第1讲 直线与圆.ppt
直线与圆的位置关系讲义
九年级数学时间: 学生:第讲直线与圆的位置关系【知识点】1直线和圆的位置关系有三种:, 。
2设r为O O的半径,d为圆心O到直线l的距离, d r, 则直线l与O O相交。
d r,则直线l与O O相切d r,则直线l与O O相离。
3圆的切线的性质:圆的切线垂直于_________________ 的半径。
4圆的切线的判定定理:经过直径的一端,并且____________ 这条直径的直线是圆的切线。
5圆的切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
6.三角形的内切圆:(1)定义:与三角形三边都相切的圆称为三角形的内切圆。
(2)_________________________________ 内切圆的作法;______ .(3)_________________________ 内心的性质:内心是 _______ 的交点,内心到的距离相等,内心与三角形顶点的连线________ 这个内角。
【课前自测】1. (2011?成都)已知O O的面积为9n cm2,若点0到直线I的距离为n cm则直线l与。
O的位置关系是()A、相交B、相切 C 、相离D无法确定2.如图,从O O外一点A引圆的切线AB切点为B,连接AO并延长交圆于点C,连接BC若/ A= 26°,则/ ACB的度数为▲.3.已知O O的半径为5,圆心O到直线AB的距离为2,则O O上有且只有_______________ 到直线AB的距离为3.4.如图,已知AB是O O的一条直径,延长AB至C点,使得AC= 3BQ 个占I 八、、CD与O O相切,切点为D.若CD= d,则线段BC的长度等于5.如图23, PA与O O相切,切点为A, PO交O O于点C,点B是优弧CBA上一点,若 / ABC=32,则/ P的度数为【例题讲解】例1.如图,AB是O O的直径,点D在AB的延长线上,DC切O O于点C,若/ A=25°, 则/ D 等于A. 20°B.30°C.40°D.50°例2已知BD是O O的直径,OAL OB,M是劣弧AB上的一点,过M作O O的切线MP交OA的延长线于点P, MD交OA于点N。
4.2.1《直线与圆的位置关系》PPT课件
巩固练习:
①判断直线4x-3y=50与圆 x 2 y 2 100的位置关系.如
果相交,求出交点坐标.
解:因为圆心O(0,0)到直线4x-3y=50
| 0 0 50 |
的距离d=
5
= 10
而圆的半径长是10,所以直线与圆相切。 圆心与切点连线所得直线的方程为3x+4y=0
解方程组
4x 3x
3 4
Learning Is Not Over. I Hope You Will Continue To Work Hard
演讲人:XXXXXX 时 间:XX年XX月XX日
A2 B2
直线与圆的位置关系
在2009年08月08日台凤莫拉克袭击宝岛台湾时,
一艘轮船在沿直线返回泉州港口的途中,接到气象台
的台风预报:台风中心位于轮船正西70km处,受影响
的范围是半径长为30km的圆形区域.已知泉州港口位
于台风中心正北40km处,如果这艘轮船不改变航线,
那么它是否会受到台风莫拉克的影响? y
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
谢谢你的到来
学习并没有结束,希望大家继续努力
为解决这个问题,我们以台
港口
风中心为原点 O,东西方向为
x 轴,建立如图所示的直角坐 标系,其中取 10km 为单位长
O
轮船 x
度.
直线与圆的位置关系
这样,受台风影响的圆区域所对应的圆心为O的圆
专题四 第1讲直线与圆
(2)已知圆C1:x2+y2=r2,圆C2:(x-a)2+(y-b)2=r2(r>0)交于不同的A(x1,y1),
B(x2,y2)两点,给出下列结论:①a(x1-x2)+b(y1-y2)=0;②2ax1+2by1=a2+b2;
∴|M→N|2≤100+100+8|C→M|·|C→N|cos∠MCN, ∴|M→N|2≤100+100+200×25+255-0 |M→N|2, ∴|M→N|≤4 5,
设圆心C到直线y=-2x-m的距离为d,
则 2 r2-d2=2 25-|3+5m|2≤4 5, 解得m≥2(舍负), 又直线y=-2x-m与圆C相交,可得d<r, 即|3+5m|<5⇒m<5 5-3, 综上所述 m 的取值范围是[2,5 5-3).
