高中数学人教版必修5全套教案

合集下载

人教版高中数学必修五教案(全册)

人教版高中数学必修五教案(全册)

人教版高中数学必修五教案(全册)
本教案共包括必修五全部章节,共计 xx 课时,主要涵盖以下
内容:
第一章函数的概念
本章主要介绍函数的概念、性质、分类以及函数图像的绘制等
方面的知识点。

通过本章的研究,学生将能够掌握函数的基本概念,理解函数的重要性以及掌握函数图像的绘制方法。

第二章三角函数
本章主要介绍正弦函数、余弦函数、正切函数等三角函数的定义、图像及其性质等方面的知识点,并针对不同类型的三角函数进
行了详细的讲解。

通过本章的研究,学生将能够深入理解三角函数
的概念,掌握三角函数的性质,运用三角函数解决实际问题。

第三章数学归纳法与递推数列
本章主要介绍数学归纳法的基本原理及其在数学证明中的运用,同时通过递推数列的研究,进一步巩固对数学归纳法的理解和应用。

通过本章的研究,学生将能够掌握数学归纳法的基本原理及其在数
学证明中的应用,同时掌握递推数列的推导与实际应用技巧。

第四章极坐标系与参数方程
本章主要介绍极坐标系的定义、性质,以及参数方程的基本概
念与运用等方面的知识点。

通过本章的研究,学生将能够理解极坐
标系的概念与性质,掌握参数方程的推导与实际应用技巧。

第五章一元函数微积分学初步
本章主要介绍导数与微分、不定积分、定积分等知识点。

通过
本章的学习,学生将能够掌握导数与微分的基本概念与计算方法,
掌握不定积分与定积分的计算方法,以及这些知识在实际问题中的
应用。

普通高中数学必修5教案

普通高中数学必修5教案

普通高中数学必修5教案
教学内容:函数的概念和性质
教学目标:学生能够理解函数的概念,掌握函数的性质,能够应用函数解决问题。

教学重点:函数的定义、函数的性质、函数的图像。

教学难点:函数的性质的应用。

教学方法:讲解结合示例,引导学生思考。

教学过程:
一、引入(5分钟)
教师通过提问引入函数的概念,让学生思考函数在日常生活中的应用。

二、讲解函数的定义(10分钟)
教师讲解函数的定义及符号表示,帮助学生理解函数的概念。

三、讲解函数的性质(15分钟)
教师讲解函数的奇偶性、增减性、最值等性质,引导学生思考函数的特点。

四、演示函数的图像(10分钟)
教师通过示例展示函数的图像,让学生理解函数与图像之间的关系。

五、练习与讨论(10分钟)
教师布置练习题让学生巩固所学知识,并讨论解题过程。

六、作业布置(5分钟)
教师布置作业,要求学生完成相关练习。

七、课堂总结(5分钟)
教师总结本节课的重点内容,激励学生继续学习。

评价与展望:本节课通过讲解、示例、练习等方式,帮助学生理解函数的概念和性质,为后续学习奠定基础。

未来将继续引导学生深入理解函数的应用,提高数学解题能力。

人教版高中数学必修5数列教案

人教版高中数学必修5数列教案

m n a a d n a a d d n a a d m n a a d n a a d a a mnn n m n n n n --=--=--=-+=-+==-+1;)1()()1(1111变式:推广:通项公式:递推关系:必修5 数列二、等差数列 知识要点1.数列的通项n a 与前n 项和n S 的关系∑==++++=ni i n n a a a a a S 1321 ⎩⎨⎧≥-==-2111n S S n S a n n n 2.递推关系与通项公式()1(),(),,n n a dn a d a f n kn b k b =+-==+特征:即:为常数(),,n a kn b k b =+为常数⇔数列{}n a 成等差数列.3.等差中项:若c b a ,,成等差数列,则b 叫做c a 与的等差中项,且2ca b +=;c b a ,,是等差数列⇔c a b +=2. 4.前n 项和公式:2)(1n a a S n n +=; 2)1(1dn n na S n -+= 221(),()22n n d dS n a n S f n An Bn =+-==+特征:即2,(,)n S An Bn A B =+为常数⇔数列{}n a 成等差数列.5.等差数列{}n a 的基本性质),,,(*∈N q p n m 其中⑴q p n m a a a a q p n m +=++=+,则若,反之不成立; ⑵d m n a a m n )(-=-; ⑶m n m n n a a a +-+=2;⑷n n n n n S S S S S 232,,--仍成等差数列. 6.判断或证明一个数列是等差数列的方法: ①定义法:()()1n n a a d n N*+-=∈常数 ⇒{}na 是等差数列②中项法:()122n n n a a a n N *++=+∈⇒{}na 是等差数列③通项公式法:(),n a kn bk b =+为常数⇒{}na 是等差数列④前n 项和公式法:()2,n S An BnA B =+为常数⇒{}na 是等差数列【应用一】1.若a ≠ b ,数列a ,x 1,x 2,b 和数列a ,y 1,y 2,y 3,b 都是等差数列,则 =--1212y y x x ( )A .32B .43C .1D .342. 等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450 ,则前9项和S 9= ( ) A.1620 B.810 C.900 D.6753. 在-1和8之间插入两个数a ,b ,使这四个数成等差数列,则 ( )A. a =2,b =5B. a =-2,b =5C. a =2,b =-5D. a =-2,b =-54. 首项为24-的等差数列,从第10项开始为正数,则公差d 的取值范围是 ( ) A.d >83 B.d >3 C.83≤d <3 D.83<d ≤3 5.等差数列}{n a 共有n 2项,其中奇数项的和为90,偶数项的和为72,且3312-=-a a n ,则该数列的公差为 ( )A .3B .-3C .-2D .-16. 等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项,余下的10项的平均值是4,则抽取的是 ( ) A.a 11B.a 10C.a 9D.a 87. 设函数f (x )满足f (n +1)=2)(2n n f +(n ∈N *)且f (1)=2,则f (20)为 ( ) A. 95B. 97C. 105D. 1928.已知无穷等差数列{a n },前n 项和S n 中,S 6 <S 7 ,且S 7 >S 8 ,则 ( ) A .在数列{a n }中a 7 最大B .在数列{a n }中,a 3 或a 4 最大C .前三项之和S 3 必与前11项之和S 11 相等D .当n ≥8时,a n <0 9. 集合{}*6,,且60M m m n n N m ==∈<中所有元素的和等于_________.10、在等差数列{}n a 中,37104118,14.a a a a a +-=-=- 记123n n S a a a a =++++,则13S =_____.11、已知等差数列{}n a 中,79416,1a a a +==,则16a 的值是 . 12. (1)在等差数列{}n a 中,71,83d a =-=,求n a 和n S ; (2)等差数列{}n a 中,4a =14,前10项和18510=S .求n a ;13. 一个首项为正数的等差数列{a n },如果它的前三项之和与前11项之和相等,那么该数列的前多少项和最大?14. 数列{a n }中,18a =,42a =,且满足2120n n n a a a ++-+=, (1)求数列的通项公式;(2)设12||||||n n S a a a =+++,求n S .15. 已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=21. (1)求证:{nS 1}是等差数列;(2)求a n 的表达式; (3)若b n =2(1-n )a n (n ≥2),求证:b 22+b 32+…+b n 2<1.【应用二】1.等差数列{}n a 中,()46810129111120,3a a a a a a a ++++=-则的值为A .14B .15C .16D .172.等差数列{}n a 中,12910S S a =>,,则前 项的和最大.3.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为 . 4.设等差数列{}n a 的前n 项和为n S ,已知001213123<>=S S a ,,.