2021届全国金太阳联考新高考原创预测试卷(三)数学
2021届全国学海大联考新高考原创预测试卷(三)数学
2021届全国学海大联考新高考原创预测试卷(三)数学★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每个小题所给出的四个选项中,只有一项是符合题目要求的,把正确选项的代号填在答题卡的指定位置.) 1.已知全集为R ,集合{}1,0,1,2,3A =-,201x B x x ⎧⎫-=≥⎨⎬+⎩⎭,则A B 元素个数为A. 1B. 2C. 3D. 4【答案】B 【解析】 【分析】求出集合B ,利用交集的定义求出AB ,即可得到A B 元素个数【详解】由201x B xx ⎧⎫-=≥⎨⎬+⎩⎭,可得:()[)B=,12,-∞-⋃+∞,所以{}=2,3A B ⋂,即A B 元素个数为2,故答案选 B【点睛】本题考查分式不等式的解法以及集合交集的定义,属于基础题. 2.设121iz i i+=--,则||z =() A. 0 B. 1C. 5D. 3【答案】B 【解析】 【分析】先将z 分母实数化,然后直接求其模.【详解】11122=2=211121i i i iz i i i i i i i z +++=---=---+=()()()() 【点睛】本题考查复数的除法及模的运算,是一道基础题.3.设α,β是两个不同的平面,m 是直线且m α⊂.“m β”是“αβ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B 【解析】 试题分析:,得不到,因为可能相交,只要和的交线平行即可得到;,,∴和没有公共点,∴,即能得到;∴“”是“”的必要不充分条件.故选B .考点:必要条件、充分条件与充要条件的判断.【方法点晴】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念,属于基础题;并得不到,根据面面平行的判定定理,只有内的两相交直线都平行于,而,并且,显然能得到,这样即可找出正确选项.4.已知函数()()1,022,0xx f x f x x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪+<⎩,则21log 5f ⎛⎫= ⎪⎝⎭()A.516B.54C.52D. 5【答案】A 【解析】 【分析】先判断自变量的范围是分段函数的某一段,再代入相应的解析式中求函数的值. 【详解】22221114log 0,log log 2log 5555f f f ⎛⎫⎛⎫⎛⎫<∴=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,222244416log 0,log log 2log 5555f f f ⎛⎫⎛⎫⎛⎫<∴=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()22216log 516log 5log 116522161615log 0,log 2255216f⎛⎫ ⎪-⎝⎭⎛⎫⎛⎫>∴====⎪ ⎪⎝⎭⎝⎭, 故选A.【点睛】本题考查分段函数和对数运算,属于基础题. 5.设0.30.2a =,0.3log 0.2b =,0.20.4c =,则() A. a b c <<B. a c b <<C. c a b <<D.b ac <<【答案】B 【解析】 【分析】运用中介值“1 ”,和指数的同指或同底时的大小比较得解. 【详解】0.30.3log 0.2log 0.31b =>=,0.30.20.20.20.20.41a =<<<,b c a ∴>>故选B.【点睛】本题考查指数、对数的大小比较,属于中档题.6.下图可能是下列哪个函数的图像()A. ()221x x y x -=- B. ()2ln 1x x y x -=-C. 2ln 1y x x =- D. ()tan ln 1y x x =⋅+【答案】C 【解析】 【分析】可考虑用排除法,从函数的定义域和特殊点的函数的正负着手.【详解】由图像可知,()tan ln 1y x x =⋅+在02π⎛⎫⎪⎝⎭,上单调递增,故可排除D ;当13x =时,A 、B 选项中的0,y >C 选项中的0,y < 故选C.【点睛】本题考查函数的定义域和特殊点的函数值辨别图像,属于基础题.7.已知曲线1:22C y x =,2:sin 2cos 2C y x x =+,则下面结论正确的是() A. 把曲线1C 向右平移8π个长度单位得到曲线2C B. 把曲线1C 向左平移4π个长度单位得到曲线2C C. 把曲线2C 向左平移4π个长度单位得到曲线1C D. 把曲线2C 向右平移8π个长度单位得到曲线1C 【答案】D 【解析】将2:sin 2cos 2C y x x =+通过合一公式化为2:)4C y x π=+向右平移8π就可以得到1C .【详解】2:sin 2cos 2)4C y x x x π=+=+,把曲线2C 向右平移8π个长度单位得))]284y x x ππ=-+=即为1C ,故选D .【点睛】本题考查函数的平移变换,是一道基础题.8.过三点(1,3)A ,(4,2)B ,(1,7)C -的圆截直线20x ay ++=所得弦长的最小值等于( )A. B. D. 【答案】B 【解析】 【分析】因为圆心在弦AC 的中垂线上,所以设圆心P 坐标为(a ,-2),再利用222r AP BP =+,求得1a =,确定圆的方程.又直线过定点Q ,则可以得到弦长最短时圆心与直线的定点Q 与弦垂直,然后利用勾股定理可求得弦长.【详解】解:设圆心坐标P 为(a,-2),则r 2=()()()()2222132422a a -++=-++,解得a=1,所以P (1,-2).又直线过定点Q (-2,0),当直线PQ 与弦垂直时,弦长最短,根据圆内特征三角形可知弦长∴直线20x ay ++=被圆截得的弦长为 故选B .9.已知椭圆C :22221x y a b+=(0a b >>)的左,右焦点分别为1F ,2F ,以2F 为圆心的圆过椭圆C 的中心,且与C 在第一象限交于点P ,若直线1PF 恰好与圆2F 相切于点P ,则C 的离心率为( )1 B.12C.2D.12【答案】A【分析】利用已知条件以及椭圆的性质列出关系式,求解椭圆的离心率即可.【详解】椭圆C :22221x y a b+=(0a b >>)的左,右焦点分别为1F ,2F ,以2F 为圆心的圆过椭圆C 的中心,且与C 在第一象限交于点P ,若直线1PF 恰好与圆2F 相切于点P , 可得222(2)4a c c c -+=,可得2222a ac c += 所以2220,(0,1)e e e +-=∈解得1e == 故选A【点睛】本题考查利用椭圆的定义以及性质求离心率,属于中档题.10.2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜湖举行;长三角城市群包括:上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市”. 现有4 名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游, 假设每名同学均从这四个地方中任意选取一个去旅游, 则恰有一个地方未被选中的概率为( ) A.2764B.916C.81256D.716【答案】B 【解析】 【分析】根据排列组合的知识分别求解出恰有一个地方未被选中的情况和所有情况,利用古典概型计算可得结果.【详解】4名同学去旅游的所有情况有:44256=种恰有一个地方未被选中共有:2113424322144C C C A A ⋅⋅=种情况 ∴恰有一个地方未被选中的概率:144925616p == 本题正确选项:B【点睛】本题考查古典概型计算概率的问题、排列组合中的分组分配问题;关键是能够利用排列组合的知识准确求解出恰有一个地方未被选中的情况种数;易错点是忽略了分组分配中的平均分配问题.11.已知()sin 2019cos 201963f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭的最大值为A ,若存在实数1x 、2x ,使得对任意实数x 总有()()12()f x f x f x ≤≤成立,则12A x x -的最小值为( ) A.2019πB.42019πC.22019πD.4038π 【答案】C 【解析】 【分析】先化简()2sin 20193f x x π⎛⎫=+ ⎪⎝⎭,得2A =,根据题意即求半个周期的A 倍.【详解】解:依题意()sin2019coscos2019sincos2019cossin2019sin6633f x x x x x ππππ=+++cos2019x x =+,2sin 20196x π⎛⎫=+ ⎪⎝⎭,2A ∴=,22019T π=, 12||22019min T x x π∴-==,12A x x ∴-的最小值为22019π,故选C .【点睛】本题考查了正弦型三角函数的图像与性质,考查三角函数恒等变换,属中档题. 12.已知定义在R 上的可导函数()f x 的导函数为'()f x ,满足'()()f x f x <,且(2)f x +为偶函数,(4)1f =,则不等式()xf x e <的解集为( )A .(,0)-∞ B. (0,)+∞ C. ()4,e-∞D. ()4,e +∞【答案】B 【解析】【分析】由题意构造函数()()x f x g x e=,由()()f x f x '<可得()0g x '<在R 上恒成立,所以函数()()x f x g x e=在R 为上单调递减函数,由()2f x +为偶函数,()41f =,可得(0)1f =,故要求不等式()xf x e <的解集等价于()()1x f xg x e =<的解集,即可得到答案.【详解】由题意构造函数()()x f x g x e =()x R ∈,则()()()xf x f xg x e ''-=,定义R 在上的可导函数()f x 的导函数为'()f x ,满足()()f x f x '<∴()0g x '<在R 上恒成立,函数()()xf xg x e =在R 上为单调递减函数; 又()2f x +为偶函数,则函数(2)(2)f x f x -=+ ,即()f x 关于2x =对称,∴(0)(4)1f f == ,则0(0)(0)1f g e==, 由于不等式()xf x e <的解集等价于()()1x f xg x e=<的解集,根据函数()()x f x g x e=在R 上为单调递减函数,则()1()(0)0g x g x g x <⇔<⇔>,故答案选B【点睛】本题考查函数的构造,利用导数研究函数的单调性、利用函数单调性解不等式、函数的奇偶性以及对称性的综合应用,属于较难题.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,满分20分) 13.已知随机变量X 服从正态分布()22,N σ且()40.88X P ≤=,则()04P X <<=_____________ 【答案】0.76 【解析】 【分析】由已知条件可知数据对应的正态曲线的对称轴,根据对称性即可得到结果. 【详解】随机变量X 服从正态分布()22,N σ,则曲线的对称轴为2X =,()20.5P X ≤=,由()40.88X P ≤=可得()40.880.0825.3P X ==<-<, 则()()204240.76P P X X <=<<<= 故答案为0.76.【点睛】本题考查根据正态曲线的对称性求在给定区间上的概率,求解的关键是把所求区间用已知区间表示;正态曲线的主要性质是:(1)正态曲线关于x μ=对称;(2)在正态曲线下方和x 轴上方范围内的区域面积为1.14.若二项式6231x x ⎛⎫+ ⎪ ⎪⎝⎭的展开式中的常数项为m ,则213=mx dx ⎰______.【答案】124 【解析】 【分析】先根据二项展开式求得常数项项数,即得常数项,再根据定积分得结果.【详解】因为66212316631333rrrrrr r T C x C x x ---+⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,所以由1230r -=得24634,53r m C ⎛⎫=== ⎪ ⎪⎝⎭,因此1122335533|51=1241m x dx x dx x ⎰=⎰==-.【点睛】求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第1r +项,再由特定项的特点求出值即可. (2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第1r +项,由特定项得出r 值,最后求出其参数.15.如图,求一个棱长为2的正四面体的体积,可以看成一个棱长为1的正方体截去四个角后得到,类比这种方法,一个三对棱长相等的四面体ABCD ,其三对棱长分别为5,13,10AB CD AD BC AC BD ======,则此四面体的体积为_______;【答案】2 【解析】 【分析】设四面体ABCD 所在的长方体棱长分别为a ,b ,c ,,利用勾股定理列出方程组,求出a ,b ,c 的值,长方体截去四个角,即可求出四面体的体积.【详解】设四面体ABCD 所在的长方体棱长分别为a ,b ,c ,则22222251310a b a c b c ⎧+=⎪+=⎨⎪+=⎩,解得213a b c =⎧⎪=⎨⎪=⎩,所以四面体的体积11142323V abc abc abc =-⨯⨯==,故答案为2. 【点睛】本题运用类比的方法,考查锥体的体积求法,考查学生逻辑推理,计算化简的能力,难点在于根据题意,类比出四面体体积的求法,即长方体截去四个角后得到的体积,属基础题.16.在四边形ABCD 中,已知M 是AB 边上的点,且1MA MB MC MD ====,120CMD ∠=︒,若点N 在线段CD 上,则NA NB ⋅的取值范围是______.【答案】3[,0]4- 【解析】 【分析】根据平面向量的加法的几何意义, 可得,,NA NM MA NB NM MB =+=+计算出NA NB ⋅的表达式,最后根据NM 的大小,可以求出NA NB ⋅的取值范围. 【详解】2()()NA NB NM MA NM MB NMNM MB MA NM MA MB ⋅=+⋅+=+⋅+⋅+⋅,2()NA NB NM NM MB MA MA MB ⇒⋅=+⋅++⋅,M 是AB 边上点,1MA MB ==,所以0,1MB MA MA MB +=⋅=-,因此21NA NB NM⋅=-,°120,1MC C D D M M =∠==∴在等腰CMD ∆中,点M 到线段CD 上的一点N 的距离最大值为1,取最小值时,N 为CD 的中点,此时°1cos cos602MN CMN CM CM =∠⋅=⋅=, 所以21NA NB NM ⋅=-的取值范围为: 3[,0]4-.【点睛】本题考查了平面向量数量积的取值问题,利用平面向量的加法的几何意义是解题的关键.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤,第17~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.) 17.在ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC 的面积为12,cos 4b c A -==-.(1) 求a 和sin C 的值; (2) 求cos(2)6A π+的值.【答案】(1)8a =,sin C =2)16【解析】 【分析】(1)由面积公式可得24,bc =结合2,b c -=可求得解得6, 4.b c ==再由余弦定理求得a=8.最后由正弦定理求sinC 的值;(2)直接展开求值.【详解】(1)△AB C 中,由1cos ,4A =-得sin A =由1sin 2bc A =,得24,bc =又由2,b c -=解得6, 4.b c ==由2222cos a b c bc A =+-,可得a=8.由sin sin a cA C=,得sin 8C =. (2)()2πππcos 2cos 2cos sin 2sin 2cos 1sin cos 6662A A A A A A ⎛⎫+=-=-- ⎪⎝⎭,=【点睛】本题主要考查三角变换及正弦定理、余弦定理等基础知识,考查基本运算求解能力.18.某教师为了分析所任教班级某次考试的成绩,将全班同学的成绩作成统计表和频率分布直方图如下:分组频数频率[50,60) 3 0.06[60,70) m 0.10[70,80) 13 n[80,90) p q[90,100] 9 0.18总计t 1(1)求表中t,q及图中a的值;(2)该教师从这次考试成绩低于70分的学生中随机抽取3人进行谈话,设X表示所抽取学生中成绩低于60分的人数,求随机变量X的分布列和数学期望.【答案】(1)t=50,q=0.4,a=0.026 (2)详见解析【解析】【分析】(1)利用频率计算公式、频率分布直方图的性质即可得出;(2)由表格可知:区间[50,60)中有3人,区间[60,70)中有5人.由题意可得:X=0,1,2,3.则P(X=k)33538k k-=,即可得出随机变量X的分布列和数学期望.【详解】解:(1)由表格可知,全班总人数t==50,则m=50×0.10=5,n==0.26,所以a==0.026,3+5+13+9+p=50,即p =20,所以q ==0.4.(2)成绩在[50,60)内的有3人,[60,70)内的有5人. 由题意得X 可能的取值为0,1,2,3,P (X =k )=,所以P (X =0)=,P (X =1)=,P (X =2)=,P (X =3)=.随机变量X 的分布列如下:X 0 1 2 3 P数学期望EX =0×+1×+2×+3×=.【点睛】本小题主要考查频率分布直方图的性质、超几何分布列及其数学期望,考查了推理能力与计算能力,属于中档题.19.在斜三棱柱111ABC A B C -中,侧面1AC ⊥平面ABC ,12AA a=,1AC CA AB a ===,AB AC ⊥,D 是1AA 的中点.(1)求证:CD ⊥平面1AB ;(2)在侧棱1BB 上确定一点E ,使得二面角11E AC A --的大小为3π. 【答案】(1)见解析;(2)3π. 【解析】试题分析: (1)因为已知面11ACC A ⊥面ABC ,AB AC ⊥,由面面垂直的性质定理可得:AB ⊥面11ACC A ,即有AB CD ⊥,由1AC A C =,D 为1AA 中点,根据等腰三角形三线合一可得1CD AA⊥,结合线面垂直的判定定理可得CD⊥面11ABB A;(2)建立空间直角坐标系,由1BE BBλ=,可得E点坐标为()()1,,a a aλλ-,求出面11A C A的一个法向量为1n和面11EA C的一个法向量为2n,根据二面角11E AC A--的大小为3π,构造方程组,解出λ可得E 点坐标.试题解析:(1)证:∵面11ACC A⊥面ABC,AB AC⊥,∴AB⊥面11ACC A,即有AB CD⊥;又1AC A C=,D为1AA中点,则1CD AA⊥.∴CD ⊥面11ABB A.(2)如图所示以点C 为坐标系原点,CA为x轴,过C点平行于AB的直线为y轴,CA1为z轴,建立空间直角坐标系C xyz-,则有(),0,0A a,(),,0B a a,()10,0,A a,()10,,B a a,()1,0,C a a-,设(),,E x y z,且1BE BBλ=,即有()(),,,0,x a y a z a aλ--=-,所以E点坐标为()()1,,a a aλλ-.由条件易得面11A C A的一个法向量为()10,1,0n=.设平面11EA C的一个法向量为()2,,n x y z=,由2111{n A Cn A E⊥⊥可得()(){110axax ay azλλ-=-++-=,令1y =,则有210,1,1n λ⎛⎫= ⎪-⎝⎭, 则1212•cos3n n nn π==12=,得1λ=-.所以,当11BEBB =11E AC A --的大小为3π. 20.已知A 为圆22:1C x y +=上一点,过点A 作y 轴的垂线交y 轴于点B ,点P 满足2.BP BA =(1)求动点P 的轨迹方程;(2)设Q 为直线:3l x =上一点,O 为坐标原点,且OP OQ ⊥,求POQ ∆面积的最小值.【答案】(1) 2214x y += (2) 3.2【解析】 【分析】(1)设出A 、P 点坐标,用P 点坐标表示A 点坐标,然后代入圆方程,从而求出P 点的轨迹;(2)设出P 点坐标,根据斜率存在与否进行分类讨论,当斜率不存在时,求出POQ ∆面积的值,当斜率存在时,利用点P 坐标表示POQ ∆的面积,减元后再利用函数单调性求出最值,最后总结出最值.【详解】解:(1) 设(),P x y , 由题意得:()()1,,0,A x y B y , 由2BP BA =,可得点A 是BP 的中点, 故102x x +=, 所以12xx =, 又因为点A 在圆上,所以得2214x y +=,故动点P 的轨迹方程为2214x y +=.(2)设()11,P x y ,则10y ≠,且221114x y +=,当10x =时,11y =±,此时()33,0,2POQ Q S ∆=; 当10x ≠时,11,OP y k x = 因为OP OQ ⊥, 即11,OQ x k y =-故1133,x Q y ⎛⎫- ⎪⎝⎭,OP ∴=OQ ==221111322POQx y S OP OQ y ∆+==⋅①, 221114x y +=代入① 2111143334322POQy S y y y ∆⎛⎫-=⋅=- ⎪ ⎪⎝⎭()101y <≤设()()4301f x x x x=-<≤ 因为()24f x 30x'=--<恒成立, ()f x ∴在(]0,1上是减函数,当11y =时有最小值,即32POQ S ∆≥,综上:POQ S ∆的最小值为3.2【点睛】本题考查了点的轨迹方程、椭圆的性质等知识,求解几何图形的长度、面积等的最值时,常见解法是设出变量,用变量表示出几何图形的长度、面积等,减元后借助函数来研究其最值.21.已知函数22()2(1)xf x axex -=--,a R ∈.(1)当4a =-时,讨论函数()f x 的单调性;(2)当01a <<时,求证:函数()f x 有两个不相等的零点1x ,2x ,且122x x +>. 【答案】(1)见解析;(2)见解析 【解析】试题分析:(1)讨论函数单调区间即解导数大于零求得增区间,导数小于零求得减区间(2)函数有两个不同的零点,先分析函数单调性得零点所在的区间,()f x 在(),1-∞上单调递增,在()1,+∞上单调递减.∵()10f ae =>,()020f =-<,()222f a =- ()210a =-<,∴函数()f x 有两个不同的零点,且一个在()0,1内,另一个在()1,2内.不妨设()10,1x ∈,()21,2x ∈,要证122x x +>,即证122x x >-,()f x 在()0,1上是增函数,故()()122f x f x >-,且()10f x =,即证()220f x -<. 由()()()()()22222222222221210x x f x a x e x f x ax e x ⎧-=---⎪⎨=--=⎪⎩,得()22f x a -= ()222222x x x e x e -⎡⎤--⎣⎦, 令()()2xg x x e =- 2x xe --,()1,2x ∈,得()g x 在()1,2上单调递减,∴()()10g x g <=,且∴()()2g x af x =-,01a <<,∴()20f x -<,即∴()220f x -<,故122x x +>得证解析:(1)当4a =-时,()()22421x f x xe x -=---,得()()()2'411xf x x e-=--,令()'0f x =,得1x =或2x =.当1x <时,10x -<,210x e -->,所以()'0f x <,故()f x 在(),1-∞上单调递减; 当12x <<时,10x ->,210x e -->,所以()'0f x >,故()f x 在()1,2上单调递增;当2x >时,10x -<,210x e --<,所以()'0f x <,故()f x 在()2,+∞上单调递减; 所以()f x 在(),1-∞,()2,+∞上单调递减,在()1,2上单调递增. (2)证明:由题意得()()()2'14xf x x ae-=-+,其中01a <<,由()'0f x >得1x <,由()'0f x <得1x >,所以()f x 在(),1-∞上单调递增,在()1,+∞上单调递减.∵()10f ae =>,()020f =-<,()222f a =- ()210a =-<, ∴函数()f x 有两个不同的零点,且一个在()0,1内,另一个在()1,2内. 不妨设()10,1x ∈,()21,2x ∈, 要证122x x +>,即证122x x >-,因为21021x x <-<<,且()f x 在()0,1上是增函数, 所以()()122f x f x >-,且()10f x =,即证()220f x -<.由()()()()()22222222222221210x x f x a x e x f x ax e x ⎧-=---⎪⎨=--=⎪⎩,得()22f x a -= ()222222x x x e x e -⎡⎤--⎣⎦, 令()()2xg x x e =- 2x xe --,()1,2x ∈,则()()'1g x x =- 22x xe e e -.∵12x <<,∴10x ->,220x e e -<,∴()1,2x ∈时,()'0g x <,即()g x 在()1,2上单调递减, ∴()()10g x g <=,且∴()()2g x af x =-,01a <<, ∴()20f x -<,即∴()220f x -<,故122x x +>得证.(二)选考题:共10分,请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线lcos 14πθ⎛⎫+= ⎪⎝⎭,曲线C 的极坐标方程为 2 acos ρθ=,a 0>(l )设t为参数,若12y =-,求直线l 的参数方程; (2)已知直线l 与曲线C 交于P ,Q 设M(0,1)-,且2|PQ |4|MP ||MQ |=⋅,求实数a 的值.【答案】(1)1x y ⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数);(2)1【解析】 【分析】(1)由直线lcos 14πθ⎛⎫+= ⎪⎝⎭,求得1x y -=,进而由12y =-+,代入上式得x =,得到直线的参数方程; (2)根据极坐标与直角坐标的互化,求得222x y ax +=,将直线l 的参数方程与C 的直角坐标方程联立,利用根据与系数的关系,列出方程,即可求解. 【详解】(1)直线lcos 14πθ⎛⎫+= ⎪⎝⎭即1x y -=, 因为t为参数,若1y =-+,代入上式得x =, 所以直线l的参数方程为1x y ⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数)(2)由2(0)acos a ρθ=>,得22cos (0)a a ρρθ=>,由cos x ρθ=,sin y ρθ=代入,得222x y ax += (0)a >将直线l 的参数方程与C 的直角坐标方程联立,得)2110t a t ++=.(*)则)2140a ⎤∆=+->⎦且)121t t a +=+,121t t =,设点P ,Q 分别对应参数1t ,2t 恰为上述方程的根. 则1MP t =,2MQ t =,12PQ t t =-, 由题设得212124t t t t -=.则有()212128t t t t +=,得1a =或3a =-. 因为0a >,所以1a =【点睛】本题主要考查了极坐标方程与直角坐标方程,以及普通方程与参数方程的互化,以及直线参数方程的应用,其中解答中熟记互化公式,合理应用直线的参数方程中参数的几何意义是解答的关键,着重考查了运算与求解能力,属于基础题. 23.选修4-5:不等式选讲 已知函数()23f x x x =-++. (1)求不等式()15f x ≤的解集;(2)若2()x a f x -+≤对x ∈R 恒成立,求a 的取值范围.【答案】(1)[8,7]-(2)(,5]-∞ 【解析】试题分析:(1)由已知,根据解析式中绝对值的零点(即绝对值等于零时x 的值),将函数的定义域分成若干段,从而去掉绝对值号,再分别计算各段函数的相应不等式的解集,从而求出原不等式的解集;(2)由题意,将不等式转化为()2a x f x ≤+,可构造新函数()()2g x x f x =+,则问题再转化为()min a g x ≤,由(1)可得()()min 05g x g ==,即5a ≤,从而问题可得解.试题解析:(1)因()21,35,3221,2x x f x x x x --<-⎧⎪=-≤≤⎨⎪+>⎩,所以当3x <-时,由()15f x ≤得83x -≤<-;当32x -≤≤时,由()15f x ≤得32x -≤<;当2x >时,由()15f x ≤得27x -<≤.综上,()15f x ≤的解集为[]8,7-.(2)(方法一)由()2x a f x -+≤得()2a x f x ≤+, 因为()()()235f x x x ≥--+=,当且仅当32x -≤≤取等号, 所以当32x -≤≤时,()f x 取得最小值5,所以当0x =时,()2x f x +取得最小值5, 故5a ≤,即a 的取值范围为(],5-∞.(方法二)设()2g x x a =-+,则()()max 0g x g a ==, 当32x -≤≤时,()f x 取得最小值5,所以当0x =时,()2x f x +取得最小值5, 故5a ≤,即a 的取值范围为(],5-∞.。
