k +12k +2-12k +1解析:∵S k =1k +1+1k +2+1k +3+…+12k , ∴S k +1=1k +2+1k +3+1k +4+…+12k +12k +1+12k +2 =1k +1+1k +2+…+12k +12k +1+12k +2-1k +1 =S k +12k +1-12k +2. 故选C.答案:C3.法国数学家费马观察到221+1=5,222+1=17,223+1=257,224+1=65537都是质数,于是他提出猜想:任何形如22n +1(n ∈N *)的数都是质数,这就是著名的费马猜想.半个世纪之后,善于发现的欧拉发现第5个费马数225+1=4294967297=641×6700417不是质数,从而推翻了费马猜想,这一案例说明( )A .归纳推理,结果一定不正确B .归纳推理,结果不一定正确C .类比推理,结果一定不正确D .类比推理,结果不一定正确解析:由于费马猜想是由几个数值,根据这几个数值的特点得到的结论,是由特殊到一般的推理过程,所以属于归纳推理,由于得出结论的过程没有给出推理证明,所以归纳推理的结果不一定正确,故选B.答案:B4.用反证法证明“自然数a ,b ,c 中恰有一个偶数”时,正确的反设为( )A .a ,b ,c 都是偶数B .a ,b ,c 都是奇数C .a ,b ,c 中至少有两个偶数D .a ,b ,c 中都是奇数或至少有两个偶数解析:自然数a ,b ,c 的奇偶性共有四种情形:3个都是奇数,1个偶数2个奇数,2个偶数1个奇数,3个都是偶数,所以否定“自然数a ,b ,c 中恰有一个偶数”时,正确的反设为“a ,b ,c 中都是奇数或至少有两个偶数”,故选D.答案:D5.若数列{a n }是等差数列,b n =a 1+a 2+…+a n n,则数列{b n }也为等差数列,类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( )A .d n =c 1+c 2+…+c n nB .d n =c 1·c 2·…·c n nC .d n =n c n 1·c n 2·…·c n n nD .d n =n c 1·c 2·…·c n解析:由类比所给的性质知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n的表达式应为d n =n c 1·c 2·…·c n ,故选D.答案:D6.有三个人,甲说:“我不是班长”,乙说:“甲是班长”,丙说:“我不是班长”.已知三个人中只有一个说的是真话,则班长是( )A .甲B .乙C .丙D .无法确定解析:因为甲说:“我不是班长”,乙说:“甲是班长”,所以甲、乙两人的话一定一真一假,又因为三个人中只有一个说的是真话,所以丙说的话“我不是班长”为假话,由此可得班长是丙,故选C.答案:C7.若sin A a =cos B b =cos C c,则△ABC 是( ) A .等边三角形B .有一个内角为30°的直角三角形C .等腰直角三角形D .有一个角为30°的等腰三角形解析:∵sin A a =cos B b =cos C c ,由正弦定理,得sin A a =sin B b =sin C c,∴sin B =cos B ,sin C =cos C ,∴B =C =45°,∴△ABC 为等腰直角三角形,故选C.答案:C8.下列推理过程属于演绎推理的有( )①数列{a n }为等比数列,所以数列{a n }的各项不为0;②由1=12,1+3=22,1+3+5=32,…,得出1+3+5+…+(2n -1)=n 2;③由三角形的三条中线交于一点联想到四面体四条中线(四面体每一个顶点与对面重心的连线)交于一点;④通项公式形如a n =cq n (cq ≠0)的数列{a n }为等比数列,则数列{-2n }为等比数列.A .0个B .1个C .2个D .3个解析:由演绎推理的定义知,①、④两个推理为演绎推理,②为归纳推理,③为类比推理,故选C.答案:C9.设数列a 、b 、c 满足a +b +c =1,则a 、b 、c 中至少有一个数不小于( )A .0 B.13 C.12D .1 解析:假设a 、b 、c 都大于13,则a +b +c >1,这与已知a +b +c =1矛盾,假设a 、b 、c 都小于13,则a +b +c <1,这与已知a +b +c =1矛盾,故a 、b 、c 中至少有一个数不小于13,故选B.答案:B10.如图,第1个图形由正三角形扩展而成,共12个顶点.第n 个图形是由正n +2边形扩展而来n ∈N *,则第n 个图形的顶点个数是( )A .(2n +1)(2n +2)B .3(2n +2)C .2n (5n +1)D .(n +2)(n +3)解析:由已知中的图形我们可以得到当n =1时,顶点共有12=3×4(个),n =2时,顶点共有20=4×5(个),n =3时,顶点共有30=5×6(个),n =4时,顶点共有42=6×7(个),… 由此我们可以推断:第n 个图形共有顶点(n +2)(n +3)个,故选D.答案:D11.若P =a +a +5,Q =a +2+a +3(a ≥0),则P ,Q 的大小关系是( )A .P >QB .P =QC .P <QD .由a 的取值确定解析:∵P =a +a +5,Q =a +2+a +3(a ≥0), ∴P 2-Q 2=(a +a +5)2-(a +2+a +3)2=(2a +5+2a 2+5a )-(2a +5+2a 2+5a +6)=2a 2+5a -2a 2+5a +6<0,∴P 2<Q 2,∴P <Q ,故选C.答案:C12.在平面几何中有如下结论:设正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间中可以得到类似结论:已知正四面体P -ABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=( ) A.18 B.19C.164D.127解析:如图,连接AE ,设正四面体的棱长为a ,则AE =33a ,PE =63a ,设OA =R ,则OE =63a -R ,∵R 2=⎝⎛⎭⎫63a -R 2+⎝⎛⎭⎫33a 2,∴R =64a ,OE =612a , 则正四面体的内切球与外接球的半径之比是13,类比平面中的结论,可得V 1V 2=127.故选D. 答案:D 第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.用反证法证明命题“三角形的内角中至少有一个不大于60°”的过程归纳为以下三个步骤:①因为A +B +C >60°+60°+60°=180°,这与三角形内角和为180°相矛盾;②所以三角形的内角中至少有一个不大于60°;③假设三角形的三个内角A ,B ,C 都大于60°.正确顺序的序号为________.解析:反证法的步骤是先假设结论不成立,然后推出矛盾,最后推出假设不成立,结论成立,所以正确步骤是③①②.答案:③①②14.对大于或等于2的自然数m 的n 次方幂有如下分解方式:22=1+3,32=1+3+5,42=1+3+5+7;23=3+5,33=7+9+11,43=13+15+17+19. 根据上述分解规律,若n 2=1+3+5+…+19,m 3(m ∈N *)的分解中最小的数是21,则m +n 的值为________.解析:依题意,得n 2=10×(1+19)2=100,∴n =10,又m 3=21m +m (m -1)2×2,整理,得(m -5)(m +4)=0,∵m ∈N *,∴m =5,∴m +n =5+10=15.答案:1515.在平面内,点P ,A ,B 三点共线的充要条件是:对于平面内任一点O ,有且只有一对实数x ,y ,满足向量关系式OP →=xOA →+ yOB →,且x +y =1.类比以上结论,可得到在空间中,P ,A ,B ,C 四点共面的充要条件是:对于平面内任一点O ,有且只有一组实数x ,y ,z 满足向量关系式________.解析:此类比仅是数量的变化,即在空间中,P ,A ,B ,C 四点共面的充要条件是:对于平面内任一点O ,有且只有一组实数x ,y ,z 满足向量关系式OP →=xOA →+yOB →+zOC →,且x +y+z =1.答案:OP →=xOA →+yOB →+zOC →,且x +y +z =116.给出下列推理:(1)三角形的内角和为(3-2)·180°,四边形的内角和为(4-2)·180°,五边形的内角和为(5-2)·180°,…,所以凸n 边形的内角和为(n -2)·180°;(2)三角函数都是周期函数,y =tan x 是三角函数,所以y =tan x 是周期函数;(3)狗是有骨骼的;鸟是有骨骼的;鱼是有骨骼的;蛇是有骨骼的;青蛙是有骨骼的;狗、鸟、鱼、蛇和青蛙都是动物,所以,所有的动物都是有骨骼的;(4)在平面内如果两条直线同时垂直于第三条直线,则这两条直线互相平行,那么在空间中如果两个平面同时垂直于第三个平面,则这两个平面互相平行.其中属于合情推理的是________.(填序号)解析:根据合情推理的定义来判断,因为(1)(3)都是归纳推理,(4)是类比推理,而(2)是演绎推理,故属于合情推理的是(1)(3)(4).答案:(1)(3)(4)三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明或演算步骤)17.(10分)已知实数a ,b ,c ,d 满足a +b =c +d =1,ac +bd >1,求证:a ,b ,c ,d 中至少有一个是负数.证明:假设a ,b ,c ,d 都是非负实数,因为a +b =c +d =1,所以a ,b ,c ,d ∈[0,1],所以ac ≤ac ≤a +c 2,bd ≤bd ≤b +d 2, 所以ac +bd ≤a +c 2+b +d 2=1, 这与已知ac +bd >1相矛盾,所以假设不成立,故a ,b ,c ,d 中至少有一个是负数.18.(12分)用数学归纳法证明1+n 2≤1+12+13+…+12n ≤12+n (n ∈N *). 证明:(1)当n =1时,32≤1+12=32,命题成立. (2)假设当n =k (k ∈N *)时命题成立,即1+k 2≤1+12+13+…+12k ≤12+k , 则当n =k +1时,1+12+13+…+12k +12k +1+12k +2+…+12k +2k >1+k 2+2k ·12k +1=1+k +12. 又1+12+13+…+12k +12k +1+12k +2+…+12k +2k <12+k +2k ·12k =12+(k +1), 即n =k +1时,命题成立.由(1)和(2)可知,命题对所有n ∈N *都成立.19.(12分)设函数f (x )=x 3+11+x,x ∈[0,1].证明: (1)f (x )≥1-x +x 2;(2)34<f (x )≤32. 解析:(1)因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x,由于x ∈[0,1],有1-x 41+x ≤11+x, 即1-x +x 2-x 3≤11+x, 所以f (x )≥1-x +x 2.(2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+11+x ≤x +11+x =x +11+x -32+32=(x -1)(2x +1)2(x +1)+32≤32, 所以f (x )≤32. 由(1)得f (x )≥1-x +x 2=⎝⎛⎭⎫x -122+34≥34, 又因为f ⎝⎛⎭⎫12=1924>34,所以f (x )>34, 综上,34<f (x )≤32. 20.(12分)设非等腰△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,且A ,B ,C 成等差数列.用分析法证明:1a -b +1c -b =3a -b +c. 证明:要证1a -b +1c -b =3a -b +c, 只需证a +c -2b(a -b )(c -b )=3a -b +c, 只需证(a +c -2b )(a -b +c )=3(a -b )(c -b ),只需证(a +c -b )2-b (a +c -b )=3(ac +b 2-bc -ab ),只需证b 2=a 2+c 2-ac ,即ac =a 2+c 2-b 2,只需证cos B =a 2+c 2-b 22ac =12, 只需证B =60°.∵A ,B ,C 成等差数列,∴2B =A +C ,又A +B +C =180°,∴B =60°,故结论成立.21.(12分)已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0且0<x <c 时,f (x )>0.(1)证明:1a是函数f (x )的一个零点; (2)用反证法证明1a>c . 证明:(1)∵f (x )的图象与x 轴有两个不同的交点,∴方程f (x )=0有两个不相等的实数根x 1,x 2,又f (c )=0,∴x 1=c 是方程的一个根.又x 1x 2=c a ,∴x 2=1a ⎝⎛⎭⎫1a ≠c . ∴1a 是f (x )=0的一个根,即1a 是函数f (x )的一个零点.(2)假设1a <c ,又a >0,∴0<1a<c , ∵当0<x <c 时,f (x )>0,∴f ⎝⎛⎭⎫1a >0.这与f ⎝⎛⎭⎫1a =0矛盾,∴1a ≥c ,又1a ≠c ,∴1a>c . 22.(12分)已知函数f (x )=3-x 21+x 2. (1)计算f (3),f (4),f ⎝⎛⎭⎫13及f ⎝⎛⎭⎫14的值; (2)由(1)的结果猜想一个普遍的结论,并加以证明;(3)求值f (1)+f (2)+…+f (2 017)+f ⎝⎛⎭⎫12+f ⎝⎛⎭⎫13+…+f ⎝⎛⎭⎫12 017. 解析:(1)f (3)=-35,f (4)=-1317,f ⎝⎛⎭⎫13=135, f ⎝⎛⎭⎫14=4717.(2)由f (3)+f ⎝⎛⎭⎫13=2,f (4)+f ⎝⎛⎭⎫14=2,猜想:f (x )+f ⎝⎛⎭⎫1x =2. 证明如下:因为f (x )=3-x 21+x 2,所以f ⎝⎛⎭⎫1x =3-1x 21+1x 2=3x 2-1x 2+1, 所以f (x )+f ⎝⎛⎭⎫1x =3-x 21+x 2+3x 2-1x 2+1=3-x 2-1+3x 21+x 2=2(1+x 2)1+x 2=2. (3)因为f (x )+f ⎝⎛⎭⎫1x =2,所以f (2)+f ⎝⎛⎭⎫12=2,f (3)+f ⎝⎛⎭⎫13=2,…, f (2 017)+f ⎝⎛⎭⎫12 017=2,又f (1)=3-121+12=1, 故f (1)+f (2)+…+f (2 017)+f ⎝⎛⎭⎫12+f ⎝⎛⎭⎫13+…+f ⎝⎛⎭⎫12 017=1+2 016×2=4 033.。