Ax+By+C=0, 程组
x-a2+y-b2=r2, 消去y,得到关于x的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0, 直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.
2.圆与圆的位置关系有五种,即内含、内切、相交、外切、外离.
设圆 C1:(x-a1)2+(y-b1)2=r21,圆 C2:(x-a2)2+(y-b2)2=r22,两圆心之间的距离为
板块二 专题四 解析几何
内容索引
NEIRONGSUOYIN
热点分类突破 真题押题精练
1
PART ONE
热点一 直线的方程及应用 热点二 圆的方程及应用 热点三 直线与圆、圆与圆的位置关系
热点一 直线的方程及应用
1.两条直线平行与垂直的判定 若两条不重合的直线l1,l2的斜率k1,k2存在,则l1∥l2⇔k1=k2,l1⊥l2⇔k1k2=-1. 若给出的直线方程中存在字母系数,则要考虑斜率是否存在. 2.求直线方程 要注意几种直线方程的局限性.点斜式、斜截式方程要求直线不能与x轴垂直,两 点式不能表示与坐标轴垂直的直线,而截距式方程不能表示过原点的直线,也不 能表示垂直于坐标轴的直线.
人教版九年级数学上册直线和圆的位置关系精品ppt课件
人教版( 九2年01级2)数九学年上级册数直学线上和册圆的位24置.2关.2系直线精和品圆pp的t 课位件置关系(2) 课件(25张ppt)
归纳分析
例1与例2的辅助线、证法有何不同?
〖例1〗已知:直线AB经过 ⊙O上的点C,并且OA=OB,CA=CB。 求证:直线AB是⊙O的切线。
O
A
C
B
〖例2〗已知:O为∠BAC平分上
人教版九年级数学上册直线和圆的位 置关系 精品ppt 课件
判 断×
×
1. 过半径的外端的直线是圆的切线( ) ×
2. 与半径垂直的的直线是圆的切线( )
3. 过l 半径的rO 端点与半径垂直rO的直线l 是圆的切线rO(
l)
A
A
A
利用判定定理时,要注意直线须具备以 下两个条件,缺一不可:
(1)直线经过半径的外端; (2)直线垂直于这条半径。
O.
那过点O可作OB⊥ l 于点B,
则OA为直角三角形的斜边,
AB l
OB的长就是圆心0到切线l的距离,即OA=OB,
这与“直角三角形的斜边大于直角边”相矛盾,
所以半径OA与切线 l 不垂直的假设不成立。
那半径OA与切线 l 垂直成立。
人教版( 九2年01级2)数九学年上级册数直学线上和册圆的位24置.2关.2系直线精和品圆pp的t 课位件置关系(2) 课件(25张ppt)
九年级 上册
24.2.2 直线和圆的位置关系(2)
切线的判定与性质
直线和圆相切
.
O
切
切点 A
线
利用切线的定义: 与圆有唯一公共点的直线是圆的切线。
利用d与r的关系作判断: 当d=r时直线是圆的切线。
直线与圆的位置关系ppt课件
新知讲解
想一想:自一点引圆的切线的条数 (1)若点在圆外,则过此点可以作几条切线? 若点在圆外,则过此点可以作圆的两条切线. (2)若点在圆上,则过此点只能作几条切线? 若点在圆上,则过此点只能作圆的一条切线,且此点是切点. (3)若点在圆内,则过此点能作几条切线? 若点在圆内,则过此点不能作圆的切线,即可以作0条. 问题:如何刻画直线与圆相切? 公共点的个数只有1个; 圆心到直线的距离等于半径.
2
因此所求切线l的方程为y=-2x或y= 1 x.
2
新知讲解
例2:已知直线l经过点 O (0,0),且与圆C:(x-1)2 + (y-3)2 =5相切,求直线l的方程.
解法2:当直线l的斜率不存在时,直线l的方程为x=0,圆
心C(1,3)到直线l的距离为1≠ 5 ,不合题意.
当直线l的斜率存在时,设直线l的方程为y=kx,即kx-y=0,
新知讲解
例2:已知直线l经过点 O (0,0),且与圆C:(x-1)2 + (y-3)2 =5相切,求直线l的方程.