①求出公差d 的范围;②指出1221S S S ,,, 中哪一个值最大,并说明理由.5、已知等差数列{}n a 中,79412161a a a a +==,,则等于( )A .15B .30C .31D .646、设n S 为等差数列{}n a 的前n 项和,971043014S S S S ,则,=-== .7、已知等差数列{}n a 的前n 项和为n S ,若=+++=118521221a a a a S ,则 .8.甲、乙两物体分别从相距70m 的两处同时相向运动,甲第一分钟走2m ,以后每分钟比前一分钟多走1m ,乙每分钟走5m ,①甲、乙开始运动后几分钟相遇? ②如果甲、乙到对方起点后立即折返,甲继续每分钟比前一分钟多走1m ,乙继续每分钟走5m ,那么,开始运动几分钟后第二次相遇?9.已知数列{}n a 中,,31=a 前n 项和1)1)(1(21-++=n n a n S . ①求证:数列{}n a 是等差数列; ②求数列{}n a 的通项公式;③设数列⎭⎬⎫⎩⎨⎧+11n n a a 的前n 项和为n T ,是否存在实数M ,使得M T n ≤对一切正整数n 都成立?若存在,求M 的最小值,若不存在,试说明理由.三、等比数列 知识要点1. 定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,记为()0q q ≠,.2. 递推关系与通项公式mn m n n n n n q a a q a a qa a --+⋅=⋅==推广:通项公式:递推关系:111 3. 等比中项:若三个数c b a ,,成等比数列,则称b 为a 与c的等比中项,且b =2b ac =注:是c b a ,,成等比数列的必要不充分条件.4. 前n 项和公式)1(11)1()1(111≠⎪⎩⎪⎨⎧--=--==q q qa a q q a q na S n n n5. 等比数列的基本性质,),,,(*∈N q p n m 其中①q p n m a a a a q p n m ⋅=⋅+=+,则若,反之不成立! ②)(2*+--∈⋅==N n a a a a a qm n m n n mn mn , ③{}n a 为等比数列,则下标成等差数列的对应项成等比数列. ④若项数为()*2n n N∈,则S q S=偶奇.⑤nn m n m S S q S +=+⋅.⑥ ,,,时,n n n n n S S S S S q 2321---≠仍成等比数列. 6. 等差数列与等比数列的转化①{}n a 是等差数列⇔{})10(≠>c c cna ,是等比数列;②{}n a 是正项等比数列⇔{})10(log ≠>c c a n c ,是等差数列;③{}n a 既是等差数列又是等比数列⇔{}n a 是各项不为零的常数列. 7. 等比数列的判定法 ①定义法:()1n na q a +=⇒常数{}n a 为等比数列; ②中项法:()2120n n n n a a a a ++=⋅≠⇒{}n a 为等比数列;③通项公式法:(),nn a k qk q =⋅⇒为常数{}na 为等比数列;④前n 项和法:()()1,nn S k q k q =-⇒为常数{}na 为等比数列.【性质运用】1.4710310()22222n f n +=+++++设 ()()()n N f n *∈,则等于1342222(81)(81)(81)(81)7777n n n n A B C D +++----....2.已知数列{}n a 是等比数列,且===m m m S S S 323010,则, . 3.在等比数列{}n a 中,143613233+>==+n n a a a a a a ,,. ①求n a ,②若n n n T a a a T 求,lg lg lg 21+++= .4.{a n }是等比数列,下面四个命题中真命题的个数为 ( )①{a n 2}也是等比数列;②{ca n }(c ≠0)也是等比数列;③{na 1}也是等比数列;④{ln a n }也是等比数列. A .4 B .3 C .2D .15.等比数列{a n }中,已知a 9 =-2,则此数列前17项之积为 ( ) A .216B .-216C .217D .-2176.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于 ( )A .4B .23 C .916 D .27.若两数的等差中项为6,等比中项为5,则以这两数为两根的一元二次方程为 ( )A .x 2-6x +25=0B .x 2+12x +25=0 C .x 2+6x -25=0 D .x 2-12x +25=08.某工厂去年总产a ,计划今后5年内每一年比上一年增长10%,这5年的最后一年该厂的总产值是 ( )A .1.1 4a B .1.1 5a C .1.1 6a D .(1+1.1 5)a9.已知各项为正的等比数列的前5项之和为3,前15项之和为39,则该数列的前10项之和为( )A .32B .313C .12D .1510.某厂2001年12月份产值计划为当年1月份产值的n 倍,则该厂2001年度产值的月平均增长率为 ( )A .11nB .11nC .112-nD .111-n11.等比数列的前n 项和S n =k ·3n+1,则k 的值为 ( )A .全体实数B .-1C .1D .312.在等比数列{a n }中,已知a 1=23,a 4=12,则q =_____ ____,a n =____ ____. 13.在等比数列{a n }中,a n >0,且a n +2=a n +a n +1,则该数列的公比q = ___. 14.已知数列满足a 1=1,a n +1=2a n +1 (n ∈N *).(1)求证数列{a n +1}是等比数列;(2)求{a n }的通项公式.15.在等比数列{a n}中,已知对n∈N*,a1+a2+…+a n=2n-1,求a12+a22+…+a n2.16.在等比数列{a n}中,已知S n=48,S2n=60,求S3n.17.求和:S n=1+3x+5x2+7x3+…+(2n-1)x n-1 (x≠0).18.在等比数列{a n}中,a1+a n=66,a2·a n-1=128,且前n项和S n=126,求n及公比q.。

高二数学人教A版必修5教学教案1-1-1正弦定理(2)_1

高二数学人教A版必修5教学教案1-1-1正弦定理(2)_1

正弦定理一、教学内容的分析“正弦定理”是人教A版必修五第一章第一节的主要内容。

其主要任务是引入并证明正弦定理.做好正弦定理的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力.二、学生学习情况分析在初中学生已经学习过关于任意三角形中大边对大角、小边对小角的边角关系,本节内容是处理任意三角形中的边角关系,与初中学习的三角形的边与角的基本关系有着密切的联系;这里的一个重要问题是:是否能得到这个边、角关系准确量化的表示.也就是如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题.这样,用联系的观点,从新的角度看过去的问题,使学生对过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构.三、设计思想培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。

这就要求教师在教学中引导学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得知识。

所以本节课的教学将以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。

四、三维目标1、知识与技能通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及证明方法,并能解决一些简单的三角形问题。

2、过程与方法通过对特殊三角形边长和角度关系的探索,发现正弦定理,初步学会用特殊到一般的思想方法发现数学规律。

3、情感态度与价值观通过生活实例的探究引出正弦定理,体现数学来源于生活,并应用于生活,激发学生学习数学的兴趣,并体会数学的应用价值。

五、教学重难点重点:正弦定理的证明及其基本运用.难点:(1)正弦定理的探索和证明;(2)已知两边和其中一边的对角解三角形时,判断解的个a cb O B C A 数.六、教学过程设计(一)新课导入如图,河流两岸有A 、B 两村庄,有人说利用测角器与直尺,不过河也可以得到A 、B 两地的距离(假设现在的位置是A 点),请同学们讨论设计一个方案解决这个问题。