(新课程)高中数学《第二章推理与证明》质量评估新人教A版选修2-2

(新课程)高中数学《第二章推理与证明》质量评估新人教A版选修2-2

章末质量评估(二)(时间:100分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选 项中,只有一项是符合题目要求的) 1 .下列说法中正确的是().A. 合情推理就是正确的推理B. 合情推理就是归纳推理C. 归纳推理是从一般到特殊的推理过程D. 类比推理是从特殊到特殊的推理过程 答案 D11 1 *2.若 f (n ) = 1 + 2+§+…+ 亦后(“^ N ),则当 n = 2 时,f ( n )是().B. -1 1 1解析 ••• f (n ) = 1 + - + -+-+ 2"+;,分子是 1,分母为 1,2,3,…,2n +1,故当 n = 22 3 211 + I 丄1 1 1111时,f (2)=1 + 2+…+ 2X 2+ 1 = 1 + 2+ 3+4+号答案 C 3.凡自然数是整数,4是自然数,所以4是整数.以上三段论推理 ().B. 推理形式不正确解析 三段论中的大前提,小前提及推理形式都是正确的. 答案 A4.用反证法证明命题“如果 a >b ,那么3 a >3.b ”时,假设的内容应是().A. 3a =訴C. ^a =紡,且苗<鵬 答案 D5. 下面几种推理是合情推理的是 (A.1111C 1 +2+3+4+5D.非以上答案A.正确C. 两个“自然数”概念不一致D. “两个整数”概念不一致①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形内角和是180°归纳出所有三角形的内角和都是180°③ 某次考试张军成绩是 100分,由此推出全班同学成绩都是100分;④ 三角形内角和是180°,四边形内角和是 360°,五边形内角和是540°,由此得凸多 边形内角和是(n — 2) • 180°.A.①② B .①③④C.①②④D.②④解析 ①是类比,②④是归纳推理. 答案 C6. 已知命题1+ 2 + 22+…+ 2n —1= 2n — 1及其证明:(1) 当n = 1时,左边=1,右边=2 — 1 = 1,所以等式成立;(2) 假设n = k 时等式成立,即1 + 2 + 22 +…+ 2k —1= 2k — 1成立,则当n = k + 1时,1 + 2— 1 — 2k +1+ 22+…+ 2k —1 + 2k = 亍牙=2k +1 — 1,所以n = k + 1时等式也成立.判断以上评述().第1个第2个 第3个则第n 个图案中的白色地面砖有( ).A. 4n — 2 块 B . 4n + 2 块 C. 3n + 3 块D. 3n — 3 块解析 法一 第1个图案中有6块白色地面砖,第二个图案中有 10块,第三个图案中有14块,归纳为:第n 个图案中有4n + 2块.法二 验n = 1时,A 、D 选项不为6,排除.验n = 2时,C 选项不为10,排除.故选B. 答案 B &用数学归纳法证明“5 n — 2n 能被3整除”的第二步中,n = k + 1时,为了使用假设,应将 5k +1 —2k +1 变形为().由(1) (2)知,对任意的正整数n 等式都成立.A.命题、推理都正确 B .命题正确、推理不正确 C.命题不正确、推理正确 D. 命题、推理都不正确解析推理不正确,错在证明 n = k + 1时,没用假设n = k 的结论,命题由等比数列求和公式知正确,故选 B. 答案 B7 •黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:k k k k A. (5 - 2) + 4X5 —2Iz |zC. (5 —2)(5 —2 )k k k B. 5(5 —2 ) + 3X2f ak c、/ l k D. 2(5 —2 ) —3X5解析5k+1- 2k+1= 5k• 5- 2k• 2= 5k• 5- 2k• 5+ 2k• 5-2k• 2= 5(5 k—2)+ 3 ・2 k.答案B9. 类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质,你认为比较恰当的是().①各棱长相等,同一顶点上的任两条棱的夹角相等;②各个面是全等的正三角形,相邻的两个面所成的二面角相等;③各个面都是全等的正三角形,同一顶点的任两条棱的夹角相等;④各棱长相等,相邻两个面所成的二面角相等.A.①④ B .①② C .①②③ D .③解析类比推理原则是:类比前后保持类比规则的一致性,而③④违背了这一规则,①②符合.答案B10. 设F log 211 + log 311 + log 411 + log 511A. 0<P<1C. 2<F<3D. 3<F<4解析P= log 112+ log “3+ log n4 + log n5 = log “120,1 = log n11<log n120<log n121 = 2, 即1<F<2.答案B二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)11. 观察下列式子:1 3 1 15 1 1 171+尸<2, 1+22+亍<3, 1 +龙+亍+,<4,…,则可以猜想:当n》2时,有__________ .1 1 1 2n—1解析左边为n项和:1 +尹+ 卄…+二,右边为分式,易知n》2时为2 3 n n—11 1 2n—1答案 1 + 22 + E+…+2 3 n n112. 若三角形内切圆半径为r,三边长分别为a、b、c,则三角形的面积S= ^r(a+ b+ c),根据类比思想,若四面体内切球半径为R,其四个面的面积分别为S、S、$、S,则四面体的体积V= ________ .B. 1<F<2解析由类比推理,以球心为顶点,四个面分别为底,将四面体分割为4个棱锥,得证.1答案S1 + S2+ S3+ S)-71-7 —713•在△ ABC 中, D 为BC 的中点,则AD=空(AB + AC ,将命题类比到三棱锥中去得到一个类比的命题为 ______________________________ •—— 1 —— —— —— 答案 在三棱锥 ABCD 中,BCD 勺重心,贝U AG= 3・(AB+ AO AD )314•在数列{a n }中,a i = 1,且$、$+1、2S i 成等差数列(S 表示数列{a n }的前n 项和),则$、S 3、S 4分别为 __________ ,由此猜想 S n = ________ .解析由S n , S n + 1,2S 成等差数列, 得 2S +1 = S n + 2S ,S= a 1= 1 ,二 2S +1= S+ 2.3令 n = 1,贝U 2S 2= S + 2 = 1+ 2= 3? S 2=㊁, 同理分别令n = 2, n = 3, 可求得 S 3=4, s=185.4 83 22 — 1S2= 2 = 丁三、解答题(本大题共5小题,共54分•解答时应写出必要的文字说明、证明过 程或演算步骤)15. (10分)在不等边厶ABC 中, A 是最小角,求证: A <60°.证明 假设A >60°,v A 是不等边三角形 ABC 的最小角(不妨设C 为最大角), •/ B >A >60°, C >A >60°,••• A + B + C >180°,与三角形内角和等于180。