2023届新高考金榜押题卷猜题卷数学试题含解析(第3套)
2023届新高考数学金榜押题卷(3)【满分:150分】一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{2,1,0,1,2,3}U =--,集合{1,2}A =-,{}2|430B x x x =-+=,则()U A B =ð( ) A.{1,3}B.{0,3}C.{2,1}-D.{2,0}-2.若复数z 满足()42i (3i)z +=-=( )==+=b4.设某芯片制造厂有甲、乙两条生产线均生产5nm 规格的芯片,现有20块该规格的芯片,其中甲、乙生产的芯片分别为12块,8块,且乙生产该芯片的次品率为120,现从这20块芯片中任取一块芯片,若取得芯片的次品率为0.08,则甲厂生产该芯片的次品率为( )A.15B.110C.115D.1205.圆锥的母线长为4,侧面积是底面积的倍,过圆锥的两条母线作圆锥的截面,则该截面面积的最大值是( ) A.8B. C.D.6.已知的图象关于点(1,0)对称,且对任意x ∈R ,都有(1)(3)f x f x -=-成立,当[1,0)∈-时,,则(2021)f =(). A.-8B.-2C.0D.27.《九章算术》是中国古代张苍、耿寿昌所撰写的一部数学专著.《九章算术》内容十分丰富,全书总结了战国、秦、汉时期的数学成就,它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志中国古代数学形成了43(1)y f x =-2()2f x x =完整的体系.其中卷第五《商功》中记载了如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”其意思为“现在有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,无宽,上棱长2丈,高1丈,问它的体积是多少?”(1丈为10尺).该问题中涉及的几何体如图所示,在多面体中,//EF 平面的中点G 在底面ABCD 上的射影为矩形的中心,4,3,2,1O AB BC EF OG ====,则异面直线与CF 所成角的余弦值为( )A.C.8.已知1F ,2F 为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,过原点O 且倾斜角为30°的直线l 与椭圆C 的一个交点为A ,若12AF AF ⊥,122AF F S =V ,则椭圆C 的方程为( )A.22162x y += B.22184x y += C.22182x y +=D.2212016x y += 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分. 9.若,a b ∈R ,且0ab >,则下列不等式中,恒成立的是( ) A.222a b ab +≥B.a b +≥1b +>2a b≥10.已知函数()sin(2)f x x ωϕ=+(ω为正整数,π||2ϕ<)的最小正周期3π3π,42T ⎛⎫∈ ⎪⎝⎭,将函数()f x 的图象向右平移π6个单位长度后所得图象关于原点对称,则下列关于函数()f x 的说法正确的是( ) A.6π-是函数()f x 的一个零点 B.函数()f x 的图象关于直线5π12x =-对称 C.方程1()2f x =在[0,π]上有三个解 ABCDEF,ABCD EF ABCDBDD.函数()f x 在ππ,62⎛⎫⎪⎝⎭上单调递减11.已知函数32()(,,)f x x ax bx c a b c =+++∈R ,则下列说法正确的是( ) A.若实数1x ,2x 是()f x 的两个不同的极值点,且满足1212x x x x +=,则0a >或6a <-B.函数()f x 的图象过坐标原点的充要条件是0c =C.若函数()f x 在R 上单调,则23b a ≤D.若函数()f x 的图象关于点(1,(1))f 中心对称,则3a =-12.正四面体PABC 中,点,M N 分别满足1,2PM PA PN PB λ==uuu ruu r uuur uu r,其中[0,1]λ∈,则下列说法正确的有( ) A.当12λ=时,//MN 平面ABC B.不存在λ使得MN PC ⊥C.异面直线BM 与PCD.若正四面体的棱长为三、填空题:本题共4小题,每小题5分,共20分.13.已知数列{}n a 的前n 项和为n S ,且2n n a n S -=,则2023a =________.14.()82112x x x ⎛⎫++ ⎪⎝⎭的展开式中常数项为_________.(用数字作答)15.已知双曲线2222:1(0,x y C a b a b-=>>交于A ,B 两点,M 是线段AB 的中点,O 为坐标原点.若点M 的横坐标为1,则OM 16.已知函数e ()xf x x=,,当21x x >时,不等式恒成立,则实数a 的取值范围为____________.四、解答题:本题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.(0,)x ∈+∞()()112221f x ax f x ax x x --<17.(10分)已知数列{}n a 的前n 项和为. (1)若12S =,,证明:12n n S a +=-;(2)在(1)的条件下,若,数列{}n b 的前n 项和为,求证12311112nT T T T ++++<. 18.(12分)已知菱形ABCD 的边长为2,,E 是边BC 上一点,线段DE 交AC 于点F .(1)若CDE △,求DE 的长. (2)4DF =,求.19.(12分)某工厂统计了某产品的原材料投人x (万元)与利润y (万元)间的几组数据如下: (1)根据经验可知原材料投人x (万元)与利润y (万元)间具有线性相关关系,求利润y (万元)关于原材料投人x (万元)的线性回归方程.(2)当原材料投人为100万元时,预估该产品的利润为多少万元?附:ˆb=y bx =-.20.(12分)如图,PO 是三棱锥P ABC -的高,,AB AC ⊥,E 是PB 的中点.n S 122n n S S +=+2log n n b a =n T 60DAB ∠=︒sin DFC ∠PA PB =(1)求证:平面PAC ;(2)若30ABO CBO ∠=∠=︒,,5PA =,求二面角正余弦值. 21.(12分)已知O 是平面直角坐标系的原点,F 是抛物线2:2(0)C x py p =>的焦点,过点F 的直线交抛物线于A ,B 两点,且OAB △的重心G 在曲线29620x y -+=上.(1)求抛物线C 的方程;(2)记曲线29620x y -+=与y 轴的交点为D ,且直线AB 与x 轴相交于点E ,弦AB 的中点为M ,求四边形DEMG 面积的最小值.22.(12分)已知函数e (1)()ea axx f x -=(其中e 为自然对数的底数,a ∈R ). (1)当1a =时,求曲线()y f x =在点(2,(2))f 处的切线方程;(2)若,方程()10f x a +-=有两个不同的实数根,求证:22122e x x +>.//OE 3PO =C AE B --0a >12,x x答案以及解析1.答案:D解析:集合,所以{1,1,2,3}A B =-,所以.故选D. 2.答案:D解析:由()()()()286i 42i (3i)3216i 24i 12142i 42i42i 20z ------====-++-=3.答案:B解析:由222||27+=++⋅=a b a b a b ,解得,所以4.答案:B解析:设1A ,2A 分别表示取得的这块芯片是由甲厂、乙厂生产的,B 表示取得的芯片为次品,甲厂生产该芯片的次品率为p , 则()1123205P A ==,()225P A =,()1P B A p =∣,()2120P B A =∣, 则由全概率公式得:()()()()()11223210.085520P B P A P B A P A P B A p =+=⨯+⨯=∣∣,解得110p =,故选:B. 5.答案:A解析:本题考查圆锥的侧面积、底面积、截面面积的求解.设圆锥底面半径为r ,母线为l ,轴截面顶角为(0π)θθ<<,则24ππ3rl r =,得43l r =,所以3πsinsin 244r l θ==>=,因为为锐角,所以π24θ>,即,则θ为纯角,所以当圆锥两条母线互相垂直时,截面面积最大,最大值为22114822l =⨯=.故选A.6.答案:B解析:因为的图象关于点(1,0)对称,所以函数的图象关于点(0,0)对称,即函数为奇函数,所以()()f x f x -=-,{1,3}B =(){2,0}U A B =-ð1⋅=a b cos<,>⋅==a b a b a b 2θπ2θ>(1)y f x =-()f x ()f x又对任意,都有(1)(3)f x f x-=-成立,所以,所以(4)(2)[()]()f x f x f x f x+=-+=--=,即函数是周期为4的周期函数,因为当[1,0)x∈-时,,所以2(2021)(1)(1)2(1)2f f f==--=-⨯-=-,故选B.7.答案:D解析:本题考查数学文化、异面直线所成角.如图,分别取的中点,,P Q R,连接,则,////ER CF QR BD,所以(或其补角)为异面直线BD与所成角.1522QR BD===.由题意知四边形为等腰梯形,则由等腰梯形的性质知EQFQ==ER CF==,所以在EQRV中,由余弦定理,得222cos2ER QR EQQREER QR+-∠==⋅D.8.答案:A解析:因为点A在椭圆上,所以122AF AF a+=,把该等式两边同时平方,得222121224AF AF AF AF a++=.又12AF AF⊥,所以222124AF AF c+=,则222122444AF AF a c b=-=,即,所以12212122AF FS AF AF b===△.因为x∈R(2)()()f x f x f x+=-=-()f x2()2f x x=,,AD BC CD,,,,,EP PQ QF QR RE EQ QRE∠CFPQFE2122AF AF b=是直角三角形,1290F AF ∠=︒,且O 为的中点,所以121||2OA F F c ==.不妨设点A 在第一象限,则230AOF ∠=︒,所以1,2A c ⎫⎪⎪⎝⎭,所以122121112222AF F S F F c c =⋅==△,即24c =,故2226a b c =+=,所以椭圆C 的方程为22162x y +=,故选A. 9.答案:AD解析:对于A ,因为220,0,0a b ab ≥≥>,所以222a b ab +≥,因此A 项正确;对于B ,取1a b ==-,此时22a b +=-<=,因此B 项不正确;对于C ,取1a b ==-,122b +=-<=,因此C 项不正确;对于D ,因为0,0ba >>,,因此D 正确. 10.答案:ABD解析:由题意得,2π3π3π,242T ω⎛⎫=∈ ⎪⎝⎭,解得23<43ω<,又ω为正整数,所以1ω=,所以()sin(2)f x x ϕ=+.函数()f x 的图象向右平移π6个单位长度后所得图象对应的函数()sin 2sin 23π6ππ6g x f x x x ϕϕ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.由题意,函数()g x 的图象关于原点对称,故ππ()3k k ϕ-=∈Z ,即π()3πk k ϕ=+∈Z .又π||2ϕ<,所以0k =,π3ϕ=,所以()s 23πin f x x ⎛⎫=+ ⎪⎝⎭.A 选项πππsin 2sin 00663f ⎡⎤⎛⎫⎛⎫-=⨯-+== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故A 正确;B 选项:5π5πsin 2sin 1121ππ232f ⎡⎤⎛⎫⎛⎫⎛⎫-=⨯-+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以B 正确;C 选项:令3π2t x =+,因为[0,π]x ∈,所以7π,33πt ⎡⎤∈⎢⎥⎣⎦,,显然1sin 2t =在π7π,33⎡⎤⎢⎥⎣⎦12AF F △12F F ab >2a b +≥=内只有5π6,13π6两个解,故C 错误; D 选项:当,62ππx ⎛⎫∈ ⎪⎝⎭时,2π4π3π2,,3332π2πx ⎛⎫⎛⎫+∈⊆ ⎪ ⎪⎝⎭⎝⎭,,故函数()f x 在ππ,62⎛⎫⎪⎝⎭上单调递减,D 正确. 11.答案:ABD解析:A 选项2()32f x x ax b '=++,由题意知实数1x ,2x 是方程2320x ax b ++=的两个不等实根,所以24120a b ∆=->,且1223a x x +=-,123bx x =,由1212x x xx +=,得2b a =-,所以260a a +>,解得0a >或6a <-,所以A 正确.B 选项:若函数()f x 的图象过坐标原点,则(0)0f c ==,故充分性成立;反之,若0c =,则(0)0f c ==,故函数()f x 的图象过坐标原点,必要性成立.故B 正确. C 选项:若函数()f x 在R 上单调,则2()320f x x ax b '=++≥恒成立,所以24120a b -≤,即23b a ≥,故C 不正确.D 选项:因为函数()f x 的图象关于点(1,(1))f 中心对称,所以(1)(1)2(1)f x f x f ++-=,即3(1)x ++232(1)(1)(1)(1)(1)2(1)a x b x c x a x b x c a b c +++++-+-+-+=+++,整理得2(3)0a x +=,所以3a =-,所以D 正确. 12.答案:AD解析:对于A ,如图1,当12λ=时,点,M N 分别是,PA PB 的中点,//MN AB .又AB ⊂平面ABC ,MN ⊄平面ABC ,所以//MN 平面ABC ,故选项A 正确;对于B ,如图2,将正四面体PABC 放在正方体内,由正方体的结构特征可知AB PC ⊥,所以当,M N 分别是,PA PB 的中点时,MN PC ⊥,即存在λ使得MN PC ⊥,故选项B 错误;对于C ,如图1,取AC 的中点E ,连接,,ME BM BE ,则//PC ME ,异面直线BM与PC 所成角即为BME ∠.在BME △中,设1ME =,则BE BM ==由余弦定理得cos BME∠==C错误;对于D,如图2,把正四面体放入正方体中,由正四面体的棱长为2,所以正方体的外接球的直径为,故选项D正确,故选AD.13.答案:202321-解析:因为2n na n S-=,所以当1n=时,由11121a S a==-,得11a=;当2n≥时,()11221n n n n na S S a n a n--=-=--+-,化简得121n na a-=+,即()1121n na a-+=+,所以数列{}1na+是以2为首项,2为公比的等比数列,所以12nna+=,所以21nna=-,所以2023202321a=-.14.答案:182解析:因为()88822111122x x x x xx x x⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪⎝⎭⎝⎝+⋅⎭⎭=,其中81xx⎛⎫+⎪⎝⎭展开式的通项为8821881C Crr r r rrT x xx--+⎛⎫==⎪⎝⎭,令4r=得81xx⎛⎫+⎪⎝⎭的常数项为48C70=,令822r-=-,即5r=得81xx⎛⎫+⎪⎝⎭展开式中2x-的系数为58C56=.34π3=所以()82112x x x ⎛⎫++ ⎪⎝⎭的常数项为70256182+⨯=.故答案为:182. 15.答案:)+∞解析:由题知24,a c e a =⎧⎪⎨==⎪⎩解得2222,2,,ab bc a =⎧⎪=⎨⎪=-⎩所以双曲线22:144x y C -=.设直线l 的方程为y kx m =+,联立22,1,44y kx m x y =+⎧⎪⎨-=⎪⎩消去y 并整理得()2221240k x kmx m ----=,所以()()222Δ(2)4140km k m =----->,所以22440m k -+>,16.答案:e ,2⎛⎤-∞ ⎥⎝⎦解析:由题可知,当21x x >时,不等式()()22111222x f x ax x f x ax -<-恒成立,设22()()e x g x xf x ax ax =-=-,则()g x 在(0,)x ∈+∞上是增函数,则()e 20x g x ax '=-≥在(0,)+∞上恒成立,即e 2x a x ≤在(0,)+∞上恒成立.令e ()x m x x =,则2(1)e ()x x m x x -'=,当(0,1)x ∈时,()0m x '<,()m x 单调递减,当(1,)x ∈+∞时,()0m x '>,()m x 单调递增.所以min 2()(1)e a m x m ≤==,所以e2a ≤. 17.答案:(1)见解析 (2)见解析解析:(1)因为12S =,122n n S S +=+, 所以()1222n n S S ++=+,124S +=,所以数列{}2n S +是以4为首项,2为公比的等比数列, 所以122n n S ++=,122n n S +∴=-,当2n ≥时,122n n S -=-,12n n n n S S a --==, 当1n =时,112a S ==满足上式, 所以2n n a =,所以12n n S a +=-成立. (2)由(1)知2n n a =,2log n n b a n ==,所以(1)2n n n T +=, 则12112(1)1n T n n n n ⎛⎫==⨯- ⎪++⎝⎭, 所以1231111n T T T T ++++=11111111212122233411n n n ⎛⎫⎛⎫⨯-+-+-++-=⨯-< ⎪⎪++⎝⎭⎝⎭, 所以12311112nT T T T ++++<成立. 18.答案:解析:(1)依题意,得60BCD DAB∠=∠=︒. 因为CDE △的面积1sin 2S CD CE BCD=⋅⋅∠=所以122CE ⨯=1CE =. 在CDE △中,由余弦定理得DE ===(2)方法一:连接BD .依题意,得30,60ACD BDC ∠=︒∠=︒, 设CDE θ∠=,则060θ︒<<︒,在CDF △中,由正弦定理得sin sin CF DFACD θ=∠,4DF =,所以sin 2CF DF θ==,所以cos θ()1sin sin 30+2DFC θ∠=︒==方法二:连接BD .依题意,得30ACD ∠=︒,60BDC ∠=︒, 设CDE θ∠=,则0060︒<<︒,设4CF x =4DF =,则DF =,在CDF △中,由余弦定理,得2222cos DF CD CF CD CF ACD =+-⋅∠,即227416x x =+-,解得x =x =.又因为12CF AC ≤=x ≤,所以所以9DF=, 在中,由正弦定理得sin sin CD DFDFC ACD=∠∠, 所以. 19.答案:(1)221040y x =- (2)1160万元()18284858688855=⨯++++=,()1770800830850900830,5y =⨯++++= 所以()()()51521ˆii i ii xx y y bxx ==--=-∑∑()()()()2222360130012037022(3)(1)013-⨯-+-⨯-++⨯+⨯==-+-+++所以83022851040a y bx =-=-⨯=-, 所以线性回归方程为221040y x =-.x =CDF △sin DFC ∠=(2)当100y=⨯-=(万元),x=时,2210010401160即当原材料投人为100万元时,预估该产品的利润为1160万元20.答案:(1)证明见解析(2)1113解析:(1)如图,取AB的中点D,连接DP,DO,DE.因为AP PB⊥.=,所以PD AB因为PO为三棱锥P ABC-的高,所以PO⊥平面ABC,因为AB⊂平面ABC,所以PO AB⊥.又,=,所以AB⊥平面POD.PO PD⊂平面POD,且PO PD P因为OD⊂平面POD,所以AB OD⊥,又AB ACOD AC,因为OD⊂/平面PAC,AC⊂平面PAC,所以//OD平⊥,所以//面PAC.因为D,E分别为BA,BP的中点,所以//DE PA,因为DE⊂/平面PAC,PA⊂平面PAC,所以//DE平面PAC.又,=,OD DE⊂平面ODE,OD DE D所以平面//ODE平面PAC.又OE⊂平面ODE,所以//OE平面PAC.(2)连接OA,因为PO⊥平面ABC,,OA OB⊂平面ABC,所以PO OA⊥,⊥,PO OB所以4=.OA OB易得在AOB △中,30OAB ABO ∠=∠=︒,所以1sin30422OD OA =︒=⨯=,322cos3024432AB AD OA ==︒=⨯⨯=, 又60ABC ABO CBO ∠=∠+∠=︒,所以在Rt ABC △中,tan 6043312AC AB =︒=⨯=.以A 为坐标原点,AB ,AC 所在直线分别为x ,y 轴,以过A 且垂直于平面ABC的直线为z 轴建立空间直角坐标系,如图所示,则(0,0,0)A ,(43,0,0)B ,(0,12,0)C ,(23,2,3)P ,333,1,2E ⎛⎫ ⎪⎝⎭,设平面AEC 的法向量为(,,)x y z =n ,则00AE AC ⎧⋅=⎪⎨⋅=⎪⎩n n ,即33302120x y z y ⎧++=⎪⎨⎪=⎩, 令23z =,则(1,0,23)=-n .设平面AEB 的法向量为()111,,x y z =m ,则00AE AB ⎧⋅=⎪⎨⋅=⎪⎩m m ,即111133302430x y z x ⎧++=⎪⎨⎪=⎩,令12z =,则(0,3,2)=-m . 所以43|cos ,|||||13⋅〈〉==⋅n m n m n m .设二面角C AE B --的大小为θ,则24311sin 11313θ⎛⎫=-= ⎪ ⎪⎝⎭.21.答案:(1)22x y =0,2p F ⎛⎫⎪⎝⎭,显然直线AB 的斜率存在,设:AB y kx =+22x py =联立,消去y 得2220x pkx p --=,设()11,A x y ,()22,B x y ,()00,G x y ,则212122,x x pk x x p +==-,所以()212122y y k x x p pk p +=++=+,所以022,32,3pk x pk p y ⎧=⎪⎪⎨+⎪=⎪⎩且20032x y =22341293p k =⋅+即222221pk p p k +=+,整理得()2211pk p p -=-对任意的k 恒成立,故1p =,所求抛物线C 的方程为22x y =.(2)由题知10,2F ⎛⎫ ⎪⎝⎭,10,3D ⎛⎫ ⎪⎝⎭,1,02E k ⎛⎫- ⎪⎝⎭,0k ≠,M x k =,G x =23=.又弦AB 的中点为M ,△=OG OM ==//ME .点D 到直线AB 的距离1d =DG =1122k k k ⎫⎛⎫--+⎪ ⎪⎪⎝⎭⎭所以四边形DEMG 的面积25111132123212k k S k k k ⎛⎫⎛⎫=++=+≥⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭==22.答案:(1)1ey = (2)见解析解析:(1)当1a =时,e(1)()e xx f x -=, 则121(),(2)e ex x f x f --==', 因此()'20f =,故曲线()y f x =在点(2,(2))f 处的切线方程为1ey =. (2)由题意知方程e 0ax x a --=有两个不同的实数根12,x x . 对于函数e (0),e (1)ax ax y x a a y ax --=>=-'-,令e (1)0ax y ax -=->',解得1x a <,令e (1)0ax y ax -=-<',解得1x a >,则函数e ax y x a -=-在区间1,a ⎛⎫-∞ ⎪⎝⎭上单调递增,在区间1,a ⎛⎫+∞ ⎪⎝⎭上单调递减, 所以11e 0a a -->,得21ea <.又当0x <时,e 0ax x a --<,所以方程e 0ax x a --=的两个不同的实数根12,x x 均大于0.当0x >时,方程e 0ax x a --=即方程ln ln e e x ax a -=,则原问题等价于ln ln x ax a -=有两个不同的正实数根12,x x . 令()ln ln (0)g x x ax a x =-->, 则1()(0)g x a x x->'=,所以()g x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减,不妨设12x x <,则1210x x a<<<.令21()(),0,G x g x g x x a a⎛⎫⎛⎫=--∈ ⎪ ⎪⎝⎭⎝⎭, 则22()2201(2)G x a a x ax a =->-'=-,因此()G x 在10,a ⎛⎫⎪⎝⎭上单调递增, 从而当10,x a ⎛⎫∈ ⎪⎝⎭时,()0G x <,所以()()1212g x g x g x a⎛⎫=<- ⎪⎝⎭, 因为2121,,x x aa⎛⎫-∈+∞ ⎪⎝⎭,函数()g x 在1,a⎛⎫+∞ ⎪⎝⎭上单调递减,所以212x x a >-,即122x x a+>, 则()2122212222e 2x x x x a ++>>>, 故原命题得证.。
2021届金太阳高三新高考(广东卷)联考数学试题(解析版)