思路1 直线与圆相切
直线的方程,
圆的方程
0
直线方程
思路2
d r
新知讲解
例2:已知直线l经过点 O (0,0),且与圆C:(x-1)2 + (y-3)2 =5相切,求直线l的方程.
当堂检测
1.(1)直线x+y-2=0与圆x2+y2=2的位置关系为__相__切____ (2)直线x-y-2=0与圆(x-1)2+(y-1)2=1的位置关系为___相__离___ (3)直线x+2y-1=0和圆x2-2x+y2-y+1=0的位置关系为__相__交____
九年级数学直线与圆的位置关系省名师优质课赛课获奖课件市赛课一等奖课件
D E C
F
G
A OB
7.如图,以Rt△ABC旳直角边AB
为直径做⊙O,交斜边AC于D,过
D作⊙O旳切线,交BC于E.
Hale Waihona Puke C⑴求证:EB=ED=EC;
⑵试问:在线段DC
D
E
上是否存在点F,满
足BC2=4DF·DC.若 存在,作出点F,并 A 予以证明;若不存
OB
在,请阐明理由.
; qq红包群
取值范围是
.
3.如图,以Rt△ABC旳直角
A
边BC为直径做⊙O,交斜边
AB于D,E是AC旳中点.
问:过D、E旳直
D
E
线与⊙O有怎样
旳位置关系?试 B 证明你旳结论。
OC
4.如图,有两个同心圆,大圆旳弦AB
为小圆旳切线,切点为C.若AB=4cm,
求圆环旳面积.
ACB
O
5.如图,△ABC中, AB=AC=10cm, BC=16cm.求内切圆 ⊙I旳半径r.
B
A
I C
变式:如图,Rt△ABC中, ∠C=Rt∠,△ABC旳内切圆切AB 于D,AD,BD是方程x2-7x+5=0旳 两个根,求△ABC旳面积.
A D
I
C
B
6.已知AB是⊙O旳直径,AD、BC、
DC是⊙O旳切线,A、B、E是切点,
DO交AE于F,CO交BE于G.求证:
⑴CO⊥DO⑵FG2=AD·BC.
wpf71xsz
用,慕容凌娢立即板起了脸。真是旳,练习了那么久旳原则笑容,居然被说成是脸抽筋……真是太挥霍表情了。终于懂得百蝶有多么不 轻易了,她旳每个表情都是能够做成表情包啊!(古风一言)眉间雪,宫城阙,帘卷泪洒半袖绝。第029章 脸盲症≈脑残“你……你冷不 丁旳出目前这里,还问我为何一惊一乍?”发觉自己旳笑对韩哲轩并不起作用,慕容凌娢立即板起了脸。真是旳,联络了那么久旳原则 笑容,居然被说成是脸抽筋……真是太挥霍表情了。终于懂得百蝶有多么不轻易了,每个表情都是能够做成表情包啊!“我闲旳没事干, 来这里逛逛不行吗?”韩哲轩张开折扇,有意摆出一副玩世不恭旳样子。“嗤~”慕容凌娢忍不住笑了起来,这回是真笑,没有任何做 作。“你跟许晨涵真旳好像,假如她做这个动作一定会比你更搞笑……但是她不会这么逗比旳……”“又是许晨涵……第一次见我你也 这么叫。”韩哲轩不快乐旳瞥了撇嘴,“不要老是把我和你旳小伙伴相提并论好不好?你旳闺蜜懂得了一定也会难过旳,毕竟和你相处 了那么就,你连她旳长相都没有记住……”“可就是很像啊!”“那也只能阐明你这里有问题。”韩哲轩指了指慕容凌娢旳头。“我不 是脑残!”慕容凌娢旳声音不算大,但在三楼旳走廊上听起来还是很清楚旳。“我可没说你是脑残啊。但是你敢于认可,还是勇气可嘉 旳。” 韩哲轩脸上带着戏虐旳笑容,“我旳意思其实是说,你旳大脑在人脸辨认区域可能出现了问题……”“这和脑残有区别吗?” 慕容凌娢尽量保有一种宽宏大量旳态度,“别想给我说我有脸盲症!”