高中数学 第二章 推理与证明练习 新人教A版选修2-2-新人教A版高二选修2-2数学试题

高中数学 第二章 推理与证明练习 新人教A版选修2-2-新人教A版高二选修2-2数学试题

第二章 推理与证明(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.证明:n +22<1+12+13+14+…+12n<n +1(n >1),当n =2时,中间式子等于( ) A.1 B.1+12C.1+12+13D.1+12+13+14解析:选D.n =2时中间式子的最后一项为14,所以中间式子为1+12+13+14.2.用反证法证明命题:“若函数f (x )=x 2+px +q ,那么|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”时,反设正确的是( )A.假设|f (1)|,|f (2)|,|f (3)|都不小于12B.假设|f (1)|,|f (2)|,|f (3)|都小于12C.假设|f (1)|,|f (2)|,|f (3)|至多有两个小于12D.假设|f (1)|,|f (2)|,|f (3)|至多有一个小于12解析:选B.“|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”的反设为“|f (1)|,|f (2)|,|f (3)|都小于12”.3.设x >0,则不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,…,推广到x +axn ≥n +1,则a=( )A.2nB.2nC.n 2D.n n解析:选D.结合已知的三个不等式可以发现第二个加数的分子是分母x 的指数的指数次方,可得a =n n.4.下面是一段“三段论”推理过程:若函数f (x )在(a ,b )内可导且单调递增,则在(a ,b )内,f ′(x )>0恒成立.因为f (x )=x 3在(-1,1)内可导且单调递增,所以在(-1,1)内,f ′(x )=3x 2>0恒成立.以上推理中( )A.大前提错误B.小前提错误C.结论正确D.推理形式错误解析:选A.f (x )在(a ,b )内可导且单调递增,则在(a ,b )内,f ′(x )≥0恒成立,故大前提错误,故选A.5.用数学归纳法证明:1+11+2+11+2+3+…+11+2+3+…+n =2nn +1时,由n =k 到n =k +1左边需要添加的项是( )A.2k (k +2)B.1k (k +1)C.1(k +1)(k +2)D.2(k +1)(k +2)解析:选D.由n =k 到n =k +1时,左边需要添加的项是11+2+3+…+(k +1)=2(k +1)(k +2).故选D.6.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证 b 2-ac <3a ”索的因应是( )A.a -b >0B.a -c <0C.(a -b )(a -c )>0D.(a -b )(a -c )<0解析:选C.要证明 b 2-ac <3a ,只需证b 2-ac <3a 2,只需证(a +c )2-ac <3a 2,只需证-2a 2+ac +c 2<0,即证2a 2-ac -c 2>0,即证(a -c )(2a +c )>0,即证(a -c )(a -b )>0.7.若sin A a =cos B b =cos C c,则△ABC 是( )A.等边三角形B.有一个内角是30°的直角三角形C.等腰直角三角形D.有一个内角是30°的等腰三角形解析:选C.因为sin A a =cos B b =cos C c,由正弦定理得,sin A a =sin B b =sin Cc,所以sin B b =cos B b =cos C c =sin C c.所以sin B =cos B ,sin C =cos C , 所以∠B =∠C =45°,所以△ABC 是等腰直角三角形.8.已知f (x )=x 3+x ,a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值一定( )A.大于0B.等于0C.小于0D.正负都可能解析:选A.f (x )为奇函数,也是增函数,因此由a +b >0可得a >-b ,所以f (a )>f (-b ),即f (a )>-f (b ),于是f (a )+f (b )>0,同理,f (a )+f (c )>0,f (b )+f (c )>0,所以f (a )+f (b )+f (c )>0.9.我们把平面中的结论“到定点的距离等于定长的点的轨迹是圆”拓展至空间中为“到定点的距离等于定长的点的轨迹是球”,类似可得:已知A (-1,0,0),B (1,0,0),则点集{P (x ,y ,z )||PA |-|PB |=1}在空间中的轨迹描述正确的是( )A.以A ,B 为焦点的双曲线绕轴旋转而成的旋转曲面B.以A ,B 为焦点的椭球体C.以A ,B 为焦点的双曲线单支绕轴旋转而成的旋转曲面D.以上都不对解析:选C.在平面中,点集{P (x ,y )||PA |-|PB |=1}是以A ,B 为焦点的双曲线的一支,点集{P (x ,y ,z )||PA |-|PB |=1}在空间中的轨迹是以A ,B 为焦点的双曲线单支绕轴旋转而成的旋转曲面,故选C.10.我国古代数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”.“势”是高,“幂”是截面积.意思是:如果两个等高的几何体在同高处截得两几何体的截面积总相等,那么这两个几何体的体积相等.类比祖暅原理,如图所示,在平面直角坐标系中,区域①是一个形状不规则的封闭图形,区域②是一个上底长为1、下底长为2的梯形,且当实数t 取[0,3]上的任意值时,直线y =t 被区域①和区域②所截得的两线段长总相等,则区域①的面积为( )A.4B.92 C.5D.112解析:选B.根据题意,由祖暅原理分析可得①的面积等于②的面积,又②是一个上底长为1、下底长为2的梯形,所以①的面积为(1+2)×32=92.11.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )A.(7,5)B.(5,7)C.(2,10)D.(10,2)解析:选B.依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有n (n +1)2个“整数对”,注意到10×(10+1)2<60<11×(11+1)2,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).12.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ) A.△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B.△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C.△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D.△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形解析:选D.因为三角形内角的正弦值是正值,所以△A 1B 1C 1的三个内角的余弦值均大于0.因此△A 1B 1C 1是锐角三角形.假设△A 2B 2C 2也是锐角三角形,并设cos A 1=sin A 2,则cos A 1=cos (90°-∠A 2), 所以∠A 1=90°-∠A 2.同理设cos B 1=sin B 2,cos C 1=sin C 2, 则有∠B 1=90°-∠B 2,∠C 1=90°-∠C 2. 又∠A 1+∠B 1+∠C 1=180°,所以(90°-∠A 2)+(90°-∠B 2)+(90°-∠C 2)=180°, 即∠A 2+∠B 2+∠C 2=90°. 这与三角形内角和等于180°矛盾,所以原假设不成立.若△A 2B 2C 2是直角三角形,不妨设A 2=π2,则sin A 2=1=cos A 1,而A 1在(0,π)内无解.故选D.二、填空题:本题共4小题,每小题5分.13.补充下列证明过程: 要证a 2+b 2+c 2≥ab +bc +ac (a ,b ,c ∈R ),即证,即证W. 因为a ,b ,c 为实数,上式显然成立,故命题结论成立. 答案:2(a 2+b 2+c 2)≥2ab +2bc +2ac (a -b )2+(b -c )2+(a -c )2≥014.已知a =5-12,函数f (x )=a x,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为W.解析:因为当0<a <1时,函数f (x )=a x为减函数,a =5-12∈(0,1),所以函数f (x )=(5-12)x为减函数.故由f (m )>f (n )得m <n .答案:m <n15.有三X 卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一X 卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是W.解析:为方便说明,不妨将分别写有1和2,1和3,2和3的卡片记为A ,B ,C .从丙出发,由于丙的卡片上的数字之和不是5,则丙只可能是卡片A 或B ,无论是哪一X ,均含有数字1,再由乙与丙的卡片上相同的数字不是1可知,乙所拿的卡片必然是C ,最后由甲与乙的卡片上相同的数字不是2,知甲所拿的卡片为B ,此时丙所拿的卡片为A .答案:1和316.如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n (n ≥2),每个数是它下一行左右相邻两数的和,如11=12+12,12=13+16,13=14+112,…,则第7行第4个数(从左往右数)为W. 11 1212 131613 14112112141512013012015…解析:由“第n 行有n 个数且两端的数均为1n ”可知,第7行第1个数为17,由“每个数是它下一行左右相邻两数的和”可知,第7行第2个数为16-17=142.同理易知,第7行第3个数为130-142=1105,第7行第4个数为160-1105=1140.答案:1140三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)定义在[-1,1]上的奇函数f (x ),当a ,b ∈[-1,1],a +b ≠0时,有f (a )+f (b )a +b>0.证明:函数f (x )的图象上不存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直.证明:假设函数f (x )的图象上存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直,则A ,B 两点的纵坐标相同.设它们的横坐标分别为x 1和x 2,x 1<x 2,且x 1,x 2∈[-1,1],则f (x 1)=f (x 2). 又f (x )是奇函数,所以f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1)+f (-x 2)x 1+(-x 2)[x 1+(-x 2)].又由题意,得f (x 1)+f (-x 2)x 1+(-x 2)>0,且x 1+(-x 2)<0,所以f (x 1)+f (-x 2)<0,即f (x 1)-f (x 2)<0, 这与f (x 1)=f (x 2)矛盾,故假设不成立,即函数f (x )的图象上不存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直. 18.(本小题满分12分)已知:A ,B 都是锐角,且A +B ≠90°,(1+tan A )(1+tan B )=2.求证:A +B =45°.证明:因为(1+tan A )(1+tan B )=2, 展开化简为tan A +tan B =1-tan A tan B . 因为A +B ≠90°,tan (A +B )=tan A +tan B 1-tan A tan B =1.又因为A ,B 都是锐角,所以0°<A +B <180°.所以A +B =45°.19.(本小题满分12分)已知a >0,b >0,2c >a +b ,求证:c -c 2-ab <a <c +c 2-ab . 证明:要证c -c 2-ab <a <c +c 2-ab . 只需证-c 2-ab <a -c <c 2-ab , 即证|a -c |<c 2-ab ,只需证(a -c )2<(c 2-ab )2, 只需证a 2-2ac +c 2<c 2-ab ,即证2ac >a 2+ab ,因为a >0,所以只需证2c >a +b .因为2c >a +b 已知, 所以原不等式成立.20.(本小题满分12分)如图,在直三棱柱ABC ­A 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F为B 1C 1的中点.求证:(1)平面ADE ⊥平面BCC 1B 1; (2)直线A 1F ∥平面ADE .证明:(1)因为ABC ­A 1B 1C 1是直三棱柱, 所以CC 1⊥平面ABC .因为AD ⊂平面ABC ,所以CC 1⊥AD .因为AD ⊥DE ,CC 1,DE ⊂平面BCC 1B 1,CC 1∩DE =E , 所以AD ⊥平面BCC 1B 1. 因为AD ⊂平面ADE , 所以平面ADE ⊥平面BCC 1B 1.(2)因为A 1B 1=A 1C 1,F 为B 1C 1的中点, 所以A 1F ⊥B 1C 1,因为CC 1⊥平面A 1B 1C 1,且A 1F ⊂平面A 1B 1C 1, 所以CC 1⊥A 1F .因为CC 1,B 1C 1⊂平面BCC 1B 1,CC 1∩B 1C 1=C 1, 所以A 1F ⊥平面BCC 1B 1. 由(1)知AD ⊥平面BCC 1B 1, 所以A 1F ∥AD .因为AD ⊂平面ADE ,A 1F ⊄平面ADE , 所以A 1F ∥平面ADE .21.(本小题满分12分)设函数f (x )=x 3+11+x ,x ∈[0,1].证明:(1)f (x )≥1-x +x 2;(2)34<f (x )≤32.证明:(1)因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x,由于x ∈[0,1],有1-x 41+x ≤1x +1,即1-x +x 2-x 3≤1x +1,所以f (x )≥1-x +x 2.(2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32,所以f (x )≤32.由第一问得f (x )≥1-x +x 2=⎝ ⎛⎭⎪⎫x -122+34≥34,又因为f (12)=1924>34,所以f (x )>34.综上,34<f (x )≤32.22.(本小题满分12分)在各项为正的数列{a n }中,数列的前n 项和S n 满足S n =12⎝ ⎛⎭⎪⎫a n +1a n .(1)求a 1,a 2,a 3;(2)由(1)猜想数列{a n }的通项公式,并用数学归纳法证明你的猜想. 解:(1)易求得a 1=1,a 2=2-1,a 3=3- 2. (2)猜想a n =n -n -1(n ∈N *)证明:①当n =1时,a 1=1-0=1,命题成立. ②假设n =k (k ≥1,k ∈N *)时,a k =k -k -1成立, 则n =k +1时,a k +1=S k +1-S k =12⎝⎛⎭⎪⎫a k +1+1a k +1-12⎝⎛⎭⎪⎫a k +1ak=12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫k -k -1+1k -k -1 =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-k ,所以,a 2k +1+2ka k +1-1=0,所以a k +1=k +1-k .即n =k +1时,命题成立. 由①②知,n ∈N *时,a n =n -n -1.。