2021届金太阳高三新高考(广东卷)联考数学试题一、单选题 1.若13z i =-,则zz的虚部为( )A B .10C .10-D .10-【答案】A【解析】由已知先求出zz的值,可得虚部的值. 【详解】解:由,1010z z ==+,故选:A. 【点睛】本题主要考查虚数的概念与四则运算,考查基础的知识与运算,属于基础题. 2.设集合2{|}A x x x =<,2}6{|0B x x x =+-<,则A B =( )A .(0,1)B .()()3,01,2-⋃C .(-3,1)D .()()2,01,3-⋃【答案】B【解析】化简集合A ,B ,根据交集运算即可求值. 【详解】因为2{|}A x x x =<(,0)(1,)=-∞⋃+∞,26{|}(32)0,B x x x =+-<=-所以()()3,01,2A B ⋂=-⋃. 故选:B 【点睛】本题主要考查了一元二次不等式的解法,集合的运算,属于中档题.3.2020年7月,我国湖北、江西等地连降暴雨,造成严重的地质灾害.某地连续7天降雨量的平均值为26.5厘米,标准差为6.1厘米.现欲将此项统计资料的单位由厘米换为毫米,则标准差变为( ) A .6.1毫米 B .32.6毫米C .61毫米D .610毫米【答案】C【解析】利用标准差公式即可求解. 【详解】设这7天降雨量分别为1x ,2x ,3x ,4x ,5x ,6x ,7x6.1= 因为1厘米=10毫米,这7天降雨量分别为101x ,102x ,103x ,104x ,105x ,106x ,107x , 平均值为10x =265,10 6.161==⨯=. 故选:C 【点睛】本题考查统计知识,考查标准差的求解,考查数据处理能力,属于基础题. 4.若01b <<,则“3a b >”是“a b >”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】根据充分条件、必要条件的概念即可求解. 【详解】因为01b <<,所以32(1)0b b b b -=->,即3b b >, 故a b >可推出3a b >, 而3a b >推不出a b >,(例如11,42ab ) 故“3a b >”是“a b >”的必要不充分条件. 故选:A 【点睛】本题主要考查了充分条件,必要条件,不等式的性质,属于中档题.5.函数()2sin cos f x x x x x =-在[,]-ππ上的图象大致为( )A .B .C .D .【答案】D【解析】先判断函数的奇偶性,排除AC ,再由特殊值验证,排除B ,即可得出结果. 【详解】因为()2sin (cos )f x x x x x f x =-+=--,所以()f x 为奇函数,其图象关于原点对称,故排除A 与C.又因为2sin cos 3066666126f πππππππ⎛⎫⎛⎫⎛=⋅-⋅=< ⎪ ⎪ ⎝⎭⎝⎭⎝,所以排除B.故选:D. 【点睛】本题主要考查函数图像的识别,属于基础题型.6.某班级8位同学分成A ,B ,C 三组参加暑假研学,且这三组分别由3人、3人、2人组成.若甲、乙两位同学一定要分在同一组,则不同的分组种数为( ) A .140 B .160 C .80 D .100【答案】A【解析】分两种情况讨论即甲、乙两位同学在A 组或B 组和甲、乙两位同学在C 组; 【详解】甲、乙两位同学在A 组或B 组的情况有13652120C C ⨯=种,甲、乙两位同学在C 组的情况有336320C C =种,共计140种.故选:A.【点睛】本题考查计数原理的应用,考查数据处理能力.7.某艺术展览馆在开馆时间段(9:00—16:00)的参观人数(单位:千)随时间t (单位:时)的变化近似满足函数关系11()sin 5(0,916)36f t A t A t ππ⎛⎫=-+>≤≤⎪⎝⎭,且下午两点整参观人数为7千,则开馆中参观人数的最大值为( ) A .1万 B .9千C .8千D .7千【答案】B【解析】利用当14t =时,()7f t =,求出4A =,由916t ≤≤,利用正弦函数的性质即可求解. 【详解】下午两点整即14t =,当14t =时,()7f t =. 即17sin576A π+=,∴4A =, ∵当916t ≤≤时,1136t ππ-∈77,62ππ⎡⎤⎢⎥⎣⎦, ∴当115362t πππ-=时,()f t 取得最大值,且最大值为459+=. 故选:B 【点睛】本题考查了三角函数的性质求解析式、三角函数的应用,考查了基本运算求解能力,属于基础题.8.太阳是位于太阳系中心的恒星,其质量M 大约是30210⨯千克.地球是太阳系八大行星之一,其质量m 大约是24610⨯千克.下列各数中与mM最接近的是( ) (参考数据:lg30.4771≈,lg60.7782≈) A . 5.51910- B . 5.52110-C . 5.52510-D . 5.52310-【答案】D【解析】根据题意,得到6310mM-=⨯,两边同时取以10为底的对数,根据题中条件,进行估算,即可得出结果. 【详解】因为6310m M -=⨯,所以6lg lg3lg100.47716 5.5229 5.523m M-=+≈-=-≈-. 故5.52310mM-≈. 故选:D. 【点睛】本题主要考查对数的运算,属于基础题型.二、多选题9.已知双曲线22:16y C x -=,则( )A .CB .C 的虚轴长是实轴长的6倍 C .双曲线2216y x -=与C 的渐近线相同D .直线3y x =上存在一点在C 上【答案】AC【解析】根据双曲线方程求得a ,b ,进而可得c ,即可判断A 与B ;分别求两双曲线渐近线方程可判断C ;根据渐近线可判断D. 【详解】因为21a =,26b =,所以2167c =+=,则c e a ==22b a=A 正确,B 错误.双曲2216y x -=与C 的渐近线均为y =,所以C 正确,因为C 的的渐近线的斜率小于的3,所以直线3y x =与C 相离,所以D 错误. 故选:AC 【点睛】本题考查根据双曲线方程求渐近线以及基本量,考查基本求解能力,属基础题. 10.若tan 2tan 54x x π⎛⎫-+= ⎪⎝⎭,则tan x 的值可能为( )A .B .2-C D .2【答案】BD【解析】先设tan x t =,再化简原式进行代换,解得t 值,即得tan x 的值. 【详解】设tan x t =,22222tan tan 1212(1)tan 2tan 41tan 1tan 111x x t t t t x x x x t t t π++-+⎛⎫-+=-=-= ⎪-----⎝⎭222(1)1t t t -+=-22151t t +==-,232t ∴=,故6tan 2x t ==±. 故选:BD. 【点睛】本题考查了换元法和三角恒等变换,属于基础题.11.在正方体1111ABCD A B C D -中,E 是棱1CC 上一点,且二面角C AB E --的正切值为22,则( ) A .异面直线AE 与BC 所成角的余弦值为155B .1B 到平面ABE 的距离是C 到平面ABE 的距离的2倍C .直线BE 与平面11BDD B 所成角的大小等于二面角C ABE --的大小 D .在棱AB 上一定存在一点F ,使得1//C F 平面BDE 【答案】BCD【解析】根据已知和线线关系、线面关系等逐项验证排除即可. 【详解】如图,设2BC =,易知二面角C AB E --的平面角为CBE ∠, 则2tan 2CE CBE BC ∠==,即2CE =//AD BC ,所以异面直线AE 与BC 所成角为DAE ∠,因为AD DE ⊥,所以10cos 10AD DAE AE ∠===A 错误;设1B C BE M ⋂=,则11B M B B CM CE ===1B 到平面ABE 的距离是C 到平面ABE 倍,故B 正确;因为//CE 平面1BDD B ,所以E 到平面11BDD B 的距离等于C 到平面11BDD B 的距离,而C 到平面11BDD B 的距离为CO =所以直线BE 与平面11BDD B 所成角的正弦值为3CO BE ==,所以直线BE 与平面11BDD B 所成角的大小等于二面角C AB E --的大小,故C 正确;在AC 上找一点G ,使得1//C G EO ,过G 再作BD 的平行线交AB 于F ,且1C G GF G =,//DO EO O =,所以平面1//C GF 平面BDE ,从而可知1//C F 平面BDE ,故D 正确.故选:BCD 【点睛】本题主要考查了空间几何体的线线关系、线面关系、面面关系,考查空间想象力及求解能力.12.已知函数()f x 的导函数为()f x ',若()()()2f x xf x f x x '≤<-对(0,)x ∈+∞恒成立,则下列不等式中,一定成立的是( ) A .(2)(1)2f f > B .(2)(1)2f f <C .(2)1(1)42f f <+ D .(2)1(1)42f f +< 【答案】BD 【解析】先设2()()f x xg x x -=,()()f x h x x=,()0,x ∈+∞,对函数求导,根据题中条件,分别判断设()g x 和()h x 的单调性,进而可得出结果. 【详解】 设2()()f x x g x x -=,()()f x h x x=,()0,x ∈+∞, 则[][]243()12()()2()()f x x x f x x xf x f x x g x x x '---'-+'==,2()()()xf x f x h x x'-'=. 因为()()2()f x xf x f x x '<<-对()0,x ∈+∞恒成立,所以()0g x '<,()0h x '>,所以()g x 在()0,∞+上单调递减,()h x 在()0,∞+上单调递增,则()()12g g >,()()12h h <, 即22(1)1(2)212f f -->,(1)(2)12f f <即(2)1(2)(1)422f f f +<<. 故选:BD. 【点睛】本题主要考查导数的方法判定函数单调性,并根据单调性比较大小,属于常考题型.三、填空题13.设向量a ,b 满足3a =,1b =,且1cos ,6a b =,则2a b -=__________.【解析】由已知条件与平面向量的线性运算与平面向量的数量积的知识,代入()22224||a b a ba -=-=.【详解】 解:()22222443712,372||a b a b a a b b cos a b -=-=-⋅+=-=-=所以|2|35a b -=本题主要考查平面向量的线性运算与平面向量的数量积,考查学生的基础知识与基本运算能力,属于基础题.14.设椭圆22*221(N 211)x y n n n +=∈++的焦距为n a ,则数列{}n a 的前n 项和为__________. 【答案】2n n +【解析】根据椭圆的标准方程求出焦距为n a ,再利用等差数列的前n 项和公式即可求解. 【详解】因为22221(1)2n a n n n =+-+=, 所以数列{}n a 为等差数列,首项12a =, 所以数列{}n a 的前n 项和为2(22)2n nn n +=+. 故答案为:2n n + 【点睛】本题考查了椭圆的简单几何性质、等差数列的前n 项和公式,需熟记公式,属于基础题. 15.不等式1345x x +<+的解集为__________. 【答案】(-1,1) 【解析】作出函数13x y +=,45y x =+的图象,求出两个图象的交点坐标,观察图象可得结果. 【详解】在同一直角坐标系中,作出函数13x y +=,45y x =+的图象,这两个图象的交点为(-1,1),(1,9),故由图可知不等式1345x x +<+的解集为(-1,1). 故答案为:(-1,1)【点睛】本题考查利于数形结合解决不等式的解集问题,考查指数函数的图象,属于基础题.16.一个圆锥的表面积为48π,其侧面展开图为半圆,当此圆锥的内接圆柱(圆柱的下底面与圆锥的底面在同一个平面内)的侧面积达到最大值时,该内接圆柱的底面半径为__________. 【答案】2【解析】设圆锥的底面半径为r ,母线长为l ,高为h ,由圆锥的侧面展开图为半圆可得2l r =,根据圆锥的表面积可得半径,母线和高,设内接圆柱的底面半径为R ,高为a ,由相似可得3(4)a R =-,代入圆柱的侧面积公式分析可得结果.【详解】设圆锥的底面半径为r ,母线长为l ,高为h ,因为圆锥的侧面展开图为半圆, 所以2l r ππ=,解得2l r =. 因为圆锥的表面积为48π,所以221482l r πππ+=,解得4r =,8l =,43h =. 如图,设内接圆柱的底面半径为R ,高为a ,则4443a R-=,所以3(4)a R =-, 内接圆柱的侧面积2223(2)4S Ra R ππ⎡⎤==--+⎣⎦, 当2R =时,S 取最大值. 故答案为:2.【点睛】本题考查圆锥的表面积和圆柱的侧面积公式,考查圆锥侧面展开图的应用,考查推理能力和计算能力,属于基础题.四、解答题 17.在①112n n a a +=-,②116n n a a +-=-,③18n n a a n +=+-这三个条件中任选一个,补充在下面的问题中,若问题中的n S 存在最大值,则求出最大值;若问题中的n S 不存在最大值,请说明理由.问题:设n S 是数列{}n a 的前n 项和,且14a =,__________,求{}n a 的通项公式,并判断n S 是否存在最大值.注:如果选择多个条件分别解答,按第一个解答计分. 【答案】答案见解析【解析】若选①,求出数列{}n a 是首项为4,公比为12-的等比数列,求出通项公式和前n 项和,通过讨论n 的奇偶性,求出其最大值即可; 若选②,求出数列{}n a 是首项为4,公差为16-的等差数列,求出通项公式和前n 项和,求出其最大值即可;若选③,求出217242n n n a -+=,当16n ≥时,0n a >,故n S 不存在最大值.【详解】 解:选①因为112n n a a +=-,14a =,所以{}n a 是首项为4.公比为12-的等比数列, 所1211422n n n a --⎛⎫⎛⎫=⨯-=- ⎪⎪⎝⎭⎝⎭.当n 为奇数时,141281113212n n nS ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==+ ⎪⎝⎭+, 因为81132n⎛⎫+⎪⎝⎭随着n 的增加而减少,所以此时n S 的最大值为14S =. 当n 为偶数时,81132n n S ⎛⎫=- ⎪⎝⎭,且81814323n n S ⎛⎫=-<<⎪⎝⎭ 综上,n S 存在最大值,且最大值为4. 选②因为116n n a a +-=-,14a =.所以{}n a 是首项为4,公差为16-的等差数列, 所以11254(1)666n a n n ⎛⎫=+--=-+ ⎪⎝⎭.由125066n -+≥得25n ≤, 所以n S 存在最大值.且最大值为25S (或24S ), 因为25252412545026S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭,所以n S 的最大值为50. 选③因为18n n a a n +=+-,所以18n n a a n +-=-, 所以217a a -=-,326a a -=-,…19n n a a n --=-, 则2121321(79)(1)171622n n n n n n n a a a a a a a a --+---+=-+-+=-+-=, 又14a =,所以217242n n n a -+=. 当16n ≥时,0n a >, 故n S 不存在最大值. 【点睛】此题考查数列的通项公式和求和公式,考查等差数列和等比数列的性质,属于基础题 18.2020年3月,受新冠肺炎疫情的影响,我市全体学生只能网上在线学习.为了了解学生在线学习的情况,市教研院数学教研室随机从市区各高中学校抽取60名学生对线上教学情况进行调查(其中男生与女生的人数之比为2∶1),结果发现男生中有10名对线上教学满意,女生中有12名对线上教学不满意.(1)请完成如下2×2列联表,并回答能否有90%的把握认为“对线上教学是否满意与性别有关”;(2)以这60名学生对线上教学的态度的频率作为1名学生对线上教学的态度的概率,若从全市学生中随机抽取3人,设这3人中对线上教学满意的人数为X,求随机变量X 的分布列与数学期望.附:参考公式22(),()()()()n ad bcKa b c d a c b d-=++++其中n a b c d=+++.【答案】(1)列联表见解析;没有;(2)分布列见解析,期望为9 10.【解析】(1)根据题中数据,直接完善列联表即可;再由公式求出2K,结合临界值表,即可得出结论;(2)由题意,得到X的可能取值为0,1,2,3,且3~3,10X B⎛⎫⎪⎝⎭,求出对应的概率,进而可得分布列,由二项分布的期望计算公式,即可求出期望.【详解】(1)由题意可知抽取的60名学生中男生有40人,女生有20人,则列联表如下:因为2260(1012308)101.4292.706184240207K⨯⨯-⨯==≈<⨯⨯⨯,所以没有90%的把握认为“对线上教学是否满意与性别有关”(2)X的可能取值为0,1,2,3,由题意可知,3~3,10X B⎛⎫⎪⎝⎭,则37(0)103431000P X⎛⎫=⎪⎝⎭==,3214411037(100)110P X C⎛⎫⎛⎫=⎪⎪⎝⎭⎝⎭==,3221891037(2100)100P X C ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭==,33(3)10271000P X ⎛⎫=⎪⎝⎭== 所以随机变量X 的分布列为因此期望为:()3931010E X =⨯=. 【点睛】本题主要考查完善列联表,考查独立性检验的思想,考查求二项分布的分布列和期望,属于常考题型.19.在ABC 中,cos 4cos A C =,sin C =. (1)求B ;(2)若ABC 的周长为5求ABC 的面积.【答案】(1)3π;(2)2. 【解析】(1)由同角间的三角函数关系求出cos ,cos ,sin C A A ,从而结合诱导公式可求得cos B 可得B 角;(2)由正弦定理可得三边长之比,结合周长可得三边长,再由三角形面积公式计算面积. 【详解】(1)因为sin 14C =,所以cos C ==.若cos 0C =<,则40cosA cosC =<,从而A ,C 均为钝角.这不可能,故cos C =,cos =A ,sin A =. 所以()cos cos cos cos sin sin B A C A C A C =-+=-+7272132111477142=-⨯+⨯=, 因为0B π<<.所以3B π=.(2)由(1)知213321sin :sin :sin ::2:7:37214A B C ==, 由正弦定理得::2:7:3BC AC AB =. 设3AB k =,则7AC =,2BC k =,则ABC 的周长为()5757k +=+,解得1k =,从而2BC =,3AB =, 故ABC 的面积133sin 22S AB BC B =⋅⋅⋅=. 【点睛】本题考查同角间的三角函数关系,考查两角和的正弦公式及诱导公式,考查正弦定理及三角形面积公式,旨在考查学生的运算求解能力,属于中档题.20.如图,已知AC BC ⊥,DB ⊥平面ABC ,EA ⊥平面ABC ,过点D 且垂直于DB 的平面α与平面BCD 的交线为l ,1AC BD ==,3BC =,2AE =.(1)证明:l ⊥平面AEC ;(2)设点P 是l 上任意一点,求平面PAE 与平面ACD 所成锐二面角的最小值. 【答案】(1)证明见解析;(2)60︒.【解析】(1)由题意可知BD ⊥平面α,则有BD l ⊥,又BD ⊥平面ABC ,则可得出BD AC ⊥,从而得出l //BC ,再证明BC ⊥平面AEC 即可证明l ⊥平面AEC ; (2)作CF //AE ,以C 为原点,建立如图所示的空间直角坐标系C xyz -,然后计算平面PAE 和平面ACD 的法向量,通过法向量夹角的余弦值来计算. 【详解】解:(1)证明:因为BD α⊥,BD ⊥平面ABC ,所以α//平面ABC , 又α平面BCD l =,平面ABC平面BCD BC =,所以BC //l .因为EA ⊥平面ABC , 所以BC AE ⊥. 又BC AC ⊥,AEEA A =,所以BC ⊥平面AEC , 从而l ⊥平面AEC .(2)作CF //AE ,以C 为原点,建立如图所示的空间直角坐标系C xyz -, 则()0,1,0A ,()0,0,0C ,()3,0,1D,()0,1,2E ,设(),0,1P a ,平面PAE 、平面ACD 的法向量分别为()111,,m x y z =,()222,,n x y z =, 则(),1,1AP a =-,()0,0,2AE =,()0,1,0AC =-,()3,0,1CD =.因为m ⊥平面PAE , 所以111120ax y z z -+=⎧⎨=⎩,令11x =,得1y a =,10z =,即()1,,0m a =.同理222030y x z -=⎧⎪⎨+=⎪⎩,令21x =,得20y =,23z =-,即()1,0,3n =-.因为211cos ,221m n a =≤+,当且仅当0a =时取等号, 所以平面PAE 与平面ACD 所成锐二面角的最小值为60︒.【点睛】本题考查线面垂直的证明,考查考利用空间向量求解面面夹角,考查学生的基本运算能力与逻辑推理能力,难度一般.21.已知抛物线C 的顶点为坐标原点O ,对称轴为坐标轴,且C 经过点()4,6A . (1)求A 到C 的焦点的距离;(2)若C 的对称轴为x 轴,过(9,0)的直线l 与C 交于M ,N 两点,证明:以线段MN 为直径的圆过定点. 【答案】(1)203;(2)证明见解析. 【解析】(1)分抛物线C 的对称轴为x 轴与y 轴进行讨论,可得抛物线C 的方程,再根据抛物线的几何意义可得A 到C 的焦点的距离;(2)设直线l 的方程为9x my =+,设()()1122,,,M x y N x y ,线段MN 的中点为()00,G x y ,联立抛物线和直线,可得12y y +,12y y 的值,可得以线段MN 为直径的圆的方程,可得证明. 【详解】(1)解:当C 的对称轴为x 轴时,设C 的方程为()220y px p =>,将点A 的坐标代入方程得2624p =⋅,即92p =, 此时A 到C 的焦点的距离为25424p +=. 当C 的对称轴为y 轴时,设C 的方程为()220x py p =>,将点A 的坐标代入方程得2426p =⋅.即43p =. 此时A 到C 的焦点的距离为20623p +=. (2)证明:由(1)可知,当C 的对称轴为x 轴时,C 的方程为29y x =.直线l 斜率显然不为0,可设直线l 的方程为9x my =+, 设()()1122,,,M x y N x y ,线段MN 的中点为()00,G x y .由299y x x my ⎧=⎨=+⎩得29810y my --=, 则129y y m +=,1281y y =-,所以120922y y m y +==,212091822x x m x ++==,且MN ==以线段MN 为直径的圆的方程为22200||()()2MN x x y y ⎛⎫-+-= ⎪⎝⎭即()2229290x m x y my -++-=,即()221890x x y m mx y -+-+=,令0mx y +=,则2180x x y +=2-,因为m R ∈.所以圆()221890x x y m mx y -+-+=过定点(0,0),从而以线段MN 为直径的圆过定点. 【点睛】本题主要考查抛物线的定义与几何性质,直线与抛物线的位置关系,考查学生的综合分析能力与计算能力,属于中档题22.已知函211()()().22xf x x e a x =-++ (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【答案】(1)答案见解析;(2)()0,∞+.【解析】(1)求函数的导数,讨论0a ≥和0a <,分别解导数不等式即可得到函数的单调性.(2)由(1)的单调性,可求得函数的极值,由极值的正负和函数的单调性可得函数的零点个数,从而得到a 的取值范围. 【详解】 (1)()1()22xf x x e a ⎛⎫'=++ ⎪⎝⎭. 当0a ≥时,令()0f x '<,得1,2x ⎛⎫∈-∞- ⎪⎝⎭,令()0f x '>,得1,2x ⎛⎫∈-+∞ ⎪⎝⎭. 故()f x 在1,2⎛⎫-∞- ⎪⎝⎭单调递减,在1,2⎛⎫-+∞ ⎪⎝⎭单调递增.当0a <时,令()0f x '=,得112x =-,2ln(2)x a =-.①当1ln(2)2a -=-即a =时,()0f x '≥,()f x 在R 上单调递增.②当1ln(2)2a -<-即0a <<时,()f x 在1ln(2),2a ⎛⎫-- ⎪⎝⎭上单调递减, 在()(),ln 2a -∞-,1,2⎛⎫-+∞ ⎪⎝⎭上单调递增.③当1ln(2)2a ->-即a <时,()f x 在1,ln(2)2a ⎛⎫-- ⎪⎝⎭上单调递减, 在1,2⎛⎫-∞-⎪⎝⎭,()ln(2)a -∞,+上单调递增. (2)当0a >时,由(1)可知()f x 只有一个极小值点12x =-.且102f e ⎛⎫-=-< ⎪⎝⎭,102f a ⎛⎫=> ⎪⎝⎭, 当x →-∞时,102x x e ⎛⎫-→ ⎪⎝⎭,212a x ⎛⎫+→+∞ ⎪⎝⎭, 从而()f x →+∞,因此()f x 有两个零点. 当0a =时,1()2xf x x e ⎛⎫=-⎪⎝⎭此时()f x 只有一个零点,不符合题意.当2a e=-时,()f x 在R 上单调递增,不可能有两个零点.当0a <<时,()f x 在1ln(2),2a ⎛⎫-- ⎪⎝⎭上单调递减, 在()(),ln 2a -∞-,1,2⎛⎫-+∞ ⎪⎝⎭上单调递增, ()()()()2ln 211ln ln 222ln 22a a a a f e a -⎡⎤⎡⎤⎡⎤=-++⎣⎦⎢⎥⎢⎣⎦⎣--⎥⎦- ()()211ln ln 22222a a a a ⎡⎤⎡⎤=-++⎢⎥⎢⎣⎦⎣--⎥⎦-,其中()22n 01l 2a a ⎡⎤+⎢⎥⎣⎦-<,()n 0221l a -<-,()1ln 0222a a ⎡⎤-<⎢⎥⎣⎦--, 则()2ln 0f a ⎡⎤<⎣⎦-,即函数的极大值小于0, 则()f x 在R 上不可能有两个零点;当2a e<-时,()f x 在1,ln(2)2a ⎛⎫-- ⎪⎝⎭上单调递减,在1,2⎛⎫-∞-⎪⎝⎭,()ln(2)a -∞,+上单调递增,102f ⎛⎫-=< ⎪⎝⎭,即函数的极大值小于0,则()f x 在R 上不可能有两个零点;综上,若()f x 有两个零点,a 的取值范围是()0,∞+. 【点睛】本题考查利用导数研究函数的单调性,利用导数研究函数的零点个数问题,考查分析问题的能力和计算能力,属于中档题.。
2021年全国高考数学模拟试卷(三)(5月份)
2021年全国高考数学模拟试卷(三)(5月份)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|9﹣x2>0},B={x|0<x﹣1≤3},则(∁R A)∩B=()A.(﹣3,4]B.[3,4]C.[﹣3,3)D.(3,4]2.(5分)若复数z满足z﹣iz=3i+4,则|z|=()A.B.C.D.53.(5分)已知点P(,),O为坐标原点,线段OP原点O时针旋转,到达线段OP1,则点P1的坐标为()A.(,)B.(,)C.(,)D.(,)4.(5分)设数列{a n}的前n项和为S n,若a n=,则S99=()A.7B.8C.9D.105.(5分)命题“∀x>2,x2+2>6”的否定()A.∃x≥2,x2+2>6B.∃x≤2,x2+2≤6C.∃x≤2,x2+2>6D.∃x>2,x2+2≤66.(5分)在平面直角坐标系中,四点坐标分别为A(2,0),B(3,2﹣),C(1,2+),D(4,a),若它们都在同一个圆周上,则a的值为()A.0B.1C.2D.7.(5分)《九章算术》是中国古代的一部数学著作,著作中记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱.刍甍字面意思为茅草屋顶”.现有一个刍甍如图所示,四边形ABCD是边长为4的正方形,△ADE与△BCF是等边三角形,EF∥AB,AB=2EF,则该刍甍的外接球的半径为()A.B.C.D.8.(5分)若不等式lnx≤ax+b恒成立,则2a+b的最小值为()A.2B.3C.ln2D.5二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,有选错的得0分,部分选对的得2分。
9.(5分)下列说法正确的是()A.若,,为平面向量,∥,∥,则∥B.若,,为平面向量,⊥,⊥,则∥C.若||=1,||=2,()⊥,则在方向上的投影为﹣D.在△ABC中,M是AB的中点,=3,BN与CM交于点P,=+,则λ=2μ10.(5分)若正实数a,b满足a+b=2,则下列说法正确的是()A.ab的最大值为1B.的最大值为2C.a2+b2的最小值为1D.2a2+b2的最小值为11.(5分)在(x2+x+1)3(x2+)2的展开式中,下列说法正确的是()A.x4的系数为16B.各项系数和为108C.无x5项D.x2的系数为812.(5分)若函数f(x)=,g(x)=xf(x),则下列说法正确的是()A.f(x)为周期函数,无最小正周期B.g(x)为单调函数C.∀x1,x2∈R,∃x3∈R满足g(x3)=成立D.∀x1∈R,∃x2∈R满足g2(x2)=g(x1)三、填空题:本题共4小题,每小题5分,共20分。
金太阳试卷数学高三联考
一、选择题1. 已知函数$f(x) = 2x^3 - 3x^2 + 2x - 1$,则$f'(1)$的值为()A. 2B. 3C. 4D. 5【答案】A解析:$f'(x) = 6x^2 - 6x + 2$,将$x=1$代入得$f'(1) = 6 - 6 + 2 = 2$。
2. 若$a > b > 0$,则下列不等式中正确的是()A. $\frac{1}{a} > \frac{1}{b}$B. $a^2 > b^2$C. $\sqrt{a} > \sqrt{b}$D. $\log_2 a > \log_2 b$【答案】C解析:选项A、B、D均不成立,只有选项C成立,因为平方根函数在$(0,+\infty)$上是增函数。
3. 已知等差数列$\{a_n\}$的前$n$项和为$S_n = 4n^2 - 5n$,则$a_1$的值为()A. 1B. 2C. 3D. 4【答案】A解析:由等差数列前$n$项和公式$S_n = \frac{n(a_1 + a_n)}{2}$,得$a_1 +a_n = 8n - 10$,又$a_n = a_1 + (n - 1)d$,代入得$a_1 + a_1 + (n - 1)d = 8n - 10$,即$2a_1 + (n - 1)d = 8n - 10$。
取$n=1$,得$2a_1 = 8 - 10$,解得$a_1 = -1$。
但题目要求$a_1 > 0$,故排除D选项,选A。
4. 已知函数$f(x) = \frac{1}{x} + \frac{1}{x-1}$,则$f(x)$的极值点为()A. $x=0$B. $x=1$C. $x=2$D. $x=-1$【答案】B解析:函数$f(x)$的定义域为$x \neq 0, 1$。
求导得$f'(x) = -\frac{1}{x^2} + \frac{1}{(x-1)^2}$,令$f'(x) = 0$,得$x=1$。
2021届金太阳8月联考 数学试卷(新高考)
-.-/")%& -.#-!")%&即
+,$)%& *,#+)%&
当(*4 时&/ *%&())(&显 然 正 数( 不 满 足 / *%&()+#/ *(&#()&所 以 (+4&故 / *%&())4!因 为 / + *%&()
#/ *(&#()&所以#+/ *(&#()&即+))#*$在*(&#()上的最大值不大于#&故 (#(+)"!&3&所以")()0!故选 -(!
*!5!解析本题考查正弦定理以及三角恒等变换考查运算求解能力! 因为#"' 成等差数列所以#")#,'则 ") /由正弦定理可知8.9#)8.9":;8',(8.9':;8"易
得()!!所以&"#'
外接圆的半径为#8.(9")槡//从而&"#'
外接圆的面积为槡//#)
/
"分
##$67;)
#$!$;$! (;(;,!
