酒后血液中酒精含量分析模型

合集下载

饮酒驾车问题的数学模型

饮酒驾车问题的数学模型

饮酒驾车问题的数学模型按照国家质量监督检验检疫总局《车辆驾驶人员血液、呼气酒精含量阈值与检验》规定,饮酒驾车指:车辆驾驶人员血液中的酒精含量大于或者等于20mg/100mL,小于80mg/100mL的驾驶行为。

醉酒驾车指:车辆驾驶人员血液中的酒精含量大于或等80mg/100mL的驾驶行为。

那么酒后什么时候酒精浓度最高,酒后到底多长时间才能安全驾车下面我们就此问题建立数学模型。

一、提出问题体重为70kg的人在喝下(认为是瞬时饮酒)1瓶啤酒后,测量他的血液中酒精含量(毫克/百毫升),得数据[1]如下问题1.饮酒后多长时间后血液中含酒精量最大。

问题2.某人在早上8点喝了一瓶啤酒,下午2点检查时符合新的驾车标准,他在19点吃晚饭时又喝了一瓶啤酒,过了6小时后驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他陷入困惑,为什么喝同样多的酒,两次检查结果会不一样呢过六小时后再喝一瓶,过多长时间才可以驾车。

问题3.一次喝3瓶啤酒多长时间可以驾车。

二、基本假设短时间饮酒是一次饮入,中间时差不计。

酒精在血液与体液中含量相同。

酒精进入体内后不受其他因素对酒精的分解,不考虑个体差异。

转移过程为,胃→体液→体外。

人的体液占人体重的65%至70%,血液占体重的7%左右;而酒精在血液与体液中的含量是一样的。

三、参数说明t为饮酒时间,y1(t)为时刻人体消化的酒精量,y2(t)为时刻人体的酒精量,k1为酒精在人体中的吸收率常数,k2为酒精在人体中的消除率常数,c(t)为时刻内血液中酒精浓度。

f为酒在人体的吸收度(为一常数,其值等于血液与体液的重量之比)。

四、模型建立与求解可把酒精在体内的代谢看成进与出的过程,用和分别表示酒精输入速率和酒精输出速率,这样问题可简化为血液中酒精的变化律等于输入速率减去输出速率,即。

通过一系列计算得到人体内酒精含量。

可以看出,当酒精含量最大,解得,且此时c(t)达到最大值。

五、问题的回答 1.饮酒后多长时间后血液中含酒精量最大。

饮酒后人体血液中酒精含量的变化规律

饮酒后人体血液中酒精含量的变化规律

饮酒后人体血液中酒精含量的变化规律摘要本文针对喝酒后人体血液中的酒精含量变化规律进行讨论,以此来探讨酒后驾车的问题。

根据已知的一组某人酒后血液内酒精含量数据,利用matlab软件,采用非线性拟合的方法,得到一个血液内酒精含量变化规律的数学模型,此模型与已知数据拟合效果好,所以,以此为基本模型,采用平移、叠加、倍数等方法,推出其他的情况下的变化规律的数学模型。

根据得到的模型,通过数据及图像分析,得到违规驾车时间范围,血液中酒精含量最大值以及达到最大值的时间。

根据以上,第一解释司机大李所碰到的违规情况,第二回答在很短时间内和较长时间内(2小时)这两种情况下,喝3瓶啤酒后多长时间内驾车会违反新驾车标准,第三估计血液中的酒精含量在什么时间最高,第四对“如果天天喝酒,是否还能开车?”这个问题进行简单的探讨。

关键词:MATLAB;酒精含量;数学模型;非线性拟合;酒后驾车一问题重述据报载,2003年全国道路交通事故死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例. 针对这种严重的道路交通情况,国家质量监督检验检疫局2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车(原标准是小于100毫克/百毫升),血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车(原标准是大于或等于100毫克/百毫升).大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,为什么喝同样多的酒,两次检查结果会不一样呢?1. 对大李碰到的情况做出解释;2. 在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答:1)酒是在很短时间内喝的;2)酒是在较长一段时间(比如2小时)内喝的.3. 怎样估计血液中的酒精含量在什么时间最高.4. 根据模型论证:如果天天喝酒,是否还能开车?参考数据1. 人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的。

血液中酒精浓度数学模型研究

血液中酒精浓度数学模型研究

衡 水 学 院学 报
第l 4卷
dl ) x( t d f


k f l ) (
掣f 一 …+ 一 d : 2f f k( ( ) ) ~
( = cf f ) ) (
x( : c( 2 ) 2) t f
() 0 =D
f1 0 =0
其中 k, 分别为酒精从吸收室到中心室的转移速 率及 中心室 向体外排 出的速率 ; , 分别为吸收室 中胃 l 液 的体积和 中心室 中体液的体积; D 表示喝入的酒精的量 .
dt c 2 ( )
c( =C t 一 . 2) (e f )
吾 .

利用常数变易法求解( 式,先计算旦 5 ) = c f得到 c() e ,将其 中的 c变易 为 c() 一 () f=C f f ,即
将() 6式代入 回() 中有 : c e 一 c f=一 c f+ e .即 5式 ) f e ( ) e ( 。 ) 呐f
关键 词:数 学模型; 酒精 浓度 ;微 分方程 ;饮 酒模型;醉 酒
中 图 分 类 号 :O1 1 4. 4 文 献 标 识 码 :A 文 章 编 号 : 17 .0 52 1)40 1.3 6 32 6 (0 20 .0 10
大量喝酒对 人体会造成很 大危害 比如:1 )肝脏 伤害 :脂肪堆积 在肝脏 引起脂肪肝 .2 1胃溃疡 :可引起 胃 出血 而危及 生命 .3 )神 经系统伤害 :如周边神经病 变 .4 )大脑 皮质萎缩 :有报 告显示部分慢性酒瘾者 的大 脑 皮质 有萎缩 现象 ,也有部分病 人有智力衰 退 的迹 象 .5 )酒精性胎 儿徵 候群 :酒精在胎儿体 内代谢和排 泄速 率 较慢 ,对 发育中的胎儿造成各种伤害 ,包括胎 儿畸型、胎 死腹 中、生长迟滞及行为缺陷等[ . 醉酒 驾车的危害性更是 已经 受到全社会的关注 .对 于驾驶员若是饮酒后该如何判断血液 中酒精含量是否超

酒后驾车请注意酒精含量在血液中的计算方法

酒后驾车请注意酒精含量在血液中的计算方法

酒后驾车酒精量的计算方法作者:田同新1、人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的。

75KG的人体液约52KG约52升,即52000毫升。

2、毫升,升,这是体积单位,毫克,克,这是质量单位前者和后者的转换,一般是以水为衡量标准,因为水的密度是1kg/l所以1毫升水=1克=1000毫克1升水=1千克酒的密度稍小点,但是为了安全就以0.9计算,即1毫升酒精=900毫克酒精3、一瓶清爽型600ml左右的瓶装啤酒为例,酒精度一般为3.8%vol左右(vol,volume的简写,体积分数,即100毫升有3.8毫升酒精),一瓶即22.8毫升=20520毫克酒精,20520:520=39.5毫克/100ML血液。

4、一两33度的白酒=33毫升=29700毫克酒精,29700:520=57毫克/100ML血液5、一两50度的白酒=50毫升=45000毫克酒精,45000:520=86.5毫克/100ML血液根据国家质量监督检验检疫局发布的《车辆驾驶人员血液、呼气酒精含量阈值与检验》(GB19522—2004)中规定,驾驶人员每100毫升血液酒精含量大于或等于20毫克,并每100毫升血液酒精含量小于80毫克为饮酒后驾车;每100毫升血液酒精含量大于或等于80毫克为醉酒驾车。

备注:以上计算不包含酒精在人体的代谢。

酒精在被血液系统吸收后,通过以下三种方式排出体外:肾脏会通过尿液排除5%的酒精。

肺呼出5%的酒精,可通过呼吸测醉器检测出。

肝脏会将剩余的酒精化学分解成醋酸。

凭经验估计,普通人每小时可以消化0.5盎司(15毫升)的酒精,因此大约需要一小时才能消化一罐12盎司(355毫升)啤酒中的酒精。

以上仅为估算,为了安全驾车的同伴们还是不要喝酒,万一喝了酒,一定要休息一段时间再走会安全点,计算时注意个人体重。

人体内酒精含量的计算方法

人体内酒精含量的计算方法

人体内酒精含量的计算方法
人体内酒精含量可以通过血液中酒精的浓度来计算。

常用的计算方法有以下两种:
1. Widmark公式:C = (R * D * 0.8) / W
其中,C表示血液酒精浓度,R表示体内酒精分解速率,一
般为0.15 - 0.2,D表示饮酒摄入的酒精量(单位为标准饮品),W表示体重(单位为千克)。