(浙江专版)2019_2020学年高中数学阶段质量检测(二)推理与证明新人教A版选修2_2

(浙江专版)2019_2020学年高中数学阶段质量检测(二)推理与证明新人教A版选修2_2

阶段质量检测(二) 推理与证明(时间: 120分钟满分:150分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a=3-2,b=6-5,c=7-6,则a,b,c的大小顺序是( )A.a>b>c B.b>c>aC.c>a>b D.a>c>b解析:选A ∵a=3-2=13+2,b=6-5=16+5,c=7-6=17+6,又∵7+6>6+5>3+2>0,∴a>b>c.2.求证:2+3> 5.证明:因为2+3和5都是正数,所以为了证明2+3>5,只需证明(2+3)2>(5)2,展开得5+26>5,即26>0,此式显然成立,所以不等式2+3>5成立.上述证明过程应用了( )A.综合法B.分析法C.综合法、分析法配合使用D.间接证法解析:选B 证明过程中的“为了证明……”,“只需证明……”这样的语句是分析法所特有的,是分析法的证明模式.3.若a,b,c为实数,且a<b<0,则下列命题正确的是( )A.ac2<bc2B.a2>ab>b2C.1a<1bD.ba>ab解析:选B a2-ab=a(a-b),∵a<b<0,∴a-b<0,∴a2-ab>0,∴a2>ab.①又ab-b2=b(a-b)>0,∴ab>b2,②由①②得a2>ab>b2.4.若a,b,c是不全相等的正数,给出下列判断:①(a-b)2+(b-c)2+(c-a)2≠0;②a>b与a<b及a=b中至少有一个成立;③a≠c,b≠c,a≠b不能同时成立.其中判断正确的个数是( )A.0 B.1C .2D .3解析:选C 由于a ,b ,c 不全相等,则a -b ,b -c ,c -a 中至少有一个不为0,故①正确;②显然成立;令a =2,b =3,c =5,满足a ≠c ,b ≠c ,a ≠b ,故③错.5.已知a +b +c >0,ab +bc +ac >0,abc >0,用反证法求证a >0,b >0,c >0时的反设为( )A .a <0,b <0,c <0B .a ≤0,b >0,c >0C .a ,b ,c 不全是正数D .abc <0解析:选C a >0,b >0,c >0的否定是:a ,b ,c 不全是正数.6.利用数学归纳法证明不等式1+12+13+…+12n -1<n (n ≥2,n ∈N *)的过程中,由n=k 变到n =k +1时,左边增加了( )A .1项B .k 项C .2k -1项D .2k项解析:选D 当n =k 时,不等式左边的最后一项为12k -1,而当n =k +1时,最后一项为12k +1-1=12k -1+2k ,并且不等式左边和式的分母的变化规律是每一项比前一项加1,故增加了2k项.7.已知1+2×3+3×32+4×33+…+n ×3n -1=3n (na -b )+c 对一切n ∈N *都成立,那么a ,b ,c 的值为( )A .a =12,b =c =14B .a =b =c =14C .a =0,b =c =14D .不存在这样的a ,b ,c解析:选A 令n =1,2,3,得⎩⎪⎨⎪⎧3(a -b )+c =1,9(2a -b )+c =7,27(3a -b )+c =34.所以a =12,b =c =14.8.已知f (x )=x 3+x ,若a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值( )A .一定大于0B .一定等于0C .一定小于0D .正负都有可能解析:选A ∵f ′(x )=3x 2+1>0,∴f (x )在R 上是增函数.又a +b >0,∴a >-b ,∴f (a )>f (-b ).又f (x )=x 3+x 是奇函数,∴f (a )>-f (b ),即f (a )+f (b )>0.同理,f (b )+f (c )>0,f (c )+f (a )>0,∴f (a )+f (b )+f (c )>0,故选A.9.设x ,y ,z >0,则三个数y x +y z ,z x +z y ,x z +x y( ) A .都大于2B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2解析:选C 因为x >0,y >0,z >0,所以⎝⎛⎭⎪⎫y x +y z +⎝⎛⎭⎪⎫z x +z y +⎝⎛⎭⎪⎫x z +x y =⎝⎛⎭⎪⎫y x +x y +⎝⎛⎭⎪⎫y z +z y +⎝⎛⎭⎪⎫x z +zx≥6, 当且仅当x =y =z 时等号成立,则三个数中至少有一个不小于2.10.用数学归纳法证明“1-12+13-14+...+12n -1-12n =1n +1+1n +2+ (12)”时,由n =k 的假设证明n =k +1时,如果从等式左边证明右边,则必须证得右边为( )A.1k +1+…+12k +12k +1 B.1k +1+…+12k +12k +1+12k +2 C.1k +2+…+12k +12k +1 D.1k +2+…+12k +1+12k +2解析:选D 当n =k +1时,右边应为 1(k +1)+1+1(k +1)+2+…+1(k +1)+(k +1)=1k +2+1k +3+…+12k +12k +1+12k +2.故D 正确. 二、填空题(本大题共7小题,多空题6分,单空题5分,共36分)11.已知x ,y ∈R ,且x +y <2,则x ,y 中至多有一个大于1,在用反证法证明时,假设应为________.解析:“至多有一个大于1”包括“都不大于1和有且仅有一个大于1”,故其对立面为“x ,y 都大于1”.答案:x ,y 都大于1 12.已知a >0,b >0,m =lga +b2,n =lga +b2,则m ,n 的大小关系是________.解析:ab >0⇒ab >0⇒a +b +2ab >a +b ⇒ (a +b )2>(a +b )2⇒a +b >a +b ⇒a +b2>a +b2⇒lga +b2>lga +b2.答案:m >n13.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)________0(填“>”“<”或“=”).解析:由f (x )是定义在R 上的奇函数, 且当x ≥0时,f (x )单调递减, 可知f (x )是R 上的单调递减函数, 由x 1+x 2>0,可知x 1>-x 2,f (x 1)<f (-x 2)= -f (x 2),则f (x 1)+f (x 2)<0. 答案:<14.用数学归纳法证明:1+2+3+…+n 2=n 4+n 22,其初始值为______,当n =k +1时,其式子的左端应在n =k 时的左端再加上________________.解析:代入验证可知n 的初始值为1.n =k 时的左端为1+2+3+…+k 2,n =k +1时的左端为1+2+3+…+k 2+(k 2+1)+(k 2+2)+…+(k +1)2.故增加的式子为(k 2+1)+(k 2+2)+…+(k +1)2.答案:1 (k 2+1)+(k 2+2)+…+(k +1)215.已知点A n (n ,a n )为函数y =x 2+1图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N *,设c n =a n -b n ,则c n 与c n +1的大小关系为________.解析:由条件得c n =a n -b n =n 2+1-n =1n 2+1+n,所以c n 随n 的增大而减小,所以c n +1<c n . 答案:c n +1<c n16.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则△A 2B 2C 2是________三角形.解析:由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形.由⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝ ⎛⎭⎪⎫π2-A 1,sin B 2=cos B 1=sin ⎝ ⎛⎭⎪⎫π2-B 1,sin C 2=cos C 1=sin ⎝ ⎛⎭⎪⎫π2-C 1,得⎩⎪⎨⎪⎧A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1.那么A 2+B 2+C 2=π2,这与三角形内角和为π相矛盾.所以假设不成立,又显然△A 2B 2C 2不是直角三角形. 所以△A 2B 2C 2是钝角三角形.答案:钝角17.已知a >b >0,则①1a <1b;②ac 2>bc 2;③a 2>b 2;④a >b ,其中正确的序号是________.解析:对于①,因为a >b >0,所以ab >0,1ab >0,a ·1ab >b ·1ab ,即1b >1a,故①正确;当c =0时,②不正确;由不等式的性质知③④正确. 答案:①③④三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤) 18.(本小题满分14分)用综合法或分析法证明: (1)如果a ,b >0,则lg a +b 2≥lg a +lg b2;(2)6+10>23+2. 证明:(1)当a ,b >0时,有a +b2≥ab ,∴lg a +b2≥lg ab ,∴lga +b 2≥12lg ab =lg a +lg b2. (2)要证 6+10>23+2, 只要证(6+10)2>(23+2)2, 即260>248,这是显然成立的, 所以原不等式成立.19.(本小题满分15分)如图所示,设SA ,SB 是圆锥SO 的两条母线,O 是底面圆心,C 是SB 上一点,求证:AC 与平面SOB 不垂直.证明:假设AC ⊥平面SOB , 因为直线SO 在平面SOB 内, 所以SO ⊥AC ,因为SO ⊥底面圆O ,所以SO ⊥AB . 因为AB ∩AC =A ,所以SO ⊥平面SAB .所以平面SAB ∥底面圆O ,这显然与平面SAB 与底面圆O 相交矛盾,所以假设不成立,即AC 与平面SOB 不垂直.20.(本小题满分15分)用数学归纳法证明11×3+13×5+…+1(2n -1)×(2n +1)=n 2n +1(n ∈N *).证明:①当n =1时,左边=11×3=13,右边=12×1+1=13,左边=右边.所以当n =1时等式成立. ②假设当n =k (k ≥1,k ∈N *)时等式成立,即 11×3+13×5+…+1(2k -1)×(2k +1)=k 2k +1, 则当n =k +1时,左边=11×3+13×5+…+1(2k -1)×(2k +1)+1(2k +1)×(2k +3)=k 2k +1+1(2k +1)×(2k +3)=k (2k +3)+1(2k +1)×(2k +3)=(2k +1)(k +1)(2k +1)×(2k +3)=k +12(k +1)+1=右边.所以当n =k +1时等式也成立.根据①和②可知,等式对任何n ∈N *都成立.21.(本小题满分15分)设f (n )=1+12+13+…+1n (n ∈N *).求证:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *). 证明:当n =2时,左边=f (1)=1,右边=2⎝ ⎛⎭⎪⎫1+12-1=1,左边=右边,等式成立.假设n =k (k ≥2,k ∈N *)时,结论成立,即f (1)+f (2)+…+f (k -1)=k [f (k )-1],那么,当n =k +1时,f (1)+f (2)+…+f (k -1)+f (k )=k [f (k )-1]+f (k ) =(k +1)f (k )-k =(k +1)⎣⎢⎡⎦⎥⎤f (k +1)-1k +1-k =(k +1)f (k +1)-(k +1) =(k +1)[f (k +1)-1], ∴当n =k +1时结论仍然成立.∴f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).22.(本小题满分15分)已知f (x )=bx +1(ax +1)2⎝ ⎛⎭⎪⎫x ≠-1a ,a >0,且f (1)=log 162,f (-2)=1.(1)求函数f (x )的表达式;(2)已知数列{x n }的项满足x n =(1-f (1))(1-f (2))·…·(1-f (n )),试求x 1,x 2,x 3,x 4;(3)猜想{x n }的通项公式,并用数学归纳法证明.解:(1)把f (1)=log 162=14,f (-2)=1,代入函数表达式得⎩⎪⎨⎪⎧b +1(a +1)2=14,-2b +1(1-2a )2=1,即⎩⎪⎨⎪⎧4b +4=a 2+2a +1,-2b +1=4a 2-4a +1,解得⎩⎪⎨⎪⎧a =1,b =0⎝ ⎛⎭⎪⎫a =-13<0舍去,所以f (x )=1(x +1)2(x ≠-1).(2)x 1=1-f (1)=1-14=34,x 2=(1-f (1))(1-f (2))=34×⎝⎛⎭⎪⎫1-19=23,x 3=23(1-f (3))=23×⎝ ⎛⎭⎪⎫1-116=58,x 4=58(1-f (4))=58×⎝⎛⎭⎪⎫1-125=35.(3)由(2)知,x 1=34,x 2=23=46,x 3=58,x 4=35=610,…,由此可以猜想x n =n +22(n +1).用数学归纳法证明:①当n =1时,因为x 1=34,而1+22(1+1)=34,所以猜想成立.②假设当n =k (k ∈N *)时,x n =n +22(n +1)成立,即x k =k +22(k +1),则n =k +1时,x k +1=(1-f (1))(1-f (2))·…·(1-f (k ))·(1-f (k +1))=x k ·(1-f (k +1)) =k +22(k +1)·⎣⎢⎡⎦⎥⎤1-1(k +1+1)2=k +22(k +1)·(k +1)(k +3)(k +2)2=12·k +3k +2=(k+1)+22[(k+1)+1].所以当n=k+1时,猜想也成立,根据①②可知,对一切n∈N*,x n=n+22(n+1)都成立.。