)#$!$;$!"#;"#;,!)#$!$;$!"##;,!&……………………………………………
3分
7<;)#/$#*,#&$#0,.,#$!$;$!"##;,! …………………………………………………………… !%分
)#/*!!$$##$$####$$;))
2021年高三下学期联考(三)试题 数学文 含答案
2021年高三下学期联考(三)试题数学文含答案本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟,注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题纸上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题纸上的指定位置上.2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持纸面清洁,不折叠,不破损.5.若做选考题时,考生应按照题目要求作答,并用2B铅笔在答题纸上把所选题目对应的题号涂黑.第I卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,则实数a的值为A.0 B.1 C.2 D.42.已知复数在夏平面上对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.已知数列的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.对于任意向量a、b、c,下列命题中正确的是5.执行如图所示的程序框图,会输出一列数,则这个数列的第3项是A.870 B.30C.6 D.36.把一根长度为7的铁丝截成3段,如果三段的长度均为正整数,则能构成三角形的概率为7.一几何体的三视图如图所示,若主视图和左视图都是等腰直角三角形,直角边长为1,则该几何体外接球的表面积为8.已知点的最小值是A.-2 B.0 C.-1 D.19.定义行列式运算的图象向左平移个单位,所得图像对应的函数为偶函数,则n的最小值为10.已知两点A(0,2)、B(2,0),若点C在函数的图像上,则使得的面积为2的点C的个数为A.4 B.3 C.2 D.111.函数f(x)的图像如图所示,下列数值排序正确的是12.已知双曲线含的右焦点为F,过F作双曲线C的一条渐近线的垂线,垂足为H,若FH的中点M在双曲线C上,则双曲线C的离心率为第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知数列,归纳出这个数列的通项公式为。
2021届全国天一大联考新高考原创预测试卷(三)数学
2021届全国天一大联考新高考原创预测试卷(三)数学★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0,1,2,3,4,5A =,{}*2,B x x n n N ==∈,则AB =( )A. {}0,2,4B. {}2,4C. {}1,3,5D.{}1,2,3,4,5【答案】B 【解析】 【分析】根据交集定义求解.【详解】因为集合{}0,1,2,3,4,5A =,{}*2,B x x n n N ==∈,所以{2,4}A B ⋂=, 故选:B .【点睛】本题考查集合的交集运算,属于简单题. 2.已知复数5i22iz =+-,则z =( )A. 5 C. 13【答案】B 【解析】 【分析】首先进行除法运算化简z ,再求模即可.【详解】因为5i 5(2)2212i 2i 5i i z +=+=+=+-,所以z =. 故选:B【点睛】本题考查复数的基本运算,复数的模,属于基础题. 3.已知非零向量a ,b 给定:p R λ∃∈,使得λa b ,:q a b a b +=+,则p 是q 的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B 【解析】 【分析】分析各个命题中向量a ,b 的关系,然后根据充分必要条件的定义确定. 【详解】:p R λ∃∈,使得λab ,则a ,b 共线,:q a b a b +=+等价于a ,b 同向,因此p 是q 的必要不充分条件. 故选:B .【点睛】本题考查充分必要条件的的判断,考查向量的共线定理及向量模的性质.判断充分必要条件时可以对两个命题分别进行化简,得出其等价的结论、范围,然后再根据充分必要条件的定义判断即可.4.若21tan 5722sincos 1212tan2αππα-=,则tan α=( )A. 4B. 3C. 4-D. 3-【答案】C 【解析】 【分析】利用二倍角的正弦和正切公式可求出tan α的值. 【详解】575555512sincos 2sin cos 2sin cos sin 12121212121262ππππππππ⎛⎫=-=-=-=- ⎪⎝⎭, 2221tan 1tan 222tan tan 2tan 22ααααα⎛⎫-- ⎪⎝⎭==,由题意可得21tan 2α=-,因此,tan 4α=-. 故选:C.【点睛】本题考查利用二倍角公式求值,考查计算能力,属于中等题.5.已知双曲线()2222100x y a b ab-=>,>的一条渐近线过点(2,﹣1),则它的离心率是( )A.B.C.D. 【答案】A 【解析】 【分析】由点(2,﹣1)在双曲线的渐近线y b a =-x 上,得到a =2b ,再根据e ==解.【详解】因为(2,﹣1)在双曲线的渐近线y ba=-x 上, 所以a =2b ,即a 2=4b 2,所以e 2===, 故选:A .【点睛】本题主要考查双曲线的几何性质,还考查了运算求解的能力,属于基础题. 6.已知集合571113,,,,66666A πππππ⎧⎫=⎨⎬⎩⎭,从A 中任选两个角,其正弦值相等的概率是( ) A.110 B.25C.35D.310【答案】B 【解析】 【分析】 由题意可得5131sinsinsin 6662πππ===,7111sin sin 662ππ==-,列举出所有的基本事件,并列举出事件“从A 中任选两个角,其正弦值相等”所包含的基本事件,利用古典概型的概率公式可求出所求事件的概率. 【详解】由题意可得5131sinsinsin 6662πππ===,7111sin sin 662ππ==-, 从A 中任选两个角,所有的基本事件有:5,66ππ⎛⎫⎪⎝⎭、7,66ππ⎛⎫ ⎪⎝⎭、11,66ππ⎛⎫ ⎪⎝⎭、13,66ππ⎛⎫ ⎪⎝⎭、57,66ππ⎛⎫ ⎪⎝⎭、65611,ππ⎛⎫ ⎪⎝⎭、513,66ππ⎛⎫ ⎪⎝⎭、711,66ππ⎛⎫ ⎪⎝⎭、713,66ππ⎛⎫ ⎪⎝⎭、1113,66ππ⎛⎫⎪⎝⎭,共10种情况.其中,事件“从A 中任选两个角,其正弦值相等”包含的基本事件有:5,66ππ⎛⎫⎪⎝⎭、13,66ππ⎛⎫ ⎪⎝⎭、513,66ππ⎛⎫ ⎪⎝⎭、711,66ππ⎛⎫⎪⎝⎭,共4个,因此,从A 中任选两个角,其正弦值相等的概率为42105=. 故选:B【点睛】本题考查古典概型概率的计算,考查计算能力,属于中等题.7.近五年来某草场羊只数量与草场植被指数两变量间的关系如表所示,绘制相应的散点图,如图所示:年份 1 2 3 4 5 羊只数量(万只) 1.4 0.9 0.75 0.6 0.3草地植被指数 1.1 4.3 15.6 31.3 49.7根据表及图得到以下判断:①羊只数量与草场植被指数成减函数关系;②若利用这五组数据得到的两变量间的相关系数为1r ,去掉第一年数据后得到的相关系数为2r ,则12r r <;③可以利用回归直线方程,准确地得到当羊只数量为2万只时的草场植被指数;以上判断中正确的个数是( ) A. 0 B. 1C. 2D. 3【答案】B 【解析】 【分析】根据两组数据的相关性,对题中三个命题分别判断即可.【详解】对于①,羊只数量与草场植被指数成负相关关系,不是减函数关系,∴①错误; 对于②,用这五组数据得到两变量间的相关系数为1r ,∵第一组数据(1,4,1,1)是离群值,去掉后得到的相关系数为2r ,其相关性更强,∴12r r <,②正确;对于③,利用回归直线方程,不能准确地得到当羊只数量为2万只时的草场植被指数,只是预测值,∴③错误;综上可知正确命题个数是1. 故选:B .【点睛】本题考查了数据分析与线性相关性的判断问题,属于基础题.8.已知函数()lnf x =,且()0.20.2a f =,()3log 4b f =,13log 3c f ⎛⎫= ⎪⎝⎭,则a 、b 、c 的大小关系为( )A. a b c >>B. c a b >>C. c b a >>D.b c a >>【答案】D 【解析】 【分析】分析出函数()y f x =是偶函数,且在[)0,+∞上为增函数,利用偶函数的性质可得()1c f =,利用指数函数和对数函数的单调性结合中间值法比较0.20.2、1、3log 4的大小关系,利用函数()y f x =在[)0,+∞上的单调性可得出a 、b 、c 的大小关系.【详解】函数()lnf x =的定义域为R ,且()()21lnln 12f x x ==+,()()()()2211ln 1ln 122f x x x f x ⎡⎤-=-+=+=⎣⎦,函数()y f x =为偶函数,()()13log 311c f f f ⎛⎫∴==-= ⎪⎝⎭,由于函数21u x =+在[)0,+∞上为增函数,函数ln y u =为增函数,所以,函数()lnf x =在[)0,+∞上为增函数,0.203300.20.21log 3log 4<<==<,因此,a c b <<.故选:D.【点睛】本题考查利用函数的单调性与奇偶性比较函数值的大小关系,考查分析问题和解决问题的能力,属于中等题.9.已知圆锥的顶点为A ,高和底面的半径相等,BE 是底面圆的一条直径,点D 为底面圆周上的一点,且∠ABD =60°,则异面直线AB 与DE 所成角的正弦值为( )A.B.C.D.13【答案】A 【解析】【分析】根据圆锥高和底面的半径相等,且点D 为底面圆周上的一点,∠ABD =60,可知D 为BE 的中点,则以底面中心为原点,分别以OD ,OE ,OA 为x ,y ,z 轴,建立空间直角坐标系,不妨设底面半径为1,求得向量AB ,DE 的坐标,代入公式cos AB <,AB DE DE AB DE⋅=⋅>求解.【详解】因为高和底面的半径相等,∴OE =OB =OA ,OA ⊥底面DEB.∵点D 为底面圆周上的一点,且∠ABD =60°, ∴AB =AD =DB ; ∴D 为BE 的中点建立如图所示空间直角坐标系,不妨设OB =1则O (0,0,0),B (0,﹣1,0),D (1,0,0),A (0,0,1),E (0,1,0), ∴AB =(0,﹣1,﹣1),DE =(﹣1,1,0),∴cos AB <,12AB DEDE AB DE⋅==⋅>, ∴异面直线AM 与PB 所成角的大小为3π.∴异面直线AB 与DE 故选:A .【点睛】本题主要考查圆锥的几何特征和向量法求异面直线所成的角,还考查了推理论证和运算求解的能力,属于中档题.10.已知函数()()sin sin cos f x x x x ωωω=+(0>ω),若函数()f x 的图象与直线1y =在()0,π上有3个不同的交点,则ω的取值范围是( )A. 13,24⎛⎤⎥⎝⎦B. 15,24⎛⎤⎥⎝⎦ C. 53,42⎛⎤⎥⎝⎦D. 55,42⎛⎤⎥⎝⎦【答案】C 【解析】 【分析】利用二倍角公式化简所给函数解析式,则题意等价于方程sin 242x πω⎛⎫-= ⎪⎝⎭在()0,π上有3个实根,利用正弦函数的图象与性质即可求得ω的范围. 【详解】()()1cos 211sin sin cos sin 2222242x f x x x x x x ωπωωωωω-⎛⎫=+=+=-+ ⎪⎝⎭,()f x 的图象与直线1y =在()0,π上有3个不同交点,即方程sin 242x πω⎛⎫-= ⎪⎝⎭在()0,π上有3个实根, 由()0,x π∈得2,2444x πππωωπ⎛⎫-∈-- ⎪⎝⎭,所以9112444πππωπ<-≤,解得5342ω<≤. 故选:C【点睛】本题考查二倍角公式,逆用两角和与差的公式进行化简,正弦函数的图象与性质,属于中档题.11.已知点()4,2M --,抛物线24x y =,F 为抛物线的焦点,l 为抛物线的准线,P 为抛物线上一点,过P 作PQ l ⊥,点Q 为垂足,过P 作FQ 的垂线1l ,1l 与l 交于点R ,则QR MR+的最小值为( ) A. 125+ B. 25C. 17D. 5【答案】D 【解析】 【分析】作出图形,推导出直线1l 为线段FQ 的垂直平分线,利用中垂线的定义可得RQ FR =,进而可得出QR MR FR MR +=+,利用F 、R 、M 三点共线可求得QR MR +的最小值. 【详解】根据抛物线定义得PF PQ =,1l FQ ⊥,则1l 为FQ 的垂直平分线,FR RQ ∴=,()224125QR MR FR MR FM ∴+=+≥=++=.故选:D.【点睛】本题考查抛物线中折线段长度之和最小值的求解,考查抛物线定义的应用,考查数形结合思想的应用,属于中等题.12.已知定义在R 上的函数()f x ,()f x '是()f x 的导函数,且满足()()2xxf x f x x e '-=,()1f e =,则()f x 的最小值为( )A. e -B. eC.1eD. 1e-【答案】D 【解析】 【分析】将题干中的等式变形为()()2x xf x f x e x -=',可得出()xf x e x '⎡⎤=⎢⎥⎣⎦,并构造函数()()f x F x x=,可得出()x f x e c x=+,进而可得出()xf x xe cx =+,利用()1f e =求得c的值,可得出函数()y f x =的解析式,进而利用导数可求得函数()y f x =的最小值. 【详解】由()()2xxf x f x x e -=',变形得()()2x xf x f x e x -=',即()xf x e x '⎡⎤=⎢⎥⎣⎦,()x f x e c x∴=+(c 为常数),则()xf x xe cx =+,()1f e c e =+=,得0c . ()x f x xe ∴=,()()1x f x x e ∴=+',当1x <-时,()0f x '<,此时函数()y f x =单调递减; 当1x >-时,()0f x '>,此时函数()y f x =单调递增.所以,函数()y f x =在1x =-处取得极小值,亦即最小值,则()()min 11f x f e=-=-. 故选:D.【点睛】本题考查利用导数求解函数的最值问题,利用导数等式的结构构造新函数是解答的关键,考查计算能力,属于中等题.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分,共20分.13.已知函数()21211x x f x x x ⎧<=⎨+≥⎩,,,则232f f log ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭_____. 【答案】4 【解析】 【分析】根据分段函数()21211x x f x x x ⎧<=⎨+≥⎩,,的定义域,先求232f log ⎛⎫ ⎪⎝⎭,再求232f f log ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值. 【详解】∵函数()21211x x f x x x ⎧<=⎨+≥⎩,,,且23log 12<,∴232f log ⎛⎫ ⎪⎝⎭232322log ==,∴232f f log ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭f (32)=23142⨯+=. .故答案为:4.【点睛】本题主要考查分段函数求函数值,还考查了运算求解的能力,属于基础题.14.已知向量a →,b →满足b →=,向量a →,b →夹角为120︒,且a b b →→→⎛⎫+⊥ ⎪⎝⎭,则向量a b →→+=________.【解析】 【分析】由垂直得数量积为0,从而得a b ⋅,得a ,然后把模的运算转化为数量积运算即得.【详解】由a b b →→→⎛⎫+⊥ ⎪⎝⎭得2()0a b b a b b +⋅=⋅+=,2a b ⋅=-,即cos1202a b ︒=-,22a =,a b→→+=222(2a ab b =+⋅+==..【点睛】本题考查求向量的模,解题关键是掌握向量的垂直、模与数量积的关系. 15.在ABC ∆中,内角A ,B ,C 的对边分别是a ,b ,c ,且222c a b =+,8a =,1sin 23A =,则c =_______. 【答案】9【分析】已知由余弦定理即可求得4C π,由1sin23A =可求得22cos 23A =,即可求得sin A ,利用正弦定理即可求得结果.【详解】由余弦定理2222cos c a b ab C =+-和2222c a b ab =+-,可得2cos 2C =,得2sin 2C =,由1sin 23A =,22cos 23A =,42sin 2sin cos 229A A A ∴==,由正弦定理sin sin a cA C=,得9c =. 故答案为:9.【点睛】本题考查正余弦定理在解三角形中的应用,难度一般.16.大自然是非常奇妙的,比如蜜蜂建造的蜂房.蜂房的结构如图所示,开口为正六边形ABCDEF ,侧棱AA '、BB '、CC '、DD '、EE '、FF '相互平行且与平面ABCDEF 垂直,蜂房底部由三个全等的菱形构成.瑞士数学家克尼格利用微积分的方法证明了蜂房的这种结构是在相同容积下所用材料最省的,因此,有人说蜜蜂比人类更明白如何用数学方法设计自己的家园.英国数学家麦克劳林通过计算得到∠B ′C ′D ′=109°28′16''.已知一个房中BB '=53,AB =26,tan 54°44′08''2=,则此蜂房的表面积是_____.【答案】2 【解析】表面积分两部分来求,一是底面,是三个全等的菱形,连接BD,B′D′,易得BD∥B′D′,BD =B′D′=62,再根据∠B′C′D′=109°28′16'',tan54°44′08''2=,得到OC′,B′C′,可计算菱形的面积,二是侧面,是六个全等的直角梯形,由B′C′,结合BB′,BC,得到CC′,求得梯形的面积,然后两部分相加即可.【详解】如图所示:连接BD,B′D′,则由题意BD∥B′D′,BD=B′D′=2,∵四边形OB′C′D′为菱形,∠B′C′D′=109°28′16'',tan54°44′08''2=∴OC′=21''25444'08B Dtan⋅=︒"2322=6,B′C′=3,∴CC′=BB′22''BC BC--=3∴S梯形BB′CC′(2653432==2,∴S表面积=62⨯316622⨯⨯⨯=2.故答案为:2.【点睛】本题主要考查空间几何体的结构特征和表面积的求法,还考查了空间想象和运算求解的能力,属于中档题.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在等差数列{}n a中,18a=-,243a a=.(Ⅰ)求数列{}n a的通项公式;(Ⅱ)设()()*412n n b n N n a =∈+,n T 为数列{}n b 的前n 项和,若95n T =,求n 的值. 【答案】(Ⅰ)210n a n =-;(Ⅱ)9n =. 【解析】 【分析】(Ⅰ)设等差数列{}n a 的公差是d ,根据题中条件求出d 的值,利用等差数列的通项公式可求得数列{}n a 的通项公式; (Ⅱ)求得1121n b n n ⎛⎫=- ⎪+⎝⎭,利用裂项相消法可求得n T ,然后解方程95n T =,可求得正整数n 的值.【详解】(Ⅰ)设等差数列{}n a 的公差是d ,由18a =-,243a a =,得()8338d d -=-,解得2d =.因此,()11210n a a n d n =+-=-; (Ⅱ)设()()4411212221n n b n a n n n n ⎛⎫===- ⎪+++⎝⎭,11111121222122311n T n n n ⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-++-=- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭,令95n T =,即192115n ⎛⎫-= ⎪+⎝⎭,得到9n =.【点睛】本题考查等差数列通项公式的求解,同时也考查了裂项求和法,考查计算能力,属于基础题.18.如图,在四棱锥P ABCD -中,底前ABCD 为平行四边形,点P 在面ABCD 内的射影为A ,1==PA AB ,点A 到平面PBC AC 与PB 垂直.(Ⅰ)在棱PD 找点E ,使直线PB 与平面ACE 平行,并说明理由; (Ⅱ)在(Ⅰ)的条件下,求三棱锥-P EAC 的体积.【答案】(Ⅰ)点E 为PD 中点时,直线PB 与面ACE 平行,理由见解析;(Ⅱ)112. 【解析】 【分析】(Ⅰ)取PD 的中点E ,连接OE ,利用中位线的性质证得//OE PB ,进而可证得//PB 平面ACE ,由此可得出结论;(Ⅱ)推导出AC ⊥平面PAB ,由E 为PD 的中点,可得出12P ACE P ACD V V --=,进而可求得三棱锥-P EAC 的体积.【详解】(Ⅰ)点E 为PD 中点时直线PB 与面ACE 平行. 连接BD ,交AC 点O ,则点O 为BD 的中点,因为点E 为PD 中点,故OE 为PBD △的中位线,则//OE PB ,OE ⊂平面ACE ,PB ⊄平面ACE ,所以,//PB 平面ACE ;(Ⅱ)根据题意AC PB ⊥,PA ⊥底面ABCD ,AC ⊂底面ABCD ,则有AC PA ⊥,PA PB P =,所以AC ⊥平面PAB ,则AC AB ⊥,设AC x =,211111311232322P ACB A PBC V V x x --==⨯⨯⨯⨯=⨯+,得1AC =, 则11111111223212P EAC P ACD V V --==⨯⨯⨯⨯⨯=. 【点睛】本题考查线面平行判断,同时也考查了利用等体积法求三棱锥的体积,考查推理能力与计算能力,属于中等题.19.甘肃省是土地荒漠化较为严重的省份,一代代治沙人为了固沙、治沙,改善生态环境,不断地进行研究与实践,实现了沙退人进.2019年,古浪县八步沙林场“六老汉”三代人治沙群体作为优秀代表,被中宣部授予“时代楷模”称号.在治沙过程中为检测某种固沙方法的效果,治沙人在某一实验沙丘的坡顶和坡腰各布设了50个风蚀插钎,以测量风蚀值.(风蚀值是测量固沙效果的指标之一,数值越小表示该插钎处被风吹走的沙层厚度越小,说明固沙效果越好,数值为0表示该插钎处没有被风蚀)通过一段时间的观测,治沙人记录了坡顶和坡腰全部插钎测得的风蚀值(所测数据均不为整数),并绘制了相应的频率分布直方图.(Ⅰ)根据直方图估计“坡腰处一个插钎风蚀值小于30”的概率;(Ⅱ)若一个插钎的风蚀值小于30,则该数据要标记“*”,否则不标记根据以上直方图,完成列联表:标记不标记合计坡腰坡顶合计并判断是否有95%的把握认为数据标记“*”与沙丘上插钎所布设的位置有关?附:()()()()()22n ad bcKa b c d a c b d-=++++.()2P K k≥0.0500.0100.001【答案】(Ⅰ)0.6;(Ⅱ)列联表见解析,有95%的把握认为数据标记“*”与沙丘上插钎所布设的位置有关.【解析】【分析】(Ⅰ)根据频率分布直方图可估计“坡腰处一个插钎风蚀值小于30”的概率;(Ⅱ)根据两幅频率分布直方图完善22⨯列联表,并根据列联表计算出2K的观测值,结合临界值表可得出结论.【详解】(Ⅰ)设“坡腰处一个插钎风蚀值小于30”为事件C,()0.80.160.360.6P C=++=;(Ⅱ)完成列联表如下:根据列联表,计算得:()22100303020204 3.84150505050K⨯⨯-⨯==>⨯⨯⨯.所以有95%的把握认为,数据标记“*”与沙丘上插钎所布设的位置有关.【点睛】本题考查利用频率分布直方图估计概率,同时也考查了独立性检验思想的应用,考查数据处理能力,属于基础题.20.已知点F为椭圆22221x ya b+=(a>b>0)的一个焦点,点A为椭圆的右顶点,点B为椭圆的下顶点,椭圆上任意一点到点F距离的最大值为3,最小值为1. (1)求椭圆的标准方程;(2)若M 、N 在椭圆上但不在坐标轴上,且直线AM ∥直线BN ,直线AN 、BM 的斜率分别为k 1和k 2,求证:k 1•k 2=e 2﹣1(e 为椭圆的离心率).【答案】(1)22143x y +=(2)证明见解析【解析】 【分析】(1)根据椭圆上任意一点到点F 距离的最大值为3,最小值为1,则有31a c a c +=⎧⎨-=⎩求解.(2)由(1)可知,A (2,0),B (0,,分别设直线AM 的方程为y =k (x ﹣2),直线BN 的方程为y =kx M ,N 的坐标,再利用斜率公式代入k 1•k 2求解.【详解】(1)由题意可知,31a c a c +=⎧⎨-=⎩,解得21a c =⎧⎨=⎩,∴b 2=a 2﹣c 2=3,∴椭圆的标准方程为:22143x y +=;(2)由(1)可知,A (2,0),B (0,), 设直线AM 的斜率为k ,则直线BN 的斜率也为k ,故直线AM 的方程为y =k (x ﹣2),直线BN 的方程为y =kx ,由()2234122x y y k x ⎧+=⎪⎨=-⎪⎩得:(3+4k 2)x 2﹣16k 2x +16k 2﹣12=0, ∴221612234M k x k -=+,∴228634Mk x k -=+,21234M k y k -=+, ∴22286123434k M k k ⎛⎫-- ⎪++⎝⎭,,由223412x y y kx ⎧+=⎪⎨=⎪⎩得:()22340k x +-=,∴N x =,N y =,∴2223434N k k ⎛⎫- ⎪ ⎪++⎝⎭,,∴2124334k k k-==+)()2222221243348624334kk k k k k k --++==--+,∴k 1k2243k-=•)()224334243k k -+=--,又∵12c e a ==, ∴k 1•k 2=e 2﹣1.【点睛】本题主要考查椭圆方程的求法和直线与椭圆的位置关系,还考查了运算求解的能力,属于中档题.21.已知函数()211ln 22f x a x x =--+(a ∈R 且0a ≠). (Ⅰ)当a =()y f x =在点()()1,1f 处的切线方程; (Ⅱ)若0a >,讨论函数()f x 的单调性与单调区间;(Ⅲ)若()y f x =有两个极值点1x 、2x ,证明:()()129ln f x f x a +<-. 【答案】(Ⅰ)10x y +-=;(Ⅱ)详见解析;(Ⅲ)证明见解析. 【解析】 【分析】(Ⅰ)求出()1f 和()1f '的值,利用点斜式可得出所求切线的方程;(Ⅱ)求得()2x af x x-+-'=,由20x a -+-=,分>0∆和0∆≤两种情况讨论,分析()f x '的符号变化,可得出函数()y f x =的单调递增区间和递减区间;(Ⅲ)由题意可知,方程()0f x '=有两正根1x 、2x ,利用韦达定理得出12x x +=12x x a =且()0,3a ∈,将所证不等式转化为ln ln 20a a a a --+>,构造函数()ln ln 2x x g x x x =--+,利用导数证明出当()0,3x ∈时,()0g x >即可.【详解】由题可知:函数()f x 的定义域为()0,∞+(Ⅰ)因为a =()21122f x x x =--+,所以()f x x x'=-,那么()11f '=-,()1f =所以曲线()y f x =在()()1,1f 处的切线方程为:()1y x -=--,即10x y +-=;(Ⅱ)因为()a f x x x '=-=,由20x a -+-=可得:①当1240a ∆=->,()0,3a ∈,时,有1x =2x =120x x >>,()20,x x ∈和()1,x x ∈+∞时()0f x '<,即函数()y f x =在(和)+∞上为减函数;()21,x x x ∈时,()0f x '>,即函数()y f x =在上增函数;②当3a ≥时,0∆≤,()0f x '≤恒成立,所以函数()y f x =在()0,∞+为减函数. 综上可知:当0<<3a 时,函数()y f x =在(和)+∞上为减函数,在上为增函数;当3a ≥时,函数()y f x =在(0,)+∞上为减函数; (Ⅲ)因为()y f x =有两个极值点1x 、2x ,则()0f x '==有两个正根1x 、2x ,则有1240a ∆=->,且12x x +=120x x a =>,即()0,3a ∈,所以()())()()22121212121ln 1ln 72f x f x x x a x x x x a a a +=+--++=-++ 若要()()129ln f x f x a +<-,即要ln ln 20a a a a --+>, 构造函数()ln ln 2x x g x x x =--+,则()1ln g x x x'=-,易知()y g x '=在()0,3上为增函数,且()110g '=-<,()12ln 202g '=->, 所以存在()01,2x ∈使()00g x '=即001ln x x =, 且当()01,x x ∈时()0g x '<,函数()y g x =单调递减; 当()0,2x x ∈时,()0g x '>,函数()y g x =单调递增.所以函数()y g x =在()1,2上有最小值为()00000001ln ln 23g x x x x x x x ⎛⎫=-++=-+⎪⎝⎭, 又因为()01,2x ∈则00152,2x x ⎛⎫+∈ ⎪⎝⎭,所以()00g x >在()01,2x ∈上恒成立, 即()()129ln f x f x a +<-成立.【点睛】本题考查利用导数求函数的切线方程、利用导数求解含参函数的单调区间以及利用导数证明不等式,考查分析问题和解决问题的能力,属于中等题.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分. 【选修4-4:坐标系与参数方程】22.在平面直角坐标系xOy 中,直线l的参数方程为122x y ⎧=--⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为4πρα⎛⎫=+ ⎪⎝⎭,曲线C 2的直角坐标方程为y =(1)若直线l 与曲线C 1交于M 、N 两点,求线段MN 的长度;(2)若直线l 与x 轴,y 轴分别交于A 、B 两点,点P 在曲线C 2上,求AB AP ⋅的取值范围.【答案】(1(2)11AB AP ⎡⎤⋅∈-⎣⎦,【解析】 【分析】(1)将直线l 的参数方程消去参数,得到直角坐标方程,将圆C 1的极坐标方程,转化为直角坐标方程,然后利用“r ,d ”法求弦长.(2)将曲线C 2的直角坐标方程转换为参数方程为22x cos y sin θθ=⎧⎨=⎩(0≤θ≤π),由A (1,0),B (0,1),P (2cosθ,2sinθ),得到AB ,AP 的坐标,再利用数量积公式得到AB AP⋅14πθ⎛⎫=-+ ⎪⎝⎭,然后用正弦函数的性质求解. 【详解】(1)直线l的参数方程为12x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),消去参数,得直角坐标方程为x +y ﹣1=0,因为曲线C 1的极坐标方程为4πρα⎛⎫=+ ⎪⎝⎭, 所以222sin cos ρραρα=-所以直角坐标方程为x 2+y 2﹣2x +2y =0, 标准式方程为(x ﹣1)2+(y +1)2=2, 所以圆心(1,﹣1)到直线x +y ﹣1=0的距离d 2==, 所以弦长|MN |==(2)因为曲线C 2的直角坐标方程为y =所以x 2+y 2=40y ≥,转换为参数方程为22x cos y sin θθ=⎧⎨=⎩(0≤θ≤π).因为A (1,0),B (0,1),点P 在曲线C 2上,故P (2cosθ,2sinθ),所以()11AB =-,,()212AP cos sin θθ=-,,(0≤θ≤π), 所以AB AP ⋅=122cos sin θθ=-+14πθ⎛⎫=-+ ⎪⎝⎭, 因为30,444πππθπθ≤≤-≤-≤所以14sin πθ⎛⎫≤-≤ ⎪⎝⎭,所以11AB AP ⎡⎤⋅∈-⎣⎦,.【点睛】本题主要考查参数方程,极坐标方程,直角坐标方程的转化,直线与圆的位置关系以及三角函数与平面向量,还考查了转化化归的思想和运算求解的能力,属于中档题.【选修4-5:不等式选讲】23.已知函数f (x )=|x ﹣1|+|2x +2|,g (x )=|x +2|﹣|x ﹣2a |+a . (1)求不等式f (x )>4的解集;(2)对∀x 1∈R ,∃x 2∈R ,使得f (x 1)≥g (x 2)成立,求a 的取值范围.【答案】(1)()513∞∞⎛⎫--⋃+ ⎪⎝⎭,,(2)[﹣4,0] 【解析】 【分析】(1)根据绝对值的几何意义,去掉绝对值()311311311x x f x x x x x --≤-⎧⎪=+-<<⎨⎪+≥⎩,,,,再分类解不等式f (x )>4.(2)根据对∀x 1∈R ,∃x 2∈R ,使得f (x 1)≥g (x 2)成立,则f (x )min ≥g (x )min ,由(1)知, f (x )min =2,g (x )=|x +2|+|x ﹣2a |+a ≥|(x +2)﹣(x ﹣2a )|+a =|2a +2|+a ,解不等式2≥|2a +2|+a 即可.【详解】(1)因为()311311311x x f x x x x x --≤-⎧⎪=+-⎨⎪+≥⎩,,<<,,所以f (x )>4即为1314x x ≤-⎧⎨--⎩>或1134x x -⎧⎨+⎩<<>或1314x x ≥⎧⎨+⎩>,解得53x -<或x >1,所以不等式的解集为()513∞∞⎛⎫--⋃+ ⎪⎝⎭,,; (2)由(1)知,当x =﹣1时,f (x )min =2,g (x )=|x +2|+|x ﹣2a |+a ≥|(x +2)﹣(x ﹣2a )|+a =|2a +2|+a ,由题意,对∀x 1∈R ,∃x 2∈R ,使得f (x 1)≥g (x 2)成立, 故f (x )min ≥g (x )min , 即2≥|2a +2|+a ,所以2222a a a -≤+≤- 解得﹣4≤a ≤0,所以实数a 的取值范围为[﹣4,0].【点睛】本题主要考查绝对值不等式的解法和绝对值不等式恒成立问题,还考查了转化化归的思想和运算求解的能力,属于中档题.。