人教课标版高中数学必修五《等比数列(第1课时)》教案(1)-新版

人教课标版高中数学必修五《等比数列(第1课时)》教案(1)-新版

2.4.1等比数列第一课时一、教学目标1.核心素养通过学习等比数列提高从数学角度发现和提出、分析和解决问题的能力,锻炼数学抽象和逻辑推理能力.2.学习目标(1)由特殊到一般,理解并会判断等比数列.(2)掌握等比数列通项公式及证明.(3)应用等比数列知识解决相应问题.3.学习重点(1)等比数列定义及判断.(2)通项公式的推导.4.学习难点会用等比数列解决相应问题.二、教学设计(一)课前设计1.预习任务任务1阅读教材,思考:什么是等比数列?任务2观察等比数列,总结等比数列的规律,前后两项的比值可以是任意实数吗?任务3结合之前的探索,能写出其通项公式吗?等比数列何时递增,递减,或者变成等差数列?2.预习自测1.数列4,16,64,256…是什么数列?第五项是多少?答案:等比数列;1024.【知识点:等比数列】【解析】等比数列的通项公式是:11n n a a q -=2.在等比数列{}n a 中,472,16,a a ==则n a =________..23-n 答案:【知识点:等比数列通项公式】【解析】等比数列的通项公式是:11n n a a q -=,由题意求出n 和q 3.已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为( ) A .-3 B .±3 C .-3 3 D .±3 3 答案:C【解析】∵-1,x,y,z ,-3成等比数列,∴2y =xz =(-1)×(-3)=3,且2x y =->0,即y”的什么条件?有都”是“对任意正整数是公比,则“是首项,等比数列中n n a a n q a q a >>>+111,1,0,.4答案:充分不必要条件.【知识点:等比数列通项公式,充要条件的判断;数学思想:推理论证能力】【解析】充分不必要条件.由q >1,得1n n q q ->,又10a >得111n n a q a q -⋅>⋅即1n a +>n a 反之不然.取11n n a a q -==)21(n-,可得 1n a +>n a ,但1a =21-(二)课堂设计 1.知识回顾 (1)等差数列概念.(2)等差数列通项公式及推导. 2.问题探究问题探究一 借助等差数列的定义,类比得到等比数列定义 ●活动一 回顾旧知,夯实基础.之前我们学习了等差数列,我们是怎样定义并且判断等差数列?如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 数学语言表达式:1n n a a d +-= (n ∈N *,d 为常数),或1n n a a d --= (2,n d ≥为常数). ●活动二 探索规律,发现新知. 类比于等差数列,观察以下几个数列2,4,8,16,32…;1,1,1,1,1…;1,-1,1,-1,1,-1…;1,0,1,0,1,0,…;3,9,27,81,243,…;它们都有着怎样的规律 ●活动二 新旧整合,得出结论.结合活动一与活动二,能给出等比数列定义吗?如果一个数列从第2项起,每一项与它的前一项的比等于同一个非0常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示.数学语言表达式:1n n a q a -=(2,n ≥q 为非0常数),或1n naq a +=(n ∈N *,q 为非0常数).问题探究二 类比等差数列通项公式及性质,结合等比数列定义得到等比数列通项公式和性质,●活动一 温故知新,迎难而上. 回忆等差数列,写出通项公式.通项公式:()11n a a n d =+-.推广:()n m a a n m d =+-(m,n ∈N *). ●活动二 类比旧知得出新知.在等比数列中,是否只需确定某些量就可以写出通项公式?只需确定首项与公比即可得到通项公式11n n a a q -=.推广: n m n m a a q -=,公比为非0常数.●活动三 思维谨慎,扎实前进. 能否给出通项公式证明?借助定义,a na n -1=q (n ≥2,q 为非0常数),列出n -1个式子,累乘后得到通项公式. ●活动四 夯实基础,勇于探索.等差数列中,公差大于0时,数列递增;反之递减.等比数列也有相似结论吗?请归纳总结.首相大于0,公比大于1时递增;公比大于0小于1时递减;首项小于0时,公比大于0小于1时递增,公比大于1时递减;首项不等于0,公比等于1时,既是等差又是等比;公比小于0时,为摆动数列.问题探究三●活动一 初步运用 基础知识的掌握例1.在等比数列{}n a 中,253618,9,1n a a a a a +=+==,则n =________. 【知识点:等比数列通项公式】 答案:6例2.在等比数列{}n a 中, 1a <0, 若对正整数n 都有1n n a a +<,那么公比q 的取值范围是?【知识点:等比数列通项公式】答案:由1n n a a +<得1111,,01n n n n a q a q q q q --<∴>∴<< ●活动二 能力提升 通项公式性质的运用例1. 数列{}n a 是等差数列,若1351,3,5a a a +++构成公比为q 的等比数列,则q =________.【知识点:等比数列性质】 答案:1.例2.在正项等比数列{}n a 中, 1n n a a +>,28466,5a a a a ⋅=+=,则57a a =( ) A.56 B.65 C.23D.32【知识点:等比数列性质】 答案:D 3.课堂总结 【知识梳理】(1)等比数列定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个非0常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示. 数学语言表达式:1n n a q a -= (n ≥2,q 为非0常数),或1n naq a +=(n ∈N *,q 为非0常数).(2)等比数列通项公式: 11n n a a q -=;通项公式的推广: n m n m a a q -=. 【重难点突破】(1)等比数列通项公式运用时为了减少计算量可以尝试使用其推广式. (2)公比0≠q 这是必然的,不存在公比为0的等比数列,还可以理解为等比数列中,不存在数值为0的项,各项不为0的常数列既是等差数列又是等比数列;至于等比数列的增减,则可以从首项与公比的正负及范围,通过列不等式进行确定. (3)等比数列的定义中有“从第二项起”“同一个常数”的描述应与等差数列中的描述理解一致.(4)等比数列的通项公式可以用迭代法累乘法推导,其中累乘法与累加法相似,可做一做比较,便于掌握. 4.随堂检测 一、选择题1.在等比数列{}n a 中,64,852==a a ,则公比q 为( ) A .2 B .3 C .4 D .8 答案:A.解析:【知识点:等比数列的通项公式】 二、解答题1.求下列各等比数列的通项公式: (1)21-=a ,83-=a . (2)51=a ,且12+n a n a 3-=. (3)51=a ,且11+=+n na a n n . 答案:(1)n n n n n n a a )2()2)(2(22)2(11-=--=-=-=--或.(2)1)23(5--⨯=n n a .(3)na n a n 311==.解析:【知识点:等比数列通项公式】 2.求以下等比数列的第4项与第5项: (1)5,-15,45,……. (2)1.2,2.4,4.8,…….(3)213,, (328).答案:(1)1354-=a ,4055=a . (2)6.94=a ,2.195=a . (3)4a =329,5a =12827. 解析:【知识点:等比关系的确定;数学思想:推理论证能力】3.有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数. 答案:这四个数为0, 4, 8, 16或15, 9, 3, 1.解析:【知识点:等比关系的确定;数学思想:推理论证能力】 设四个数依次为x,y,12-y,16-x .依题意,有 x +(12−y )=2y ①()()21612y x y -=-②由①式得x =3y -12 ③将③式代入②式得y (16-3y +12)=(12-y )2,整理得y 2-13y +36=0,解得124,9y y ==,代入③式得120,15x x ==.从而得所求四个数为0,4,8,16或15,9,3,1. 5.(1)已知{}n a 是等比数列,且2435460,225n a a a a a a a >++=, 求53a a +.(2)c a ≠,三数c a ,1,成等差数列,22,1,c a 成等比数列,求22ca ca ++. 答案:(1) 3a +55=a . (2)3122=++c a c a .解析:【知识点:等差数列的性质,等比数列】(1)∵{}n a 是等比数列,∴()224354635225a a a a a a a a ++=+=.又0n a >, ∴355a a +=.(三)课后作业基础型自主突破 一、填空题1.已知等比数列{}n a 的公比为正数,且248522,1,a a a a ⋅==则1a = .答案: 1a =解析:【知识点:等比关系的确定;数学思想:推理论证能力】设等比数列{}n a 的公比为q ,∵ 2482a a a ⋅=211a a ==,∴ 1a =2.设数列{}n a 是首项为1,公比为-3的等比数列12345||||||a a a a a ++++=______. 答案:121.解析:【知识点:等比数列】∵数列{}n a 是首项为1,公比为-3的等比数列,∴()1113n n n a a q --==-,∴123451,3,9,27,81,a a a a a ==-==-=∴则12345||||||1392781121a a a a a ++++=++++=. 3.等比数列{}214n +的公比为 ______ . 答案:16.解析:【知识点:等比数列的通项公式】 等比数列的通项公式是:11n n a a q -=4.若1、a 、b 、c 、9成等比数列,则b = ______ . 答案:3.解析:【知识点:等比数列】利用等比数列通用公式11n n a a q -=求出相应的值421531,9,3a a q a q b ======,3b ∴=5.