该公式计算的结果为%‰,即千分之几。

2. Watson公式:C = D / (W * k)
其中,C表示血液酒精浓度,D表示饮酒摄入的酒精量(单
位为标准饮品),W表示体重(单位为千克),k表示个体的
分布比例,一般为0.68。

该公式计算的结果为%‰,即千分之几。

需要注意的是,这两种计算方法只是一种估算,实际的酒精含量受到个体生理特征、酒精代谢能力、饮酒速度等因素影响,所以还要结合其他因素进行综合判断。

同时,这两种计算方法也不能用于法律测醉的精确测量,只能作为参考依据。

饮酒后血液中酒精含量变化规律212

饮酒后血液中酒精含量变化规律212

饮酒后血液中酒精含量变化规律队员:李静熊雪聂超琴班级:数二数二数三建模:李静熊雪聂超琴编程:李静熊雪聂超琴写作:李静熊雪聂超琴饮酒后血液中酒精含量变化规律摘要本文针对酒后驾车人员血液中酒精含量是否符合驾车标准这一问题,建立了血液中酒精含量随时间变化的数学模型,分析短时间和较长时间饮酒后不同时段,血液中酒精含量的变化规律。

参考药物在体内的分解模型,主要考虑胃内酒精向体液渗透并在其中分解,建立血液中酒精含量的微分方程。

应用MATLAB软件中非线性曲线拟合的方法,拟合题中实验数据,测定微分方程包含的关键参数,总结酒精在血液中随时间变化的分布变化规律。

结合国家质量监督检验检疫局最新标准对曲线中的数据加以分析,在短时小时内酒精浓度超过80mg/100ml,此段时间内间喝三瓶啤酒后0.3478 3.9689小时血液酒精浓度大于20mg/100ml,小于为醉酒驾车;3.968913.374180mg/100ml,此段时间为饮酒驾车。

在2小时喝三瓶啤酒时,在1.7762 4.9930小时之间酒精浓度超过80mg/100ml,此段时间内为醉酒驾车;4.993014.3987小时之间血液酒精大于20mg/100ml小于80mg/100ml,此段时间为饮酒驾车。

对血液酒精浓度函数求导求极值点,在短时间饮酒在1.1436小时酒精含量最高;长时间(比如二小时)饮酒在2.5361小时酒精含量最高。

根据模型论证,天天喝酒,不能开车。

利用MATLAB数学软件进行编程求解,这样所得结果误差小,对拟合给出了直观的图形,便于更好的分析和解决问题。

考虑到胃内的酒精含量除了喝酒转化而来还包括其他部位转化而来,同时胃内的部分酒精也可经分解排出体外,血液中的酒精含量除了从胃渗透还包括从周边组织的转化;胃内酒精量的增加,转化成血液中的酒精能力也增强,这种转化能力与胃内酒精的含量有关,而健康人的肝脏分解能力是有限的,对模型进行了改进和推广。

关键词MATLAB 非线性数据拟合微分模型血液酒精浓度一、问题重述据报载,全国道路交通事故愈加频繁,其中因饮酒驾车造成的占有相当的比例。

判断酒驾模型

判断酒驾模型

合理判断酒驾模型班级:12级财务2班学号:20121930姓名:倪芙蓉(需要学分)摘要本文主要研究了在饮酒后血液以及体液中酒精浓度随着时间的变化关系,建立微分方程,研究酒精浓度在体液中随着时间的变化酒精浓度的改变,分析新酒驾标准是否合理。

关键字:饮酒速率、饮酒量、吸收速率、体液浓度一、问题重述从2011年5月1日新交规开始实施,警察查酒驾依据的标准是:血液中酒精含量<20mg/100ml,合格;血液中酒精含量 20mg/100ml,<80mg/100ml,为酒后驾驶;血液中酒精含量>80mg/100ml,为醉酒驾驶。

表1:本问题主要针对新酒驾标准,通过查阅或收集相关资料,解决以下问题: (1)表1中给出的饮用各种酒的“酒后驾驶标准”和“醉酒驾驶标准”合理否?制订你认为合理的评判标准。

(2)一般驾驶员在被交警当场吹验时判定为“酒后驾驶”或“醉酒驾驶”,若不服判决,会被带到医院进行血验,但血验结果不会立即出来;还有部分驾驶员逃逸,等抓获后再血验,血验结果不是案发时的实际值;如何还原案发时的实际值?(3)新交规仅依据人体100ml血液中酒精的含量这一个指标,作出是否“酒后驾驶”或“醉酒驾驶”的判罚,指标略显单一,建立你认为更合理的综合指标体系,和使用细则。

参考数据:参考数据1. 人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的.2. 体重约70kg的某人在短时间内喝下2瓶啤酒后,隔一定时间测量他的血液中酒精含量(毫克/百毫升),得到数据如下:时间(小时) 酒精含量0.25 300.5 680.75 751 821.5 822 772.5 683 683.5 584 514.5 505 416 387 358 289 2510 1811 1512 1213 1014 715 716 4二、模型假设和符号说明假设(1)以啤酒为饮酒对象(2)酒精进入人体后经胃、肠吸收进入体液(含血液),然后随血液循环至肝脏分解。

2004年中国大学生数学建模竞赛C题_饮酒驾车问题[1]

2004年中国大学生数学建模竞赛C题_饮酒驾车问题[1]

数学建模饮酒驾车题及建模论文饮酒驾车据报载,2003年全国道路交通事故死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例。

针对这种严重的道路交通情况,国家质量监督检验检疫局2004年5月31号发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车(原标准是小于100毫克/百毫升),血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车(原标准是大于或等于100毫克/百毫升)。

大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,为什么喝同样多的酒,两次检查结果会不一样呢?请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题:1.对大李碰到的情况做出解释;2.在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答:1)酒是在很短时间内喝的;2)酒是在较长一段时间(比如2小时)内喝的。

3.怎样估计血液中的酒精含量在什么时间最高。

4.根据你的模型论证:如果天天喝酒,是否还能开车?5.根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。

参考数据1.人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的。

2.体重约70kg的某人在短时间内喝下2瓶啤酒后,隔一定时间测量他的血液中酒精含量(毫克/百毫升),得到数据如下:酒后不开车摘要近年来,因饮酒、醉酒驾车而造成的交通事故频发,且呈逐年上升趋势。

加强司机的安全观念成为重中之重。

和大李一样困惑的司机也不在少数,问题1我们便会对大李所遇到的情况加以科学地解释;问题2我们要将情况推广,在喝酒持续时间长短两种情况下讨论酒后驾车的合理时间间隔;在问题2的基础上,进而我们引出问题3来研究酒后人体血液中的酒精含量出现最高的时间点;问题4是帮助那些想每天喝酒的司机来协调他们喝酒和开车的问题。

饮酒驾车问题的数学模型

饮酒驾车问题的数学模型

! U= exp(- βt)1nCtdt 0
(一)主要假设
其中,Ct 表示消费水平;β表示贴现
考虑消费的情形之下,投资组合分成 率,设为常数。
风 险 资 产(μtvt)和 无 风 险 资 产((1 - μt) vt)。其中,总资产价值记作 vt,μt 表示风 险资产所占总资产的比例,两者都是关 于时间 t 的函数,剩余部分 1- μt 投向无 风险资产,其收益率设为常数 r,常见的 如银行储蓄利率。假定风险资产的平均 收益率 λ+r 高于 r,即 λ>0,称为风险溢
一、投资消费模型
γ
dst/st=(λ+r)dt+kst dωt 其中,w 是标准布朗运动,k 为常数,γ 是弹性因子。特别地,若 γ=0,则是几何 布朗运动。 (二)最优问题 在投资消费中,通过投资收益,尽量 提高消费水平,同时考虑到未来价值贴 现,也就是要使得累计消费现值最大,故 我们选择对数效用函数:
k21c2+
Dk01 V1
e- k01t
(5)
由 Laplace 变换求得一般解为:
c1(t)=
Dk01 V1
(Ae-
αt+Be-
βt-