2021届全国金太阳联考新高考模拟试卷(三)数学理科试卷
2021届全国金太阳联考新高考模拟试卷(三)数学试卷(理科)★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题1.已知{}1A x Z x =∈>-,集合{}2log 2B x x =<,则A B =( )A. {}14x x -<< B. {}04x x <<C. {}0,1,2,3D. {}1,2,3【答案】D 【解析】 【分析】先求解集合B 再求AB 即可.【详解】{}04B x x =<<,∵{}1A x Z x =∈>-,∴{}1,2,3A B =,故选:D.【点睛】本题主要考查了对数的不等式求解以及交集的运算,属于基础题.2.设复数1z bi =+(b R ∈)且234z i =-+,则z 的共轭复数z 的虚部为( ) A. 2-B. 2i -C. 2D. 2i【答案】A 【解析】 【分析】利用复数的运算法则、复数相等、虚部的定义即可得出. 【详解】z 2=﹣3+4i ,∴(1+bi )2=﹣3+4i ,1﹣b 2+2bi=﹣3+4i , ∴1﹣b 2=﹣3,2b=4, 解得b=2.则z =1﹣2i 的虚部为﹣2. 故选A .【点睛】本题考查了复数的运算法则、复数相等、虚部的定义,考查了推理能力与计算能力,属于基础题.3.在等比数列{}n a 中,11a =,6835127a a a a +=+,则6a 的值为( )A.127B.181 C.1243D.1729【答案】C 【解析】 【分析】根据等比数列各项之间的关系化简6835127a a a a +=+求得13q =,再根据561a a q =⋅求解即可.【详解】设等比数列{}n a 公比为q ,则()335368353511273a a q a a q q a a a a ++===⇒=++,所以5611243a a q =⋅=. 故选:C.【点睛】本题主要考查了等比数列各项之间的关系,属于基础题. 4.如图的框图中,若输入1516x =,则输出的i 的值为( )A. 3B. 4C. 5D. 6【答案】B 【解析】 【分析】根据程序框图逐步计算即可. 【详解】输入1516x =,0i =,进入循环体: 15721168x =⨯-=,011i =+=,0x =判定为否; 732184x =⨯-=,112i =+=,0x =判定为否;312142x =⨯-=,213i =+=,0x =判定为否;12102x =⨯-=,314i =+=,0x =判定为是;输出4i =. 故选:B【点睛】本题主要考查了根据程序框图的输入结果计算输出结果问题,属于基础题. 5.已知3log 0.8a =,0.83b =, 2.10.3c =,则( ) A. a ab c << B. ac b c <<C. ab a c <<D. c ac b <<【答案】C 【解析】 【分析】先判断,,a b c 的大致范围,再根据不等式的性质逐个判断即可.【详解】33log 0.8log 10a =<=,0.80331b =>=,()2.10.30,0.3c =∈,故0a <,1b >,01c <<. 对A,若()10a ab a b <⇒-<,不成立.故A 错误. 对B,因为1c b <<,故B 错误. 对C, ab a c <<成立.对D, 因为0ac c <<,故D 错误. 故选;C 【点睛】本题主要考查了指对幂函数的大小判定以及不等式的性质.需要根据题意确定各数的范围,再逐个推导.属于基础题.6.已知某函数的图像如图所示,则下列函数中,图像最契合的函数是( )A. ()sin x xy e e -=+B. ()sin x xy e e-=-C. ()cos x xy e e -=-D. ()cos x xy e e -=+【答案】D 【解析】 【分析】根据0x =时的函数值,即可选择判断. 【详解】由图可知,当0x =时,0y <当0x =时,()sin x xy e e -=+20sin =>,故排除A ;当0x =时,()sin x xy e e-=-00sin ==,故排除B ;当0x =时,()cos x x y e e -=-010cos ==>,故排除C ;当0x =时,()cos x x y e e -=+20cos =<,满足题意.故选:D.【点睛】本题考查函数图像的选择,涉及正余弦值的正负,属基础题.7.《算数书》竹简于上世纪八十年代出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136v L h ≈.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式23112v L h ≈相当于将圆锥体积公式中的π近似取为( )A.227B.258C.289D.8227【答案】C 【解析】 【分析】设圆锥底面半径为r ,根据圆锥的底面周长L 求得2L r π=,再代入体积公式得212L h v π=,再对照23112v L h ≈求解即可.【详解】设圆锥底面半径为r ,则22L r L r ππ=⇒=,所以22213283121129L h v r h L h πππ==≈⇒≈.故选:C.【点睛】本题主要考查了圆锥底面周长与体积等的计算.属于基础题. 8.已知函数()f x 是定义在R 上的奇函数,()1f x +是偶函数,且当(]0,1x ∈时,()32x f x =-,则()()20192020f f +=( )A. 1-B. 0C. 1D. 2【答案】A 【解析】 【分析】根据函数的奇偶性与对称性可得()f x 最小正周期4T =,再利用函数的性质将自变量转换到(]0,1x ∈求解即可.【详解】∵()()f x f x -=-,()()11f x f x -+=+,∴()()2()f x f x f x +=-=-, ∴()()()42f x f x f x +=-+=, ∴最小正周期4T=,又()00f =,∴()()()()201950541111f f f f =⨯-=-=-=-,()()()2020505400f f f =⨯==,∴()()201920201f f +=-,故选:A.【点睛】本题主要考查了根据函数性质求解函数值的问题,需要根据奇偶性推出函数的对称性,再将自变量利用性质转换到已知函数解析式的区间上求解.属于中档题.9.甲乙两运动员进行乒乓球比赛,采用7局4胜制.在一局比赛中,先得11分的运动员为胜方,但打到10平以后,先多得2分者为胜方.在10平后,双方实行轮换发球法,每人每次只发1个球.若在某局比赛中,甲发球赢球的概率为12,甲接发球贏球的概率为25,则在比分为10:10后甲先发球的情况下,甲以13:11赢下此局的概率为( ) A.225B. 310C. 110D.325【答案】C 【解析】 【分析】分后四球胜方依次为甲乙甲甲,与乙甲甲甲两种情况进行求解即可. 【详解】分两种情况:①后四球胜方依次为甲乙甲甲,概率为113123252550P =⋅⋅⋅=; ②后四球胜方依次为乙甲甲甲,概率为212121252525P =⋅⋅⋅=. 所以,所求事件概率为:12110P P +=. 故选:C.【点睛】本题主要考查了分步与分类计数求解概率的问题,需要根据题意判断出两种情况再分别求解,属于基础题.10.已知()1,0A x ,()2,0B x 两点是函数()2sin()1(0,(0,))f x x ωϕωϕπ=++>∈与x 轴的两个交点,且满足12min3x x π-=,现将函数()f x 的图像向左平移6π个单位,得到的新函数图像关于y 轴对称,则ϕ的可能取值为( ) A.6π B.3π C.23π D.56π 【答案】A 【解析】 【分析】 根据12min3x x π-=,即可求得ω,再根据平移后函数为偶函数,即可求得ϕ.【详解】令()2sin 10x ωϕ++=,解得()1sin 2x ωϕ+=-, 因为12min3x x π-=,故令21x x >,并取12711,66x x ππωϕωϕ+=+=,则()2123x x πω-=,即可求得2ω=. 此时()()2sin 21f x x ϕ=++,向左平移6π个单位得到2sin 213y x πϕ⎛⎫=+++ ⎪⎝⎭, 若其为偶函数,则2,32k k Z ππϕπ+=+∈,解得26k πϕπ=+.当0k =时,6π=ϕ. 故选:A .【点睛】本题考查由三角函数的性质求参数值,属综合中档题.11.已知直线2x a =与双曲线()2222:10,0x y C a b a b-=>>的一条渐近线交于点P ,双曲线C 的左,右焦点分别为12,F F ,且211cos 4PF F ∠=-,则双曲线C 的渐近线方程为( ) A. 15y x =±B. 315y x =±C. 215y x =±D. 15y x =±或315y =±【答案】B 【解析】【详解】设直线2x a =与x 轴交点为()2,0Q a ,由题可知()2,2P a b ,()1,0F c -,()2,0F c , ∵211cos 4PF F ∠=-,故2a c >,即12e << 且21cos 4PF Q ∠=. 故22F Q a c =-,)2241152PQ F Q a c =-=-.又2PQ b =,)()()22215221524a c b a c c a-=⇒-=-,整理得221160640c ac a +-=,即21160640e e +-=.∴1611e =或4e =.又12e <<,故1611e =∴渐近线方程为:y ==. 故选:B.【点睛】本题主要考查了双曲线中渐近线以及构造齐次方程求解离心率的问题.需要根据题意找到基本量,,a b c 之间的关系,再求得离心率的值进而求得渐近线方程.属于中档题.12.已知k ∈R ,函数()()2322,11,1x x kx k x f x x k e e x ⎧-+≤⎪=⎨--+>⎪⎩,若关于x 的不等式()0f x ≥在x ∈R 上恒成立,则k 的取值范围为( )A. 20,e ⎡⎤⎣⎦B. 22,e ⎡⎤⎣⎦C. []0,4D. []0,3【答案】D 【解析】 【分析】当1x ≤时,根据二次函数的对称轴与最值求解()222f x x kx k =-+的最小值,再根据()0f x ≥求解.当1x >时求导分析()()31x f x x k e e =--+的单调性,再分1k ≤与1k >两种情况讨论函数的单调性进而求得最小值再求解()0f x ≥恒成立的k 的取值范围即可. 【详解】(1)当1x ≤时,()222f x x kx k =-+,∴()f x 的对称轴为x k =,开口向上①当1k <时,()f x 在(),k -∞递减,(),1k 递增 ∴当x k =时,()f x 有最小值,即()0f k ≥,∴01k ≤< ②当1k时,()f x 在(),1-∞上递减∴当1x =时,()f x 有最小值,即()10f ≥ ∴10≥显然成立,此时1k ,∴当1x ≤时, 0k ≥.(2)当1x >时,()()31xf x x k e e =--+,∴()()xf x x k e '=-①当1k ≤时,()f x 在()1,+∞上递增∴()()310f x f ke e >=-+≥,∴2k e ≤,∴此时1k ≤.②当1k >时,()f x 在()1,k 递减,()k +∞递增∴()()30kf x f k e e ≥=-+≥,∴3k ≤,∴此时13k <≤∴当1x >时, 3k ≤. 综上:0k ≤≤3. 故选:D【点睛】本题主要考查了根据分段函数的恒成立求解参数的问题,需要根据二次函数的最值以及求导分析函数的最值进行求解.属于难题.二、填空题13.已知向量()1,1a =-,向量()0,1b =,则2a b -=______.【解析】 【分析】根据模长的坐标运算求解即可.【详解】()()()21,10,21,3a b -=--=-==【点睛】本题主要考查了向量模长的坐标运算,属于基础题. 14.已知抛物线()2:,0C y mx m R m =∈≠过点()14P -,,则抛物线C 的准线方程为______.【答案】116y =- 【解析】 【分析】代入()14P -,求解抛物线()2:,0C y mx m R m =∈≠,再化简成标准形式求解准线方程即可.【详解】由题, ()2414m m =⋅-⇒=,故221:44C y x x y =⇒=.故抛物线C 的准线方程为116y =-.故答案为:116y =-【点睛】本题主要考查了根据抛物线上的点抛物线方程以及准线的问题.属于基础题. 15.已知数列{}n a ,{}n b ,其中数列{}n a 满足()10n n a a n N ++=∈,前n 项和为n S 满足()2211,102n n n S n N n +-+=-∈≤;数列{}n b 满足:()12n n b b n N ++=∈,且11b =,11n n n b b n +=+,(),12n N n +∈≤,则数列{}n n a b ⋅的第2020项的值为______.【答案】14【解析】 【分析】根据()10n n a a n N ++=∈可知数列{}n a 周期为10,并根据n S 求得{}n a 在10n ≤时的通项公式.又()12n n b b n N ++=∈可知数列{}n b 周期为12,再求出1n b n=,分析{}n n a b ⋅的周期再求解即可. 【详解】当1n =时,112111922a -+=-=; 当2n ≥时, ()()221121112112211n n n n n n n a n S S ----+-+=-=+=--, 故19,1211,210n n a n n ⎧=⎪=⎨⎪-≤≤⎩,又∵11b =,11n n nb b n +=+,∴()111n n nb n b +=+=(),12n N n +∈≤, 所以1n b n=(),12n N n +∈≤, 又数列{}n a ,{}n b 的公共周期为60,所以202020204040a b a b ⋅=⋅, 而40101a a ==,40414b b ==,所以20202020404014a b a b ⋅=⋅= 故答案为:14【点睛】本题主要考查了根据数列的前n 项和与通项的关系,求解通项公式以及构造数列求通项公式的方法.同时也考查了周期数列的运用.属于中档题.16.如图,四棱锥P ABCD -中,底面为四边形ABCD .其中ACD 为正三角形,又3DA DB DB DC DB AB ⋅=⋅=⋅.设三棱锥P ABD -,三棱锥P ACD -的体积分别是12,V V ,三棱锥P ABD -,三棱锥P ACD -的外接球的表面积分别是12,S S .对于以下结论:①12V V <;②12V V =;③12V V >;④12S S <;⑤12S S ;⑥12S S >.其中正确命题的序号为______.【答案】①⑤ 【解析】 【分析】设2AD =,根据DA DB DB DC ⋅=⋅化简可得DB AC ⊥. 【详解】不妨设2AD =,又ACD 为正三角形,由3DA DB DB DC DB AB ⋅=⋅=⋅,得()0DA DB DB DC DB DA DC DB CA ⋅-⋅=⋅-=⋅=,即有DB AC ⊥,所以30ADB CDB ∠=∠=︒.又3DB DC DB AB ⋅=⋅得()2333DB DC DB DB DA DB DB DA ⋅=⋅-=-⋅,又DB DC DB DA ⋅=⋅,故2344cos30DB DB DA DB DA =⋅=⋅⋅︒.化简可以得43DB =90DAB ∠=︒,易得ABD ACD S S <△△,故12V V <.故①正确. 又由于60ADB ACD ∠=∠=︒,所以ABD △与ACD 的外接圆相同(四点共圆),所以三棱锥P ABD -,三棱锥P ACD -的外接球相同,所以12S S .故⑤正确.故答案为:①⑤【点睛】本题主要考查了平面向量与立体几何的综合运用,需要根据平面向量的线性运算以及数量积公式求解各边的垂直以及长度关系等.同时也考查了锥体外接球的问题.属于难题.三、解答题17.在ABC 中,角,,A B C 的对边分别为,,a b c ,若2cos 3A =,2B A =,8b =. (1)求边长a ;(2)已知点M 为边BC 的中点,求AM 的长度.【答案】(1)6(2)3AM = 【解析】 【分析】 (1)根据2cos 3A =可得sin 3A =,再根据2B A =与二倍角公式求解得sin 9B =,再利用正弦定理求解a 即可.(2)先求解得1cos 9B =-,再求解得22cos 27C =,再在ACM 中,由余弦定理求解AM 即可. 【详解】解:(1)由0A π<<,2cos 3A =,得sin A ==,所以2sin sin 22sin cos 23B A A A ====由正弦定理sin sin a b A B=,可得sin 6sin b Aa B ==. (2)2221cos cos 22cos 12139B A A ⎛⎫==-=⨯-=- ⎪⎝⎭,在ABC 中,()22cos cos sin sin cos cos 27C A B A B A B =-+=-=在ACM 中,由余弦定理得:2223052cos 9AM AC CM AC CM C =+-⋅⋅=所以,AM =【点睛】本题主要考查了三角函数恒等变换以及正余弦定理在解三角形中的运用,需要根据题意确定合适的公式化简求解.属于中档题.18.已知,图中直棱柱1111ABCD A B C D -的底面是菱形,其中124AA AC BD ===.又点,,,E F P Q 分别在棱1111,,,AA BB CC DD 上运动,且满足:BF DQ =,1CP BF DQ AE -=-=.(1)求证:,,,E F P Q 四点共面,并证明EF ∥平面PQB . (2)是否存在点P 使得二面角B PQ E --5?如果存在,求出CP 的长;如果不存在,请说明理由.【答案】(1)见解析(2)不存在点P 使之成立.见解析 【解析】 【分析】(1) 在线段,CP DQ 上分别取点,M N ,使得1QN PM ==,进而得到MNPQ 与EF MN 即可.(2) 以O 为原点,分别以,OA OB ,及过O 且与1AA 平行的直线为,,x y z 轴建立空间直角坐标系,再求解平面BPQ 的法向量与平面EFPQ 的法向量,再设BF a =,[]1,3a ∈,再根据二面角的计算方法分析是否存在[]1,3a ∈5即可.【详解】解:(1)证法1:在线段,CP DQ 上分别取点,M N ,使得1QN PM ==,易知四边形MNQP 是平行四边形,所以MN PQ ,联结,,FM MN NE ,则AE ND =,且AEND所以四边形ADNE 为矩形,故ADNE ,同理,FMBCAD且NE MF AD ==,故四边形FMNE 是平行四边形,所以EF MN ,所以EFPQ故,,,E F P Q 四点共面 又EFPQ ,EF ⊄平面BPQ ,PQ ⊂平面BPQ ,所以EF 平面PQB .证法2:因为直棱柱1111ABCD A B C D -的底面是菱形,∴AC BD ⊥,1AA ⊥底面ABCD ,设,AC BD 交点为O ,以O 为原点,分别以,OA OB ,及过O 且与1AA 平行的直线为,,x y z 轴建立空间直角坐标系.则有()2,0,0A ,()0,1,0B ,()2,0,0C -,()0,1,0D -,设BF a =,[]1,3a ∈,则()2,0,1E a -,()0,1,F a ,()2,0,1P a -+,()0,1,Q a -,()2,1,1EF =-,()2,1,1QP =-,所以EFPQ ,故,,,E F P Q 四点共面.又EFPQ ,EF ⊄平面BPQ ,PQ ⊂平面BPQ ,所以EF 平面PQB .(2)平面EFPQ 中向量()2,1,1EF =-,()2,1,1EQ =--,设平面EFPQ 的一个法向量为()111,,x y z ,则1111112020x y z x y z -++=⎧⎨--+=⎩,可得其一个法向量为()11,0,2n =. 平面BPQ 中,()2,1,1BP a =--+,()0,2,BQ a =-,设平面BPQ 的一个法向量为()222,,n x y z =,则()2222221020x y a z y az ⎧--++=⎨-+=⎩,所以取其一个法向量()22,2,4n a a =+.若()1212225cos ,55216n n n n a a ⋅==⋅+++则()2210548a a a +=++, 即有24230a a --=,[]1,3a ∈,解得[]2321,3a =±,故不存在点P 使之成立.【点睛】本题主要考查了根据线线平行证明共面的方法,同时也考查了建立空间直角坐标系确定是否存在满足条件的点的问题.需要根据题意建立合适直角坐标系,再利用空间向量求解二面角的方法,分析是否有参数满足条件等.属于难题.19.已知圆221:2C x y +=,圆222:4C x y +=,如图,12,C C 分别交x 轴正半轴于点,E A .射线OD 分别交12,C C 于点,B D ,动点P 满足直线BP 与y 轴垂直,直线DP 与x 轴垂直.(1)求动点P 的轨迹C 的方程;(2)过点E 作直线l 交曲线C 与点,M N ,射线OH l ⊥与点H ,且交曲线C 于点Q .问:211MN OQ +的值是否是定值?如果是定值,请求出该定值;如果不是定值,请说明理由.【答案】(1)22142x y +=(2)是定值,为34.【解析】 【分析】(1) 设BOE α∠=,再根据三角函数的关系可得2cos P x α=,2P y α=,进而消参求得轨迹C 的方程即可.(2) 设直线l的方程为x my =+再联立直线与(1)中椭圆的方程,根据弦长公式化简211MN OQ +,代入韦达定理求解即可.【详解】解:方法一:(1)如图设BOE α∠=,则)Bαα()2cos ,2sin D αα,所以2cos P x α=,P y α=.所以动点P 的轨迹C 的方程为22142x y +=.方法二:(1)当射线OD 的斜率存在时,设斜率为k ,OD 方程为y kx =,由222y kx x y =⎧⎨+=⎩得2221P y k =+,同理得2241P x k =+,所以2224P P x y +=即有动点P 的轨迹C 的方程为22142x y +=.当射线OD 的斜率不存在时,点(0,也满足. (2)由(1)可知E 为C 的焦点,设直线l的方程为x my =+0时)且设点()11,M x y ,()22,N x y ,由2224x my x y ⎧=+⎪⎨+=⎪⎩()22220m y ++-=所以122122222y y m y y m ⎧+=-⎪⎪+⎨⎪=-⎪+⎩,所以()221241m MN m +==+ 又射线OQ 方程为y mx =-,带入椭圆C 的方程得()2224x my +=,即22412Q x m=+ 222412Q m y m=+,()22211241m m OQ +=+ 所以()()2222211212344141m m MN m m OQ +++=+=++ 又当直线l 的斜率为0时,也符合条件.综上,211MN OQ +为定值,且为34. 【点睛】本题主要考查了轨迹方程的求解以及联立直线与椭圆的方程求解线段弦长与证明定值的问题,属于难题.20.某校高三男生体育课上做投篮球游戏,两人一组,每轮游戏中,每小组两人每人投篮两次,投篮投进的次数之和不少于3次称为“优秀小组”.小明与小亮同一小组,小明、小亮投篮投进的概率分别为12,p p .(1)若123p =,212p =,则在第一轮游戏他们获“优秀小组”的概率;(2)若1243p p +=则游戏中小明小亮小组要想获得“优秀小组”次数为16次,则理论上至少要进行多少轮游戏才行?并求此时12,p p 的值. 【答案】(1)49(2)理论上至少要进行27轮游戏.2123p p == 【解析】 【分析】(1)分①小明投中1次,小亮投中2次;②小明投中2次,小亮投中1次;③小明投中2次,小亮投中2次三种情况进行求和即可.(2)同(1),分别计算三种情况的概率化简求和,再代入1243p p +=可知221212833P p p p p =-,再设12t p p =,根据二次函数在区间上的最值方法求解可得当49t =时,max 1627P =.再根据他们小组在n 轮游戏中获“优秀小组”次数ξ满足()~,B n p ξ,利用二项分布的方法求解即可.【详解】解:(1)由题可知,所以可能的情况有①小明投中1次,小亮投中2次;②小明投中2次,小亮投中1次;③小明投中2次,小亮投中2次. 故所求概率12212222222221112211221143322332233229P C C C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅⋅+⋅⋅+⋅⋅= ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ (2)他们在一轮游戏中获“优秀小组”的概率为()()()122221222222211222122221221212121()()1()()23()()P C p p C p C p C p p C p C p p p p p p p =-+-+=+-因为1243p p +=,所以22121283()()3P p p p p =- 因为101p ≤≤,201p ≤≤,1243p p +=,所以1113p ≤≤,2113p ≤≤,又21212429p p p p +⎛⎫≤= ⎪⎝⎭所以121499p p <≤,令12t p p =,以1499t <≤,则()2833P h t t t ==-+ 当49t =时,max 1627P =,他们小组在n 轮游戏中获“优秀小组”次数ξ满足()~,B n p ξ由max ()16np =,则27n =,所以理论上至少要进行27轮游戏.此时1243p p +=,1249p p =,2123p p ==【点睛】本题主要考查了排列组合在概率中的运用,需要根据题意分析三种情况的概率之和,再根据包含概率的函数解析式,结合二次函数与基本不等式的方法求最值即可.属于难题.21.已知函数()ln f x a x x a =-+,()ln g x kx x x b =--,其中,,a b k R ∈. (1)求函数()f x 的单调区间;(2)若对任意[]1,a e ∈,任意[]1,x e ∈,不等式()()f x g x ≥恒成立时最大的k 记为c ,当[]1,b e ∈时,b c +的取值范围.【答案】(1)见解析(2)22,1b c e e ⎡⎤+∈++⎢⎥⎣⎦ 【解析】 【分析】(1)求导后分0a ≤与0a >两种情况分析函数的单调性即可. (2)参变分离()()f x g x ≥与[]1,a e ∈可得1ln ln x x x x b k x +-++≤,再令()1ln ln x x x x bg x x+-++=,求导得()2ln x x bg x x-+-'=,再分析()ln p x x x b =-+-的单调性,分()10p ≥,()0p e ≤与()()10p p e <三种情况求解导函数的正负以及原函数的单调性,进而求得b c +的解析式,再求导分析单调性与范围即可.【详解】解:(1)∵()()ln 0,f x a x x a x a R =-+>∈ ∴()1a a xf x x x-'=-=,∵0x >,a R ∈ ∴①当0a ≤时,()f x 的减区间为()0,∞+,没有增区间 ②当0a >时,()f x 的增区间为()0,a ,减区间为(),a +∞(2)原不等式()1ln ln a x x x x bk x+-++⇔≤.∵[]1,a e ∈,[]1,x e ∈,∴()1ln ln 1ln ln a x x x x b x x x x bx x+-+++-++≥, 令()()21ln ln ln x x x x b x x b g x g x x x+-++-+-'=⇒=, 令()()1ln 1p x x x b p x x '=-+-⇒=-+()ln p x x x b⇒=-+-()1,+∞上递增;①当()10p ≥时,即1b ≤,∵[]1,b e ∈,所以1b =时[]1,x e ∈,()()00p x g x '≥⇒≥, ∴()g x 在[]1,e 上递增;∴()()min 122c g x g b b c b ===⇒+==.②当()0p e ≤,即[]1,b e e ∈-时[]1,x e ∈,()()00p x g x '≤⇒≤,∴()g x 在[]1,e 上递减; ∴()()min 2212,1b b c g x g e b c b e e e e ee ++⎡⎤===⇒+=+∈+++⎢⎥⎣⎦ ③当()()10p p e <时,又()ln p x x x b =-+-在()1,e 上递增; 存在唯一实数()01,x e ∈,使得()00p x =,即00ln b x x =-, 则当()01,x x ∈时()()00p x g x '⇒<⇒<. 当()0,x x e ∈时()()00p x g x '⇒>⇒>. ∴()()00000mi 000n 1ln ln 1ln x x x x b x x x c g x g x +-++=+===.∴00000011ln ln b c x x x x x x +=++-=+. 令()()()11ln 10x h x x x h x h x x x-'=-⇒=-=>⇒在[]1,e 上递增, ()()01,11,b e x e ∈-⇒∈,∴12,b c e e ⎛⎫+∈+ ⎪⎝⎭.综上所述,22,1b c e e ⎡⎤+∈++⎢⎥⎣⎦. 【点睛】本题主要考查了求导分析函数单调区间以及分情况讨论导函数零点以及参数范围的问题,需要根据题意构造合适的函数进行原函数单调性以及最值的分析等.属于难题. 22.在平面直角坐标系xoy 中,曲线1C 的参数方程为1cos sin x y θθ=+⎧⎨=⎩(θ为参数),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中.曲线2C 的极坐标方程为22483sin ρθ=+.(1)求曲线1C 和曲线2C 的一般方程;(2)若曲线2C 上任意一点P ,过P 点作一条直线与曲线1C 相切,与曲线1C 交于A 点,求PA 的最大值.【答案】(1)()2211x y -+=,2211612x y +=(2)max AP =【解析】 【分析】(1)根据圆的标准方程可得1C 的一般方程,再根据222x y ρ+=,且cos x ρθ=,sin y ρθ=代入2C 化简可得2C 的一般方程. (2)易得221PA PC r =-,再设点P 的坐标为()4cos ,23sin θθ,再利用三角函数范围以及二次函数的范围求解PA 的取值范围,进而求得max AP 即可.【详解】解:(1)曲线1C 表示圆心为()1,0,半径为1的圆.故1C 的一般方程是()2211x y -+=∵222x y ρ+=,且cos x ρθ=,sin y ρθ=,给2222222483sin 4834483sin x y ρρρθθ=⇒+=⇒+=+. ∴曲线2C 的一般方程为2211612x y +=(2)设点P 的坐标为()4cos ,23sin θθ,∵221PA PC r =-,()()()2222214cos 123sin 4cos 8cos 134cos 19PC θθθθθ=-+=-+=-+∴()24cos 1826PA θ=-+≤,即cos 1θ=-时,max 26AP =【点睛】本题主要考查了参数方程与极坐标和直角坐标的互化,同时也考查了设点的参数坐标求解距离的最值问题.属于中档题.23.已知点(,)P x y 的坐标满足不等式:111x y -+-≤.(1)请在直角坐标系中画出由点P 构成的平面区域Ω,并求出平面区域Ω的面积S. (2)如果正数,,a b c 满足()()a c b c S ++=,求23a b c ++的最小值. 【答案】(1)2;(2)4 【解析】 【分析】(1)根据111x y -+-≤,即可容易求得平面区域以及面积;(2)利用均值不等式即可容易求证.【详解】(1)因为111x y -+-≤,故可得当1,1x y ≤≤时,不等式等价于1x y +≥;当1,1x y ≤>时,不等式等价于1x y -≥-;当1,1x y >>时,不等式等价于3x y +≤;当1,1x y >≤时,不等式等价于1x y -≤;如图,平面区域平面区域Ω由一个正方形及其内部组成,四个顶点分别为(1,0),(2,1),(1,2),(0,1),所以222S ==.(2)由(1)()()2a c b c ++=,而,,a b c 都为正数,所以 232()22()()4a b c a c b c a c b c ++=+++≥++=,当且仅当2()2a c b c +=+=取得最小值.【点睛】本题考查绝对值不等式表示的平面区域,以及利用均值不等式求最值,属综合基础题.。