公比为2的等比数列{}n a 的各项都是正数,且31116,a a =,则210log a = ______ . 答案:5.解析:【知识点:等比数列通项公式,对数的运算性质】∵公比为2的等比数列{}n a 的各项都是正数,且31116,a a =,∴7a =4,∴1a •26=4,解得1a =42-,∴9495101222a a q -==⨯=,∴52102log log 25a ==. 故答案为:5.能力型师生共研 一、选择题1.在数列{}n a 中,1111,,4n n a a a +==则99a =________. A.125504B.2500C.124504D.2401 答案:B解析:【知识点:等比关系的确定;数学思想:推理论证能力】 二、填空题1.设{}n a 为公比1q >的等比数列,若2004a 和2005a 是方程24830x x ++=的两根,则=+20072006a a _________. 答案:-18解析:【知识点:等比数列,根与系数的关系】根据{}n a 为公比q >1的等比数列, 2004a 和2005a 是方程4x 2+8x +3=0的两根,可得2004a =-2005=2006+2007a =-18. 三、证明题1.已知:b 是a 与c 的等比中项,且c b a ,,同号,求证:3a b c ++等比数列答案:见解析解析:【知识点:等比数列】 由题设:ac b =2得:22333)3(333ca bc ab bc b ab b c b a abc c b a ++=++=⨯++=⨯++ ∴3,3,3abc ca bc ab c b a ++++也成等比数列.探究型多维突破一、选择题1.已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是( )A .1(0,2+B .C .D .)251,251(++- 答案:D.解析:【知识点:等比关系的确定,解三角形;数学思想:推理论证能力】 设三边:a 、qa 、2q a 、q >0则由三边关系:两短边和大于第三边a +b >c ,即 (1)当q ≥1时a +qa >2q a ,等价于解二次不等式:21q q --<0,由于方程2q q --(2)当q <1时,a 为最大边,qa +2q a >a 即得2q q --⎭故选D . 二、证明题1.设d c b a ,,,均为非零实数,()()0222222=+++-+c b d c a b d b a ,求证:c b a ,,成等比数列且公比为d答案:见解析解析:【知识点:等比关系的确定;数学思想:推理论证能力,运算求解能力,创新意识,应用意识】证明:证一:关于d 的二次方程()()0222222=+++-+c b d c a b d b a 有实根, ∴()()0442222≥+-+=∆b a c a b ,∴()022≥--ac b则必有:02=-ac b ,即ac b =2,∴c b a ,,成等比数列设公比为q ,则aq b =,2aq c =代入()()024********=+++-+q a q a d aq a aq d q a a∵()0122≠+a q ,即0222=+-q qd d ,即≠=q d证二:∵()()0222222=+++-+c b d c a b d b a ∴()()022222222=+-++-c bcd d b b abd d a∴()()022=-+-c bd b ad ,∴b ad =,且c bd =∵d c b a ,,,非零,∴d bca b == 自助餐 一、选择题1.等比数列{}n a 中,6a 和10a 是方程2620x x ++=的两根,则8a =( )A.2±B.答案:C.解析:【知识点:等比数列,根与系数的关系】等比数列{}n a 中,6a 和10a 是方程2620x x ++=的两根, 6106a a +=-,可得261082a a a ⋅==,6a 和10a 都是负数,可得8a =-2..故选:C .2.已知等比数列{}n a 的公比为正数,且248522,1,a a a a ⋅==则1a =( )A. 0.5B. 22答案:C.解析:【知识点:等比数列】设公比为q ,由已知得()22841112a q a q a q ⋅=,即q 2=2,又因为等比数列{}n a 的公比为正数,所以q =2.22=,故选C.2.等比数列{}n a 的首项为1,项数是偶数,所有的奇数项之和为85,所有的偶数项之和为170,则10a =( )A.32 64.B C.512 D.1024 答案:C.解析:【知识点:等比关系的确定;数学思想:推理论证能力】设等比数列的项数为2n ,∵所有的奇数项之和为85,所有的偶数项之和为170, ∴S 奇:S 偶=1:2.∵S 奇=1321...n a a a -+++,S 偶=242...n a a a +++=q S 奇由题意可得,q =2,∴9910112512a a q ==⨯=.故选:C .3.在等比数列{}n a 中, 11,2,32n a q a ===,则n =( )A.5B.6C.7D.8 答案:B.解析:【知识点:等比数列的通项公式】11n n a a q -=,求得n =84.等比数列{}n a 中, 385,2a a ==,则数列{}lg n a 的前10项和等于( )A.2B.5C.1050D.lg答案:B.解析:【知识点:等比数列的通项公式,对数的运算性质】由题意得,等比数列{}n a 中, 385,2a a ==,所以385610,a a a a ⋅=⋅=,由等比数列的性质得, ()551231056...10a a a a a a ⋅⋅⋅=⋅=,所以数列{}lg n a 的前10项和1210l g l g ...l g 5n S a a a =+++=,故选:B . 6.数列{}n a 的首项1,数列{}n b 为等比数列且1n n na b a +=,若10112b b ⋅=,则21a =( ) A.20 B.512 C.1013 D.1024 答案.D.解析:【知识点:等比数列的通项公式】由1n n n a b a +=可知202120232121,,,a a b a a b a a b === ,所以202123122021a a a a a a b b b ⋅⋅⋅=⋅⋅⋅ ,又数列{}n b 为等比数列,所以1202191011b b b b b b ===L ,于是有121102a a =,即110212a a =,又11=a ,所以102421021==a ,故答案选D. 二、填空题1.已知数列{}n a 为等比数列,且5a =4,9a =64,则7a =____________. 答案:16.解析:【知识点:等比数列的通项公式】11n n a a q -=,由已知条件求出通项公式1124n n a -=⋅,所以716a =.2.数列{}n a 中, 112,n n a a a cn +==+(c 是常数,n =1,2,3,…),且123,,a a a 成公比不为1的等比数列.则c 的值是 ______ .答案:2.解析:【知识点:等比数列】∵112,n n a a a cn +==+,∴232,23,a c a c =+=+又∵123,,a a a 成公比不为1的等比数列,∴()()22c 223c +=+,即c 2-2c=0解得c=2,或c=0,故答案为23.若公比不为1的等比数列{}n a 满足()21213•13log a a a ⋯=,等差数列{}n b 满足77b a =,则1213b b b +⋯+的值为 ______ . 答案:26.解析:【知识点:等比数列通项公式,等差数列前n 项和】 ∵公比不为1的等比数列{a n }满足()21213•13log a a a ⋯=,∴()()()13212132727•1313log a a a log a log a ⋯===,解得7772,2,a b a ===,由等差数列的性质可得777121372,2,...1326a b a b b b b ===+++==,故答案为:26 三、解答题1.在等比数列{}n a 中, 5142-=15,-=6a a a a ,求3a 和q . 答案:见解析解析:【知识点:等比数列通项公式】,6=-,15=-}中中在等比数列{2415a a a a a n 答案:.4=,1=时,2=q 当31a a2.设{}n a 是一个公差为d (d ≠0)的等差数列,它的前10项和10110S =且124,,a a a 成等比数列,求数列{}n a 的通项公式. 答案: n a =2n .解析:【知识点:等差数列前n 项和,等比数列】∵124,,a a a 成等比数列,∴2214a a a =又∵{an}是等差数列,∴2141,3a a d a a d =+=+, ∴()()21113a d a a d +=+,即222111123a a d d a a d ++=+,化简可得1a d =,∵101101092110S a d =+⨯=,∴11045110a d +=.又∵1a d =,∴55d =110,∴d =2, ∴()112n a a n d n =+-=3.已知数列{}n a 的奇数项成等差数列,偶数项成等比数列,公差与公比均为2,并且2415798,a a a a a a a +=++=. (1)求数列{}n a 的通项公式;(2)求使得1212m m m m m m a a a a a a ++++⋅⋅=++成立的所有正整数m 的值. 答案:见解析解析:【知识点:等比数列,等比数列通项公式】31517142622,4,6,2,4a a a a a a a a a a =+=+=+==Q 2415798,a a a a a a a +=++=2211212124,2642a a a a a a a a ∴+=+++++=++121,2a a ∴==∴na =⎩⎨⎧为奇数为偶数n n n n,,22; (2)∵1212m m m m m m a a a a a a ++++⋅⋅=++成立, ∴由上面可以知数列{}n a 为:1,2,3,4,5,8,7,16,9,… 当m =1时等式成立,即1+2+3=-6=1×2×3;等式成立. 当m =2时等式成立,即2×3×4≠2+3+4;等式不成立. 当m =3、4时等式不成立; 当m ≥5时,∵12m m m a a a ++⋅⋅为偶数, 12m m m a a a ++++为奇数, ∴可得m 取其它值时,不成立, ∴m =1时成立.。