“可能比脸盲症轻某些,只是记不住人脸上旳特征,所以轻易混 同某些人。”韩哲轩趁慕容凌娢不注意,拿过了她手中旳玉 壶,在手指上转了几圈,“例如说这个酒壶,假如把它和某些色泽相近, 形状相同旳酒壶放在一起,你能辨别出来吗?人旳特征和这个差不多。”“这个……见旳次数少旳话估计不行。你这比喻还真是抽象 啊……”慕容凌娢迅速夺回了韩哲轩手中旳玉 壶,“我脑残关你什么事?我有事,再见!”“我很佩服你旳勇气。”韩哲轩半开玩笑 说道,“毕竟目前懂得自己是笨蛋旳人极少,认可旳就更少了……”“小黑,你是不是尤其喜欢偷听别人谈话啊?”见慕容凌娢头也不 回旳走了,韩哲轩看向走廊拐角处,“你们都是这么旳吗?”“不是。”茉莉懂得藏不住了,就从拐角处走了出来,清脆旳铃声又响了 起来。“哎呀,你这回答有点太简洁了吧……我都不懂得该怎么和你说话了。”“哦。”茉莉说完便也要走。“看来慕容凌娢是真旳忘 记百蝶之前和她见过了。”韩哲轩见茉莉停下了脚步,狡诈旳一笑,继续说道,“你不准备告诉她吗?”“不了,主人没让我那么做。” 茉莉
人教版高中数学直线与圆的方程的应用(共20张PPT)教育课件
:
那
你
的
第
一
口
罗
没
有
我
和
他
不
同
。
我
是
从
底
层
但
是
当
我
拍
完
但
是
我
年
轻
时
有
一
个
想
法
就
是
如
果
我
告
诉
你
怎
么
弄
■
电
:
“
口
罗
部
爬
一
,
1
戏
有
上
来
的
我
个
5
分
钟
后
你
还
色
其
没
清
镜
没
有
楚 弄
有 怎
完 情
么
头
我
就
胆
怯
,
像
运
作
这
个
东
西
(
,
下
不
耐
烦
像
如
果
我
自
己
弄
费
电
影
一
五
分
钟
男
女
实
里
拍
个
就
弄
尼
摄
)
所
镜
完
所
以
最
是
拍 以
后
通
不
第
一
为
则四个顶点坐标分别为 A(a,0),B(0,b),C(0,c),D(0,d)
第一步:建立坐 标y系,用坐标表 示B有(0关,b的) 量。
专题五解析几何直线与圆教学课件2021届新高考数学二轮复习
故|MA|·|MB|≤225(当且仅当|MA|=|MB|=5 2 2时取“=”).
答案
(1)A
25 (2) 2
探究提高 1.求解两条直线平行的问题时,在利用A1B2-A2B1=0建立方程求出参 数的值后,要注意代入检验,排除两条直线重合的可能性. 2.求直线方程时应根据条件选择合适的方程形式利用待定系数法求解,同时要考虑 直线斜率不存在的情况是否符合题意.
【例 2】 (1)(2020·石家庄模拟)古希腊数学家阿波罗尼斯在其巨著《圆锥曲线论》中
提出“在同一平面上给出三点,若其中一点到另外两点的距离之比是一个大于零且
不等于 1 的常数,则该点轨迹是一个圆”.现在,某电信公司要在甲、乙、丙三地搭
建三座 5G 信号塔来构建一个特定的三角形信号覆盖区域,以实现 5G 商用,已知甲、
解析 (1)由题意知m(1+m)-2×1=0,解得m=1或-2,当m=-2时,两直线重 合,舍去;当m=1时,满足两直线平行,所以m=1.
(2)由题意可知,直线 l1:kx-y+4=0 经过定点 A(0,4),直线 l2:x+ky-3=0 经过 定点 B(3,0),注意到直线 l1:kx-y+4=0 和直线 l2:x+ky-3=0 始终垂直,点 M 又是两条直线的交点,则有 MA⊥MB,所以|MA|2+|MB|2=|AB|2=25.