2021届全国天一大联考新高考原创预测试卷(三)理科数学
第1页 共6页 ◎ 第2页 共6页2021届全国天一大联考新高考原创预测试卷(三)理科数学★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第I 卷(选择题)一、单选题 1.已知集合{|02}A x x =<<,12|log 2B x x ⎧⎫=<⎨⎬⎩⎭,则A B =( )A .RB .{}|02x x <<C .{}|0x x >D .1|24x x ⎧<<⎨⎩ 2.命题“[]1,2x ∀∈,20x a -≤”为真命题的一个充分不必要条件是( ) A .4a ≥ B .5a ≥ C .3a ≥ D .5a ≤ 3.已知0.20.32log 0.2,2,0.2a b c ===,则 A .a b c << B .a c b << C .c a b << D .b c a << 4.已知函数()2x y f =的定义域是[1,1]-,则函数()3log f x 的定义域是( ) A .[1,1]- B .1,33⎡⎤⎢⎥⎣⎦ C .[1,3] D .[3,9] 5.函数()2ln 23y x x =-++的减区间是( ) A .(]1,1- B .[)1,3 C .(],1-∞ D .[)1,+∞ 6.函数()1f x nx x =-的单调递增区间是( ) A .()-1∞, B .()01, C .()1+∞, D .()0+∞, 7.若直线y ax =是曲线2ln 1y x =+的一条切线,则实数a =( ) A .12e - B .122e - C .12e D .122e 8.函数()()326,f x ax x x =-+--∞+∞在上既有极大值又有极小值,则a 的取值范围为 A .0a > B .0a < C .13a > D . 9.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=11-3t +241t+(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( ) A .4+25ln5 B .2524ln 62+ C .3524ln 62+ D .3548ln 62+ 10.若()()1202f x x f x dx =+⎰,则()10f x dx =⎰( )第3页 共6页 ◎ 第4页 共6页 A .1-B .13-C .13D .1 11.设函数'()f x 是奇函数()f x (x ∈R )的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( (A .(,1)(0,1)-∞-B .(1,0)(1,)C .(,1)(1,0)-∞--D .(0,1)(1,)⋃+∞ 12.已知函数2()(1)2()2x x f x m e m R =+++∈有两个极值点,则实数m 的取值范围为( ) A .1[,0]e- B .1(1,1)e --- C .1(,)e -∞- D .(0,)+∞ 第II 卷(非选择题) 二、填空题 13.函数3()12f x x x =-的极小值点为___________.14.= 15.122141x dx x -⎛⎫+-= ⎪+⎝⎰__________. 16.若函数()21ln 2f x ax x xx =+-存在单调递增区间,则a 的取值范围是___.三、解答题17.设命题p :实数x 满足22230(0)x ax a a --<>,命题q :实数x 满足204x x -≥-. (I )若1a =,p q ∧为真命题,求x 的取值范围; (II )若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围. 18.如图,设()2,4A 是抛物线2:C y x =上的一点. (()求该抛物线在点A 处的切线l 的方程; (()求曲线C 、直线l 和x 轴所围成的图形的面积.19.已知函数y=f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=-x 2+ax. (1)若a=-2,求函数f (x )的解析式;(2)若函数f (x )为R 上的单调减函数,①求a 的取值范围;②若对任意实数m ,f (m -1)+f (m 2+t )<0恒成立,求实数t 的取值范围.20.(13分)已知函数3211()132f x x x =-+,x ∈R . (1)求函数()f x 的极大值和极小值; (2)求函数图象经过点3(,1)2的切线的方程;(3)求函数3211()132f x x x =-+的图象与直线1y =所围成的封闭图形的面积.第5页 共6页 ◎ 第6页 共6页21.已知()()ln 1f x x a x =+-.(1)讨论()f x 的单调性;(2)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.22.已知函数()()221ln f x ax a x x =-+-,()22ln g x a x x =--,其中a R ∈.(1)当0a >时,求()f x 的单调区间;(2)若存在21,x e e ⎡⎤∈⎢⎥⎣⎦,使得不等式()()f x g x ≥成立,求a 的取值范围.参考答案1.C 2.B 3.B 4.D 5.B 6.B 7.B 8.D 9.C 10.B 11.A 12.B.13.2 14.3 1523π+. 16.1,e ⎛⎫-+∞ ⎪⎝⎭17.(1)当1a =时,由2230x x --<得13x ( 由204x x -≥-得24x ≤<( ∵p q ∧为真命题, ∴命题,p q 均为真命题,∴13,24,x x -<<⎧⎨≤<⎩解得23x ≤<(∴实数x 的取值范围是[)2,3((2)由条件得不等式22230x ax a --<的解集为(),3a a -(∵p ⌝是q ⌝的充分不必要条件,∴q 是p 的充分不必要条件,∴[)()2,4,3a a -, ∴2,34,a a -<⎧⎨≥⎩解得43a ≥, ∴实数a 的取值范围是4,3⎡⎫+∞⎪⎢⎣⎭(18.(Ⅰ)因为2y x ,所以2y x '=所以直线l 在A 处的斜率2|4x k y ='==则切线l 的方程为()442y x -=-即44y x =- (Ⅱ)由(Ⅰ)可知14y x =+,所以由定积分可得面积342203224121221|44404838330y S dy y y y ⎛⎫⎛=+=+-⨯=⨯+-⨯ ⎪ ⎝⎝-⎭=⎰所以曲线C 、直线l 和x 轴所围成的图形的面为23. 19. (1)当0x <时,0x ->,又因为()f x 为奇函数,所以22()()(2)2f x f x x x x x =--=---=- 所以222 0(){2 0x x x f x x x x -<=--≥ (2)(当0a ≤时,对称轴02a x =≤,所以2()f x x ax =-+在[0,)+∞上单调递减, 由于奇函数关于原点对称的区间上单调性相同,所以()f x 在(,0)-∞上单调递减, 又在(,0)-∞上()0f x >,在(0,)+∞上()0f x <,所以当a ≤0时,()f x 为R 上的单调递减函数当a>0时,()f x 在0,2a ⎛⎫ ⎪⎝⎭上递增,在,2a ⎛⎫+∞ ⎪⎝⎭上递减,不合题意 所以函数()f x 为单调函数时,a 的范围为a 0≤…(因为2(1)()0f m f m t -++<,(2(1)()f m f m t -<-+所以()f x 是奇函数,(2(1)()f m f t m -<--又因为()f x 为R 上的单调递减函数,所以21m t m ->--恒成立, 所以22151()24t m m m >--+=-++恒成立, 所以54t > 20.解:(1)()2f x x x '=- , 令()0f x '= ,解得x=0或x=1,令()0f x '> ,得x<0或x>1,()0f x '< ,解得0<x<1,∴函数f(x)在(),0-∞ 上单调递增,在(0,1)上单调递减,在()1,+∞ 上单调递增 ∴x=0是其极大值点,x=1是极小值点,所以f(x)的极大值为f (0)=1; f(x)的极小值为()516f =(2)设切点为P 3200011,132x x x ⎛⎫-+ ⎪⎝⎭,切线斜率()2000k f x x x '==-∴曲线在P 点处的切线方程为()()3220000011132y x x x x x x ⎛⎫--+=-- ⎪⎝⎭ ,把点3,12⎛⎫ ⎪⎝⎭ 代入,得()20000034129002x x x x x -+=⇒==或 ,所以切线方程为y=1或3148y x =-; (3)由3211301322111x y x x x y y y ⎧⎧==-+=⎧⎪⎪⇒⎨⎨⎨=⎩⎪⎪==⎩⎩或 , 所以所求的面积为()3332432200311119(1)232126640f x dx x x dx x x ⎛⎫⎛⎫-=-+=-+= ⎪ ⎪⎝⎭⎝⎭⎰⎰. 21.(()()f x 的定义域为()0,∞+,()1f x a x '=-,若0a ≤,则()0f x '>,()f x 在()0,∞+是单调递增;若0a >,则当10,x a ⎛⎫∈ ⎪⎝⎭时()0f x '>,当1,x a ⎛⎫∈+∞ ⎪⎝⎭时()0f x '<,所以()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减. (()由(()知当0a ≤时()f x 在()0,∞+无最大值,当0a >时()f x 在1x a =取得最大值,最大值为111ln 1ln 1.f a a a a a a ⎛⎫⎛⎫⎛⎫=+-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因此122ln 10f a a a a ⎛⎫>-⇔+-< ⎪⎝⎭.令()ln 1g a a a =+-,则()g a 在()0,∞+是增函数,()10g =,于是,当01a <<时,()0g a <,当1a >时()0g a >,因此a 的取值范围是()0,1.22.(1)函数()y f x =的定义域为()0,∞+,()()()()222221212212ax a x ax x a f x a x x x x-++--+'=-+==. 当0a >时,令()0f x '=,可得10x a =>或2x =. ①当12a =时,即当12a =时,对任意的0x >,()0f x '≥, 此时,函数()y f x =的单调递增区间为()0,∞+; ②当102a <<时,即当12a >时,令()0f x '>,得10x a<<或2x >;令()0f x '<,得12x a <<. 此时,函数()y f x =的单调递增区间为10,a ⎛⎫ ⎪⎝⎭和()2,+∞,单调递减区间为1,2a ⎛⎫⎪⎝⎭; ③当12a>时,即当102a <<时, 令()0f x '>,得02x <<或1x a>;令()0f x '<,得12x a <<. 此时,函数()y f x =的单调递增区间为()0,2和1,a ⎛⎫+∞⎪⎝⎭,单调递减区间为12,a ⎛⎫ ⎪⎝⎭; (2)由题意()()f x g x ≥,可得ln 0ax x -≥,可得ln x a x ≥,其中21,x e e ⎡⎤∈⎢⎥⎣⎦. 构造函数()ln x h x x =,21,x e e ⎡⎤∈⎢⎥⎣⎦,则()min a h x ≥. ()21ln x h x x -'=,令()0h x '=,得21,x e e e ⎡⎤=∈⎢⎥⎣⎦. 当1x e e≤<时,()0h x '>;当2e x e <≤时,()0h x '<. 所以,函数()y h x =在1x e=或2x e =处取得最小值, 1h e e ⎛⎫=- ⎪⎝⎭,()222h e e =,则()1h h e e ⎛⎫< ⎪⎝⎭,()min 1h x h e e ⎛⎫∴==- ⎪⎝⎭,a e ∴≥-. 因此,实数a 的取值范围是[),e -+∞.。
2021届全国金太阳联考新高考原创预测试卷(三)文科数学
2021届全国金太阳联考新高考原创预测试卷(三)文科数学★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数z 满足(1)2z i -=,则z 的共轭复数对应的点位于 A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】A 【解析】 【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由共轭复数的概念得答案.【详解】由z (1﹣i )=2,得z=()()()2121111i i i i i +==+--+,∴1z i =-.则z 的共轭复数对应的点的坐标为(1,﹣1),位于第四象限. 故选D .【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.2.已知集合A ={}{}3(,),(,)x y y x B x y y x ===,则A ∩B 的元素个数是( )A. 4B. 3C. 2D. 1【答案】B 【解析】 【分析】首先求解方程组3y x y x ⎧=⎨=⎩,得到两曲线的交点坐标,进而可得答案.【详解】联立3y x y x ⎧=⎨=⎩,解得1,0,1x =-即3y x =和y x =的图象有3个交点()11--,,()0,0,(11),, ∴集合A B 有3个元素,故选B.【点睛】本题考查了交集及其运算,考查了方程组的解法,是基础题.3.质监部门对2辆新能源汽车和3辆燃油汽车进行质量检测,现任取2辆,则选中的2辆都为燃油汽车的概率为( ) A. 0.6 B. 0.5C. 0.4D. 0.3【答案】D 【解析】 【分析】对所有车辆编号,能源车与燃油车区别开来,用列举法写出任取2辆的所有情况.计数后可求得概率.【详解】2辆新能源汽车编号为,A B ,3辆燃油汽车编号为1,2,3,任取2辆的所有情况如下:,1,2,3,1,2,3,12,13,23AB A A A B B B 共10种,其中2辆都为燃油汽车的有12,13,23共3种,所以所求概率为310P =.故选:D .【点睛】本题考查古典概型,解题时可用列举法写出所有的基本事件,得事件的总数,然后再计算出所求概率事件所包含的基本事件的个数即可计算概率. 4.若α∈0,2π⎛⎫⎪⎝⎭,且21sin cos 24αα+=,则tan α的值等于( )A.2B.3【答案】D 【解析】试题分析:22222cos 11sin cos 2sin cos 1tan 4αααααα+===++,tan α=考点:三角恒等变形、诱导公式、二倍角公式、同角三角函数关系.5.已知椭圆22221x y a b +=(a >b >0)与双曲线222212x y a b -=(a >0,b >0)的焦点相同,则双曲线渐近线方程为( )A. 3y x =±B. y =C. 2y x =±D. y =【答案】A 【解析】 【分析】由题意可得222222a b a b -=+,即223a b ,代入双曲线的渐近线方程可得答案.【详解】依题意椭圆22221(a b 0)x y a b +=>>与双曲线22221(a 0,b 0)2x y a b -=>>即22221(a 0,b 022)x y a b -=>>的焦点相同,可得:22221122a b a b -=+,即223a b,∴3b a ==双曲线的渐近线方程为:3y x=±=,故选A .【点睛】本题考查椭圆和双曲线的方程和性质,考查渐近线方程的求法,考查方程思想和运算能力,属于基础题.6.已知向量()()1,3,2a m b ==-,,且()a b b +⊥,则m =( ) A. −8 B. −6 C. 6 D. 8【答案】D 【解析】 【分析】由已知向量的坐标求出a b +的坐标,再由向量垂直的坐标运算得答案. 【详解】∵(1,),(3,2),(4,2)a m b a b m ==-∴+=-,又()a b b +⊥, ∴3×4+(﹣2)×(m ﹣2)=0,解得m =8. 故选D .【点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题. 7.在解三角形的问题中,其中一个比较困难的问题是如何由三角形的三边,,a b c 直接求三角形的面积,据说这个问题最早是由古希腊数学家阿基米德解决的,他得到了海伦公式即S 1()2p a b c =++.我国南宋著名数学家秦九韶(约1202-1261)也在《数书九章》里面给出了一个等价解法,这个解法写成公式就是S =∆应该是( ) A. 2()2a cb ++B.2a c b+- C. 2222c a b +-D.2a b c++ 【答案】C 【解析】 【分析】首先根据三角形面积公式1sin 2S ca B =,确定∆应该等于cos ca B ,再根据余弦定理得到答案.【详解】因为222cos 2c a b ac B +-=1sin 2ac B S ==.选C. 【点睛】本题考查余弦定理、三角形面积公式、同角三角函数关系式,考查基本分析求解能力.属基本题.8.已知函数21()sin cos 2f x x x x =+,则下列结论正确的是( ) A. ()f x 的最大值为1B. ()f x 的最小正周期为2πC. ()y f x =的图像关于直线3x π=对称D. ()y f x =的图像关于点7,012π⎛⎫⎪⎝⎭对称 【答案】C 【解析】 【分析】利用二倍角公式和辅助角公式化简得f(x)的解析式,再利用三角函数函数性质考查各选项即可.【详解】函数21()sin cos 2f x x x x =++=1cos 231sin 222xxsin (2x 6π-)+1 对于A :根据f (x )=sin (2x 6π-)+1可知最大值为2;则A 不对;对于B :f (x )=sin (2x 6π-)+1,T =π则B 不对; 对于C :令2x 6π-=,223k k x k Z ,,故图像关于直线3x π=对称则C 正确; 对于D :令2x 6π-=,212kk x kZ ,,故()y f x =的图像关于点7,112π⎛⎫⎪⎝⎭对称则D 不对. 故选C .【点睛】本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.9.直三棱柱111ABC A B C -中,AB AC ⊥,1AB AC AA ==,则直线1A B 与1AC 所成角的大小为 A. 30° B. 60°C. 90°D. 120°【答案】B 【解析】 【分析】作出异面直线所成的角,然后求解即可.【详解】因为几何体直三棱柱,BC∥B 1C 1,直三棱柱ABC-A 1B 1C 1中,侧棱AA 1⊥平面ABC ,AB AC ⊥,连结111,A C A C AC O ⋂=,取BC 的中点H,连结OH ,则直线1A B 与1AC 所成的角为就是,AOH ∠ .设112AB AC AA BC ====,.易得2,2AO AH OH === , 三角形AOH 是正三角形,异面直线所成角为60°.【点睛】本题考查异面直线所成角的求法,考查计算能力.10.已知函数()f x 为定义在R 上的奇函数,(2)f x +是偶函数,且当2(]0,x ∈时,()f x x =,则(2018)(2019)f f -+=( )A. -3B. -2C. -1D. 0【答案】C 【解析】 【分析】先通过分析求出函数f(x)的周期,再利用函数的周期求值得解. 【详解】因为函数(2)f x +是偶函数, 所以(2)(2),f x f x -+=+所以函数f(x)的图像关于直线x=2对称, 所以(4)(),f x f x -+=所以(4)[()4]()()f x f x f x f x +=--+=-=-, 所以(8)[(4)4](4)()f x f x f x f x +=++=-+=, 所以函数的周期为8, 所以(2018)(2019)f f -+=(2018+(2019)(2)(3)(2)(1)(2)(1)211f f f f f f f f -=-+=---=-+=-+=-).故选C【点睛】本题主要考查函数的奇偶性、对称性和周期性应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.已知O 为坐标原点,抛物线C :y 2=8x 上一点A 到焦点F 的距离为6,若点P 为抛物线C 准线上的动点,则|OP|+|AP|的最小值为( )A. 4B.C.D. 【答案】C【分析】由已知条件,结合抛物线性质求出A 点坐标,求出坐标原点关于准线的对称点的坐标点B ,由|PO |=|PB ,|知|PA |+|PO |的最小值为|AB |,由此能求出结果. 【详解】抛物线y 2=8x 的准线方程为x=-2,∵|AF|=6,∴A 到准线的距离为6,即A 点的横坐标为4,∵点A 在抛物线上,不妨设为第一象限, ∴A 的坐标A (4,42)∵坐标原点关于准线的对称点的坐标为B (-4,0), ∴|PO|=|PB|,∴|PA|+|PO|的最小值:|AB|=()()22444246++= .故选C .【点睛】本题主要考查抛物线的相关知识.两条线段之和的最小值的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.12.已知函数2()(1)2()2x x f x m e m R =+++∈有两个极值点,则实数m 的取值范围为( )A. 1[,0]e- B. 1(1,1)e---C. 1(,)e-∞-D. (0,)+∞【答案】B 【解析】 【分析】函数定义域是R ,函数()()()2122x x f x m e m R =+++∈有两个极值点,其导函数有两个不同零点;将导函数分离参数m 后构造出的关于x 的新函数与关于m 的函数有两个不同交点,借助函数单调性即可确定m 的范围.【详解】函数()f x 的定义域为R ,()()'1xf x x m e =++.因为函数()f x 有两个极值点,所以()()'1xf x x m e =++有两个不同的零点,故关于x 的方程1x xm e--=有两个不同的解,令()x x g x e =,则()1'xxg x e-=,当(),1x ∈-∞时,()'0g x >,当(),1x ∈+∞时,()'0g x <,所以函数()x xg x e=在区间(),1-∞上单调递增,在区间()1.+∞上单调递减,又当x →-∞时,()g x →-∞;当x →+∞时,()0g x →,且()11g e =,故101m e<--<,所以111m e--<<-,故选B.【点睛】本题考查了利用函数极值点性质求解参数范围,解题中用到了转化思想和分离参数的方法,对思维能力要求较高,属于中档题;解题的关键是通过分离参数的方法,将问题转化为函数交点个数的问题,再通过函数导数研究构造出的新函数的单调性确定参数的范围. 二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若,x y 满足约束条件0262x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩,则3x y +的最小值为_________.【答案】2- 【解析】 【分析】作出x 、y 满足约束条件0262x y x y x y -⎧⎪+⎨⎪+⎩可行域,再由3z x y =+得133zy x =-+,从而求z 的最小值.【详解】画出x 、y 满足约束条件0262x y x y x y -⎧⎪+⎨⎪+⎩可行域如下图,由3z x y =+得133z y x =-+; 平移直线133zy x =-+,由图象可知当直线经过点A 时, 直线133zy x =-+的纵截距最小,此时z 最小,由262x y x y +=⎧⎨+=⎩解得(4,2)A -; 故此时4322z =-⨯=-; 故答案为2-.【点睛】本题主要考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键.属于中档题.14.已知函数()(,)xf x ae b a b R =+∈在点(0,(0))f 处的切线方程为21y x =+,则a b -=_______.【答案】3 【解析】 【分析】由f (x )=ae x +b ,得f '(x ),因为函数f (x )在点(0,f (0))处的切线方程是y =2x +1,故(0,f (0))适合方程y =2x +1,且f ′(0)=2;联立可得结果. 【详解】由f (x )=ae x +b ,得f '(x )=ae x ,因为函数f (x )在点(0,f (0))处的切线方程是y =2x +1,所以()()01'02f a b f a ⎧==+⎪⎨==⎪⎩解得a =2,b =﹣1.a ﹣b =3.故答案为3.【点睛】本题主要考查函数与导数的关系,特别是曲线的切线与函数导数之间的关系,属于中档题.15.代号为“狂飙”的台风于某日晚8点在距港口的A 码头南偏东60°的400千米的海面上形成,预计台风中心将以40千米/时的速度向正北方向移动,离台风中心350千米的范围都会受到台风影响,则A 码头从受到台风影响到影响结束,将持续多少小时__________. 【答案】2.5 【解析】 【分析】B 是台风中心,移动时间为t ,40BC t =,由余弦定理求出AC ,解不等式350AC ≤可得结论.【详解】如图,B 是台风中心,BC 上正北方向,设台风移动时间为t 小时,则40BC t =,又60ABC ∠=︒,400AB =,∴222222cos 60400(40)40040AC AB BC AB BC t t =+-⋅︒=+-⨯, 由2222400(40)40040350AC t t =+-⨯≤,解得152544t ≤≤, 45152.544-=. 故答案为:2.5.【点睛】本题考查解三角形的应用,根据图形选择恰当的公式是解题关键. 16.已知EAB ∆所在平面与矩形ABCD 所在平面互相垂直,且满足3,2,60EA EB AD AEB ===∠=︒,则多面体E ABCD -的外接球的表面积为__________.【答案】16π 【解析】 【分析】取AB 中点F ,G 是矩形ABCD 对称线交点,连接EF,FG ,作OG EF //,可设O 是外接球球心.求出半径即可得面积.【详解】取AB 中点F ,G 是矩形ABCD 对称线交点,连接EF,FG ,作OG EF //,由已知EAB ∆是等边三角形,EF AB⊥,又平面EAB ⊥平面ABCD ,EF ⊂平面EAB ,平面EAB ⋂平面ABCD AB =,∴EF ⊥平面ABCD ,则OG ⊥平面ABCD .设O 是E ABCD -外接球球心,由EF ⊥平面ABCD 和OG ⊥平面ABCD 得OG AG ⊥,OGFE 是直角梯形,设OE OB R ==,而112FG AD ==,13BG =,332EF =,∴22222()EF OB BG GF OE --+=,即2222331314R R ⎛⎫--+= ⎪ ⎪⎝⎭,解得2R =, ∴2416S R ππ==. 