高中数学必修5个模块教案

高中数学必修5个模块教案

高中数学必修5个模块教案教学目标:学生能够理解函数与方程的基本概念,掌握一元一次方程的求解方法。

教学重点:函数、方程、一元一次方程的解法教学难点:实际问题转化成一元一次方程的解法教学步骤:1.引入函数与方程的概念,让学生了解二者之间的关系。

2.讲解一元一次方程的定义和解法,通过例题让学生掌握解题的基本方法。

3.实际问题解题训练,让学生将生活中的问题转化成一元一次方程,并求解。

4.课堂练习与讨论,巩固学生所学知识。

5.作业布置,让学生进行一定数量的练习题,并在下节课时进行讲解和讨论。

模块二:平面几何教学目标:学生能够掌握平面几何的基本概念和性质,能够解决平面几何相关问题。

教学重点:平面几何的基本概念和性质、几何证明方法教学难点:几何证明题目的解法教学步骤:1.引入平面几何的基本概念,包括直线、角、三角形等,并让学生掌握这些概念的定义。

2.讲解几何证明方法,包括直角三角形的性质、等腰三角形的性质等,通过例题让学生熟练掌握证明方法。

3.巩固练习,让学生进行一定数量的几何证明题目,提高他们的解题能力。

4.课堂练习与讨论,对学生的作业进行讲解和评价,引导学生进一步提高解题能力。

5.作业布置,让学生进行一定数量的练习题,加深对平面几何的理解。

模块三:概率与统计教学目标:学生能够掌握概率与统计的基本概念和方法,能够解决概率与统计相关问题。

教学重点:概率、频率、统计数据的计算方法教学难点:复杂问题的解决方法教学步骤:1.引入概率与统计的基本概念,介绍频率、概率等概念,让学生了解它们之间的关系。

2.讲解概率与统计的计算方法,包括概率的计算方法、统计数据的处理方法等,通过例题让学生熟练掌握计算方法。

3.实际问题解题训练,让学生将生活中的问题转化成统计问题,并解决。

4.小组讨论与展示,让学生在小组中合作解决问题,并进行结果展示。

5.作业布置,让学生进行一定数量的练习题,巩固所学知识。

模块四:立体几何教学目标:学生能够理解立体几何的基本概念和性质,能够解决立体几何相关问题。

备课教案高中数学必修五

备课教案高中数学必修五

备课教案高中数学必修五
课题:高中数学必修五——范本
教学目标:
1. 了解范本的基本概念和性质;
2. 掌握范本的常见形式和应用方法;
3. 能够解决与范本相关的数学问题。

教学重点和难点:
重点:掌握范本的基本概念和性质;
难点:运用范本解决具体问题。

教学内容:
1. 范本的定义和性质;
2. 范本的常见形式;
3. 范本在数学问题中的应用。

教学过程:
一、导入(5分钟)
通过举例引入范本的概念,并引导学生思考范本的作用和意义。

二、讲解(15分钟)
1. 讲解范本的定义和性质;
2. 分析范本的常见形式;
3. 教授范本在解决数学问题中的应用方法。

三、练习(20分钟)
1. 给学生几道范本相关的问题,并让学生尝试解答;
2. 对学生的解答进行点评和讲解,帮助他们理解范本的应用方法。

四、拓展(10分钟)
让学生自己设计一个范本题目,并尝试解答。

五、总结(5分钟)
对本课内容进行总结,强调范本的重要性和应用方法。

教学反思:
范本是高中数学中一个非常重要的概念,通过本课的学习,学生可以更深入地理解范本的应用方法和特点,提高数学解题的能力。

在教学过程中,需要注重让学生通过实际练习和应用来加深对范本的理解,激发他们的求知欲和学习兴趣。

(完整版)人教版高中数学必修5《算法与程序框图》教案(有答案)