高中数学阶段质量检测(二)推理与证明新人教A版选修2_2

高中数学阶段质量检测(二)推理与证明新人教A版选修2_2

阶段质量检测(二) 推理与证明班级:____________ 姓名:____________ 得分:____________(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.观察下列各等式:22-4+66-4=2,55-4+33-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式成立的规律,得到一般性的等式为( )A.nn -4+8-n-n -4=2B.n +1n +-4+n ++5n +-4=2 C.nn -4+n +4n +-4=2 D.n +1n +-4+n +5n +-4=2 2.下列三句话按“三段论”模式排列顺序正确的是( ) ①y =cos x (x ∈R )是三角函数; ②三角函数是周期函数; ③y =cos x (x ∈R )是周期函数. A .①②③ B .②①③ C .②③①D .③②①3.由“正三角形的内切圆切于三边的中点”可类比猜想:“正四面体的内切球切于四个面________.”( )A .各正三角形内一点B .各正三角形的某高线上的点C .各正三角形的中心D .各正三角形外的某点4.(山东高考)用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根 B .方程x 3+ax +b =0至多有一个实根 C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根5.将平面向量的数量积运算与实数的乘法运算相类比,易得下列结论:( ) ①a·b =b·a ;②(a·b )·c =a·(b·c );③a·(b +c )=a·b +a·c ;④由a·b =a·c (a≠0)可得b =c .则正确的结论有( ) A .1个 B .2个 C .3个D .4个6.用数学归纳法证明(n +1)(n +2)(n +3)…(n +n )=2n×1×3×…×(2n -1)(n ∈N *)时,从n =k 到n =k +1时,左边需增乘的代数式是( )A .2k +1B .2(2k +1) C.2k +1k +1D.2k +3k +17.已知a ∈(0,+∞),不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,…,可推广为x +axn ≥n+1,则a 的值为( )A .2nB .n 2C .22(n -1)D .n n8.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图形需要火柴棒的根数为( ) A .6n -2 B .8n -2 C .6n +2D .8n +29.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .19910.数列{a n }满足a 1=12,a n +1=1-1a n ,则a 2 015等于( )A.12 B.-1 C .2D .3二、填空题(本大题共4小题,每小题5分,共20分)11.设函数f (x )=12x +2,利用课本中推导等差数列前n 项和公式的方法,可求得S=f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为________.12.已知 2+23=2 23, 3+38=3 38, 4+415=4 415,…,若 6+a b=6ab(a ,b 均为实数),请推测a =________,b =________. 13.若定义在区间D 上的函数f (x )对于D 上的n 个值x 1,x 2,…,x n ,总满足1n[f (x 1)+f (x 2)+…+f(x n )]≤f ⎝⎛⎭⎪⎫x 1+x 2+…+x n n ,称函数f (x )为D 上的凸函数;现已知f (x )=sin x 在(0,π)上是凸函数,则△ABC 中,sin A +sin B +sin C 的最大值是________.14.观察下列数字: 1 2 3 4 3 4 5 6 7 4 5 6 7 8 9 10 ……则第________行的各数之和等于2 0152.三、解答题(本大题共4小题,共50分.解答时应写出文字说明,证明过程或运算步骤) 15.(本小题满分12分)观察下列式子: ①sin 210°+cos 240°+sin 10°cos 40°=34;②sin 26°+cos 236°+sin 6°cos 36°=34.由上面两个式子的结构规律,你能否提出一个猜想?并证明你的猜想.16.(本小题满分12分)已知△ABC 的三边长分别为a ,b ,c ,且其中任意两边长均不相等,假设1a ,1b ,1c成等差数列.(1)比较b a 与 cb的大小,并证明你的结论; (2)求证:角B 不可能是钝角.17.(本小题满分12分)先解答(1),再通过结构类比解答(2).(1)求证:tan ⎝⎛⎭⎪⎫x +π4=1+tan x 1-tan x .(2)设x ∈R ,a 为非零常数,且f (x +a )=1+f x1-f x ,试问:f (x )是周期函数吗?证明你的结论.18.(本小题满分14分)在各项为正的数列{a n }中,数列的前n 项和S n 满足S n =12⎝ ⎛⎭⎪⎫a n +1a n .(1)求a 1,a 2,a 3;(2)由(1)猜想到数列{a n }的通项公式,并用数学归纳法证明你的猜想.答 案1.选A 观察分子中2+6=5+3=7+1=10+(-2)=8. 2.选B 按三段论的模式,排列顺序正确的是②①③.3.选C 正三角形的边对应正四面体的面,边的中点对应正四面体的面正三角形的中心.4.选A 因为“方程x 3+ax +b =0至少有一个实根”等价于“方程x 3+ax +b =0的实根的个数大于或等于1”,因此,要做的假设是方程x 3+ax +b =0没有实根.5.选B 平面向量的数量积的运算满足交换律和分配律,不满足结合律,故①③正确,②错误;由a·b =a·c (a≠0)得a·(b -c )=0,从而b -c =0或a⊥(b -c ),故④错误.6.选B 增乘的代数式为k +1+k k +1+k +k +1=2(2k +1).7.选D 将四个答案分别用n =1,2,3检验即可,故选D.8.选C 归纳“金鱼”图形的构成规律知,后面“金鱼”都比它前面的“金鱼”多了去掉尾巴后6根火柴组成的鱼头部分,故各“金鱼”图形所用火柴棒的根数构成一首项为8,公差是6的等差数列,通项公式为a n =6n +2.9.选C 记a n +b n=f (n ),则f (3)=f (1)+f (2)=1+3=4;f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3),则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29;f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76;f (10)=f (8)+f (9)=123.所以a 10+b 10=123.10.选B ∵a 1=12,a n +1=1-1a n ,∴a 2=1-1a 1=-1,a 3=1-1a 2=2,a 4=1-1a 3=12,a 5=1-1a 4=-1,a 6=1-1a 5=2,∴a n +3k =a n (n ∈N *,k ∈N *) ∴a 2 015=a 2+3×671=a 2=-1.11.解析:∵f (x )=12x+2, f (1-x )=121-x +2=2x2+2·2x =12·2x2+2x .∴f (x )+f (1-x )=1+12·2x2+2x =22, 发现f (x )+f (1-x )正好是一个定值, ∴2S =22×12,∴S =3 2. 答案:3 212.解析:由前面三个等式,推测归纳被平方数的整数与分数的关系,发现规律.由三个等式知,整数和这个分数的分子相同,而分母是这个分子的平方减1,由此推测 6+a b中,a =6,b =62-1=35,即a =6,b =35.答案:6 3513.解析:因为f (x )=sin x 在(0,π)上是凸函数(小前提), 所以13(sin A +sin B +sin C )≤sin A +B +C 3(结论),即sin A +sin B +sin C ≤3sin π3=332.因此,sin A +sin B +sin C 的最大值是332.答案:33214.解析:观察知,图中的第n 行各数构成一个首项为n ,公差为1,共2n -1项的等差数列,其各项和为S n =(2n -1)n +n -n -2=(2n -1)n +(2n -1)·(n -1)=(2n -1)2,令(2n -1)2=2 0152,得2n -1=2 015,解得n =1 008. 答案:1 00815.解:猜想sin 2α+cos 2(30°+α)+sin αcos(30°+α)=34.证明如下:sin 2α+cos 2(30°+α)+sin αcos(30°+α) =1-cos 2α2+1++2α2+12[sin(30°+2α)+sin(-30°)]=1++2α-cos 2α2+12sin(2α+30°)-14=34+12[cos 60°·cos 2α-sin 60°sin 2α-cos 2α]+12sin(2α+30°) =34-12·⎝ ⎛⎭⎪⎫12cos 2α+32sin 2α+12sin(2α+30°) =34-12sin(2α+30°)+12sin(2α+30°)=34, 即sin 2α+cos 2(30°+α)+sin α·cos(30°+α)=34.16.解:(1) b a < cb.证明如下: 要证b a <c b ,只需证b a <c b. ∵a ,b ,c >0,∴只需证b 2<ac . ∵1a ,1b ,1c 成等差数列,∴2b =1a +1c≥21ac,∴b 2≤ac .又a ,b ,c 均不相等,∴b 2<ac . 故所得大小关系正确.(2)证明:法一 假设角B 是钝角,则cos B <0. 由余弦定理得cos B =a 2+c 2-b 22ac ≥2ac -b 22ac >ac -b 22ac>0,这与cos B <0矛盾,故假设不成立. 所以角B 不可能是钝角.法二 假设角B 是钝角,则角B 的对边b 为最大边,即b >a ,b >c ,所以1a >1b >0,1c>1b>0,则1a +1c >1b +1b =2b ,这与1a +1c =2b矛盾,故假设不成立.所以角B 不可能是钝角.17.解:(1)根据两角和的正切公式得tan ⎝⎛⎭⎪⎫x +π4=tan x +tanπ41-tan x tanπ4=tan x +11-tan x =1+tan x1-tan x,即tan ⎝⎛⎭⎪⎫x +π4=1+tan x 1-tan x ,命题得证. (2)猜想f (x )是以4a 为周期的周期函数.因为f (x +2a )=f [(x +a )+a ]=1+f x +a1-f x +a =1+1+fx 1-f x 1-1+fx1-f x=-1f x , 所以f (x +4a )=f [(x +2a )+2a ]=-1fx +2a=f (x ).所以f (x )是以4a 为周期的周期函数. 18.解:(1)S 1=a 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,得a 21=1,因为a n >0,所以a 1=1.S 2=a 1+a 2=12⎝⎛⎭⎪⎫a 2+1a 2,得a 22+2a 2-1=0, 所以a 2=2-1.S 3=a 1+a 2+a 3=12⎝⎛⎭⎪⎫a 3+1a3, 得a 23+22a 3-1=0,所以a 3=3- 2. (2)猜想a n =n -n -1(n ∈N *). 证明:①n =1时,a 1=1-0=1,命题成立.②假设n =k (k ≥1,k ∈N *)时,a k =k -k -1成立,则n =k +1时,a k +1=S k +1-S k =12⎝⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫a k +1a k ,即a k +1 =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫k -k -1+1k -k -1 =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-k ,所以a 2k +1+2ka k +1-1=0,所以a k +1=k +1-k ,则n =k +1时,命题成立. 由①②知,n ∈N *,a n =n -n -1.。