故答案为:16π.【点睛】本题考查四棱锥外接球表面积,解题关键是确定外接球的球心位置,从而求得球半径.棱锥的外接球球心一定在过各面外心用与此面垂直的直线. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.设数列{}n a 满足()*164n n n a a n a +-=∈-N ,其中11a =. (Ⅰ)证明:32n n a a ⎧⎫-⎨⎬-⎩⎭是等比数列;(Ⅱ)令112n n b a =--,设数列{}(21)n n b -⋅的前n 项和为n S ,求使2019n S <成立的最大自然数n 的值.【答案】(Ⅰ)证明见解析(Ⅱ)6【解析】 【分析】(Ⅰ)由递推公式凑出1132n n a a ++--与32n n a a --的关系,即可得证(Ⅱ)由(Ⅰ)可得2111222n n n n n a b a a --=-==--,即可得到{}(21)n n b -⋅的通项公式,再用错位相减法求和,证明其单调性,可得得解. 【详解】解:(Ⅰ)()*164n n n a a n a +-=∈-N 1163346224n n n n n n a a a a a a ++----∴=---- 6312628n n n n a a a a --+=--+2(3)(2)n n a a --=--322n n a a -=- 32n n a a ⎧⎫-∴⎨⎬-⎩⎭是首项为113132212a a --==--,公比为2的等比数列 (Ⅱ)由(Ⅰ)知,322n n n a a -=-, 即2111222n n n n n a b a a --=-==--, 21212n n n b n ∴-⋅=-⋅()()123S 123252...(21)2n n n =⋅+⋅+⋅++-⋅① 23412S 123252...(21)2n n n +=⋅+⋅+⋅++-⋅②,①减②得11231142S 122(22...2)(21)222(21)212n n n n n n n +++--=⋅+++--⋅=+⋅--⋅-1(32)26n n +=-⋅-. 1S (23)26n n n +∴=-⋅+2111S S (21)2(23)22210n n n n n n n n ++++∴-=-⋅--⋅=+>(),S n ∴单调递增.76S 92611582019=⨯+=<, 87S 112628222019=⨯+=>.故使S 2019n <成立的最大自然数6n =.【点睛】本题考查利用递推公式证明函数是等比数列,以及错位相减法求和,属于中档题. 18.交通拥堵指数是综合反映道路网畅通或拥堵的概念,记交通拥堵指数为T ,其范围为[]0,10,分别有五个级别:[)0,2T ∈畅通;[)2,4T ∈基本畅通;[)4,6T ∈轻度拥堵;[)6,8T ∈中度拥堵;[]8,10T ∈严重拥堵.晚高峰时段(2T ≥),从某市交通指挥中心选取了市区20个交通路段,依据其交通拥堵指数数据绘制的直方图如图所示.(Ⅰ)用分层抽样的方法从交通指数在[)4,6,[)6,8,[]8,10的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;(Ⅱ)从(Ⅰ)中抽出的6个路段中任取2个,求至少有1个路段为轻度拥堵的概率. 【答案】(Ⅰ)2,3,1;(Ⅱ)35P = 【解析】 【分析】(Ⅰ)分别求[)4,6,[)6,8,[]8,10这三个级别的路段,然后求抽样比,再求三个级别抽取的路段的个数;(Ⅱ)根据(Ⅰ)的结果,分别设2个轻度拥堵路段为1A ,2A ,选取的3个中度拥堵路段为1B ,2B ,3B ,选取的1个严重拥堵路段为C ,然后按照列举法求概率.【详解】(Ⅰ)由直方图可知:()0.10.21206+⨯⨯=,()0.250.21209+⨯⨯=,()0.10.051203+⨯⨯=.所以这20个路段中,轻度拥堵、中度拥堵、严重拥堵路段分别为6个,9个,3个. 拥堵路段共有69318++=个,按分层抽样从18个路段中选出6个, 每种情况分别为:66218⨯=,69318⨯=,63118⨯=, 即这三个级别路段中分别抽取的个数为2,3,1.(Ⅱ)记(Ⅰ)中选取的2个轻度拥堵路段为1A ,2A ,选取的3个中度拥堵路段为1B ,2B ,3B ,选取的1个严重拥堵路段为C ,则从6个路段选取2个路段的可能情况如下:()12,A A ,()11,A B ,()12,A B ,()13,A B ,()1,A C ,()21,A B ,()22,A B ,()23,A B ,()2,A C ,()12,B B ,()13,B B ,()1,B C ,()23,B B ,()2,B C ,()3,B C ,共15种可能,其中至少有1个轻度拥堵的有:()12,A A ,()11,A B ,()12,A B ,()13,A B ,()1,A C ,()21,A B ,()22,A B ,()23,A B ,()2,A C ,共9种可能,所以所选2个路段中至少1个路段轻度拥堵的概率为:93155P ==. 【点睛】本题考查频率分布直方图的应用和古典概型,意在考查分析数据,解决问题的能力,属于基础题型.19.如图1所示,在等腰梯形ABCD 中,//BC AD ,CE AD ⊥,垂足为E ,33AD BC ==,1.EC =将DEC ∆沿EC 折起到1D EC ∆的位置,如图2所示,使平面1D EC ⊥平面ABCE .(1)连结BE ,证明:AB ⊥平面1D BE ;(2)在棱1AD 上是否存在点G ,使得//BG 平面1D EC ,若存在,直接指出点G 的位置(不必说明理由),并求出此时三棱锥1G D EC -的体积;若不存在,请说明理由. 【答案】(1)证明见解析;(2)存在,点G 为1AD 的中点,16. 【解析】 【分析】(1)通过面面垂线的性质定理,证得1D E ⊥平面ABCE ,由此证得1D E AB ⊥.利用勾股定理计算证明BE AB ⊥,从而证得AB ⊥平面1D EB .(2)通过线面平行的判定定理,判断出点G 为1AD 的中点.利用换顶点的方法,通过11G D EC C D EG V V --=,来计算出三棱锥1G D EC -的体积.【详解】(1)因为平面1D EC ⊥平面ABCE ,平面1D EC 平面ABCE EC =,11,D E EC D E ⊥⊂平面1D EC ,所以 1D E ⊥平面ABCE , 又因为 AB平面ABCE ,所以 1D E AB ⊥ ,又2,2,2AB BE AE ===,满足222AE AB BE =+,所以 BE AB ⊥,又 1BED E E =,所以 AB ⊥平面1D EB .(2)在棱1AD 上存在点G ,使得//BG 平面1D EC ,此时点G 为1AD 中点.11G D EC C D EG V V --=,由(1)知,1D E ⊥平面ABCE ,所以 1CE D E ⊥, 又CE AE ⊥,所以 CE ⊥平面1AED ,所以CE 为三棱锥1C D EG -的高,且1CE =,在1Rt D EA 中,11,2D E AE ==,G 为斜边1AD 的中点, 所以 111111212222D EG D EA S S ==⨯⨯⨯=, 所以 111111113326G D ECC D EG D EG V V S CE --==⋅=⨯⨯=.故,在棱1AD 上存在点G ,使得//BG 平面1D EC , 此时三棱锥1G D EC-的体积为16. 【点睛】本小题主要考查线面垂线的证明,考查面面垂直的性质定理的运用,考查三棱锥体积的计算,考查空间想象能力和逻辑推理能力,属于中档题.20.如图,已知抛物线2:2C y px =的焦点是F ,准线是l ,抛物线上任意一点M 到y 轴的距离比到准线的距离少2.(1)写出焦点F 的坐标和准线l 的方程;(2)已知点()8,8P ,若过点F 的直线交抛物线C 于不同的两点A B 、(均与P 不重合),直线PA PB 、分别交l 于点M N 、,求证:MF NF ⊥.【答案】(1)焦点为()2,0F ,准线l 的方程为2x =-;(2)详见解析. 【解析】 【分析】(1)由已知得抛物线的准线方程为2x =-,从而得抛物线方程,焦点坐标;(2)设直线AB 的方程为:()2x my m R =+∈,令()()1122,,,A x y B x y ,直线方程代入抛物线方程,整理后由韦达定理得12y y ,由直线,PA PB 方程求出,M N 的坐标,计算MF NF ⋅即可证得结论.【详解】解:(1)由题意知,任意一点E 到焦点的距离等于到直线2x =-的距离,由抛物线的定义得抛物线标准方程为28y x=,所以抛物线C的焦点为()2,0F,准线l的方程为2x=-;(2)设直线AB的方程为:()2x my m R=+∈,令()()1122,,,A x yB x y,联立直线AB的方程与抛物线C的方程228x myy x=+⎧⎨=⎩,消去x得28160y my--=,由根与系数的关系得:1216y y=-直线PB方程为:()222222288888,8888888y y xy xy xyy x y-+--==-+=--+-,当2x=-时,228168yyy-=+,∴228162,8yNy⎛⎫-- ⎪+⎝⎭,同理得:118162,8yMy⎛⎫-- ⎪+⎝⎭,∴21218168164,,4,88y yFN FMy y⎛⎫⎛⎫--=-=-⎪ ⎪++⎝⎭⎝⎭,∴()()()()()()21212121211688816816816816168888y y y yy yFN FMy y y y+++----=+⨯=++++()()()()()()12212180168016168888y yy y y y+-+===++++,∴FN FM⊥,∴MF NF⊥.【点睛】本题考查抛物线的几何性质,考查直线与抛物线相交问题.设出直线方程,设出交点坐标,由韦达定理得出12y y,代入MF NF⋅证明其为0.这就是设而不求思想.21.已知函数()xf x e=(e为自然对数的底数),()()g x ax a R=∈.(1)当a e =时,求函数()()()t x f x g x =-的极小值;(2)若当1x ≥时,关于x 的方程()()ln f x x e g x a +-=-有且只有一个实数,求实数a 的取值范围.【答案】(1)0;(2)1a e ≤+. 【解析】 分析】(1)求出导函数()t x ',由导数确定单调性,然后得极值;(2)设()()()()ln 1F x f x g x x e a x =-+-+≥,求出导数()F x ',对()F x '再求导,以确定()F x '的单调性和正负,(1)F '是()F x '的最小值,分类讨论,若(1)10F e a '=+-≥,易知结论成立,当10e a +-<时,说明存在01x >,使得0()0F x '=,然后得()F x 的单调性,确定()F x 有两个零点,不满足题意.从而得出a 的范围. 【详解】解:(1)当a e =时,()(),xxt x e ex t x e e '=-=-,令()0t x '=,则1x =列表如下:所以()()10t x t e e ==-=极小值;(2)设()()()()ln ln ,1xF x f x g x x e a e ax x e a x =-+-+=-+-+≥()()1,1x F x e a x x'=-+≥,设()()222111,x xxx e h x e a h x e x x x-'=-+=-=,由1x ≥得,()()221,10,0,xx x e h x h x '≥->>在()1,+∞单调递增,即()F x '在()1,+∞单调递增,()11F e a '=+-,①当10e a +-≥,即1a e ≤+时,()1,x ∈+∞时,()0F x '>,()F x 在()1,+∞单调递增, 又()10F =,故当1x ≥时,关于x 的方程()()ln f x x e g x a +-=-有且只有一个实数解. ②当10e a +-<,即1a e >+时,由(1)可知x e ex ≥, 所以()11,0xa a e e F x e ex a F e a x x e e a a ⎛⎫''=+≥+-≥+-=> ⎪⎝⎭,又11a e e >+, 故()001,,0a x F x e ⎛⎫'∃∈= ⎪⎝⎭,当()01,x x ∈时,()()0,F x F x '<单调递减,又()10F =, 故当(]01,x x ∈时,()0F x <,在[)01,x 内,关于x 的方程()()ln f x x e g x a +-=-有一个实数解1, 又()0,x x ∈+∞时,()()0,F F x x '>单调递增,且()22ln 1aaF a e a a a e e a =+-+->-+,令()()211xk x e x x =-+≥,()()()2,220x x s x k x e x s x e e ''==-=-≥->,故()k x '在()1,+∞单调递增,又 ()10k '>,∴当1x >时,()0k x '>,∴()k x 在()1,+∞单调递增,故()()10k a k >>,故()0F a >, 又0aa x e>>,由零点存在定理可知,()()101,,0x x a F x ∃∈=, 故在()0,x a 内,关于x 的方程()()ln f x x e g x a +-=-有一个实数解1x , 又在[)01,x 内,关于x 的方程()()ln f x x e g x a +-=-有一个实数解1, 综上,1a e ≤+.【点睛】本题考查用导数求函数的极值,用导数研究函数的零点.零点存在定理保证函数有零点,函数的单调性可以确定零点的个数.用导数研究函数的单调性是解题关键. 22.在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情.在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线.如图,在直角坐标系中,以原点O 为极点,x 轴正半轴为极轴建立极坐标系。
2021年湖南省金太阳高考数学联考试卷(2021.03) (解析版)
2021年湖南省金太阳高考数学联考试卷(3月份)一、单项选择题(共8小题).1.已知集合A={x|x2+2x≥0},B={x|x<3},则A⋂B=()A.{x|0≤x<3}B.{x|x≤﹣2或0≤x<3}C.{x|﹣2≤x<0}D.{x|x≤0或2≤x<3}2.复数z=(1﹣i)3,则复数z在复平面内所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.在等比数列{a n}中,“a3a7=9”是“a5=3”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.已知F为抛物线C:y2=2px(p>0)的焦点,过点F的直线l与C交于A,B两点,且|AB|=8,若线段AB中点的横坐标为3,则p=()A.1B.2C.3D.45.已知圆锥的轴截面是边长为8的等边三角形,则该圆锥的侧面积是()A.64πB.48πC.32πD.16π6.《算法统宗》古代数学名著,其中有诗云“九百九十六斤棉,赠分八子做盘缠,次第每人多十七,要将第八数来言,务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第二个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要长幼分明,使孝顺子女的美德外传,则第五个孩子分得斤数为()A.65B.99C.133D.1507.(x﹣1)(x﹣2)6的展开式中的x3的系数为()A.80B.﹣80C.400D.﹣4008.已知M,N是函数f(x)=2cos(ωx+φ)(ω>0)图像与直线的两个不同的交点.若|MN|的最小值是,则ω=()A.6B.4C.2D.1二、多项选择题(每小题5分).9.已知向量,,则下列说法正确的是()A.若,则2n+3m=0B.若,则2n﹣3m=0C.若,则n2+2mn﹣3=0D.若|2+|=,则2m+n=210.清华大学全面推进学生职业发展指导工作.通过专业化、精细化、信息化和国际化的就业工作,引导学生把个人职业生涯科学发展同国家社会需要紧密结合,鼓励到祖国最需要的地方建功立业.2019年该校毕业生中,有本科生2971人,硕士生2527人,博士生1467人.学校总体充分就业,毕业生就业地域分布更趋均匀合理,实现毕业生就业率保持高位和就业质量稳步提升.根据如图,下列说法正确的有()A.博士生有超过一半的毕业生选择在北京就业B.毕业生总人数超半数选择在北京以外的单位就业C.到四川省就业的硕士毕业生人数比到该省就业的博士毕业生人数多D.到浙江省就业的毕业生人数占毕业生总人数的12.8%11.为了得到函数y=ln(ex)的图象,可将函数y=lnx的图象()A.纵坐标不变,横坐标伸长为原来的e倍B.纵坐标不变,横坐标缩短为原来的C.向上平移一个单位长度D.向下平移一个单位长度12.在棱长为的正方体ABCD﹣A1B1C1D1中,球O1同时与以B为公共顶点的三个面相切,球O2同时与以D1为公共顶点的三个面相切,且两球相切于点E,若球O1,O2的半径分别为r1,r2,则()A.B.r1+r2=3C.这两个球的体积之和的最大值是9πD.这两个球的表面积之和的最小值是18π三、填空题(每小题5分).13.某大学学生会为了解该校大学生对篮球和羽毛球的喜爱情况,对该校学生做了一次问卷调查,通过调查数据得到该校大学生喜欢篮球的人数占比为65%,喜欢羽毛球的人数占比为80%,既喜欢篮球又喜欢羽毛球的人数占比为55%,则该校大学生喜欢篮球或喜欢羽毛球的人数占比是.14.已知函数f(x)是定义在R上的偶函数,且f(0)=2,f(1)=3.写出f(x)的一个解析式为.15.已知正数x,y满足4xy﹣x﹣4y=0,则xy的最小值为,x+y的最小值为.16.已知双曲线的离心率为2,且双曲线C与椭圆有相同的焦点.点P在双曲线C上,过点P分别作双曲线C两条渐近线的垂线,垂足分别为A,B,则|AB|的最小值为.四、解答题(本大题共6小题,共70.0分)17.在△ABC中,角A,B,C所对的边分别为a,b,c,sin2B=sin B.(1)求B;(2)若a=8,cos A=,求BC边上的中线AD的长.18.如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AC⊥PB,PB=AB =PD.(1)证明:PD⊥平面ABCD.(2)求二面角D﹣PB﹣C的余弦值.19.已知正项数列{a n}的前n项和为S n,2S n=a n2+a n﹣2.(1)证明:数列{a n}是等差数列.(2)若b n=(﹣1)n a n2,求数列{b n}的前2n项和为T2n.20.为了解华人社区对接种新冠疫苗的态度,美中亚裔健康协会日前通过社交媒体,进行了小规模的社区调查,结果显示,多达73.4%的华人受访者最担心接种疫苗后会有副作用.其实任何一种疫苗都有一定的副作用,接种新型冠状病毒疫苗后也是有一定副作用的,这跟个人的体质有关系,有的人会出现副作用,而有的人不会出现副作用.在接种新冠疫苗的副作用中,有发热、疲乏、头痛等表现.为了了解接种某种疫苗后是否会出现疲乏症状的副作用,某组织随机抽取了某地200人进行调查,得到统计数据如下:无疲乏症状有疲乏症状总计未接种疫苗10020120接种疫苗x y n总计160m200(1)求2×2列联表中的数据x,y,m,n的值,并确定能否有85%的把握认为有疲乏症状与接种此种疫苗有关.(2)从接种疫苗的n人中按是否有疲乏症状,采用分层抽样的方法抽出8人,再从8人中随机抽取3人做进一步调查.若初始总分为10分,抽到的3人中,每有一人有疲乏症状减1分,每有一人没有疲乏症状加2分,设得分结果总和为X,求X的分布列和数学期望.P(K2≥k0)0.1500.1000.0500.0250.010 k0 2.072 2.706 3.841 5.024 6.635 21.已知椭圆的左、右焦点分别为F1,F2,点P在椭圆C上,且|PF1|+|PF2|=8,△PF1F2面积的最大值是8.(1)求椭圆C的标准方程.(2)若直线l:x=my+t与椭圆C交于A,B两点,点D(0,4),若直线AD与直线BD关于y轴对称,试问直线l是否过定点?若是,求出该定点坐标;若否,说明理由.22.已知函数f(x)=xlnx﹣x.(1)求f(x)的最小值.(2)证明:对任意的x∈(0,+∞),e x(xlnx+1)﹣x(e x+x)+4e x﹣2>0恒成立.参考答案一、单项选择题(每小题5分).1.已知集合A={x|x2+2x≥0},B={x|x<3},则A⋂B=()A.{x|0≤x<3}B.{x|x≤﹣2或0≤x<3}C.{x|﹣2≤x<0}D.{x|x≤0或2≤x<3}解:∵A={x|x⩽﹣2或x⩾0},B={x|x<3},∴A∩B={x|x⩽﹣2或0⩽x<3}.故选:B.2.复数z=(1﹣i)3,则复数z在复平面内所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限解:因为z=(1﹣i)3=(1﹣i)2(1﹣i)=﹣2i(1﹣i)=﹣2﹣2i,所以复数z在复平面内对应的点z(﹣2,﹣2)在第三象限.故选:C.3.在等比数列{a n}中,“a3a7=9”是“a5=3”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解:由等比数列的性质可得,则a5=±3,则a3a7=9”是“a5=3”的必要不充分条件.故选:C.4.已知F为抛物线C:y2=2px(p>0)的焦点,过点F的直线l与C交于A,B两点,且|AB|=8,若线段AB中点的横坐标为3,则p=()A.1B.2C.3D.4解:设A(x1,y1),B(x2,y2),线段AB中点的横坐标为3,则x1+x2=2×3=6,由题意可得|AB|=x1+x2+p=6+p=8,则p=2.故选:B.5.已知圆锥的轴截面是边长为8的等边三角形,则该圆锥的侧面积是()A.64πB.48πC.32πD.16π解:因为圆锥的轴截面是边长为8的等边三角形,故圆锥的底面半径为4,底面周长为8π,故圆锥的侧面积是.故选:C.6.《算法统宗》古代数学名著,其中有诗云“九百九十六斤棉,赠分八子做盘缠,次第每人多十七,要将第八数来言,务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第二个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要长幼分明,使孝顺子女的美德外传,则第五个孩子分得斤数为()A.65B.99C.133D.150解:设这八个孩子分得棉花的斤数构成等差数列{a n},由题设知:公差d=17,又a1+a2+a3+…+a8=8a1+×17=996,解得a1=65,故a5=a1+4d=65+4×17=133,故选:C.7.(x﹣1)(x﹣2)6的展开式中的x3的系数为()A.80B.﹣80C.400D.﹣400解:(x﹣2)6的展开式的通项为,令6﹣r=2,得r=4,则T5=(﹣2)4x2=240x2,令6﹣r=3,得r=3,则,故(x﹣1)(x﹣2)6的展开式中的x3的系数为240+160=400.故选:C.8.已知M,N是函数f(x)=2cos(ωx+φ)(ω>0)图像与直线的两个不同的交点.若|MN|的最小值是,则ω=()A.6B.4C.2D.1解:由于M,N是函数f(x)=2cos(ωx+φ)(ω>0)图像与直线的两个不同的交点,故M,N的横坐标是方程2cos(ωx+φ)=的解,即M,N的横坐标是方程cos(ωx+φ)=的解,可得,解得ω=4.故选:B.二、多项选择题(本大题共4小题,共20.0分)9.已知向量,,则下列说法正确的是()A.若,则2n+3m=0B.若,则2n﹣3m=0C.若,则n2+2mn﹣3=0D.若|2+|=,则2m+n=2解:由,得2n+3m=0,则A正确,B错误;因为,,,所以,,由,得﹣3+(2m+n)n=0,即n2+2mn﹣3=0,则C正确;由,得,则2m+n=±2,则D错误;故选:AC.10.清华大学全面推进学生职业发展指导工作.通过专业化、精细化、信息化和国际化的就业工作,引导学生把个人职业生涯科学发展同国家社会需要紧密结合,鼓励到祖国最需要的地方建功立业.2019年该校毕业生中,有本科生2971人,硕士生2527人,博士生1467人.学校总体充分就业,毕业生就业地域分布更趋均匀合理,实现毕业生就业率保持高位和就业质量稳步提升.根据如图,下列说法正确的有()A.博士生有超过一半的毕业生选择在北京就业B.毕业生总人数超半数选择在北京以外的单位就业C.到四川省就业的硕士毕业生人数比到该省就业的博士毕业生人数多D.到浙江省就业的毕业生人数占毕业生总人数的12.8%解:A:北京地区博士生52.1%>50%,故正确;B:北京地区有2971×21.9%+2527×39.6%+1467×52.1%=2416人,因此北京以外有6965﹣2416=4549>2416,故正确;C:硕士毕业生人数约为2527×3.2%≈81人>博士毕业生人数1467×3.7%≈54人,因此硕士多于博士,故正确;D:浙江就业人数有2971×3%+2527×5.6%+1467×4.2%=292人,因此占总人数的比例为292÷6965≈4.2%≠12.8%,故错误.故选:ABC.11.为了得到函数y=ln(ex)的图象,可将函数y=lnx的图象()A.纵坐标不变,横坐标伸长为原来的e倍B.纵坐标不变,横坐标缩短为原来的C.向上平移一个单位长度D.向下平移一个单位长度解:由题意函数y=lnx的图象纵坐标不变,横坐标缩短为原来的,可得到函数y=ln (ex)的图象,则A错误,B正确;因为y=ln(ex)=lnx+1,则将函数y=lnx的图象向上平移一个单位可得到函数y=ln(ex)的图象,则C正确,D错误.故选:BC.12.在棱长为的正方体ABCD﹣A1B1C1D1中,球O1同时与以B为公共顶点的三个面相切,球O2同时与以D1为公共顶点的三个面相切,且两球相切于点E,若球O1,O2的半径分别为r1,r2,则()A.B.r1+r2=3C.这两个球的体积之和的最大值是9πD.这两个球的表面积之和的最小值是18π解:由题意可得,,则,从而r1+r2=3,故这两个球的体积之和为:,因为r1+r2=3,所以,即,当且仅当时等号成立;这两个球的表面积之和,当且仅当时等号成立.故选:AB.三、填空题(本大题共4小题,共20.0分)13.某大学学生会为了解该校大学生对篮球和羽毛球的喜爱情况,对该校学生做了一次问卷调查,通过调查数据得到该校大学生喜欢篮球的人数占比为65%,喜欢羽毛球的人数占比为80%,既喜欢篮球又喜欢羽毛球的人数占比为55%,则该校大学生喜欢篮球或喜欢羽毛球的人数占比是90%.解:该校大学生喜欢篮球的人数占比为65%,喜欢羽毛球的人数占比为80%,既喜欢篮球又喜欢羽毛球的人数占比为55%,设集合A表示喜欢篮球的大学生,集合B表示喜欢羽毛球的大学生,则作出韦恩图如下:由题意可得该校大学生喜欢篮球或喜欢羽毛球的人数占比是10%+55%+25%=90%.故答案为:90%.14.已知函数f(x)是定义在R上的偶函数,且f(0)=2,f(1)=3.写出f(x)的一个解析式为f(x)=x2+2.解:因为函数f(x)是定义在R上的偶函数,所以假设函数f(x)为二次函数,设f(x)=ax2+bx+c(a≠0)所以对称轴为y轴,所以b=0,因为f(0)=2,f(1)=3,所以c=2,a+c=3,所以a=1,c=2,所以f(x)=x2+2,即满足题意得其中一个函数为f(x)=x2+2,故答案为:f(x)=x2+2.(答案不唯一)15.已知正数x,y满足4xy﹣x﹣4y=0,则xy的最小值为1,x+y的最小值为.解:由题意可得,则xy≥1(当且仅当x=4y时,等号成立),即xy的最小值为1.因为4xy﹣x﹣4y=0,所以,所以,当且仅当x=2y时,等号成立.故答案为:1,.16.已知双曲线的离心率为2,且双曲线C与椭圆有相同的焦点.点P在双曲线C上,过点P分别作双曲线C两条渐近线的垂线,垂足分别为A,B,则|AB|的最小值为.解:由题意可得,则a2=1.b2=4﹣1=3.故双曲线C的方程为.其渐近线方程为.设点P(x0,y0),过点P分别作双曲线C两条渐近线的垂线,垂足分别为A,B,设|PA|=m,|PB|=n,则,,故.因为点P在双曲线C上.所以.则.因为渐近线的倾斜角为.所以,故.在△APB中,由余弦定理可得,当且仅当m=n时等号成立,则,即|AB|的最小值为.故答案为:.四、解答题(本大题共6小题,共70.0分)17.在△ABC中,角A,B,C所对的边分别为a,b,c,sin2B=sin B.(1)求B;(2)若a=8,cos A=,求BC边上的中线AD的长.解:(1)由题意可得,因为0<B<π,所以sin B≠0,则,因为0<B<π,所以.(2)因为.所以.因为A+B+C=π,所以,由正弦定理可得,则,由余弦定理可得,则.18.如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AC⊥PB,PB=AB =PD.(1)证明:PD⊥平面ABCD.(2)求二面角D﹣PB﹣C的余弦值.【解答】(1)证明:因为底面ABCD是菱形.所以AC⊥BD,因为AC⊥PB,且BD∩PB=B,BD,PB⊂平面PBD,所以AC⊥平面PBD,因为PD⊂平面PBD,所以AC⊥PD,因为AB=AD,且∠BAD=60°,所以BD=AB,因为,所以PD2+BD2=PB2,则PD⊥BD,因为AC∩BD=O,AC,BD⊂平面ABCD,所以PD⊥平面ABCD.(2)解:以O为坐标原点,射线OA,OB分别为x,y轴正半轴,过点O的垂线为z轴,建立如图所示的空间直角坐标系O﹣xyz,设AB=2,则B(0,1,0),,0,0),P(0,﹣1,2),从而,,设平面PBC的法向量.则,令x=1,得,易知平面PBD的一个法向量,0,0),则,,设二面角D﹣PB﹣C为θ,由图可知θ为锐角,则,.19.已知正项数列{a n}的前n项和为S n,2S n=a n2+a n﹣2.(1)证明:数列{a n}是等差数列.(2)若b n=(﹣1)n a n2,求数列{b n}的前2n项和为T2n.解:(1)证明:因为,所以当n=1时,,即,解得a1=2或a1=﹣1(舍去).当n≥2时,,则,即(a n+a n﹣1)(a n﹣a n﹣1﹣1)=0,因为a n>0,所以a n+a n﹣1>0,则a n﹣a n﹣1﹣1=0,即a n﹣a n﹣1=1,(n∈N*,n⩾2)所以数列{a n}是等差数列.(2)由(1)可得a n=2+n﹣1=n+1,n∈N*,则,n∈N*,从而,故T2n=b1+b2+…+b2n﹣1+b2n(4+1)+(4×2+1)+…+(4n+1)==2n2+3n.20.为了解华人社区对接种新冠疫苗的态度,美中亚裔健康协会日前通过社交媒体,进行了小规模的社区调查,结果显示,多达73.4%的华人受访者最担心接种疫苗后会有副作用.其实任何一种疫苗都有一定的副作用,接种新型冠状病毒疫苗后也是有一定副作用的,这跟个人的体质有关系,有的人会出现副作用,而有的人不会出现副作用.在接种新冠疫苗的副作用中,有发热、疲乏、头痛等表现.