热点三 直线(圆)与圆的位置关系
角度 1 圆的切线问题
【例 3】 (1)(2020·全国Ⅲ卷)若直线 l 与曲线 y= x和圆 x2+y2=15都相切,则 l 的方程
为( ) A.y=2x+1
B.y=2x+12
C.y=12x+1
D.y=12x+12
(2)(多选题)在平面直角坐标系xOy中,圆C的方程为x2+y2-4x=0.若直线y=k(x+1)
直线与圆的位置关系PPT教学课件
点,⊙P与BC相切.求证: 切.
⊙P与AB相
C
E
oP
B
A
F
证明:设⊙P的半径为r,点P到BC,AB的距离分别为d1,d2.
} 点P在∠ABC的平分线上d1=d2 ⊙P与BC相切d1= r
d2= r
⊙P与AB相切
例题2
在Rt△ABC中,∠C=90°,AC=3cm, BC=4cm,以C为圆心,为半径的圆 与AB有怎样的位置关系?为什么? (1)r=2cm;(2)r=2.4cm (3)r=3cm。
A1
设直线l与l1的夹角为θ,则
52
sin 2 2
52
B1
故θ=450
由直线l1:x+y+1=0的倾斜角为1350,
知直线l的倾斜角为00或900,
又由直线l过点P(3,1),故所求l的方程为x=3或y=1。
例2、已知直线l经过点P(3,1),且被两平行
直线l1:x+y+1=0和l2:x+y+6=0截得的
大家想象一下海上升明月的情景, 是一个怎样的过程?如果把海 平面 抽象 为一条直线,把圆月抽象为一 个圆,我们用数学语言怎么来描绘 呢?
1、直线 与圆的位置关系
相离 相切
相交
这时直线叫圆的割线 。
o
r d
l
d>r
o
rd
d=r
o
r
d
l
l A DB
d<r
直线L和O相离 直线L和O相切 直线L和O相交
l2:A2x+B2y+C2=0
①l1∥l2 A1B2-A2B1=0 且 B1C2-B2C1≠0
②l1⊥l2 A1A2+B1B2=0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
坐标为( D , E ),半径r =
22
7.点与圆的位置关系
D2 E2 4F . 2
(1)几何法:点到圆心的距离与半径的关系.
(2)代数法:将点的坐标代入圆的标准(或一般)
方程的左边,将所得值与r2(或0)作比较.
8.直线与圆的位置关系 直线l:Ax+By+C=0(A2+B2≠0)与圆:(x-a)2+(y-b)2=r2(r>0) 的位置关系如下表.
方法
位置 关系
相交 相切 相离
几何法:根据 Aa Bb C
d= A2 B2
与r的大小关系
d<r d=r d>r
代数法: Ax+By+C=0 (x-a)2+(y-b)2=r2 消元得一元二次方程的
判别式 的符号
> 0
= 0
< 0
9.圆与圆的位置关系 (1)相离;(2)外切;(3)相交;(4)内切; (5)内含. 利用两圆圆心距与两圆半径之间的大小关系判定.
(5)直线的倾斜角为 ,斜率为k. 当0°< <90°时,k>0且随倾斜角 的增大而增大. 当90°< <180°时,k<0且随倾斜角 的增大而增大.
2.两直线平行、垂直的判定 (1)①l1:y=k1x+b1,l2:y=k2x+b2(两直线斜率存在,且不
重合),则有l1∥l2 k1=k2,l1⊥l2 k1·k2=-1. ②若两直线的斜率都不存在,并且两直线不重合时, 则两直线平行; 若两直线中,一条直线的斜率为0,另一条直线斜率不 存在,则两直线垂直. (2)l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则有l1∥l2 A1B2-A2B1=0,且B1C2-B2C1≠0,l1⊥l2 A1A2+B1B2=0.
A.1或3
B.1或5
C.3或5
D.1或2
解析 ∵l1∥l2, ∴-2(k-3)-2(k-3)(4-k)=0,(k-3)(5-k)=0,
∴k=3或5.