(A+B)e
k01


(6)
D= 啤酒的质量×啤酒的酒精含量
& D=500g×5%=25g=25000mg
V1=
100
70000mg 毫克 /百毫升
×70%=490
假设每一个健康人对酒精的吸收能 他喝第二瓶酒是在晚上 7 点。第一次检
时)内喝的。
力是相同的,吸收速率与酒精浓度成正比。 查在喝酒后的 6 小时,再次被检查时,距
3.怎样估计血液中的酒精含量在什 V1 和 V2 不变,同时考虑质量守恒,可得: 离两次喝酒的时间分别是:14 小时和 7

酒驾问题的数学建模

酒驾问题的数学建模

饮酒驾车的数学模型学院:数学学院姓名:***班级:15-数学四班学号:********【摘要】本文的目的在于,通过对人饮酒后体内酒精含量进行建模,然后根据所建模型,对相关问题进行分析和处理,并予以解决。

本文主要根据假设合理条件,用常微分方程建立酒精在人体内的变化模型。

以时间为变量,分类讨论酒精在人体内的变化。

最后,根据国家酒驾标准,结合所建立的模型,给司机朋友发出忠告。

【关键词】房室系统、MATLAB、酒后驾车,常微分方程。

一、问题重述小王,12点喝一瓶啤酒,18:00被检查合格,吃晚饭喝一瓶啤酒,夜里 2点,开车回家。

讨论问题:(1)如果小王凌晨2点驾车上路遇到酒驾检查,问他能否顺利通过?(2)喝3瓶啤酒,隔多久开车会违反标准,并回答:1)酒是在很短时间内喝的;2)较长一段时间内喝的。

(2小时内)3)估计体内酒精含量达到MAX的确切时间。

4)根据你的模型论证:如果天天喝酒,是否还能开车?5)提出忠告。

参考数据1.国家标准:驾驶员血液的酒精含量≥20毫克/百毫升,<80毫克/百毫升为饮酒驾车,≥80毫克/百毫升为醉酒驾车。

2. 体液占人体重的65%至70%,3. 体重70kg人短时间内喝下2瓶啤酒后其体内酒精含量(毫克/百毫升),数据如下:时间(小时) 0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 酒精含量30 68 75 82 82 77 68 68 58 51 50 41 时间(小时) 6 7 8 9 10 11 12 13 14 15 16酒精含量38 35 28 25 18 15 12 10 7 7 4二、模型假设1、喝酒越多,酒精发散到体内的速率越快。

2、酒精浓度越大,酒精吸收速率越大3、酒精被吸收的过程中不考虑损失。

4、酒精均匀分布。

三、符号说明D:短时间喝酒的酒精量。

:酒精由吸收室到中心室的速率系数;K1K:酒精从中心室到体外的速率系数;2C(t):中心室中的酒精含量;T:长时间酒精达到MAX时间;:酒精摄入胃的速率;kY(t):人的酒精含量;:体液容积;V(t):酒精被吸收速率;f1(t):酒精消化速率;f2X(t):胃里的酒精含量。

数学建模饮酒驾车

数学建模饮酒驾车

数学建模饮酒驾车引言饮酒驾车是指酒后驾驶机动车辆的行为,这种行为不仅是违法的,也是极其危险的。

根据世界卫生组织的数据,全球每年因酒后驾驶事故导致的死亡人数高达100万人。

因此,为了减少饮酒驾车事故的发生,数学建模在此领域具有重要的作用。

模型建立饮酒驾车的危险性主要在于酒精的影响。

我们通过建立数学模型,来量化血液中的酒精含量与驾驶能力之间的关系。

1. 血液酒精浓度计算酒精在人体内的分布服从一定的动力学,可以用下面的公式来计算血液酒精浓度:$$ BAC = \\frac{{a \\cdot S}}{{m - w \\cdot t}} $$其中,BAC 表示血液酒精浓度,a 表示饮酒体积,S 表示酒精体积分布系数,m 表示受体体重,w 表示体重分布系数,t 表示经过的时间。

2. 饮酒驾驶风险预测根据研究,饮酒后的驾驶能力会受到影响,我们可以用一些统计模型来预测饮酒驾驶的风险。

我们可以通过分析历史驾驶数据,并结合血液酒精浓度,使用回归分析模型来预测驾驶风险。

具体的模型可以是线性回归模型、逻辑回归模型等。

模型应用建立数学模型后,我们可以通过以下方式来应用模型进行饮酒驾车问题的解决:1. 提醒饮酒驾车风险通过将模型整合到智能手机或车载系统中,当用户输入他们的性别、体重、酒精饮用量和时间时,系统可以自动计算他们的血液酒精浓度,并提醒他们可能存在的饮酒驾车风险。