(完整版)人教版高中数学必修5《算法与程序框图》教案(有答案)
8. 如果执行右面的程序框图,那么输出的 S ________.
第 9 页 共 13 页
8.解析: S 2 4 6 L 100 2550
三、解答题 9. 请阅读下面程序框图,说明此程序的功能
解:程序功能是求 s 的值. s 1 2 22 ... 26 ,并输出 s
10.已知函数 y
( x 2)2 ( x 0)
解析: 首先要理解各程序框的含义,输入 a,b,c 三个数之后,接着判断 a,b 的大小,若 b 小,则
把 b 赋给 a,否则执行下一步,即判断 a 与 c 的大小,若 c 小,则把 c 赋给 a, 否则执行下一步,
这样输出的 a 是 a, b, c 三个数中的最小值.所以该程序框图所表示的功能是求

输出①

输出②
当工资薪金所得不超过 3600元,计算个人所得税的一个算法框图如图.
则输出①、输出②分别为 ( ).
A. 0.05 x; 0.1x
B. 0.05 x; 0.1x 185
C. 0.05 x 80; 0.1x;
D. 0.05x 80; 0.1x 185
5.解析 : 设全月总收入金额为 x 元, 所得税额为 y 元,则 y 与 x 之间的函数关系为
1 变式训练 画出求 1 42
解: 程序框图如下 :
1 72 L
1 1002 的值的程序框图.
第 4 页 共 13 页
例 5.某工厂 2005 年的生产总值为 200 万元,技术改进后预计以后后每年的年生产总值都比上一年
增长 5%.设计一个程序框图,输出预期年生产总值超过
300 万元的最早年份及 2005 年到此年份之
D .算法执行步骤的次数不可以很大,否则无法实施.

高中数学必修5教案pdf

高中数学必修5教案pdf

高中数学必修5教案pdf
1. 熟练掌握多元函数的概念及相关性质;
2. 理解平面曲线的参数方程表示;
3. 能够解决与平面曲线相关的问题;
4. 能够应用多元函数和平面曲线解决实际问题。

教学重点:
1. 多元函数的概念及性质;
2. 平面曲线的参数方程表示;
3. 多元函数和平面曲线在实际问题中的应用。

教学难点:
1. 多元函数的性质的理解与应用;
2. 解决实际问题时多元函数和平面曲线的联合应用。

教学准备:
1. 教师准备多元函数和平面曲线的相关知识点;
2. 教师准备多元函数和平面曲线的相关例题。

教学过程:
一、引入
通过举例引入多元函数的概念,并解释多元函数在实际问题中的应用。

二、理论学习
1. 多元函数的定义与性质;
2. 平面曲线的参数方程表示;
3. 多元函数和平面曲线的关系。

三、实例讲解
通过具体的例题讲解多元函数和平面曲线的相关知识点,并解决相关问题。

四、练习与作业
布置相关练习题,巩固学生对多元函数和平面曲线的理解,并要求完成相关作业。

五、总结与展望
总结本节课的内容,并展望下节课的内容,引导学生继续学习和提高。

教学反思:
本节课主要介绍了多元函数和平面曲线的相关知识点,通过理论学习和实例讲解,帮助学生掌握了相关概念和方法。

在以后的教学中,应注重实际问题的应用,引导学生将所学知识运用到实际生活中。

高中数学必修五教案(精选5篇)

高中数学必修五教案(精选5篇)

高中数学必修五教案(精选5篇)高中数学必修五教案篇一教学目标A、知识目标:掌握等差数列前n项和公式的推导方法;掌握公式的运用。

B、能力目标:(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。

(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。

(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。

C、情感目标:(数学文化价值)(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。

(2)通过公式的运用,树立学生"大众教学"的思想意识。

(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的。

心理体验,产生热爱数学的情感。

教学重点:等差数列前n项和的公式。

教学难点:等差数列前n项和的公式的灵活运用。

教学方法:启发、讨论、引导式。

教具:现代教育多媒体技术。

教学过程一、创设情景,导入新课。

师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。

提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。

(教师观察学生的表情反映,然后将此问题缩小十倍)。

我们来看这样一道一例题。

例1,计算:1+2+3+4+5+6+7+8+9+10。

这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。

人教版高中数学必修5《基本不等式》教案

人教版高中数学必修5《基本不等式》教案

课题:基本不等式教材:《普通高中课程标准实验教科书数学必修5》3.4一、教学目标:1、探索并了解基本不等式的证明过程,了解这个基本不等式的几何意义,并掌握定理中的不等号“≥”或“≤”取等号的条件是:当且仅当这两个数相等;会用基本不等式解决简单的最大(小)值问题。

2、通过实例探究抽象基本不等式,体会特殊到一般的数学思想方法;3、通过本节的学习,体会数学来源于生活,提高学习数学的兴趣;4、培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。

二、教学重点和难点:重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式2a bab +≤的证明过程; 难点:注意基本不等式2a bab +≤等号成立条件以及应用于解决简单的最大(小)值问题。

三、教学方法:启发、探究式相结合 四、教学工具:多媒体课件五、教学过程:一、问题引入:如图是2002年在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。

你能在这个图案中找出一些相等关系或不等关系吗?这样,三角形的面积的和是2ab ,正方形的面积为22a b +。

由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥二、探究过程:1.问题探究——探究图形中的不等关系。

将图中的“风车”抽象成如图,在正方形ABCD 中有四个全等的直角三角形。

设直角三角形的两条直角边长为a,b 则正方形的边长为22a b +。

探究1:(1)正方形ABCD 的面积S=____ (2)四个直角三角形的面积和S ’=__ (3)S 及S ’有什么样的关系? ADB HFGE《几何画板》课件动画显示,当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。

问题:你能证明这个结论吗? 证明:(作差法) 因为 222)(2b a ab b a -=-+ 当b a ≠时,0)(2>-b a 当b a =时,0)(2=-b a所以,0)(2≥-b a ,即.2)(22ab b a ≥+总结结论1:一般的,如果文字叙述为:两数的平方和不小于积的2倍。

(完整版)高中数学人教版必修5全套教案(最新整理)

(完整版)高中数学人教版必修5全套教案(最新整理)

C
由向量的加法可得 AB AC CB

j AB j ( AC CB)
A
B
∴ j AB j AC j CB
j
j
AB
cos900 A0
j
CB
cos900 C

csin
A asin C
,即
a sin
A
c sinC
同理,过点 C 作 j BC ,可得
nC
k k
0 ;
或 a k si nA ,b k si nB ,c k si nC ( k 0)
(2)正弦定理的应用范围:
①已知两角和任一边,求其它两边及一角;
②已知两边和其中一边对角,求另一边的对角。
Ⅴ.课后作业
第 10 页[习题 1.1]A 组第 1(1)、2(1)题。
●板书设计
●授后记
(由学生总结)若 ABC 中,C= 900 ,则 cosC 0 ,这时 c2 a2 b2
由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。
[例题分析]
例 1.在 ABC 中,已知 a 2 3 , c 6 2 , B 600 ,求 b 及 A ⑴解:∵ b2 a2 c2 2accosB
践操作。
情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合
情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识
间的联系来体现事物之间的普遍联系与辩证统一。
●教学重点
正弦定理的探索和证明及其基本应用。
●教学难点
已知两边和其中一边的对角解三角形时判断解的个数。
C 1800 (A B)
1800 (32.00 81.80)

