备战中考数学专题训练---一元二次方程的综合题分类附详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、一元二次方程 真题与模拟题分类汇编(难题易错题)

1.已知关于x 的一元二次方程()2

2

2130x k x k --+-=有两个实数根.

()1求k 的取值范围;

()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.

【答案】(1)13

4

k ≤;(2)2k =-. 【解析】 【分析】

()1根据方程有实数根得出()()

22[2k 1]41k 38k 50=---⨯⨯-=-+≥,解之可得.

()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方

程,可求得k 的值,注意利用根的判别式进行取舍. 【详解】 解:()

1关于x 的一元二次方程()2

2

2130x k x k --+-=有两个实数根,

0∴≥,即()()22

[21]4134130k k k ---⨯⨯-=-+≥,

解得134

k ≤

. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,

()

22

2222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+, 22

1223x x +=,

224723k k ∴-+=,解得4k =,或2k =-,

13

4

k ≤

, 4k ∴=舍去, 2k ∴=-. 【点睛】

本题考查了一元二次方程2

ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0>,

方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.以及根与系数的关系.

2.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC 和△DEF ,其中∠B=90°,∠A=45°,BC=

,∠F=90°,∠EDF=30°, EF=2.将△DEF

的斜边DE 与△ABC 的斜边AC 重合在一起,并将△DEF 沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).

(1)请回答李晨的问题:若CD=10,则AD= ;

(2)如图2,李晨同学连接FC,编制了如下问题,请你回答:

①∠FCD的最大度数为;

②当FC∥AB时,AD= ;

③当以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边时,AD= ;

④△FCD的面积s的取值范围是 .

【答案】(1)2;(2)① 60°;②;③;④.

【解析】

试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.

(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.

②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.

③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.

④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.

∵CD=10,∴AD=2.

(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.

∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."

② 如图,过点F作FH⊥AC于点H,

∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.

∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.

∵AC=12,∴AD=.

③如图,过点F作FH⊥AC于点H,设AD=x,

由②知DH=3,FH=,则HC=.

在Rt△CFH中,根据勾股定理,得.∵以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边,

∴,即,解得.

④设AD=x,易知,即.

而,

当时,;当时,.

∴△FCD的面积s的取值范围是.

考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.

3.已知:关于的方程有两个不相等实数根.

(1)用含的式子表示方程的两实数根;

(2)设方程的两实数根分别是,(其中),且,求的值.【答案】(I)kx2+(2k-3)x+k-3 = 0是关于x的一元二次方程.

由求根公式,得

.∴或

(II),∴.

而,∴,.

由题意,有

∴即(﹡)

解之,得

经检验是方程(﹡)的根,但,∴

【解析】

(1)计算△=(2k-3)2-4k(k-3)=9>0,再利用求根公式即可求出方程的两根即可;(2)有(1)可知方程的两根,再有条件x1>x2,可知道x1和x2的数值,代入计算即可.

一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措

施,其中规定每月用水量超过(吨)时,超过部分每吨加收环境保护费元.下图反映

了每月收取的水费(元)与每月用水量(吨)之间的函数关系.

请你解答下列问题:

4.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出的值.

月份用水量(吨)水费(元)

四月3559.5

五月80151

【答案】

5.关于x的方程(k-1)x2+2kx+2=0

(1)求证:无论k为何值,方程总有实数根.

(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.

【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.

【解析】

相关文档
最新文档