2. 设定饮酒驾车限制基于模型的预测结果,政府可以制定更有效的饮酒驾车政策。

例如,根据血液酒精浓度的不同阈值设置不同的处罚措施,来强制执行饮酒驾车的限制。

3. 教育和宣传数学模型可以帮助我们了解饮酒驾车的真正危险性。

通过将模型结果可视化,并结合相关的教育和宣传活动,可以提高公众对饮酒驾车风险的认识,从而减少事故的发生。

结论数学建模在饮酒驾车问题上发挥着重要的作用。

通过建立数学模型,我们可以量化血液酒精浓度与驾驶能力之间的关系,并预测饮酒驾车的风险。

这些模型的应用可以帮助我们提醒个体的饮酒驾车风险、制定更有效的政策,以及提高公众对问题的认识。

饮酒模型

饮酒模型

饮酒驾车模型摘要由代谢量与喝入的酒量成正比,吸收量与胃中残留的酒量成正比原理,得到满足初值条件的微分方程组:(Ⅰ)101()()(0)0k x x k x x αα=-⎧⎪'=⎨⎪=⎩为常数,(Ⅱ) 22()(0)0y k k y y αββ'=-⎧⎪=⎨⎪=⎩为常数运用非线性规划方法得到一组优化解;从而构造了相应的指数函数模型:12()k t k t y m e e --=-应用该模型能准确的解释题目中所述的现象,较圆满的解答了所有问题,并对其他未涉及的特殊情况和不同时间内人体血液中酒精含量的变化作出相应的预测.本模型总体上优于多项式函数的拟合,且便于操作.推广和应用,该模型比较广泛地应用到很多领域,诸如医药领域中药物的吸收和代谢,酒精的吸收和代谢,营养学中多种营养物质的吸收和代谢,生物学中的微量元素的吸收和代谢等.关键词变化率 微分方程 指数型函数 曲线拟合一、问题的提出、复述:面对高科技飞速发展的今天,随着经济的空前发展,人民生活水平的不断提高,人均汽车拥有量也在直线上升,加上一些人的安全意识淡薄,自我约束能力差,从而引起了频繁的交通事故发生,因此,我国质量监督检验检疫局2004年5月31日提出了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新的标准规定,当血液浓度C:20毫克/百毫升≤C<80毫克/百毫升时,规定为饮酒驾车;当血液浓度C:C≥80毫克/百毫升时,规定为醉酒驾车.对血液中的酒精含量的检验是监督驾驶人员的重要措施,通过对人饮酒后的研究,得出酒精在人体血液中随时间的变化情况,再结合国家对饮酒驾车检测新标准的规定.众所周知,酒精对人的神经、小脑都有相应的损伤麻痹,检查员对车辆驾驶人员血液、呼气酒精含量阈值与检验,是对司机及他人人身安全保障的进一步加强.对于大李在两次喝完同样多的啤酒后,分别进行检测,在第一次饮酒经过6小时后,检测时符合标准;在第二次饮酒后为了保险起见,经过6个多小时后,检查时却不符合驾车标准.对于出现的此种情况应作如何解释呢?在喝了多瓶(如三瓶)啤酒后经过多长时间才能驾车呢?怎样估计血液中酒精含量在什么时间最高?若天天喝酒,是否还能驾车?为了安全起见,如何对驾驶人员提出忠告?二、假设与建模1.酒精在血液中的分布是均匀的;2.饮酒后血液中酒精的含量只与体重有关;3.血液中酒精的含量与体重成反比,即认为喝相同量的酒,体重大者血液中酒精的浓度较小, 血液中酒精的含量与喝入的酒量成正比;4.所有啤酒的度数相同, 所有白酒的度数相同;5.当饮酒者短时间内喝完酒时,忽略该时段内对酒精的吸收与代谢;6.对于没有饮酒者,假设其体内酒精浓度为常数0 , 饮酒后血液中的酒精含量的浓度随时间的无限延长,认为其浓度可以忽略不计;x;7.每次喝入体内的酒精量为8. 酒精在胃中向血液中吸收速度为α,酒精在体内新陈代谢速度为β;9. 喝完酒到时间t内吸收酒精的含量为x(t),喝完酒到时间t内血液中酒精的含量为()y t;10.假设饮酒者的体重为70kg.三、建立模型微分方程模型的建立:为了考察一个人饮酒后血液中酒精浓度的变化情况,特设:从第一次饮酒时开始:x.每次喝入体内的酒精量为α.酒精在其胃中吸收速度为()tβ.酒精在体内的新陈代谢速度为()t喝完酒到时间t吸收酒精的的质量为()x t.人喝完洒到时刻t 血液中酒精含量为()y t . 吸收速度与胃中酒精的含量成正比; 吸收的量的变化率为吸收速度;血液中含量的变化率为吸收速度与代谢速度之差; 代谢速度与血液中的含量成正比. 则在某一时刻t : (),(),(),()t t x t y t αβ满足下列初值微分方程:(Ⅰ)101()()(0)0k x x k x x αα=-⎧⎪'=⎨⎪=⎩为常数 (Ⅱ) 22()(0)0y k k yy αββ'=-⎧⎪=⎨⎪=⎩为常数 解方程(Ⅰ) 10()x k x x =-101dxk x k xdt=-① 先求出微分方程 1dxk x dt=-的解:11k t x c e -= 设①的解为 11()k t x c t e -=得 11111()()k t k t x k e c t e c t --''=-+111()k t k x e c t -'=-+⋅ 011)(1x k t c e t k ='∴-解之得:210111)(c e k x k t c tk +=102()k t x t x c e -∴=+ 由0)0(=∴x ,解得:02x c -=100()k t x t x x e -∴=-111210k t k t x k c e k x e α--'∴==-=又 22()(0)0y k k y y αββ'=-⎧⎪=⎨⎪=⎩为常数即,102kt dy k x e k ydt -=-② 先求2dyk y dt=-的解. 23ln y k t c =-+23k t y C e -=设②的解为: 23()k t C t e -y= 则22323()()k t k t C t e k C t e --''-y =232()k t C t e k y -'-= 代入②得 12232()k t k t e k y C t e k y ---=-10k x21()3k k t C e -'∴10(t)=k x 21()3421k k tC e c k k -∴+-10k x (t)=12412k t k t y e c e k k --∴=+-10k xy(0)表示时间为0时的值,显然y(0)=0.421c k k ∴=-10k x1221()k t k t y e e k k --∴=--10k x③设21m k k =-10k x12()k t k t y m e e --∴=-代入方程③,通过解方程组的方法,分别求出m i ,k 1i ,k 2i 的可能值,运用非线性规划的方法,求出k 1i ,k 2i ,m i 的一组优化值,得k 1i =0.1998, k 2=1.998, m=119于是微分方程的解为:0.1998 1.998*()119()t t y t e e --∴=-由方程式③可知,y(t)的值与喝入酒的量x 0成正比,所以喝一瓶啤酒的方程形式为:0.1998 1.998119()()2tt y t e e --∴=-④ 其函数图象如下:0510152040f 1t ()t图1拟合曲线与参考数据点的对比图:05101550100实测数据经验曲线图2若此人第一次饮酒后,经过时间间隔t 0再进行下一次饮酒.设第k 次饮酒后血液中酒精含量y k (t),第k 次饮完酒后总血液中酒精的含量为zy k (t).则有下列关系:zy 1(t)= y 1(t)21201200()()()()()()zy t zy t y t t y t y t t t t =+-=+-≥ 3230120300()()(2)()()(2)(2)zy t zy t y t t y t y t t y t t t t =+-=+-+-≥一般地100()()((1))((1))n n n zy t zy t y t n t t n t -=+--≥-若记上式为:001()((1))((1))nn i i zy t y t i t t n t ==--≥-∑⑤显然当0(1)t n t ≥-时上式成立.若00(2)(1)i t t i t -≤<-,则表示第i 次尚未饮酒,其含量应以第i-1次饮酒的时间计算.以下推导第n 次饮完酒后血液中酒精的总含量的递推公式01()((1))nn i i zy t y t i t ==--∑000.1998((1)) 1.998((1))1119()2nt i t t i t i e e ------==-∑00.1998(1) 1.998(1)0.1998 1.9981119()2ni t i t t t i e e e e ----==-∑ 000.1998(1) 1.998(1)0.1998 1.9981111911922n n i t i t t t i i e e e e ----===-∑∑ 00000.1998 1.9980.1998 1.9980.1998 1.99811911()211nt nt t t t t e e e e e e ----=--- 由此,可以得出到从第一次饮完酒到时刻t 的整个过中,血液中酒精含量*()n zy t 的分段函数关糸为:10200300*1000()0()2()23()()(2)(1)()(1)n n n zy t t t zy t t t t zy t t t t zy t zy t n t t n t zy t n t t-<<⎧⎪≤<⎪⎪≤<⎪=⎨⎪-≤<-⎪-≤⎪⎪⎩四、问题的解决1、对第一个问题的解释:大李中午12点喝了一瓶酒,到下午6点检查时经过了6个小时,将t=6代入方程: 0.1998 1.998119()()2t ty t e e --=- 0.19986 1.9986119(6)()17.9202y e e -⨯-⨯∴=-=<根据新标准规定,大李的喝完一瓶酒6小时后符合驾车标准.假设大李喝第二瓶酒时在7:00以后喝的,到凌晨2点检查时,与第二次喝酒的时间间隔为7小时,与第一次喝酒的时间间隔为14小时,代入方程④21201200()()()()()()zy t zy t y t t y t y t t t t =+-=+-≥ 21212(14)(14)(7)(14)(7)zy zy y y y =+=+0102030204060图321212(14)(14)(7)(14)(7)21.420zy zy y y y =+=+=>根据新的标准规定大李此时为饮酒驾车违反了新的规定. 2、对第二个问题的回答:假设三瓶啤酒或半斤低度白酒的酒精含量相同.⑴ 三瓶啤酒是短时间内喝完的,认为他喝酒时间为0,代入方程④0.1998 1.998119()3()2t ty t e e --=⨯-05101550100150f 3t ()g t ()t图4 (ⅰ)当y(t)≥80时,即0.4≤t ≤4.6时,属醉酒驾车; (ⅱ)当20≤y(t)<80时,即4.6<t<11时,属饮酒驾车; (ⅲ)当y(t)<20时,即11<t 时,属正常.⑵ 假设酒是在较长时间(2小时)内喝完的,设三瓶酒在k 次等量饮完,则时间间隔为2k 小时,将t 0=2k,n=k 代入方程⑤得 00000.1998 1.9980.1998 1.9980.1998 1.99811911()3()211nt nt t tn t t e e zy t e e e e ----=⨯---0.1998 1.9980.1998 1.998220.1998 1.998119113()211t tkke e e e e e ----=⨯--- 我们认为当k →+∞时,即为均匀连续饮酒,其血液中的酒精含量为:0.1998 1.9980.1998 1.998220.1998 1.9980.3996 3.9960.1998 1.99811911()lim ()lim3()211119113()(2)20.3996 3.996t tk k k kk t te e zy t zy t e e k e e e e e e t --→∞→∞----==⨯-----=⨯-≥其图象如下:05101550100150f 4t ()g t ()t图5(ⅰ)当y(t)≥80时,即1.35<t ≤5时,属醉酒驾车;(ⅱ)当20≤y(t)<80时,即0.36<t ≤1.35,5<t ≤12时,属饮酒驾车; (ⅲ)当y(t)<20时,即12<t 时,属正常. 3、对第三个问题的解答: 若只喝一次酒,则方程为:0.1998 1.998119()()2t ty t e e --=-由函数最值知识可知:当()0y t '=,()0y t ''<时,y 取最大值,对上述方程求一、二阶导数,经解方程得:t=1.28(小时),即从饮完酒1.28小时后血液中的酒精含量达到最大值.若多次喝酒,则同样可由微分方程()0y t '=,()0y t ''<得出酒精含量最高的时刻. 4、对第四个问题的解答:我们先以一天为例,进行讨论,然后由递推方程的迭代,去推理以后每天的情况. ⑴每天喝一瓶或者喝两瓶的情形见对问题1的解答. ⑵ 每天喝三瓶的情况分为:① 一次喝完或在较长时间(如2小时)内喝完,见问题2的解决. ② 分次喝完的情况:分两次,每次一瓶半,时间间隔12小时,其血液中酒精含量与时间的函数关系如下:12123()122()3(()(12))122y t t zy t y t y t t ⎧<⎪⎪=⎨⎪+-≥⎪⎩其图象的参考对问题1的回答:分三次,每次一瓶,时间间隔8小时,则有:1123123()8()(8)816()()(8)(16)16y t t y t y t t zy t y t y t y t t <⎧⎪+-≤<=⎨⎪+-+-≥⎩ 其图象如图:05101520204060hh3t ()g t ()t图6可见,每天最多只能在(5.5,8.0),(14.3,16.1),(22.37,24)这三个时段内可以驾车.⑶每天喝四瓶的情况:① 一次喝完,运用方程⑤有0.1998 1.9984119()()2t ty t e e --=-可计算出4()20y t ≥,即t>12.25时可以驾车. ② 分两次喝,其情形与两瓶两次喝完相似.③分四次喝完,每次一瓶,间隔6小时,其血液中的酒精含量方程为:11241231234()6()(6)612()()(6)(12)1218()(6)(12)(18)18y t t y t y t t zy t y t y t y t t y t y t y t y t t <⎧⎪+-≤<⎪⎪=+-+-≤<⎨⎪+-+-+-≥⎪⎪⎩其图象如图:010203020406080gg4t ()g t ()t图7可见,每天只有从(5.46,6.02)中的33分钟的开车时间,在第25小时时的含量为20.863,即从第二天起,则再没有任何开车机会.(4)五瓶及五瓶以上的讨论与此基本相同.由以上讨论,我们的结论是:若天天喝四瓶酒,并分四次喝完,则只在第一天有33分钟的开车时间,而从第二天起,则再没有任何开车机会.若一次喝完,虽然可以驾车,但相应的驾车时间会随喝入酒量的增大而减少. 5、对第五个问题的解答:广大司机朋友们,为了你我的安全,为了家人的幸福,为了维护交通的畅通,驾车前最好不要喝酒,若你真正想喝一点酒,酒后又想驾车,如何才能使你既安全又不被交警检测时被定为饮酒驾车(或酒醉驾车)呢?根据研究,对你提出以下忠告:(以喝啤酒为例,每天以24小时计)1、一天只喝一次,在你喝了一瓶酒后,请在6小时之后再开车;在你短时间喝完2瓶啤酒,请在10小时之后开车;若你短时间喝了3瓶啤酒,请在11个小时后开车;若你较长时间喝了3瓶啤酒,请在12小时之后开车.2、若你一天喝两次酒,每次一瓶,其按中间间隔6小时,你应在14小时之后驾车;若你一天喝两次酒,每次两瓶,其中间间隔仍按6小时计,你应在19.5个小时后驾车.3、若你一天喝三次酒,每次一瓶,其按中间间隔6小时,你应在22.5小时后驾车;若你一天喝三次酒,其按中间间隔8小时,你全天只能驾车5.3小时.4、若你一天喝四次酒,每次喝一瓶,按中间间隔6小时,第一天只有0.56小时驾车,而以后每天你将没有驾车时间.若再比4次多,你将再也没有驾车机会.五.模型的评价与改进模型与方法已获得应用,通过多次间断,连续的在相同间隔下饮酒的计算所得结果与参考数据2所给数据相吻合.在建模时曾作了忽略人体内本身所含有的酒精含量(c0.3/毫克百毫升)的假设,在模型计算中的出的数值比实际检测出的数值偏低,要是计算数值更接近实际检测出的数值,在建模过程中,我们应该将这个因素考虑进去.此外,在建模中未考虑到外界条件、饮食、个人心情的变化对人体内血液中酒精吸收速度的影响,使得我们在作拟合图象时出现了一些允许的误差,并对这些误差作出估计(见图2).经计算,拟合函数在各测定点的函数值,与参考数据组的绝对平均误差为-0.204,相对平均误差为1%.参考文献及使用工具:⑴叶其孝《大学生数学建模竞赛辅导教材》;湖南湖南教育出版社1997年版⑵郝黎仁《Mathcad2001及概率统计应用》北京中国水利水电出版社2002年版本篇论文在数值计算、图象处理等方面大量使用了Mathcad2001、几何画板等数学计算和编辑软件。