10人教版高中数学必修5全册教案

10人教版高中数学必修5全册教案

10人教版高中数学必修5全册教案 南京市高中数学必修5(A 卷)一、选择题1.在△ABC 中,已知2=a ,2=c ,︒=30A ,那么C 等于( ). A.︒45 B. ︒45或︒135 C. ︒30 D. ︒30或︒150 2.如果在△ABC 中,3=a ,7=b ,2=c ,那么B 等于( ). A.6π B. 4π C. 3π D. 32π3.等差数列{}n a 中,第1项为8,第2项为-2,那么它的第3项为( ). A. -10 B.10 C.4 D. -12 4.等比数列{}n a 中,首项1a =8,公比q =21,那么它的前5项和5S 的值等于( ). A. 15.5 B.20 C.15 D. 20.75 5.不等式0962>++x x 的解集是( ).A. ΦB.RC.{ x | x ≠-3,x ∈R }D. {}33>-<x x x 或 6.若两个正数x 与y 的积等于1,则它们的和有( ).A. 最小值2B.最大值2C.最小值1D. 最大值1 7.设a 、b 、c 均为正数,a lg 、b lg 、c lg 成等差数列,那么a 、b 、c 的关系可以表示成( ).A.c a b +=2B.ac b =2C. b a b +=D.ca b 111+= 8.有座七层宝塔,每层悬挂灯数自上而下成倍递增。

底层有64盏灯,顶层灯数是( ). A. 1 B.2 C.3 D.49.若0<x ,则2x ,x 2,x 的大小关系是( ).A. x x x >>22B. x x x 22>> C. x x x 22<< D. x x x <<2210.已知A,B 两地的距离为10km ,B,C 两地的距离为20km ,现测得∠ABC=︒120,则A,C两地的距离为( ). A. 10km B.103km C.105km D.107km11.在△ABC 中,80,100,45a b A ︒===,则此三角形解的情况是( ).A.一解B.两解C.一解或两解D.无解 二、填空题12.已知数列{}n a 的通项公式为1532+=n a n ,那么5a = .13.已知数列:11+,212+,413+,…,121-+n n ,…。

高中数学必修五教案Word

高中数学必修五教案Word

高中数学必修五教案Word
第一课:二次函数的基本概念和性质
1. 教学目标:
- 了解二次函数的概念和性质
- 掌握二次函数的图像特点
- 能够通过公式确定二次函数的图像
2. 教学内容:
- 二次函数的定义
- 二次函数的一般式和标准式
- 二次函数的图像特点
3. 教学过程:
- 导入:通过实际生活中的例子引入二次函数的概念
- 讲解:介绍二次函数的定义和一般式、标准式的转换方法
- 实例演练:通过例题让学生掌握二次函数的图像特点和变化规律
- 拓展:让学生通过练习巩固所学知识
4. 课堂练习:
1. 求解二次函数f(x)=2x²-4x+3的顶点坐标和对称轴方程
2. 根据二次函数的图像特点,判断下列函数的开口方向:
- a) f(x)=x²+3x-2
- b) f(x)=-2x²+4x-1
5. 课后作业:
- 完成练习册中关于二次函数的练习题
- 总结本课中所学知识,写出二次函数的定义和性质
注意:教案仅供参考,具体内容和教学方式可根据教学情况进行调整。

高中数学必修五备课教案

高中数学必修五备课教案

高中数学必修五备课教案
教学内容:
1. 函数的概念
2. 函数的定义域和值域
3. 函数的图象
4. 函数的性质:奇偶性、周期性、单调性
教学目标:
1. 理解函数的概念及其基本性质。

2. 掌握函数的定义域和值域的求法。

3. 能够画出函数的图象。

4. 熟练判断函数的奇偶性、周期性和单调性。

教学重点和难点:
1. 函数的概念及性质的理解和掌握。

2. 函数的图象的绘制和性质的判断。

教学准备:
1. 教师准备:教案、教辅资料、教学工具。

2. 学生准备:课前预习相关知识。

教学过程:
一、导入(5分钟)
教师引入函数概念,让学生回顾前几年关于函数的基本知识。

二、讲解(20分钟)
1. 函数的定义:介绍函数的定义及相关概念。

2. 函数的定义域和值域:讲解函数的定义域和值域的概念及求法。

3. 函数的图象:介绍如何画出函数的图象。

三、练习与讨论(15分钟)
1. 学生根据所学知识进行练习,画出给定函数的图象。

2. 学生讨论函数的奇偶性、周期性和单调性。

四、总结(5分钟)
教师总结本节课的重点内容,强化学生的理解和记忆。

五、作业布置(5分钟)
布置相关作业,让学生巩固所学内容。

教学反思:
通过本节课的教学,学生对函数的概念及性质有了更深入的了解和掌握。

希望学生能够对函数有更加深入的理解,为将来的学习打下良好的基础。

人教版高中数学必修5教案

人教版高中数学必修5教案

人教版高中数学必修5教案学科:数学年级:高中必修五教材:人教版高中数学必修五单元:(具体单元名称)课时:(具体课时)【教学目标】1. 知识与技能(1)掌握本节课所讲述的知识点;(2)能够熟练运用相关方法解决问题。

2. 过程与方法(1)培养学生的数学思维和分析能力;(2)激发学生对数学的兴趣。

3. 情感态度与价值观(1)培养学生良好的学习习惯和方法;(2)培养学生合作、分享的精神。

【教学重点】1. 确定本节课的重点知识点;2. 确定本节课的重点难点。

【教学准备】1. 教材和教辅资料;2. 准备好相关的教学工具;3. 制定好教学流程。

【教学过程】1. 预习导入(1)复习上一节课内容,引出本节课的主题;(2)介绍本节课的教学内容和目标。

2. 知识讲解(1)结合教材内容,对本节课的知识点逐一进行讲解;(2)举例说明相关概念和方法。

3. 课堂练习(1)带领学生进行相关习题训练;(2)鼓励学生主动思考和讨论。

4. 拓展延伸(1)引导学生进行相关拓展知识的讨论和学习;(2)鼓励学生进行相关问题的解答。

5. 讲评总结(1)总结本节课的重点知识点和难点;(2)对学生的表现进行评价和指导。

【教学反思】1. 教学过程中遇到的问题及解决方法;2. 教学效果及学生反馈。

【布置作业】1. 布置相关作业;2. 提醒学生复习相关知识点。

【扩展阅读】1. 推荐相关的数学书籍和资料;2. 鼓励学生自主学习和探索。

以上为教案范本,具体内容根据教学实际情况进行调整。

高中数学必修5教案等比数列第2课时

高中数学必修5教案等比数列第2课时

高中数学必修5教案等比数列第2课时第一篇:高中数学必修5教案等比数列第2课时等比数列第2课时授课类型:新授课●教学目标知识与技能:灵活应用等比数列的定义及通项公式;深刻理解等比中项概念;熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法过程与方法:通过自主探究、合作交流获得对等比数列的性质的认识。