高中数学 阶段质量检测(二)推理与证明 新人教A版选修22

高中数学 阶段质量检测(二)推理与证明 新人教A版选修22

阶段质量检测(二) 推理与证明班级:____________ 姓名:____________ 得分:____________(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.观察下列各等式:22-4+66-4=2,55-4+33-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式成立的规律,得到一般性的等式为( )A.nn -4+8-n-n -4=2B.n +1n +-4+n ++5n +-4=2 C.nn -4+n +4n +-4=2 D.n +1n +-4+n +5n +-4=2 2.下列三句话按“三段论”模式排列顺序正确的是( ) ①y =cos x (x ∈R )是三角函数; ②三角函数是周期函数; ③y =cos x (x ∈R )是周期函数. A .①②③ B .②①③ C .②③①D .③②①3.由“正三角形的内切圆切于三边的中点”可类比猜想:“正四面体的内切球切于四个面________.”( )A .各正三角形内一点B .各正三角形的某高线上的点C .各正三角形的中心D .各正三角形外的某点4.(山东高考)用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根 B .方程x 3+ax +b =0至多有一个实根 C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根5.将平面向量的数量积运算与实数的乘法运算相类比,易得下列结论:( ) ①a·b =b·a ;②(a·b )·c =a·(b·c );③a·(b +c )=a·b +a·c ;④由a·b =a·c (a≠0)可得b =c .则正确的结论有( ) A .1个 B .2个 C .3个D .4个6.用数学归纳法证明(n +1)(n +2)(n +3)…(n +n )=2n×1×3×…×(2n -1)(n ∈N *)时,从n =k 到n =k +1时,左边需增乘的代数式是( )A .2k +1B .2(2k +1) C.2k +1k +1D.2k +3k +17.已知a ∈(0,+∞),不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,…,可推广为x +axn ≥n+1,则a 的值为( )A .2nB .n 2C .22(n -1)D .n n8.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图形需要火柴棒的根数为( ) A .6n -2 B .8n -2 C .6n +2D .8n +29.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .19910.数列{a n }满足a 1=12,a n +1=1-1a n ,则a 2 015等于( )A.12 B.-1 C .2D .3二、填空题(本大题共4小题,每小题5分,共20分)11.设函数f (x )=12x +2,利用课本中推导等差数列前n 项和公式的方法,可求得S=f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为________.12.已知 2+23=2 23, 3+38=3 38, 4+415=4 415,…,若 6+a b=6ab(a ,b 均为实数),请推测a =________,b =________. 13.若定义在区间D 上的函数f (x )对于D 上的n 个值x 1,x 2,…,x n ,总满足1n[f (x 1)+f (x 2)+…+f(x n )]≤f ⎝⎛⎭⎪⎫x 1+x 2+…+x n n ,称函数f (x )为D 上的凸函数;现已知f (x )=sin x 在(0,π)上是凸函数,则△ABC 中,sin A +sin B +sin C 的最大值是________.14.观察下列数字: 1 2 3 4 3 4 5 6 7 4 5 6 7 8 9 10 ……则第________行的各数之和等于2 0152.三、解答题(本大题共4小题,共50分.解答时应写出文字说明,证明过程或运算步骤) 15.(本小题满分12分)观察下列式子: ①sin 210°+cos 240°+sin 10°cos 40°=34;②sin 26°+cos 236°+sin 6°cos 36°=34.由上面两个式子的结构规律,你能否提出一个猜想?并证明你的猜想.16.(本小题满分12分)已知△ABC 的三边长分别为a ,b ,c ,且其中任意两边长均不相等,假设1a ,1b ,1c成等差数列.(1)比较b a 与 cb的大小,并证明你的结论; (2)求证:角B 不可能是钝角.17.(本小题满分12分)先解答(1),再通过结构类比解答(2).(1)求证:tan ⎝⎛⎭⎪⎫x +π4=1+tan x 1-tan x .(2)设x ∈R ,a 为非零常数,且f (x +a )=1+f x1-f x ,试问:f (x )是周期函数吗?证明你的结论.18.(本小题满分14分)在各项为正的数列{a n }中,数列的前n 项和S n 满足S n =12⎝ ⎛⎭⎪⎫a n +1a n .(1)求a 1,a 2,a 3;(2)由(1)猜想到数列{a n }的通项公式,并用数学归纳法证明你的猜想.答 案1.选A 观察分子中2+6=5+3=7+1=10+(-2)=8. 2.选B 按三段论的模式,排列顺序正确的是②①③.3.选C 正三角形的边对应正四面体的面,边的中点对应正四面体的面正三角形的中心.4.选A 因为“方程x 3+ax +b =0至少有一个实根”等价于“方程x 3+ax +b =0的实根的个数大于或等于1”,因此,要做的假设是方程x 3+ax +b =0没有实根.5.选B 平面向量的数量积的运算满足交换律和分配律,不满足结合律,故①③正确,②错误;由a·b =a·c (a≠0)得a·(b -c )=0,从而b -c =0或a⊥(b -c ),故④错误.6.选B 增乘的代数式为k +1+k k +1+k +k +1=2(2k +1).7.选D 将四个答案分别用n =1,2,3检验即可,故选D.8.选C 归纳“金鱼”图形的构成规律知,后面“金鱼”都比它前面的“金鱼”多了去掉尾巴后6根火柴组成的鱼头部分,故各“金鱼”图形所用火柴棒的根数构成一首项为8,公差是6的等差数列,通项公式为a n =6n +2.9.选C 记a n +b n=f (n ),则f (3)=f (1)+f (2)=1+3=4;f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3),则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29;f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76;f (10)=f (8)+f (9)=123.所以a 10+b 10=123.10.选B ∵a 1=12,a n +1=1-1a n ,∴a 2=1-1a 1=-1,a 3=1-1a 2=2,a 4=1-1a 3=12,a 5=1-1a 4=-1,a 6=1-1a 5=2,∴a n +3k =a n (n ∈N *,k ∈N *) ∴a 2 015=a 2+3×671=a 2=-1.11.解析:∵f (x )=12x+2, f (1-x )=121-x +2=2x2+2·2x =12·2x2+2x .∴f (x )+f (1-x )=1+12·2x2+2x =22, 发现f (x )+f (1-x )正好是一个定值, ∴2S =22×12,∴S =3 2. 答案:3 212.解析:由前面三个等式,推测归纳被平方数的整数与分数的关系,发现规律.由三个等式知,整数和这个分数的分子相同,而分母是这个分子的平方减1,由此推测 6+a b中,a =6,b =62-1=35,即a =6,b =35.答案:6 3513.解析:因为f (x )=sin x 在(0,π)上是凸函数(小前提), 所以13(sin A +sin B +sin C )≤sin A +B +C 3(结论),即sin A +sin B +sin C ≤3sin π3=332.因此,sin A +sin B +sin C 的最大值是332.答案:33214.解析:观察知,图中的第n 行各数构成一个首项为n ,公差为1,共2n -1项的等差数列,其各项和为S n =(2n -1)n +n -n -2=(2n -1)n +(2n -1)·(n -1)=(2n -1)2,令(2n -1)2=2 0152,得2n -1=2 015,解得n =1 008. 答案:1 00815.解:猜想sin 2α+cos 2(30°+α)+sin αcos(30°+α)=34.证明如下:sin 2α+cos 2(30°+α)+sin αcos(30°+α) =1-cos 2α2+1++2α2+12[sin(30°+2α)+sin(-30°)]=1++2α-cos 2α2+12sin(2α+30°)-14=34+12[cos 60°·cos 2α-sin 60°sin 2α-cos 2α]+12sin(2α+30°) =34-12·⎝ ⎛⎭⎪⎫12cos 2α+32sin 2α+12sin(2α+30°) =34-12sin(2α+30°)+12sin(2α+30°)=34, 即sin 2α+cos 2(30°+α)+sin α·cos(30°+α)=34.16.解:(1) b a < cb.证明如下: 要证b a <c b ,只需证b a <c b. ∵a ,b ,c >0,∴只需证b 2<ac . ∵1a ,1b ,1c 成等差数列,∴2b =1a +1c≥21ac,∴b 2≤ac .又a ,b ,c 均不相等,∴b 2<ac . 故所得大小关系正确.(2)证明:法一 假设角B 是钝角,则cos B <0. 由余弦定理得cos B =a 2+c 2-b 22ac ≥2ac -b 22ac >ac -b 22ac>0,这与cos B <0矛盾,故假设不成立. 所以角B 不可能是钝角.法二 假设角B 是钝角,则角B 的对边b 为最大边,即b >a ,b >c ,所以1a >1b >0,1c>1b>0,则1a +1c >1b +1b =2b ,这与1a +1c =2b矛盾,故假设不成立.所以角B 不可能是钝角.17.解:(1)根据两角和的正切公式得tan ⎝⎛⎭⎪⎫x +π4=tan x +tanπ41-tan x tanπ4=tan x +11-tan x =1+tan x1-tan x,即tan ⎝⎛⎭⎪⎫x +π4=1+tan x 1-tan x ,命题得证. (2)猜想f (x )是以4a 为周期的周期函数.因为f (x +2a )=f [(x +a )+a ]=1+f x +a1-f x +a =1+1+fx 1-f x 1-1+fx1-f x=-1f x , 所以f (x +4a )=f [(x +2a )+2a ]=-1fx +2a=f (x ).所以f (x )是以4a 为周期的周期函数. 18.解:(1)S 1=a 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,得a 21=1,因为a n >0,所以a 1=1.S 2=a 1+a 2=12⎝⎛⎭⎪⎫a 2+1a 2,得a 22+2a 2-1=0, 所以a 2=2-1.S 3=a 1+a 2+a 3=12⎝⎛⎭⎪⎫a 3+1a3, 得a 23+22a 3-1=0,所以a 3=3- 2. (2)猜想a n =n -n -1(n ∈N *). 证明:①n =1时,a 1=1-0=1,命题成立.②假设n =k (k ≥1,k ∈N *)时,a k =k -k -1成立,则n =k +1时,a k +1=S k +1-S k =12⎝⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫a k +1a k ,即a k +1 =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫k -k -1+1k -k -1 =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-k ,所以a 2k +1+2ka k +1-1=0,所以a k +1=k +1-k ,则n =k +1时,命题成立. 由①②知,n ∈N *,a n =n -n -1.。

【同步检测】2019-2020学年人教A版数学选修2-2第二章 推理与证明 测试B卷(提升)

【同步检测】2019-2020学年人教A版数学选修2-2第二章 推理与证明 测试B卷(提升)