喝酒后人体内酒精含量的计算公式

喝酒后人体内酒精含量的计算公式

喝酒后人体内酒精含量的计算公式示例文章篇一:《喝酒后人体内酒精含量的计算公式?这可太有趣啦!》我今天可算是发现了一个超级神奇的事儿,那就是喝酒后人体内酒精含量居然有计算公式呢!这就像是解开一个超级神秘的密码一样。

我先跟你们说说我为啥会对这个感兴趣吧。

我爸爸呀,他有时候会喝点小酒。

有一次,他喝了酒之后,脸红红的,说话也有点奇怪。

我就好奇,他身体里到底有多少酒精在捣乱呢?然后我就开始到处打听关于喝酒后人体内酒精含量的事儿。

我跑去问我爷爷,爷爷皱着眉头说:“哎呀,小娃娃问这个干啥。

”我就拉着爷爷的手说:“爷爷,爷爷,我就是好奇嘛。

你看爸爸喝了酒就变得和平时不一样,肯定是酒精在搞鬼,我想知道到底有多少酒精在他身体里呀。

”爷爷就笑了笑说:“这可不是个简单的事儿啊。

”后来呀,我在一本书上看到了一点线索。

原来喝酒后人体内酒精含量的计算还和好多东西有关呢。

比如说喝了多少酒,酒的度数是多少,还有人的体重。

这就像是做饭的时候,你要知道放多少食材、调料,还得看锅有多大一样。

如果把酒比作是调料,那体重就像是那个锅啦。

我就想啊,要是我能算出爸爸喝酒后身体里的酒精含量,那我是不是就像个小科学家一样厉害呢?我又去找我的小伙伴们说这个事儿。

我的小伙伴小明说:“这怎么算呀?听起来好复杂。

”我就很得意地说:“哼,我都已经知道一些啦。

”我给他们讲,要是喝的酒越多,那身体里的酒精肯定就越多呗,这就像你往杯子里倒水,倒得越多,杯子里的水就越多。

酒的度数呢,就像是水的温度一样,度数越高,就好像温度越高的水,那劲儿就越大,进入身体里的酒精含量肯定也会不一样。

那这个计算公式到底是啥样的呢?我又继续探索。

我发现呀,有个大概的公式是这样的。

先算出喝进去的酒精的量,这就等于喝的酒的量乘以酒的度数再乘以0.8(因为酒精的密度和水不一样)。

然后呢,这个算出来的酒精量再除以人的体重,就得到了一个数值。

这个数值就大概能表示喝酒后人体内每千克体重所含的酒精量啦。

常微分方程--酒驾问题

常微分方程--酒驾问题

东南大学数学建模实验报告实验内容:酒驾问题一实验目的(1)掌握常微分方程建模问题(2)学会使用Matlab进行常微分方程的求解二实验内容与要求国家质量监督检验检疫局 2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒 精含量阈值与检验》国家标准,新标准规定,车辆驾驶人 员血液中的酒精含量大于或等于20毫克/百毫升,小于80 毫克/百毫升为饮酒驾车(原标准是小于100毫克/百毫 升),血液中的酒精含量大于或等于80毫克/百毫升为醉 酒驾车(原标准是大于或等于100毫克/百毫升 )。

在中某人午12点喝了一瓶啤酒,下午6点检查时符合 新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为 了保险起见他呆到凌晨2点才回家,又一次遭遇检查时却 被定为饮酒驾车,这让他懊恼又困惑,为什么喝了同样多 的酒,两次检查结果会不一样呢?请你参考下面的数据建立饮酒后 血液中酒精含量的数学模型,并讨论以下问题: 1、对某人碰到的情况作出解释; 2、假设酒是在很短时间内喝的,在喝了3瓶啤酒或半斤低度白酒后多长时间内驾车就会违反上述标准.3、怎样估计血液中酒精含量在什么时候最高。

4、根据你的模型论证:如果天天喝酒,是否能开车? 以下是某人喝了两瓶啤酒后血液酒精浓度(毫克/百毫升)三 假设及建模假设一:机体分为中心室和周边室,两个室的容积在过程中保持不变。