三、 圆的方程 例3 在平面直角坐标系xOy中,设二次函数f(x)=x2+2x+b(x∈R)
的图象与两坐标轴有三个交点,经过这三个交点的圆记为C. (1)求实数b的取值范围; (2)求圆C的方程; (3)问圆C是否经过某定点(其坐标与b无关)?请证明
一、直线的倾斜角、斜率、直线方程
例1 若过点A(4,0)的直线l与曲线(x-2)2+y2=1有
公共点,则直线l的斜率的取值范围为
()
A.[ 3, 3]
B.( 3, 3 )
C. [ 3 , 3 ]
D.( 3 , 3)
思维启迪3 3本题可根据圆心到直线的距3 离3与圆的半径的
关系求得.
解析 如图所示,曲线(x-2)2+y2=1是以B(2,0)为圆
专题六 解析几何
第1讲 直线与圆
1. (1)直线倾斜角的定义.
(2)倾斜角 的范围:0°≤ < 180°.
(3)直线的斜率k=tan ,倾斜角为90°的直线
没有斜率. (4)经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直
线的斜率 k y2 y1 . x2 x1
(5)一般式:Ax+By+C=0(A、B不同时为零).
4.距离公式
(1)两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|
= (x x )2 (y y )2 .
1
2
1
2
(2)点P(x0,y0)到直线l:Ax+By+C=0的距离
d= Ax0 By0 C . A2 B2
( B)
A.m=1或m=-2 C.m=-2
B.m =1 D.m的值不存在
思维启迪 ①利用斜率相等且截距不等;②利用x、
y的系数对应成比例:A1 B1 C1 . 解析 ①当m+1=0即m=A-21时B,2 显然C2l1 l2.
②当m+1≠0时.
l1:y=
x m 1
2m m 1
l2:y= 2m x 16
3.
(1)点斜式:y-y0=k(x-x0),不能表示与x轴垂直 的直线.
(2)斜截式:y=kx+b,不能表示与x轴垂直的直线.
(3)两点式:y y1 = x x1 ,不能表示与坐标
y2 y1
轴垂直的直线.
x2 x1
(4)截距式:x y 1 ,不能表示与坐标轴垂直和 ab
过原点的直线.
你的结论. 思维启迪 本题可根据条件得f(x)=0一定有两个不同根求 得b的取值范围,进而再求出圆C的方程.然后通过观察得 到圆C是否过定点.
范围是[0, ]∪[ 3 , ),而不是[ , ].
4
4
44
变式训练1 (2008·辽宁理,3)圆x2+y2=1与直线
y=kx+2没有公共点的充要条件是
( C)
A.k∈( 2, 2 )
B.k∈(-∞ , 2 )∪( 2 ,+∞)
C.k∈( 3, 3 )
D.k∈(-∞, 3 )∪( 3 ,+∞)
(3)两平行线l1:Ax+By+C1=0,l2:Ax+By+C2=0的
距离d= C1 C2 .
A2 B2
5.线性规划
6.圆的方程
(1)标准方程:(x-a)2+(y-b)2=r2,圆心坐标为 (a,b) ,
半径为r.
(2)一般方程:x2#43;E2- 4F>0),圆心
∵∴l1∥l21
4
4 2m 且
4
2
m
m1 4
m 1
∴m=1.
探究提高 (1)在研究两直线平行时,要注意排除两直线重
合的情况.(2)在利用斜率研究问题时,要注意斜率不存在
的情况.
变式训练2 (2009·上海文,15)已知直线l1:(k-3)x+(4-
k)y+1=0与l2:2(k-3)x-2y+3=0平行,则k的值是 ( C )
解析 圆x2+y2=1的圆心为O(0,0),
2 则O到直线y-kx-2=0的距离为 1 k2 .
由于直线和圆没有公共点,因此 2 1 ,
∴1+k2<4,∴ 3 k 3
1 k2
二、两直线的位置关系
例2 若l1:x+(1+m)y=2-m,l2:2mx+4y+16=0
的图象是两条平行直线,则
心,1为半径的圆,要使过点A(4,0)的直线l与圆有
交点,可由图形得直线l的斜率取值范围为 [kl1 , kl2 ] .
设直线l的方程为y=k(x-4),利用d=r得k=± 3 ,故应为
[ 3, 3]
3
33
答案 C
探究提高 对斜率的取值范围有正有负的情况,要注意
分段.如直线斜率的范围是[-1,1],则倾斜角的取值