为了了解接种某种疫苗后是否会出现疲乏症状的副作用,某组织随机抽取了某地200人进行调查,得到统计数据如下:无疲乏症状有疲乏症状总计未接种疫苗10020120接种疫苗x y n总计160m200(1)求2×2列联表中的数据x,y,m,n的值,并确定能否有85%的把握认为有疲乏症状与接种此种疫苗有关.(2)从接种疫苗的n人中按是否有疲乏症状,采用分层抽样的方法抽出8人,再从8人中随机抽取3人做进一步调查.若初始总分为10分,抽到的3人中,每有一人有疲乏症状减1分,每有一人没有疲乏症状加2分,设得分结果总和为X,求X的分布列和数学期望.P(K2≥k0)0.1500.1000.0500.0250.010 k0 2.072 2.706 3.841 5.024 6.635解:(1)由题意得:m=200﹣160=40,y=m﹣20=20,x=160﹣100=60,n=x+y=60+20=80,因为.所以有85%的把握认为有疲乏症状与接种此种疫苗有关.(2)从接种疫苗的n人中按是否有疲乏症状,采用分层抽样的方法抽出8人,可知8人中无疲乏症状的有6人,有疲乏症状的有2人,再从8人中随机抽取3人,当这3人中恰有2人有疲乏症状时,X=10;当这3人中恰有1人有疲乏症状时,X=13;当这3人中没有人有疲乏症状时,X=16.因为;;.所以X的分布列如下:X101316P期望.21.已知椭圆的左、右焦点分别为F1,F2,点P在椭圆C上,且|PF1|+|PF2|=8,△PF1F2面积的最大值是8.(1)求椭圆C的标准方程.(2)若直线l:x=my+t与椭圆C交于A,B两点,点D(0,4),若直线AD与直线BD关于y轴对称,试问直线l是否过定点?若是,求出该定点坐标;若否,说明理由.解:(1)设椭圆C的焦距为2c,则解得a2=16.b2=8.故椭圆C的标准方程为+=1.(2)设A(x1⋅y1).B(x2,y2).联立,整理得(m2+2)y2+2mty+t2﹣16=0.则.因为D(0,4),所以,因为直线AD与直线BD关于y轴对称,所以k AD+k BD=0.即2my1y2+(t﹣4m)(y1+y2)﹣8t=0.则,即t=﹣2m,从而直线l的方程为x=my﹣2m=m(y﹣2),故直线l过定点(0,2).22.已知函数f(x)=xlnx﹣x.(1)求f(x)的最小值.(2)证明:对任意的x∈(0,+∞),e x(xlnx+1)﹣x(e x+x)+4e x﹣2>0恒成立.【解答】(1)解:由题意可得f(x)的定义域为(0,+∞),且f'(x)=lnx.由f'(x)<0,得0<x<1;由f'(x)>0,得x>1.则f(x)在(0,1)上单调递减,在(1,+∞)上单调递增.故f(x)min=f(1)=﹣1.(2)证明:要证e x(xlnx+1)﹣x(e x+x)+4e x﹣2>0,只需证e x(xlnx﹣x+1)+4e x﹣2﹣x2>0,即证.设g(x)=xlnx﹣x+1,由(1)可知g(x)min=g(1)=0.设,则.由h'(x)>0,得0<x<2;由h'(x)<0,得x>2,则h(x)在(0,2)上单调递增,在(2,+∞)上单调递减.故h(x)max=h(2)=0,因为g(x)与h(x)的最值不同时取得,所以g(x)>h(x),即.故当x>0时,不等式e x(xlnx+1)﹣x(e x+x)+4e x﹣2>0恒成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021届全国金太阳联考新高考原创预测试卷(三)数学★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.若全集U =R ,集合2{|16}A x Z x =∈<,{|10}B x x =-≤,则()U A B ⋂=( )A. {|14}x x <B. {|14}x x <<C. {1,2,3}D. {2,3}【答案】D 【解析】 【分析】化简集合A ,再由交并补的定义,即可求解.【详解】{|44}{3,2,1,0,1,2,3}A x x =∈-<<=---Z ,{|1}UB x x =>,(){2,3}U A B =.故选:D【点睛】本题考查集合间的运算,属于基础题. 2.下列说法错误的是( )A. 命题“若2430x x -+=,则3x =”的逆否命题为“若3x ≠,则2430x x -+≠”B. 命题“(0,)x ∀∈+∞,23x x <”是假命题C. 若命题p 、q ⌝均为假命题,则命题p q ⌝∧为真命题D. 若()f x 是定义在R 上的函数,则“(0)0f =”是“()f x 是奇函数”的必要不允分条件 【答案】B 【解析】 【分析】选项A :按照四个命题的关系,判断为正确;选项B :转化为指数幂比较大小,不等式成立,故判断错误;选项C :根据或且非的真假关系,判断为正确;选项D :根据充分必要条件判断方法,为正确.【详解】选项A: 命题“若2430x x -+=,则3x =”的 逆否命题为“若3x ≠,则2430x x -+≠”,故正确;选项B: (0,)x ∀∈+∞, 022()()13233x x x <==,而0,323xxx>∴<,命题“(0,)x ∀∈+∞,23x x <” 为真,判断错误;选项C: 若命题p 、q ⌝均为假命题, 则命题p ⌝、q 均为真命题, 故命题p q ⌝∧为真命题,判断正确; 选项D: ()f x 是定义在R 上的函数, 若“()f x 是奇函数”则“(0)0f =”正确; 而“(0)0f =”,()f x 不一定奇函数, 如2()f x x =,选项D 判断正确. 故选:B【点睛】本题考查命题真假的判断,涉及到四种命题的关系,全称命题的真假判定,或且非复合命题的真假关系,以及充分必要条件的判断,属于基础题. 3.已知函数()xx f x ee -=-(e 为自然对数的底数),若0.50.7a -=,0.5log 0.7b =,0.7log 5c =,则( )A. ()()()f b f a f c <<B. ()()()f c f b f a <<C. ()()()f c f a f b <<D. ()()()f a f b f c <<【答案】D 【解析】 【分析】先比较,,a b c 的大小关系,再根据()xx f x ee -=-单调性,比较函数值的大小,即可求解.【详解】因为0.50.71a -=>,01b <<,0c <,∴a b c >> 又()f x 在R 上是单调递减函数,故()()()f a f b f c <<. 故选:D .【点睛】本题考查了指数幂和对数值的大小关系,以及指数函数的单调性,属于中档题. 4.已知等差数列{}n a 的前n 项和为n S ,422S =,330n S =,4176n S -=,则n =( ) A. 14 B. 15C. 16D. 17【答案】B 【解析】 【分析】根据等差数列的性质,求出1n a a +,再由前n 项和公式,即可求解.【详解】∵123422a a a a +++=,4123154n n n n n n S S a a a a -----=+++= ∴14()176n a a +=,∴144n a a += ∴由1()2n n n a a S +=得443302n ⨯=,∴15n =. 故选:B .【点睛】本题考查等差数列性质的灵活应用,以及等差数列的前n 项和公式,属于中档题.5.函数2sin 2xy x =-的图象大致是 A. B. C. D.【答案】C 【解析】 【分析】 根据函数22xy sinx =-的解析式,根据定义在R 上的奇函数图像关于原点对称可以排除A ,再求出其导函数,根据函数的单调区间呈周期性变化,分析四个选项即可得到结果 【详解】当0x =时,0200y sin =-= 故函数图像过原点,排除A 又12cos 2y x =-',令0y '= 则可以有无数解,所以函数的极值点有很多个,故排除B D , 故函数在无穷域的单调区间呈周期性变化 结合四个选项,只有C 符合要求 故选C【点睛】本题主要考查了由函数的表达式判断函数图像的大体形状,解决此类问题,主要从函数的定义域,值域,单调性以及奇偶性,极值等方面考虑,有时也用特殊值代入验证. 6.已知向量(3,1)b =,问量a 为单位向量,且1a b ⋅=,则2a b -与2a 的夹角余弦值为( ) A.12B.33C. 12-D. 33-【答案】A 【解析】【分析】记OA a =,2OC a =,OB b =,2a b BC -=,通过求三角形的内角,即可求解 【详解】记OA a =,2OC a =,OB b =,由||1a =,||2b =, 且1a b ⋅=知60AOB ︒∠=,∴2a b BC -=,||||2OC OB ==,60BOC ︒∠=,∴OBC ∆为正三角形,60C ︒∠=,∴2,260a b a ︒<->=,故选:A .【点睛】本题考查向量的夹角,巧妙了利用向量减法的几何意义,转为为求三角形的内角,或用向量的夹角公式,属于中档题.7.平面直角坐标系xOy 中,若角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边与单位圆O 交于点00(,)P x y ,且(,0)2απ∈-,3cos()65πα+=,则0x 的值为( )【答案】A 【解析】 【分析】根据三角函数的定义0cos cos[()]66x ππαα==+-,结合已知条件,即可求解. 【详解】因为(,0)2απ∈-,3cos()65πα+=,所以(,)636πππα+∈-,若(0,)66ππα+∈,3cos()65πα+>>,所以不符合, 所以(,0)63ππα+∈-,4sin()65πα+=-所以03414cos cos ()66525210x ππαα⎡⎤==+-=⨯-⨯=⎢⎥⎣⎦. 故选:A【点睛】本题考查三角函数的定义应用,以及两角和差的公式运用,属于中档题. 8.关于函数()ln(1)ln(3)f x x x =+--有下述四个结论:①()f x 在(1,3)-单调递增 ②()y f x =的图像关于直线1x =对称 ③()y f x =的图像关于点(1,0)对称 ④()f x 的值域为R 其中正确结论的个数是( ) A. 0 B. 1C. 2D. 3【答案】D 【解析】 【分析】等价转化为1()ln3x f x x+=-,再用复合函数的单调性判断①正确;同时根据反比例函数值域判断④为正确;计算(1),(1)f x f x +-关系,可判断②③的真假. 【详解】()f x 的定义域是(1,3)-,1()ln 3x f x x+=-, 令14()1(0,)33x t x x x +-==-∈+∞-- 所以()t x 在(1,3)-单调递增,()ln ()f x t x =在(1,3)-单调递增,且值域为R又因为2(1)ln2x f x x ++=-,2(1)ln 2xf x x--=+ 所以(1)(1)f x f x +=--,(1)(1)f x f x +≠- 所以①③④正确,②是错误的.【点睛】本题考查复合函数的性质,涉及到函数的单调性、值域、对称性,属于中档题. 9.阿波罗尼斯是古希腊数学家,他与阿基米德、欧几里得被称为亚历山人时期的“数学三巨匠”,以他名字命名的阿波罗尼斯圆是指平面内到两定点距离比值为定值(0,1)λλλ>≠的动点的轨迹.已知在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin 2sin A B =,cos cos 2a B b A +=,则ABC ∆面积的最大值为( )C.43D.53【答案】C 【解析】 【分析】由已知条件结合余弦定理,可求出2BC AC =,2AB =,建立坐标系求出点C 所在的圆的方程,求出点C 到AB 距离的最大值,即可求出结论. 【详解】依题意,sin 2sin A B =,得2BC AC =,222222cos cos 222a c b b c a a B b A c c c+-+-+=+==即2AB =,以AB 边所在的直线为x 轴,AB 的垂直平分线为y 轴 建立直角坐标系,则(1,0),(1,0)A B -,设(,),0C x y x,由2BC AC =,则C 的轨迹为阿波罗尼斯圆,其方程为22516(),039xy x ,边AB 高的最大值为43, ∴max 4()3ABC S ∆=. 故选:C【点睛】本题考查正、余弦定理解三角形,考查轨迹方程的求法,以及三角形的面积最值,属于中档题.10.在ABC ∆中,60BAC ︒∠=,BAC ∠的平分线AD 交BC 于D ,且有23AD AC t AB =+.若||6AB =,则||BC =( ) A. B. C. D. 【答案】B 【解析】 【分析】由B 、C 、D 三点共线,可得t 的值,求出,BD DC 关系,再利用AD 是角平分线,结合面积公式,求出AC 边长,用余弦定理求出BC . 【详解】由B 、C 、D 三点共线知13t =,2133AD AC AB =+,2BD DC =,即2,2ABD ACD BD DC S S ∆∆=∴=,0011sin 30,sin 3022ABD ACD S AB AD S AC AD ∆∆∴=⨯⨯=⨯⨯, 26AB AC ∴==,所以3AC =,由余弦定理得BC =故选:B .【点睛】本题考查点共线的条件关系,考查角平分线的性质,以及余弦定理,属于中档题.11.已知函数2()sin 2cos 1(0)2xf x x ωωω=-+>在区间(1,2)上单调,则ω的取值范围是( ) A. 30,8π⎛⎤ ⎥⎝⎦B. 30,4π⎛⎤ ⎥⎝⎦C. 3370,,848πππ⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦ D. 330,,84πππ⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦【答案】C 【解析】 【分析】化简()f x ,利用sin =y A x 单调区间,得到关于ω不等式,即可求解. 【详解】化简得2()sin 2cos 1sin cos )24xf x x x x x ωπωωωω=-+=-=-因为()f x 在区间(1,2)上单调,所以212T πω=-即0ωπ< 令7(,2)(,)44444t x πππππωωω=-∈--⊆- 所以0242ωπππω<⎧⎪⎨-⎪⎩或0423242ωπππωππω⎧⎪<⎪⎪-⎨⎪⎪-⎪⎩或03427244ωπππωππω⎧⎪<⎪⎪-⎨⎪⎪-⎪⎩所以ω的取值范围是3370,,848πππ⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦. 故选:C【点睛】本题考查三角函数的化简,三角函数的性质,属于中档题.12.已知()(ln 1)(ln 1)f x ax xx x =++++与2()g x x =的图像至少有三个不同的公共点,则实数a 的取值范围是( )A. 12⎛- ⎝⎭B. 1,12⎛⎫-⎪⎝⎭C. ⎫⎪⎪⎝⎭D.【答案】B 【解析】【分析】()(ln 1)(ln 1)f x ax x x x =++++与2()g x x =的图像至少有三个不同的公共点,转化为方程()()f x g x =至少有三个不同的解,转化为ln 1ln 1()(1)1x x a x x++++=,换元ln 1()x t x x +=,得到2(1)10t a t a +++-=,转化为研究ln 1()x t x x+=的图像特征,以及一元二次方程根的分布,即可求出结论. 【详解】方程ln 1ln 1()()()(1)1x x f x g x a x x++=⇔++=至少有三个不等的实根 令ln 1()x t x x +=得2()(1)1(1)10a t t t a t a ++=⇔+++-=① 冈为2ln ()x t x x -'=,所以ln 1()x t x x+=在(0,1)上单调递增, 在(1,)+∞上单调递减且()t x 的最大值(1)1t =,x 轴是()t x 的渐近线. 所以方程①的两个根1t ,2t 的情况是:(ⅰ)若12,(0,1)t t ∈且12t t ≠,则()f x 与()g x 的图像有四个不同的公共点则12121212000(1)(1)0(1)(1)0t t t t t t t t ∆>⎧⎪+>⎪⎪>⎨⎪-+-<⎪-->⎪⎩a ⇔无解 (ⅱ)若1(0,1)t ∈且21t =或20t =,则()f x 与()g x 的图像有三个不同的公共点,则a 无解(ⅲ)若1(0,1)t ∈且20t <,则()f x 与()g x 的图像有三个不同的公共点 令2()(1)1h t t a t a =+++-则(0)01011(1)02102h a a h a ⎧<-<⎧⇔⇔-<<⎨⎨>+>⎩⎩. 故选:B【点睛】本题考查函数零点的个数与方程解的个数的关系,利用换元,结合求导方法,转化为求一元二次方程的根的分布,属于较难题. 二、填空题:本题共4小题,每小题5分,共20分.13.曲线2()cos2f x x x =-在点(0,(0))f 处的切线方程为___________.【答案】1y =- 【解析】 【分析】求()f x 导函数,求出(0),(0)f f ',即可求解.【详解】()22sin 2f x x x '=+,∴(0)0f '=,又(0)1f =- 故()f x 在(0,(0))f 处的切线方程为1y =-. 故答案为:1y =-【点睛】本题考查导数的几何意义,属于基础题.14.n S 是等比数列{}n a 的前n 项和,32a =,2106a a =,则6S =____________.【答案】632【解析】 【分析】根据等比数列的性质,求出公比及1a ,即可求解.【详解】因为{}n a 为等比数列,所以2106210a a a a =⋅=,即21,2a q ==,∴112a =∴66161(1)63(1)12a q S a q q -==-=-. 故答案为:632【点睛】本题考查等比数列的性质,以及通项公式的基本量运算,考查等比数列的前n 项和,属于基础题.15.函数()4sin 3cos f x x x =-,且对任意实数x 都有()(2)()f x f x R αα=-∈,则cos2=α________.【答案】725- 【解析】【分析】由()(2)()f x f x R αα=-∈得()f x 关于x α=对称,根据三角函数的对称关系,当x α=时,()f x 取得最值,亦为最值,得到()0f α'=,求出α的三角函数值,进而求出结论.【详解】依题意α为()f x 极值点,()0f α'=,∴4cos 3sin 0αα+=∴4tan 3α=-,∴221tan 7cos21tan 25ααα-==-+. 故答案为: 725-【点睛】本题考查三角函数的对称性,转化为函数的极值,利用求导的方法达到求值的目的,属于中档题.16.已知实数α,β满足3e e αα=,4(ln 1)e ββ-=,其中e 是自然对数的底数,则αβ=___________.【答案】4e 【解析】 【分析】把已知等式取对数,得到两个关系,抽象成一个方程的解,再根据方程的解的唯一性,得到α,β关系,进而求出结论.【详解】因为3e e αα=,4(ln 1)e ββ-=所以ln 3αα+=,ln ln(ln 1)4ββ+-=即ln 30αα+-=,ln 1ln(ln 1)30ββ-+--= 所以α,ln 1β-均为方程ln 30x x +-=的根, 又因为方程ln 30x x +-=的根唯一,所以4ln 13ln ln 1ln ln 4e αβαβαβαβ=-⇔-=-⇔+=⇔=. 故答案为: 4e【点睛】本题考查数与方程的关系,解题的关健要把两个条件式子化为结构一致,然后构造出一个方程,考查抽象概括能力,属于难题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数2()sin(2)sin(2)2cos 166f x x x x a ππ=++-++-. (1)若()f x 的最小值是2,求a ;(2)把函数()y f x =图像向右平移6π个单位长度,得到函数()y g x =图像,若a =求使()0g x 成立的x 的取值集合.【答案】(1)4a = (2)5,412x k x k k Z ππππ⎧⎫++∈⎨⎬⎩⎭【解析】 【分析】(1)化简()f x ,求出最小值,即可求解;(2)根据平移关系求出()y g x =,再解关于三角不等式,即可求解.【详解】(1)∵()2cos22sin(2)6f x x x a x a π=++=++∴min ()22f x a =-+=,∴4a =(2)∵()()2sin(2)66g x f x x ππ=-=-由()0g x 知3sin(2)62x π-, ∴2222,363k x k k πππππ+-+∈Z 解得,5,412k x k k ππππ++∈Z ∴满足()0g x 的x 取值的集合为5,412x k x k k ππππ⎧⎫++∈⎨⎬⎩⎭Z . 【点睛】本题考查三角函数的化简、性质;考查三角函数的平移关系以及解三角不等式,属于中档题.18.已知定义在R 上的偶函数()f x 和奇函数()g x 满足1()()2x f x g x ++=.(1)证明:2(2)[()]2f x g x =+;(2)当[1,2]x ∈时,不等式(2)()10f x ag x ++恒成立,求实数a 的取值范围. 【答案】(1)证明见解析 (2)23a -【解析】 【分析】(1)利用()f x ,()g x 的奇偶性,用解方程的方法求出()f x ,()g x 的解析式,即可求证结论;(2)分离参数a ,转化为求函数的最值,可求得结论. 【详解】(1)依题意1()()2x f x g x ++=①,又()f x 为偶函数,()g x 为奇函数 ∴1()()2x f x g x -+-+-=,即1()()2x f x g x -+-=②∴由①②得()22x xf x -=+,()22xxg x -=- ∴2222(2)22(22)2[()]2xx x x f x g x --=+=-+=+得证;(2)原不等式可化为2[()]()30g x ag x ++ ∴当[1,2]x ∈时,3()()a g x g x -+成立,其中315()[,]24g x ∈∴当[1,2]x ∈时,min 3(())()g x g x +=当且仅当()g x =∴23a -, ∴23a -.【点睛】本题考查用方程的思想求函数的解析式,利用基本不等式求恒成立问题,属于中档题.19.已知函数32()21()f x x ax a R =-+∈. (1)求()f x 的极值;(2)若()f x 在(0,)+∞内有且仅有一个零点,求()f x 在区间[2,2]-上的最大值、最小值. 【答案】(1)详见解析 (2)最大值为5,最小值为-27 【解析】 【分析】(1)求()f x ',对a 分类讨论,即可求出结论;(2)根据零点与图像的关系,求出a 的值,进而求出()f x 在区间[2,2]-上的最大值、最小值.【详解】(1)2()626()3af x x ax x x '=-=- 当0a =时,2()60f x x'=,∴()f x 在R 上是单调增函数,故()f x 无极值. 当0a >,此时03a >,当0x <或3ax >时,()0f x '> 03ax <<时,()0f x '< ∴(0)1()f x f ==极大值,3()()1327a a f x f ==-极小值 当0a <时,03a<,当3a x <或0x >,()0f x '> 03ax <<,()0f x '< ∴3()()1327a a f x f =-=极大值,()(0)1f x f ==极小值 综上,当0a =时,()f x 无极值, 当0a >时,()1f x =极大值,3()127a f x =-极小值, 当0a <时,3()127a f x =-极大值,()1f x =极小值 (2)若()f x 在(0,)+∞内有且只有一个零点 由(1)知,0a >且()()03a f x f ==极小值即31027a -=,∴3a =∴32()231f x x x =-+又当[2,2]x ∈-时,(0)1()f x f ==极大值,()(1)0f x f ==极小值,∴(2)5(0)1f f =>=,(2)27(1)0f f -=-<=故()f x 在[2,2]-上的最大值为(2)5f =,最小值为(2)27f -=-.【点睛】本题考查三次函数的极值、最值,以及零点问题,解题的关键要熟练掌握三次函数的图像特征,属于中档题.20.已知数列{}n a 中,19a =,23a =,且*2(12cos )2sin ,()22n n n n a a n N ππ+=+-∈. (1)判断数列{}2n a 足否为等比数列,并说明理由; (2)若21211n n n b a a -+=,求数列{}n b 的前n 项和n S .【答案】(1)是,理由见解析 (2)n S 1118418n =--- 【解析】 【分析】(1)对n 分类讨论,化简递推公式,即可得证; (2)求出{}21n a -的通项公式,进而求出{}n b 的通项公式,用裂项相消法可求出结论.【详解】(1){}2n a 是等比数列依题意知当n 为偶数时,23n n a a += ∴2223n n a a +=,又230a =≠∴数列{}2n a 为公比是3的等比数列 (2)当n 为奇数时22n n a a +=-,所以数列{}21n a -是以19a =为首项,以2-为公差的等差数列 ∴2192(1)211n a n n -=--=-+ ∴11111()(211)(29)(29)(211)221129n n n n n b n n ===--+-+----∴121111111()2977521129n n S b b b n n =+++=-+-++-------11111()292918418n n =--=----.【点睛】本题考查等差、等比数列的判定以及通项公式,考查裂项相消法求数列的前n 项和,解题的关键是对递推公式的分类讨论,属于中档题.21.已知钝角ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,其中A 为钝角,若tan b a B =,且32sin 2sin cos 2C B A =+. (1)求角C ;(2)若点D 满足2BD DC =,且AD =ABC ∆的周长.【答案】(1)6C π= (2)【解析】 【分析】(1)由正弦定理化边为角,化切为弦,结合已知条件求出,A B 关系,利用三角形的内角和关系结合两角和的正弦公式化简32sin 2sin cos 2C B A =+,求出角,A B ,进而求出角C ; (2)由(1)结论结合余弦定理可得3ab ,利用的向量的模长关系,即可求出三边长;或再利用余弦定理再找一个关于,,a b c 的关系式,即可求解. 【详解】(1)∵tan b a B =,∴sin sin sin cos A BB B⋅=,又(0,)B π∈,∴sin 0B >,∴sin cos A B =又A 为钝角,∴A π-为锐角,sin()sin()2A B ππ-=-∴2A B ππ-=-即2A B π=+又32sin 2sin cos 2C B A =+,∴32sin()2sin cos 2A B B A +=+ ∴32(sin cos cos sin )2sin cos 2A B A B B A +=+,∴3sin cos 4A B =∵2A B π=+,∴B 为锐角,故3sin()cos 24B B π+=,∴23cos 4B =,cos B =∴6B π=,23A π=,∴6C π=(2)∵6B C π==,∴b c =,又23A π=,由余弦定理知22222cos 3a b c bc A b =+-=,∴3ab ,∴2BD DC =法一:∴1233AD AB AC =+ ∴22222121441||()||||||339993AD AB AC AB AB AC AC AB =+=+⋅+=∴22||3||6AB AD ==即|6c AD ==∴a =∴ABC ∆的周长为法二:∵6B C π==,∴b c =,又23A π=,由余弦定理得 22222cos 3a b c bc A b =+-=,∴3ab ①在ABD ∆中,2222cos AD AB BD AB BD B =+-⋅⋅∴22222()2()33c a c a =+-⋅②联立①②得a =,b c ==故ABC ∆的周长为【点睛】本题考查三角函数的化简,求值,涉及到正弦定理、余弦定理、两角和的公式、诱导公式,考查向量的模长公式,属于中档题. 22.已知函数2()(1)()xf x xe a x a R =++∈ (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 取值范围. 【答案】(1)见解析;(2) (0,)+∞ 【解析】 【分析】(1)先求导数,再讨论导函数零点,最后根据区间导函数符号确定单调性, (2)结合函数单调性以及零点存在定理分类讨论零点个数,即得结果 【详解】解(1)()(1)2(1)(1)(2)xxf x x e a x x e a =++=++'+(ⅰ)0a ≥时,当(,1)x ∈-∞-时,'()0f x <;当(1,)x ∈-+∞时,'()0f x >, 所以f (x )在(,1)-∞-单调递减,在(1,)-+∞单调递增; (ⅱ)0a <时 ①若12a e=-,则1()(1)()x f x x e e -=-'+,所以f (x )在(,)-∞+∞单调递增; ②若12a e>-,则ln(2)1a -<-,故当(,ln(2))(1,)x a ∈-∞-⋃-+∞时,'()0f x >, (ln(2),1)x a ∈--,'()0f x <;所以f (x )在(,ln(2)),(1,)a -∞--+∞单调递增,在(ln(2),1)a --单调递减;③若12a e<-,则ln(2)1a ->-,故当(,1)(ln(2),)x a ∈-∞-⋃-+∞,'()0f x >, (1,ln(2))x a ∈--,'()0f x <;所以f (x )在(,1),(ln(2),)a -∞--+∞单调递增,在(1,ln(2))a --单调递减;综上:0a ≥时,f (x )在(,1)-∞-单调递减,在(1,)-+∞单调递增; 12a e=-时,f (x )在(,)-∞+∞单调递增; 12a e >-时,f (x )在(,ln(2)),(1,)a -∞--+∞单调递增,在(ln(2),1)a --单调递减; 12a e <-时,f (x )在(,1),(ln(2),)a -∞--+∞单调递增,在(1,ln(2))a --单调递减;(2)(ⅰ)当a >0,则由(1)知f (x )在(,1)-∞-单调递减,在(1,)-+∞单调递增,又1(1)0e f -=-<,(0)0f a =>,取b 满足1b <-,且2ln 2ab -<, 则223(2)(2)(1)()022a fb b a b a b b ->-+-=->,所以f (x )有两个零点(ⅱ)当a =0,则()xf x xe =,所以f (x )只有一个零点 (ⅲ)当a <0,①若12a e≥-,则由(1)知,f (x )在(1,)-+∞单调递增.又当1x ≤-时,()0f x <,故f (x )不存在两个零点 ②12a e<-,则由(1)知,f (x )在(1,ln(2))a --单调递减,在(ln(2),)a -+∞单调递增,又当1x ≤-,f (x )<0,故f (x )不存在两个零点 综上,a 的取值范围为(0,)+∞.【点睛】本题考查利用导数研究函数单调性以及函数零点,考查分类讨论思想方法以及综合分析求解能力,属难题.。