2019-2020学年人教A 版数学选修2-2第二章 推理与证明测试B 卷(提升)1、下列表述正确的是( ) ①归纳推理是由部分到整体的推理; ②归纳推理是由一般到一般的推理; ③类比推理是由特殊到一般的推理; ④演绎推理是由一般到特殊的推理; ⑤类比推理是由特殊到特殊的推理. A .①⑤ B .②③④ C .②③⑤ D .①④⑤2、由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn nm =”类比得到“a b b a ⋅=⋅rrr r”;②“()m n t mt nt +=+”类比得到“()a b c a c b c +⋅=⋅+⋅r rr r r r r ”;③“()()m n t m n t ⋅=⋅”类比得到“()()a b c a b c⋅=⋅r r r r r r”.以上式子中,类比得到的结论正确的个数是( )A.0B.1C.2D.33、用反证法证明命题“若220a b +=,则,a b 全为()0,a b R ∈”,其反设正确的是( )A. ,a b 至少有一个不为0B. ,a b 至少有一个为0C. ,a b 全不为0D. ,a b 中只有一个为04、若大前提: ,R a b+∈,a b +≥小前提: 1x x +≥结论:12x x+≥,以上推理过程中的错误为( )A.大前提B.小前提C.结论D.无错误5、观察下列各式02311248248112482728112483000811248330088⨯⨯⨯⨯=,=,=,=,451124836309681124839940648⨯⨯⋯=,=,,则9911248⨯的十位数是( )A .2B .4C .6D .86、命题“任意角θ,44cos sin cos2θθθ-=”的证明:“44222222cos sin (cos sin )(cos sin )cos sin cos2θθθθθθθθθ-=-+=-=”应用了( ) A.分析法B.综合法C.综合法、分析法结合使用D.间接证法7、若等差数列{}n a 的公差为d,前n 项和为n S ,则数列{}n S n为等差数列,公差为2d .类似地,若各项均为正数的等比数列{}n b 的公比为q,前n 项积为n T ,则等比数列的公比为( ) A.2qB.2q8、在中国足球超级联赛某一赛季的收官阶段中,广州恒大淘宝、北京中赫国安、上海上港、东鲁能泰山分别积了59分、58分、56分、50分,四家俱乐部都有机会夺冠A ,B ,C 三名球迷依据四支球队之前比赛中的表现,结合自己的判断,对本次联赛的冠军进行了如下猜测:A 猜测冠军是北京中赫国安或山东鲁能泰山;B 猜测冠军一定不是上海上港和山东鲁能泰山;C 猜测冠军是广州恒大淘宝或北京中赫国安.联赛结束后,发现A ,B ,C 三人中只有一人的猜测是正确的,则冠军是( )A.广州恒大淘宝B.北京中赫国安C.上海上港D.山东鲁能泰山9、设x 、y 、z 都是实数, 1a x y =+,1b y z =+,1c z x=+,则,,a b c 三个数( ) A.至少有一个不大于2 B.都小于2 C.至少有一个不小于2D.都大于210、用数学归纳法证明4221232n n n +++++=L ,则当1n k =+时,左端应在n k =的基础上加上( )A.21k +B.2(1)k +C.222(1)(2)(1)kk k ++++++LD.42(1)(1)2k k +++11、设实数,,a b c 满足1a b c ++=,则,,a b c 中至少有一个数不小于__________.12成立,则,a b 应满足的条件是____________. 13、6月23日15时前后,江苏盐城市阜宁、射阳等地突遭强冰雹、龙卷风双重灾害袭击,风力达12级.灾害发生后,有甲、乙、丙、丁4个轻型救援队从A ,B ,C ,D 四个不同的方向前往灾区. 已知下面四种说法都是正确的.(1)甲轻型救援队所在方向不是C 方向,也不是D 方向; (2)乙轻型救援队所在方向不是A 方向,也不是B 方向; (3)丙轻型救援队所在方向不是A 方向,也不是B 方向; (4)丁轻型救援队所在方向不是A 方向,也不是D 方向;此外还可确定:如果丙所在方向不是D 方向,那么甲所在方向就不是A 方向,有下列判断: ①甲所在方向是B 方向; ②乙所在方向是D 方向; ③丙所在方向是D 方向; ④丁所在方向是C 方向.其中判断正确的序号是__________.14、在平面几何中有如下结论,若正方形ABCD 的内切圆面积为1S 外接圆面积为2S 则1212S S =,推广到立体几何中可以得到类似结论:若正方体1111ABCD A B C D -的内切球体积为1V 外接球体积为2V ,则12=V V ______.15、设111()123f n n=++++L ,是否存在()g n 使等式:(1)(2)(1)()[()1]f f f n g n f n +++-=-L 对任意2,N n n ≥∈都成立,并证明你的结论.答案以及解析1答案及解析: 答案:D解析:根据题意,归纳推理,就是由部分到整体的推理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高中数学阶段质量检测二推理与证明新人教A版选修一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.根据偶函数定义可推得“函数f(x)=x2在R上是偶函数”的推理过程是( ) A.归纳推理B.类比推理C.演绎推理D.非以上答案解析:选C 根据演绎推理的定义知,推理过程是演绎推理,故选C.2.自然数是整数,4是自然数,所以4是整数.以上三段论推理( )A.正确B.推理形式不正确C.两个“自然数”概念不一致D.“两个整数”概念不一致解析:选A 三段论中的大前提、小前提及推理形式都是正确的.3.设a,b,c都是非零实数,则关于a,bc,ac,-b四个数,有以下说法:①四个数可能都是正数;②四个数可能都是负数;③四个数中既有正数又有负数.则说法中正确的个数有( )A.0 B.1C.2 D.3解析:选B 可用反证法推出①,②不正确,因此③正确.4.下列推理正确的是( )A.把a(b+c)与log a(x+y)类比,则有log a(x+y)=log a x+log a yB.把a(b+c)与sin(x+y)类比,则有sin(x+y)=sin x+sin yC.把a(b+c)与a x+y类比,则有a x+y=a x+a yD.把(a+b)+c与(xy)z类比,则有(xy)z=x(yz)解析:选D (xy)z=x(yz)是乘法的结合律,正确.5.已知“整数对”按如下规律排列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第70个“整数对”为( )A.(3,9) B.(4,8)C.(3,10) D.(4,9)解析:选D 因为1+2+…+11=66,所以第67个“整数对”是(1,12),第68个“整数对”是(2,11),第69个“整数对”是(3,10),第70个“整数对”是(4,9),故选D.6.求证:2+3> 5.证明:因为2+3和5都是正数,所以为了证明2+3>5,只需证明(2+3)2>(5)2,展开得5+26>5, 即26>0,此式显然成立,所以不等式2+3>5成立. 上述证明过程应用了( ) A .综合法B .分析法C .综合法、分析法配合使用D .间接证法解析:选B 证明过程中的“为了证明……”,“只需证明……”这样的语句是分析法所特有的,是分析法的证明模式.7.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )A .a 1a 2a 3…a 9=29B .a 1+a 2+…+a 9=29C .a 1a 2…a 9=2×9D .a 1+a 2+…+a 9=2×9解析:选D 由等差数列性质,有a 1+a 9=a 2+a 8=…=2a 5.易知D 成立. 8.若数列{a n }是等比数列,则数列{a n +a n +1}( ) A .一定是等比数列 B .一定是等差数列C .可能是等比数列也可能是等差数列D .一定不是等比数列解析:选C 设等比数列{a n }的公比为q ,则a n +a n +1=a n (1+q ).∴当q ≠-1时,{a n+a n +1}一定是等比数列;当q =-1时,a n +a n +1=0,此时为等差数列. 9.已知a +b +c =0,则ab +bc +ca 的值( ) A .大于0 B .小于0 C .不小于0D .不大于0解析:选 D 法一:∵a +b +c =0,∴a 2+b 2+c 2+2ab +2ac +2bc =0,∴ab +ac +bc =-a 2+b 2+c 22≤0.法二:令c =0,若b =0,则ab +bc +ac =0,否则a ,b 异号,∴ab +bc +ac =ab <0,排除A 、B 、C ,选D.10.已知1+2×3+3×32+4×33+…+n ×3n -1=3n (na -b )+c 对一切n ∈N *都成立,那么a ,b ,c 的值为( )A .a =12,b =c =14B .a =b =c =14C .a =0,b =c =14D .不存在这样的a ,b ,c解析:选A 令n =1,2,3,得⎩⎪⎨⎪⎧a -b +c =1,a -b +c =7,a -b +c =34.所以a =12,b =c =14.11.已知数列{a n }的前n 项和S n ,且a 1=1,S n =n 2a n (n ∈N *),可归纳猜想出S n 的表达式为( )A .S n =2n n +1B .S n =3n -1n +1C .S n =2n +1n +2D .S n =2n n +2解析:选A 由a 1=1,得a 1+a 2=22a 2,∴a 2=13,S 2=43;又1+13+a 3=32a 3,∴a 3=16,S 3=32=64;又1+13+16+a 4=16a 4,得a 4=110,S 4=85.由S 1=22,S 2=43,S 3=64,S 4=85可以猜想S n =2n n +1.12.设函数f (x )定义如下表,数列{x n }满足x 0=5,且对任意的自然数均有x n +1=f (x n ),则x 2 016=( )A.1 C .4D .5解析:选D x 1=f (x 0)=f (5)=2,x 2=f (2)=1,x 3=f (1)=4,x 4=f (4)=5,x 5=f (5)=2,…,数列{x n }是周期为4的数列,所以x 2 016=x 4=5,故应选D.二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中的横线上) 13.已知x ,y ∈R ,且x +y <2,则x ,y 中至多有一个大于1,在用反证法证明时,假设应为________.解析:“至多有一个大于1”包括“都不大于1和有且仅有一个大于1”,故其对立面为“x ,y 都大于1”.答案:x ,y 都大于114.已知a >0,b >0,m =lga +b2,n =lga +b2,则m ,n 的大小关系是________.解析:ab >0⇒ab >0⇒a +b +2ab >a +b ⇒ (a +b )2>(a +b )2⇒a +b >a +b ⇒a +b2>a +b2⇒lga +b2>lga +b2.答案:m >n 15.已知 2+23=223, 3+38=338, 4+415= 4415,…, 6+a b =6ab,a ,b 均为正实数,由以上规律可推测出a ,b 的值,则a +b =________.解析:由题意归纳推理得6+a b =6a b,b =62-1 =35,a =6.∴a +b =6+35=41. 答案:4116.现有一个关于平面图形的命题:如图,同一平面内有两个边长都是a 的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a 24.类比到空间,有两个棱长为a 的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为________.解析:解法的类比(特殊化),易得两个正方体重叠部分的体积为a 38.答案:a 38三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)用综合法或分析法证明: (1)如果a ,b >0,则lg a +b 2≥lg a +lg b2;(2)6+10>23+2. 证明:(1)当a ,b >0时,有a +b2≥ab ,∴lg a +b2≥lg ab ,∴lga +b 2≥12lg ab =lg a +lg b2. (2)要证 6+10>23+2,只要证(6+10)2>(23+2)2, 即260>248,这是显然成立的, 所以,原不等式成立.18.(本小题满分12分)若a 1>0,a 1≠1,a n +1=2a n1+a n (n =1,2,…).(1)求证:a n +1≠a n ;(2)令a 1=12,写出a 2,a 3,a 4,a 5的值,观察并归纳出这个数列的通项公式a n (不要求证明).解:(1)证明:若a n +1=a n ,即2a n1+a n =a n ,解得a n =0或1.从而a n =a n -1=…=a 2=a 1=0或1, 这与题设a 1>0,a 1≠1相矛盾, 所以a n +1=a n 不成立. 故a n +1≠a n 成立.(2)由题意得a 1=12,a 2=23,a 3=45,a 4=89,a 5=1617,由此猜想:a n =2n -12n -1+1.19.(本小题满分12分)下列推理是否正确?若不正确,指出错误之处. (1)求证:四边形的内角和等于360°.证明:设四边形ABCD 是矩形,则它的四个角都是直角,有∠A +∠B +∠C +∠D =90°+90°+90°+90°=360°,所以四边形的内角和为360°.(2)已知 2 和 3 都是无理数,试证:2+3也是无理数.证明:依题设2和3都是无理数,而无理数与无理数之和是无理数,所以2+3必是无理数.(3)已知实数m 满足不等式(2m +1)(m +2)<0,用反证法证明:关于x 的方程x 2+2x +5-m 2=0无实根.证明:假设方程x 2+2x +5-m 2=0有实根.由已知实数m 满足不等式(2m +1)(m +2)<0,解得-2<m <-12,而关于x 的方程x 2+2x +5-m 2=0的判别式Δ=4(m 2-4),∵-2<m <-12,∴14<m 2<4,∴Δ<0,即关于x 的方程x 2+2x +5-m 2=0无实根. 解:(1)犯了偷换论题的错误,在证明过程中,把论题中的四边形改为矩形. (2)使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不一定是无理数,因此原题的真实性仍无法判定.(3)利用反证法进行证明时,要把假设作为条件进行推理,得出矛盾,本题在证明过程中并没有用到假设的结论,也没有推出矛盾,所以不是反证法.20.(本小题满分12分)等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ; (2)设b n =S n n(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.解:(1)由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,∴d =2.故a n =2n -1+2,S n =n (n +2). (2)由(1)得b n =S n n=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r , 即(q +2)2=(p +2)(r +2), ∴(q 2-pr )+(2q -p -r )2=0,∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,∴⎝⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0.∴p =r ,与p ≠r 矛盾.∴数列{b n }中任意不同的三项都不可能成等比数列.21.(本小题满分12分)已知:sin 2 30°+sin 2 90°+sin 2 150°=32,sin 2 5°+sin 265°+sin 2125°=32,通过观察上述两等式的规律,请你写出对任意角度α都成立的一般性的命题,并给予证明.解:一般形式为:sin 2α+sin 2(α+60°)+sin 2(α+120°)=32.证明:左边=1-cos 2α2+1-α+2+1-α+2=32-12[cos 2α+cos(2α+120°)+cos(2α+240°)]=32-12(cos 2α+cos 2αcos 120°-sin 2αsin 120°+cos 2αcos 240°-sin 2αsin 240°)=32-12cos 2α-12cos 2α-32sin 2α-12cos 2α+32sin 2α=32=右边. 将一般形式写成sin 2(α-60°)+sin 2α+sin 2(α+60°)=32也正确22.