假设二:药物从一室向另一室的转移速率,及向体外的排除速率,与该室的酒精浓度成正比。

假设三:只在中心室一体外有酒精交换,即酒精从体外进入中心室,最后又从中心室排出体外,与转移和排除的数量相比,酒精的吸收可以忽略。

建模:二室模型的示意图如下图所示:饮酒()t f 0两个房室中酒精量)(),(21t x t x 满足的微分方程。

)(1t x 的变化率由一室向二室的转移112x k -,一室向体外排除113xk -,二室向一室的转移221x k 及酒精)(0t f 组成;)(2t x的变化率由一室向二室的转移112x k 及二室向一室的转移221x k -组成,于是有: )(022********t f x k x k x k dtdx ++--=2211122x k x k dtdx -= (1) )(t x i 与血液中酒精含量)(t c i 、房室容积i V 显然有关系式2,1.................................),........()(==i t c V t x i i i (2)将(2)式代入(1)式可得:2211122121022112113121)()(c k c k V V dt dc V t f c k V Vc k k dt dc -=+++-= (3)喝酒相当于在酒精进入中心室之前先有一个将酒精吸收入血液的过程,可以简化为有一个吸收室,如下图,)(0t x 为吸收室的酒精,酒精由吸收室进入中心室的转移速率系数为01k ,于是)(0t x 满足:00010)0(D x x k dt dx =-= (4)当0)0(,)0(,0)(2110===c V D c t f 时,(3)可以化为: t t Be Ae t c βα--+=)(1四 代码及结果format short g% 题中提供的某人喝了两瓶啤酒后血液酒精浓度随时间变化表t=[ 0.25; 0.5; 0.75; 1; 1.5; 2; 2.5; 3; 3.5; 4; 4.5; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16 ];c=[ 30; 68; 75; 82; 84; 77; 70; 68; 58; 51; 50; 41; 38; 35; 28; 25; 18; 15; 12; 10; 7; 7; 4 ];% 根据此变化表拟合求解相关系数ft =fittype('A1*exp(-a*x)+B1*exp(-b*x)');options = fitoptions('Method','NonlinearLeastSquares');options.StartPoint = [0 -1000 0 0];cfit = fit(t,c,ft,options);plot( cfit, t, c, 'o' );A1=cfit.A1B1=cfit.B1a=cfit.ab=cfit.b由此解得:(数值见右图,拟合曲线见下图)A1 = 110.55B1 = -151.46a = 0.17949b = 2.8243%---1---%%问题:某人中午12点喝了一瓶啤酒,下午6点检查合格,晚饭又喝一瓶,次日凌晨2点检查未通过,请对此情况做出解释。

酒精浓度 数学建模

酒精浓度 数学建模

数学建模论文酒精含量问题摘要:有三种不同的喝啤酒方法:1.瞬间喝下两瓶啤酒。

2.持续一段时间喝下两瓶啤酒。

3.分段脉冲式喝下两瓶啤酒。

其中啤酒的酒精浓度是4%,单位时间内排出的酒精与此时体内酒精含量成正比 . 根据每种方法,求此人体内酒精含量随时间的变化规律。

关键词:瞬间、持续一段时间、分段脉冲、4%、正比正文一.问题重述根据三种不同的喝啤酒方法,求出体内酒精含量随时间变化规律。

二.问题分析由题意知,排出酒精的速率与当前体内酒精含量成正比,便可以排除的速率和体内含量的关系式,同时根据不同的喝酒方式,可以列出体内酒精含量变化率与时间的关系,通过代入不同的初始条件,便可以得到三个不同的函数关系式。

三.模型假设结合药物在体内的分布问题,结合房室系统,建立酒精分布的单房室模型,它假设:体内药物在任一时刻都是均匀分布的,设t时刻体内酒精的总量为x(t);系统处于一种动态平衡中,即成立着关系式:dx/dt=dx/dt(入)-dx/dt(出)。

酒精的分解与排泄(输出)速率通常被认为是与酒精当前的含量成正比的,即dx/dt(出)=kx.四.模型的建立1.瞬间喝下两瓶啤酒在瞬间喝下两瓶啤酒时,总量为8%的酒精在瞬间被注入体内。

可以近似看作只输出不输入的房室。

2.持续一段时间喝下两瓶啤酒啤酒以恒定的速率喝下,则满足 dx/dx(入)=K0。

3.分段脉冲式喝下两瓶啤酒每次喝酒的量相同,且瞬间喝下,隔相同的时间再喝酒。

假设每次喝下酒的体积均为v ,其中酒精含量为c=4%*v/V0,隔的时间均为T 。

当他每次瞬间喝下时,体内的酒精含量增加了c=4%*v/v0,则他喝完所有的两瓶酒共需2V0/V 次。

五.模型的求解1.瞬间喝下两瓶啤酒系统可看成近似满足微分方程组dx/dt+kx=0;x(0)=8%,解方程得出x(t)=8%*e^(-kt)。

2.持续一段时间喝下两瓶啤酒体内酒精含量满足: dx/dt+kx=K0;x(0)=0. 组成微分方程组,解方程得3.分段脉冲式喝下两瓶啤酒从他第一次喝酒开始计时,即当1=n 时,0=t ,则当他第n 次喝酒时,,t=(n-1)T,x(0)=c,x(nT)=c+x(nT-),且dx/dt+kx=0,联立微分方程组解得))(,)1[(,)()()(T n T n t e nT x t x nT t k -∈=--,利用递归的思想,最终解得),)1[(,)()(])1([)1(2nT T n t e ce ce ce c t x T n t k kT n kT kT -∈+++=-------六.结果表示.1.瞬间喝下两瓶啤酒的酒精变化规律为x(t)=8%*e^(-kt)2.一段时间内喝下两瓶啤酒的酒精含量变化规律为3.分段脉冲式喝下两瓶啤酒的酒精含量变化规律为),)1[(,)()(])1([)1(2nT T n t e ce ce ce c t x T n t k kT n kT kT -∈+++=-------七.模型的综合评价模型的优点:可以根据函数,通过不同的喝啤酒方法计算出每个时刻体内的酒精含量,可以比较出不同喝酒方法导致的酒精含量变化的快慢。

第二次作业饮酒驾车问题数学建模

第二次作业饮酒驾车问题数学建模

dw = − kw dt w(0) = w0
其中 k 为吸收速率常数,解得: w( t) = w0 e− kT 时,由于经过时间间隔 T,又第二次饮酒,饮入量为 w0 ,所以 t=T 时
w(T ) = w0 + w0 e − kt
同理:当 t=2T 时,前两次酒精残余为: ( w0 + w0 e − kT )e − kT 并且当 t = 2T 时,又第三次饮酒,饮酒量仍为 w0 ,所以,
在前面就设好喝酒瓶数 n 比较方便)
问题一: (喝一瓶酒故参数 f/V 应代为 51.35) 下午六点检时测, t=6 时代入: w(6)= 19(mg/100ml) w(6)<20,即下午六点时没有检测出为饮酒驾车。 再次喝酒时,体内有酒精残余,有一个值为 19 的初始值, 凌晨两点再次检测时, t=8 代入: y(8)=27(mq/ml) 酒精含量 y(8)>20,因此大李被认定为饮酒驾车。
数学建模作业二:
饮酒驾车问题分析
一、 一次性饮酒的模型:
假设: 1 .酒精转移的速率与出发处酒精浓度成正比; 2 .过程为酒精从胃到体液到体外; 3. 酒精在血液与体液中含量相同; 4 在很短时间内饮酒,认为是一次性饮入,中间的时间差不计; 5.不考虑个体差异。
t为饮酒时间, y1 (t ) 为 t 时刻人体消化的酒精量, y2 (t ) 为 t 时刻人体的酒精
这样考虑 1.假设饮酒周期固定; 2.假设每次饮酒量也一定; 3.假设为一次性饮入; 4. 酒精浓度消除率为常数; 5.不考虑个体差异。 设 w(t ) 表式 t 时刻酒精在人体内的浓度, w(0) 表示 t=0 时饮入酒精量在体 内浓度, y (0) 表示饮入酒精量,T 表示周期,V 为体液体积,k 为酒精浓度消除 率。 饮酒后体内酒精的浓度逐渐降低, 酒精浓度消除率与饮酒量成线性比, 则有:

酒后血液中酒精含量分析模型

酒后血液中酒精含量分析模型

摘要:本文使用简单的微分方程组模型,对人们饮酒后人体血液中的酒精含量进行了分析。

首先,针对酒精在消化系统和血液系统中的吸收、分解和排除规律,建立了关于消化系统和血液中的酒精含量的微分方程模型(模型一),求出了血液中酒精含量的解析解 )()()(211212t k t k e e k k V mk t c ----=β,并利用题目给出的参考数据,针对不同的啤酒瓶规格,使用非线性最小二乘法得到模型中的参数9129.21=k 和1380.02=k ;然后,针对不同的饮酒方式建立了三个不同的描述消化系统和血液中的酒精含量的模型(模型二,模型三、模型四),模型二 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧--=+=-=-=---)()()(2111211212122112111T k T k T k e e k k m k T x e m m T x xk x k dt dx x k dt dx ββ模型三 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==-=-=0)0(,0)0(2122112111x x x k x k dt dxx k J dt dx β模型四 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=T T x T x x T x x k x k dt dxx k J dt dx 221122112111)(,)(β利用这些模型对大李的困惑,给出了合理、准确的解释,并分别求出了快速和慢速喝3瓶啤酒和半斤38度白酒后不能驾车的准确时间分别为13.7, 16.2,14.8,17.3小时;在模型应用3中详细分析了饮酒后血液中酒精含量的峰值问题,得到了几个十分重要的结论:定理1:摄入同样容量酒精的前提下,瞬间喝酒比均匀喝酒酒精含量降到低水平的时间更短。

定理2:饮酒后人体血液中的酒精含量曲线为单峰曲线,即只有一个极大值; 推论1:瞬间喝酒时,达到酒精含量最大值的时间与酒精摄入量无关,只与比例常数21k k 和有关,且时间为2121ln ln *k k k k t --=;推论2:慢速喝酒时,达到酒精含量最大值的时间与酒精摄入量无关,只与比例常数21k k 和及饮酒持续时间τ有关,且时间为()()121ln 1ln *12k k e e t k k ----=ττ;最后,我们分析了周期性喝酒的,通过分析,我们得到的结果是只要适当控制饮酒量和饮酒次数,完全可以还能开车。

饮酒驾车的数学模型

饮酒驾车的数学模型
酒精含量(mg/100ml) 68 58 51 50 41 38 35
时间(小时) 8 9 10 11 12 13 14
酒精含量(mg/100ml) 28 25 18 15 14 10 7
时间(小时) 15 16
酒精含量(mg/100ml) 7 4
2.2模型假设与符号说明
1.假设说明
1引言
近年来国民经济不断提高,人民的生活水平不断提高,物质生活也越来越丰富,聚餐、出游成了相当常见的活动。而亲戚、朋友或工作聚餐都少不了饮酒,越来越多的人购买车辆的现象就导致了酒驾行为,致使交通事故频繁发生。2016年出台的酒驾新规,将酒驾列入判刑标准。我将引用2004年全国大学生数学建模C题给出的数据,利用MATLAB进行数据拟合,分析一个人在快速和慢速两种情况下喝两瓶啤酒,经过多长时间能够达到国家安全驾驶标准。
将(1)的解代入(2)有:
(3)
又根据假设我们可以得到微分方程:
(4)
t时刻中心室血液中的酒精含量 与血液浓度 、中心室中的血液体积 显然有关系式:
(5)
将(5)式代入(4)式得:
(6)
解此微分方程可得:
(7)
人体中血液的体积
中心室中血液的体积
3.问题的数学模型与分析
在第二章我们已经对解决这一问题进行了前提假设和符号说明,饮酒驾车这一问题研究的是酒精在人体被吸收、消化、分解,最终达到国家对酒驾的新标准,那么是通过哪些方面和途径来解决这一问题的呢?那就是通过不同的饮酒方式在人体的吸收情况利用MATLAB进行线性拟合来分析一个人在喝了3瓶啤酒或半斤低度白酒后多长时间能开车上路。
1.2国内研究现状
1.3组织结构
2.问题求解
第一章讨论了饮酒驾车给我们的道路交通安全带来了威胁,以及防治酒驾行为给我们的社会道路安全带来的积极意义。那怎样算酒驾,酒驾的标准又是什么呢?根据国家质量监督检验检疫局发布的《车辆驾驶人员血液、呼吸酒精含量阈值与检验(GB19522-2004)》中规定,该规定指出,饮酒驾车人员血液中酒精含量大于或者等于20毫克/一百毫升,小于80毫克/一百毫升的驾驶行为。饮酒驾车人员血液中酒精含量大于或者等于80毫克/一百毫升的驾驶行为。针对饮酒驾车这一问题,本章就2004年全国大学生数学建模C题给出的数据,进行数据分析、模型假设,来解决这一问题。

酒的科学5:为什么每个人醉酒的反应不一样?

酒的科学5:为什么每个人醉酒的反应不一样?

酒的科学5:为什么每个人醉酒的反应不一样?醉酒的样子很不好看,想必很多人都见到过醉酒者的表现。

最好的情况是喝醉后就去睡觉,不少人人醉后吐词不清还喋喋不休,有的人则是步态踉跄,如风摆荷叶,有的人大喜,有的人大怒,有的人还会上吐下泻,有人会斗胆狂言,有的人行为举止失态而做了不该做的事情……法律上,人们一般把血液酒精浓度/BAC达到0.08%(相当于80毫克酒精/100毫升血液)作为判断醉驾的标准。

但对于醉酒,其实并没有明确的概念。

人们一般喝酒后人体出现明确行为或者生理异常的情况判断为醉酒,比如喝酒者的语言、视觉、步态、认知、脾性变得跟平常不一样,喝酒者表现出头疼、出现呕吐或者腹泻等等。

酒精进入大脑后的这些影响人们一般称为喝醉了,学术上则称为Ethanol Intoxication即酒精中毒。

为什么人们醉酒的反应不尽相同呢?本期食与心将带你揭秘。

1. 不同的醉酒表现与不同的脑区对应作为一种同时具有亲水性和亲脂性的小分子,酒精可穿过人体任何一个细胞壁和任何一层屏障,详细了解可参考酒的科学2:为什么酒精能在人体内畅通无阻。

血液中的酒精穿过血脑屏障进入大脑后,可顺着浓度梯度进入大脑任一区域,比如控制运动、思维、警觉性、感觉、语言、协调性或平衡性的脑区。

酒精影响不同的脑区,就会出现不同的醉酒反应。

如上图所示,不同大脑区域的功能不同。

从左往右顺时针看,最下方的脑干(浅蓝色)负责最基本生命活动,中部的海马区(黄色)负责学习和记忆,左侧的额叶皮层(浅紫色)负责判断力、思维能力和决策能力,上部的运动皮层(绿色)负责运动,紧挨着的感觉皮层(深红色)负责感觉,右侧的视皮层(浅红色)负责视觉,右侧下部的小脑(橘色)负责平衡性和协调性。

▪兴奋/去抑制:大脑额叶皮层的正常功能如同汽车的刹车系统一样,是会抑制不合适的社交和冲动行为,而酒精作用下会松开这个“刹车踏板”。

▪快乐/愉悦:酒精能激活从中脑延伸到边缘系统的奖赏回路,让人产生愉快的感觉,这种愉快感会促使人继续饮酒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:本文使用简单的微分方程组模型,对人们饮酒后人体血液中的酒精含量进行了分析。

首先,针对酒精在消化系统和血液系统中的吸收、分解和排除规律,建立了关于消化系统和血液中的酒精含量的微分方程模型(模型一),求出了血液中酒精含量的解析解 )()()(211212t k t k e e k k V mk t c ----=β,并利用题目给出的参考数据,针对不同的啤酒瓶规格,使用非线性最小二乘法得到模型中的参数9129.21=k 和1380.02=k ;然后,针对不同的饮酒方式建立了三个不同的描述消化系统和血液中的酒精含量的模型(模型二,模型三、模型四),模型二 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧--=+=-=-=---)()()(2111211212122112111T k T k T k e e k k m k T x e m m T x xk x k dt dx x k dt dx ββ模型三 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==-=-=0)0(,0)0(2122112111x x x k x k dt dxx k J dt dx β模型四 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=T T x T x x T x x k x k dt dxx k J dt dx 221122112111)(,)(β利用这些模型对大李的困惑,给出了合理、准确的解释,并分别求出了快速和慢速喝3瓶啤酒和半斤38度白酒后不能驾车的准确时间分别为13.7, 16.2,14.8,17.3小时;在模型应用3中详细分析了饮酒后血液中酒精含量的峰值问题,得到了几个十分重要的结论:定理1:摄入同样容量酒精的前提下,瞬间喝酒比均匀喝酒酒精含量降到低水平的时间更短。

定理2:饮酒后人体血液中的酒精含量曲线为单峰曲线,即只有一个极大值; 推论1:瞬间喝酒时,达到酒精含量最大值的时间与酒精摄入量无关,只与比例常数21k k 和有关,且时间为2121ln ln *k k k k t --=;推论2:慢速喝酒时,达到酒精含量最大值的时间与酒精摄入量无关,只与比例常数21k k 和及饮酒持续时间τ有关,且时间为()()121ln 1ln *12k k e e t k k ----=ττ;最后,我们分析了周期性喝酒的,通过分析,我们得到的结果是只要适当控制饮酒量和饮酒次数,完全可以还能开车。

作为结束,我们写了一篇短文,作为对想喝酒的司机的忠告。

关键字:非线性拟合的最小二乘法、微分方程组、峰值、酒精含量一、问题的重述我国的汽车保有量只有世界的2%,道路交通事故中死亡的人数却占全世界的15%。

2003年全国道路交通事故死亡人数为10.4372万,其中因饮酒驾车造成的占有相当大的比例。

不久前,中国交通部公路司司长张剑飞在全国公路安全保障座谈会上坦言:“我国如果不尽早采取行之有效的措施,道路交通事故可能会呈爆炸式增长。

”针对这种严重的道路交通情况,国家质量监督检验检疫局2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车(原标准是小于100毫克/百毫升),血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车(原标准是大于或等于100毫克/百毫升)。

大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,到凌晨2点才驾车回家,再次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,不知道为什么喝同样多的酒,两次检查结果却会不同。

如何建立数学模型进行解释下列问题?1. 对大李碰到的情况做出解释;2. 在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,及在以下情况下回答:1)酒是在很短时间内喝的;2)酒是在较长一段时间(比如2小时)内喝的。

3. 怎样估计血液中的酒精含量在什么时间最高。

4. 根据你的模型论证:如果天天喝酒,是否还能开车?5. 根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。

参考数据1.人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的。

2.体重约70kg的某人在短时间内喝下2瓶啤酒后,隔一定时间测量他的血液中酒精含量(毫克/百毫升),得到数据如下:二、模型分析和假设白酒和啤酒中都含有适量的酒精,人们在饮酒的同时也摄入了酒精,酒精在人体内的分解主要靠体内的两种酶:乙醇托氢酶和乙醛托氢酶,前者将乙醇分解为乙醛,而后者则将乙醛分解为二氧化碳和水。

但分解是一个缓慢的过程,没有被分解的乙醛就会影响人的中枢神经系统,使人产生恶心呕吐、神志不清、昏迷不适甚至死亡等现象。

血液中酒精的含量越高,分解出的乙醛也就越多,对人的影响也就越大。

根据问题给出的参考数据,人的体液占人的体重的65%至70%,其中血液只占体重的7%左右,而酒精在血液中的含量与在体液中的含量大体是一样的,因此我们认为,酒精通过消化系统吸收后在血液循环系统中是均匀分布的。

一个体重约70kg 的某人在短时间内喝下2瓶啤酒后,隔一定时间测量他的血液中酒精含量(毫克/百毫升),画出图形如图1:图1 样本数据酒精含量图从图形中可以发现,一个人在短时间内(可以认为是瞬间)喝下啤酒后,血液中的酒精含量将在较短时间内达到最高值,然后逐渐降低,如果在酒精没有分解完之前再喝酒,酒精含量会在短时间内升得更高!酒精在消化系统和血液系统中的含量随时间变化,因此,我们决定用微分方程模型来分析两个系统中的酒精含量。

根据本文的需要,我们对下列概念作简单说明:酒精含量:消化系统或血液系统中的酒精总量(单位:毫克)酒精浓度:单位体积血液中的酒精含量(单位:毫克/百毫升);酒精度:酒精在酒中所占的百分比;瞬间喝酒:在短时间内把酒喝完,喝酒时间忽略不计;喝慢酒:在指定时间内均匀喝酒。

我们提出以下合理的假设:1.在短时间内喝下若干酒,将被认为酒精在瞬间进入消化系统;2.在较长时间内喝下若干酒,将被认为酒精在该时间段内均匀进入消化系统;3.忽略人对酒精的敏感度以及对酒精的分解能力存在的个性化差异;4.不考虑酒后人的活动对酒精分解产生的影响;5.在酒精摄入和分解的过程中,人的体重、消化系统的容量、体液和血液系统的容量均不发生改变;6.不考虑血液系统到消化系统中血液的回流对酒精浓度的影响;7.人体中体液约占人体重量的65%至70%,血液含量占人体重量的7%,本文使用体液约占人体重量的65%,并不考虑个体的差异;8.酒精均匀地分布于体液和血液系统中;9.酒精从消化系统向体液的转移速率与消化系统中酒精含量成正比;10.酒精从血液系统中向体外排除以及分解的速率与血液系统中的酒精含量成正比;11.啤酒瓶的容量只有640毫升和500毫升两种规格,酒精度在3.5%至5%之间,其他规格不考虑;12.题目中的参考数据具有一定代表性三、符号说明t :时间(单位:小时);τ:每次喝酒的持续时间,0=τ为瞬间喝酒; T :两次喝酒的间隔时间; α:酒精度(单位:体积/体积); d :酒精的比重,=d 0.8;m :每次喝酒时酒精的摄入量;V :人体内血液系统的容量(单位:100毫升); M :人的体重(单位:千克); ρ:人体内血液的比重,一般为1.05~1.06之间,本文选用1.06;)(t J :消化系统中的酒精摄入速率,由喝酒方式和喝酒量决定; )(1t x :t 时刻人的消化系统中的酒精含量(单位:毫克) ; )(2t x :t 时刻人的血液系统中的酒精含量(单位:毫克);)(1t c :t 时刻人的消化系统中的酒精浓度(单位:毫克/100毫升) ; )(2t c :t 时刻人的血液系统中的酒精浓度(单位:毫克/100毫升);1k :酒精从消化系统向体液转移的速率与消化系统中的酒精含量的比例系数;2k :酒精从血液系统向体外排除的速率与血液系统中酒精含量的比例系数β:人体中血液与体液质量的比值。

四、模型建立及求解酒精进入机体后由消化系统扩散到体液和血液送入到全身,在这个过程中不断地发生被吸收、分布、代谢及排泄等一系列过程,最终排出体外。

快速喝完后,浓度立即上升;然后由于吸收和分解逐渐下降。

我们将人的机体分成三个部分,即消化系统、体液和血液系统,其中血液均匀地分布在体液中。

酒精通过喝酒进入消化系统,部分经过分解化为二氧化碳和水,其他部分进入体液和血液,进入血液中的酒精量与进入体液中的酒精量的比值与体液和血液容量比值相等,比值 %65%7=β,消化系统中酒精含量的变化率由饮酒速率和向体液的排放速率构成,血液系统中酒精含量的变化率由酒精进入体液速率β⨯和酒精从血液系统向外的排除和分解速率构成,如图2所示。

图2 酒精的吸收、排除与分解图根据问题的叙述,本文中我们将讨论短时间喝酒、较长时间喝酒、间隔一段时间后再次喝酒的情形,建立关于酒精含量的四个模型。

模型一、瞬间喝酒(0=τ)情形及21,k k 的估计设0=t 时刻酒精摄入量为m 毫克,消化系统的酒精含量()t x 1变化率与()t x 1成正比,即111x k dtdx -= (1)初值为m x =)0(1,血液系统中的酒精含量()t x 2的变化率与()t x k 11和)(2t x 成正比,比例系数分别为β和2k -,根据假设可得22112x k x k dtdx -=β (2) 其中β为血液与体液重量的比值。

显然0)0(2=x ,联合(1)式和(2)式,得微分方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=0)0(,)0(2122112111x m x x k x k dt dx x k dt dx β (3) 求出其解析解()⎪⎪⎩⎪⎪⎨⎧--==---)()(21112121t k t k tk e e k k m k t x me t x β (4) 通过适当变化,即可得到血液系统中酒精浓度的模型)()()(211212t k t k e e k k V mk t c ----=β (5)其中m 为一次摄入的酒精量,V 为人体血液系统的容量,由人的体重M 、血液占体重的比例(7%)及血液的比重ρ组成,即 ρ10%7⨯⨯=M V单位为百毫升。

根据问题中体重约70kg (2264.46=V 百毫升)的某人在短时间内喝下2瓶啤酒后得到的血液浓度数据,利用非线性最小二乘法,可以求出模型中的参数21,k k 。

由于瓶装啤酒的规格不一致,而问题中没有给出规格,因此我们选择了两种最常见的规格(国际标准500毫升/瓶和我国常见规格640毫升/瓶)作为参考数据,根据非线性拟合的最小二乘法,使用MATLAB 中的函数leastsq() 得到式(3)~(5)中的21,k k 不同的估计值和平方误差,程序见附录,具体估计结果见表2,拟合效果见图(3)~图(10)。

相关文档
最新文档