(本小题满分12分)根据要求证明下列各题:(1)用分析法证明:已知非零向量a ,b ,且a ⊥b ,求证:|a |+|b ||a +b |≤2;(2)用反证法证明:1,2,3不可能是一个等差数列中的三项. 证明:(1)a ⊥b ⇔a ·b =0,要证|a |+|b ||a +b |≤ 2.只需证|a |+|b |≤ 2|a +b |,只需证|a |2+2|a ||b |+|b |2≤2(a 2+2a ·b +b 2), 只需证|a |2+2|a ||b |+|b |2≤2a 2+2b 2,只需证|a |2+|b |2-2|a ||b |≥0,即(|a |-|b |)2≥0, 上式显然成立,故原不等式得证.(2)假设1,2,3是某一个等差数列中的三项,且分别是第m ,n ,k 项(m ,n ,k ∈N *), 则数列的公差d =2-1n -m =3-1k -m ,即2-1=n -mk -m,因为m ,n ,k ∈N *,所以(n -m )∈Z ,(k -m )∈Z ,所以n -mk -m为有理数,所以2-1是有理数,这与2-1是无理数相矛盾.故假设不成立,所以1,2,3不可能是一个等差数列的三项.2019-2020年高中数学阶段质量检测二新人教A 版选修一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.有一段“三段论”,推理是这样的:对于可导函数f (x ),如果f ′(x 0)=0,那么x =x 0是函数f (x )的极值点.因为f (x )=x 3在x =0处的导数值 f ′(0)=0,所以x =0是函数f (x )=x 3的极值点.以上推理中( )A .小前提错误B .大前提错误C .推理形式错误D .结论正确2.观察按下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,…,猜想第n (n ∈N *)个等式应为( )A .9(n +1)+n =10n +9B .9(n -1)+n =10n -9C .9n +(n -1)=10n -1D .9(n -1)+(n -1)=10n -103.观察下面图形的规律,在其右下角的空格内画上合适的图形为( )A .■B .△C .□D .○4.由“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四个侧面( )A .各正三角形内任一点B .各正三角形的某高线上的点C .各正三角形的中心D .各正三角形外的某点5.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .1996.已知c >1,a =c +1-c ,b =c -c -1,则正确的结论是( ) A .a >b B .a <bC .a =bD .a 、b 大小不定 7.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图形需要火柴棒的根数为( ) A .6n -2 B .8n -2 C .6n +2 D .8n +28.已知a n =⎝ ⎛⎭⎪⎫13n,把数列{a n }的各项排成如下的三角形:记A (s ,t )表示第s 行的第t 个数,则A (11,12)等于( )A.⎝ ⎛⎭⎪⎫1367B.⎝ ⎛⎭⎪⎫1368C.⎝ ⎛⎭⎪⎫13111D.⎝ ⎛⎭⎪⎫13112 9.已知f (x +y )=f (x )+f (y ),且f (1)=2,则f (1)+f (2)+…+f (n )不能等于( ) A .f (1)+2f (1)+…+nf (1) B .f ⎝⎛⎭⎪⎫n n +2C.n n +2D.n n +2f (1)10.对于奇数列1,3,5,7,9,…,现在进行如下分组:第一组有1个数{1},第二组有2个数{3,5},第三组有3个数{7,9,11},…,依此类推,则每组内奇数之和S n 与其组的编号数n 的关系是( )A .S n =n 2B .S n =n 3C .S n =n 4D .S n =n (n +1)11.在等差数列{a n }中,若a n >0,公差d >0,则有a 4a 6>a 3a 7,类比上述性质,在等比数列{b n }中,若b n >0,公比q >1,则b 4,b 5,b 7,b 8的一个不等关系是( )A .b 4+b 8>b 5+b 7B .b 4+b 8<b 5+b 7C .b 4+b 7>b 5+b 8D .b 4+b 7<b 5+b 812.数列{a n }满足a 1=12,a n +1=1-1a n ,则a 2 016等于( )A.12B .-1C .2D .3 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.已知x ,y ∈R ,且x +y >2,则x ,y 中至少有一个大于1,在用反证法证明时,假设应为________.14.已知圆的方程是x 2+y 2=r 2,则经过圆上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2.类比上述性质,可以得到椭圆x 2a 2+y 2b2=1类似的性质为________.15.若定义在区间D 上的函数f (x )对于D 上的n 个值x 1,x 2,…,x n ,总满足1n[f (x 1)+f (x 2)+…+f (x n )]≤f ⎝⎛⎭⎪⎫x 1+x 2+…+x n n ,称函数f (x )为D 上的凸函数;现已知f (x )=sinx 在(0,π)上是凸函数,则△ABC 中,sin A +sin B +sin C 的最大值是________.16.如图,第n 个图形是由正n +2边形“扩展”而来(n =1,2,3,…),则第n -2(n >2)个图形中共有________个顶点.三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题10分)已知a >b >c ,且a +b +c =0,求证:b 2-aca< 3.18.(本小题12分)已知实数x ,且有a =x 2+12,b =2-x ,c =x 2-x +1,求证:a ,b ,c 中至少有一个不小于1.19.(本小题12分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin 213°+cos 217°-sin 13°cos 17°; ②sin 215°+cos 215°-sin 15°cos 15°; ③sin 218°+cos 212°-sin 18°cos 12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos 48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 20.(本小题12分)已知△ABC 的三边长分别为a ,b ,c ,且其中任意两边长均不相等,若1a ,1b ,1c成等差数列.(1)比较b a 与cb的大小,并证明你的结论; (2)求证:角B 不可能是钝角.21.已知数列{a n }中,S n 是它的前n 项和,并且S n +1=4a n +2(n =1,2,…),a 1=1. (1)设b n =a n +1-2a n (n =1,2,…),求证:数列{b n }是等比数列; (2)设c n =a n2n (n =1,2,…),求证:数列{c n }是等差数列.22.通过计算可得下列等式:22-12=2×1+1; 32-22=2×2+1; 42-32=2×3+1; …(n +1)2-n 2=2n +1.将以上各式两边分别相加,得(n +1)2-1=2×(1+2+3+…+n )+n ,即1+2+3+…+n =n n +2.类比上述方法,请你求出12+22+32+…+n 2的值.答案1.解析:选B 可导函数f (x ),若f ′(x 0)=0且x 0两侧导数值相反,则x =x 0是函数f (x )的极值点,故选B.2.解析:选B 由所给的等式可以根据规律猜想得:9(n -1)+n =10n -9. 3.解析:选A 由每一行中图形的形状及黑色图形的个数,则知A 正确.4.解析:选C 正三角形的边对应正四面体的面,即正三角形所在的正四面体的侧面,所以边的中点对应的就是正四面体各正三角形的中心.5.解析:选C 记a n+b n=f (n ), 则f (3)=f (1)+f (2)=1+3=4,f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3), 则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29; f (8)=f (6)+f (7)=47; f (9)=f (7)+f (8)=76; f (10)=f (8)+f (9)=123.所以a 10+b 10=123.6.解析:选B 要比较a 与b 的大小,由于c >1, 所以a >0,b >0,故只需比较1a 与1b的大小即可,而1a=1c +1-c=c +1+c ,1b=1c -c -1=c +c -1,显然1a >1b,从而必有a <b .7.解析:选C 归纳“金鱼”图形的构成规律知,后面“金鱼”都比它前面的“金鱼”多了去掉尾巴后6根火柴组成的鱼头部分,故各“金鱼”图形所用火柴棒的根数构成一首项为8,公差为6的等差数列,通项公式为a n =6n +2.8.解析:选D 该三角形每行所对应元素的个数分别为1,3,5,…那么第10行的最后一个数为a 100,第11行的第12个数为a 112,即A (11,12)=⎝ ⎛⎭⎪⎫13112.故选D.9.解析:选C f (x +y )=f (x )+f (y ), 令x =y =1,得f (2)=2f (1),令x =1,y =2,f (3)=f (1)+f (2)=3f (1) ⋮f (n )=nf (1),所以f (1)+f (2)+…+f (n )=(1+2+…+n )f (1)=n n +2f (1).所以A ,D 正确.又f (1)+f (2)+…+f (n )=f (1+2+…+n )=f ⎝⎛⎭⎪⎫n n +2,所以B 也正确.故选C.10.解析:选B ∵当n =1时,S 1=1;当n =2时,S 2=8=23;当n =3时,S 3=27=33;∴归纳猜想S n =n 3,故选B.11.解析:选A b 5+b 7-b 4-b 8=b 4(q +q 3-1-q 4)=b 4(q -1)(1-q 3)=-b 4(q -1)2(1+q +q 2)=-b 4(q -1)2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫q +122+34. ∵b n >0,q >1,∴-b 4(q -1)2·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫q +122+34<0,∴b 4+b 8>b 5+b 7.12.解析:选C ∵a 1=12,a n +1=1-1a n ,∴a 2=1-1a 1=-1,a 3=1-1a 2=2,a 4=1-1a 3=12,a 5=1-1a 4=-1,a 6=1-1a 5=2, ∴a n +3k =a n (n ∈N *,k ∈N *), ∴a 2 016=a 3+3×671=a 3=2.13.解析:“至少有一个”的反面为“一个也没有”,即“x ,y 均不大于1”,亦即“x ≤1且y ≤1”.答案:x ,y 均不大于1(或者x ≤1且y ≤1)14.解析:圆的性质中,经过圆上一点M (x 0,y 0)的切线方程就是将圆的方程中的一个x与y 分别用M (x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y 2b 2=1类似的性质为:过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb2=1. 答案:经过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0y b2=115.解析:因为f (x )=sin x 在(0,π)上是凸函数(小前提), 所以13(sin A +sin B +sin C )≤sin A +B +C3(结论),即sin A +sin B +sin C ≤3sin π3=332.因此,sin A +sin B +sin C 的最大值是332.答案:33216.解析:设第n 个图形中有a n 个顶点, 则a 1=3+3×3,a 2=4+4×4,…,a n =(n +2)+(n +2)·(n +2),a n -2=n 2+n .答案:n 2+n17.证明:因为a >b >c ,且a +b +c =0,所以a >0,c <0. 要证明原不等式成立,只需证明b 2-ac <3a , 即证b 2-ac <3a 2,从而只需证明(a +c )2-ac <3a 2, 即(a -c )(2a +c )>0,因为a -c >0,2a +c =a +c +a =a -b >0, 所以(a -c )(2a +c )>0成立, 故原不等式成立.18.证明:假设a ,b ,c 都小于1, 即a <1,b <1,c <1, 则a +b +c <3.∵a +b +c =⎝⎛⎭⎪⎫x 2+12+(2-x )+(x 2-x +1)=2x 2-2x +72=2⎝ ⎛⎭⎪⎫x -122+3,且x 为实数,∴2⎝ ⎛⎭⎪⎫x -122+3≥3, 即a +b +c ≥3,这与a +b +c <3矛盾. ∴假设不成立,原命题成立. ∴a ,b ,c 中至少有一个不小于1. 19.解:(1)选择(2)式,计算如下: sin 215°+cos 215°-sin 15°cos 15° =1-12sin 30°=1-14=34.(2)法一:三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°·cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 法二:三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α) =1-cos 2α2+1+cos 60°-2α2-sin α(cos 30°cos α+sin 30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α =12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α) =1-14cos 2α-14+14cos 2α=34.20.解:(1)ba <c b. 证明如下: 要证b a <c b ,只需证b a <c b. ∵a ,b ,c >0, ∴只需证b 2<ac .∵1a ,1b ,1c 成等差数列,∴2b =1a +1c≥21ac,∴b 2≤ac .又a ,b ,c 均不相等,∴b 2<ac .故所得大小关系正确.(2)证明:法一:假设角B 是钝角,则cos B <0. 由余弦定理得,cos B =a 2+c 2-b 22ac >2ac -b 22ac >ac -b 22ac>0,这与cos B <0矛盾, 故假设不成立. 所以角B 不可能是钝角.法二:假设角B 是钝角,则角B 的对边b 是最大边, 即b >a ,b >c , 所以1a >1b >0,1c >1b>0,则1a +1c >1b +1b =2b ,这与1a +1c =2b矛盾,故假设不成立. 所以角B 不可能是钝角.21.证明:(1)因为S n +1=4a n +2, 所以S n +2=4a n +1+2,两式相减得S n +2-S n +1=4a n +1-4a n (n =1,2,…), 即a n +2=4a n +1-4a n ,变形得a n +2-2a n +1=2(a n +1-2a n ), 因为b n =a n +1-2a n (n =1,2,…), 所以b n +1=2b n ,由此可知,数列{b n }是公比为2的等比数列. (2)由S 2=a 1+a 2=4a 1+2,a 1=1, 得a 2=5,b 1=a 2-2a 1=3. 故b n =3·2n -1.因为c n =a n2n (n =1,2,…),所以c n +1-c n=a n +12n +1-a n2n =a n +1-2a n2n +1=b n2n +1, 将b n =3·2n -1代入得c n +1-c n =34(n =1,2,…).由此可知,数列{c n }是公差d =34的等差数列.22.解:23-13=3×12+3×1+1, 33-23=3×22+3×2+1, 43-33=3×32+3×3+1, …(n +1)3-n 3=3n 2+3n +1, 将以上各式两边分别相加,得(n +1)3-13=3(12+22+32+…+n 2)+3(1+2+3+…+n )+n , 所以12+22+32+…+n 2=13⎣⎢⎡⎦⎥⎤n +3-1-n -3×n n +2=n n +n +6.。

相关文档
最新文档