情感态度与价值观:充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。

●教学重点等比中项的理解与应用●教学难点灵活应用等比数列定义、通项公式、性质解决一些相关问题●教学过程Ⅰ.课题导入首先回忆一下上一节课所学主要内容:1.等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q表示(q≠an0),即:=q(q≠0)an-12.等比数列的通项公式:an=a1⋅q3.{an}成等比数列⇔列的必要非充分条件4.既是等差又是等比数列的数列:非零常数列Ⅱ.讲授新课1.等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么称这个数G为a与b的等比中项.即G=±ab(a,b同号)如果在a与b中间插入一个数G,使a,G,b成等比数列,则n-1(a1⋅q≠0),an=am⋅qn-m(am⋅q≠0)an+1+=q(n∈N,q≠0)“an≠0”是数列{an}成等比数anGb=⇒G2=ab⇒G=±ab,aG反之,若G=ab,则≠0)[范例讲解] 课本P58例4 证明:设数列{an}的首项是a1,公比为q1;{bn}的首项为b1,公比为q2,那么数列{an⋅bn}的第n项与第n+1项分别为:2Gb2=,即a,G,b成等比数列。

∴a,G,b成等比数列⇔G=ab(a·baGa1⋅q1n-1⋅b1⋅q2与a1⋅q1⋅b1⋅q2即为a1b1(q1q2)n-1与a1b1(q1q2)nn-1nnan+1⋅bn+1a1b1(q1q2)nΘ==q1q2.n-1an⋅bna1 b1(q1q2)它是一个与n无关的常数,所以{an⋅bn}是一个以q1q2为公比的等比数列拓展探究:对于例4中的等比数列{an}与{bn},数列{an}也一定是等比数列吗? bnana,则cn+1=n+1 bnbn+1探究:设数列{an}与{bn}的公比分别为q1和q2,令cn=∴cn+1bn+1abqa==(n+1)γ(n+1)=1,所以,数列{n}也一定是等比数列。

人教版高中必修五数学教案

人教版高中必修五数学教案

人教版高中必修五数学教案
课时:第一课时
教学内容:数学基础概念
教学目标:
1.了解数学的起源和发展历史。

2.理解数学基本概念和术语。

3.掌握数学基础知识。

教学重点、难点:
1.数学的起源和发展历史。

2.数学基本概念和术语的理解。

教学方法:讲授、示范演练、讨论
教具准备:教科书、黑板、彩色粉笔
教学过程:
一、导入:用一个问题引导学生思考数学的起源和意义。

二、讲解:介绍数学的起源和发展历史,引导学生了解数学的重要性。

三、讲解:介绍数学的基本概念和术语,引导学生掌握数学基础知识。

四、示范演练:通过例题演练,让学生掌握数学基础知识。

五、讨论:让学生讨论数学在日常生活中的应用,并分享自己的观点。

六、总结:对本节课的内容进行总结,并布置作业。

教学反思:本节课主要介绍了数学的基础概念和发展历史,通过讲解、示范演练和讨论,让学生深入理解数学的重要性和应用价值。

在未来的教学中,应该注重培养学生的数学思维和解决问题的能力。

高中数学 人教A版必修五全册电子教案(含课程纲要))

高中数学   人教A版必修五全册电子教案(含课程纲要))

无解(B=60°,b=5cm,c= cm) (2) 数列:更换等差、等比数列通项公式与求和公式推导方法, 更换个别问题背景。 (3) 不等式:更换基本不等式发现与证明的过程,直接利用 发 现、导出。 3、调序:三角形面积公式放在余弦定理之前,一元二次不等式教 学改为探究总结解法 应用举例。 4、删除:删除习题与复习参考题中超过学生能力的题目。 5、整合:三角形、数列、不等式建模整合复习;部分探究与发现 与课堂教学整合;“阅读与思考”与研究性学习整合。 6、教学体系重新构建(略)。 三、 实施过程 (一) 教学资源分析: 1、 教师资源:专业水平、团体力量、 2、 学情分析:大部分来自城市,具有一定的数学基础,知识结构 有待于进一步完善等。 3、 设备资源;校园网、计算机、投影、课件、几何模型、学生用 计算器等。 (二) 教学流程设计 1、 解三角形:从回顾三角形的边角关系入手,探索正弦定理和余 弦定理;通过解三角形训练,掌握正弦定理和余弦定理;通过对实际 问题的测量和几何计算,培养应用所学知识解决问题的能力。
第 7 页,共 10 页 郑州市第二中学
引导学生认识正、余弦定理是解决测量问题的一种方法,不必在恒等 变形上进行过于繁琐的训练。 2、 等差数列和等比数列教学中,要重视通过具体实例抽象出这两 种数列的特征, 使学生理解这两种数列类型的作用, 感受其广泛应用, 培养学生从实际问题中抽象出数列模型的能力。 3、 在数列中,应保证基本的训练,引导学生必要的练习,掌握数 列中各量之间的基本联系,体会化归与方程的思想方法。训练要控制 难度和复杂程度。 4、 不等式教学中, 应注意使学生了解一元二次不等式与二元一 次不等式的实际背景;通过举反例或推理论证,初步理解不等式的基 本性质,了解不等式与等式的区别与联系,通过几何意义、推理论证 及简单应用理解基本不等式 。 5、 应通过探索一元二次不等式、相应的方程和函数的关系,体会 函数、方程、不等式的关系,掌握一元二次不等式的图象解法,了解 代数解法,尝试设计求解一元二次不等式上午程序框图。 6、 应通过直观描述,理解画二元一次不等式所表示的平面区域的 基本原理和方法,体会线形规划的基本思想,并能借助几何直观解决 一些简单的线形规划问题。 7、 本学段教学中,要坚持由具体到抽象,由特殊到一般的原则, 重视引导学生对公式、 性质、 原理的理解, 通过适当的有针对性训练, 培养学生的推理运算能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题: §1.1.1正弦定理授课类型:新授课●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

●教学重点正弦定理的探索和证明及其基本应用。

●教学难点已知两边和其中一边的对角解三角形时判断解的个数。

●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。

A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。

能否用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin aA c=,sin bB c=,又sin 1c C c==,A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin abAB=sin cC=A c B(图1.1-3) 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

(证法二):过点A 作j AC ⊥, C由向量的加法可得 AB AC CB =+则 ()j AB j AC CB ⋅=⋅+∴j AB j AC j CB ⋅=⋅+⋅ j()()00cos 900cos 90-=+-j AB A j CB C∴sin sin =c A a C ,即sin sin =a cA C同理,过点C 作⊥j BC ,可得 sin sin =b c B C从而sin sin abAB=sin cC=类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立。

(由学生课后自己推导)从上面的研探过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abAB=sin cC=[理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =; (2)sin sin abAB=sin cC=等价于sin sin abAB=,sin sin cbCB=,sin aA=sin cC从而知正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b=。

一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。

[例题分析]例1.在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形。

解:根据三角形内角和定理,0180()=-+C A B000180(32.081.8)=-+066.2=; 根据正弦定理,00sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ;根据正弦定理,00sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 评述:对于解三角形中的复杂运算可使用计算器。

例2.在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。

解:根据正弦定理,sin 28sin40sin 0.8999.20==≈b A B a因为00<B <0180,所以064≈B ,或0116.≈B ⑴ 当064≈B 时,00000180()180(4064)76=-+≈-+=C A B ,00sin 20sin7630().sin sin40==≈a C c cm A⑵ 当0116≈B 时,00000180()180(40116)24=-+≈-+=C A B ,00sin 20sin2413().sin sin40==≈a C c cm A评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。

Ⅲ.课堂练习第5页练习第1(1)、2(1)题。

[补充练习]已知∆ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c (答案:1:2:3)Ⅳ.课时小结(由学生归纳总结)(1)定理的表示形式:sin sin abA B =sin cC==()0sin sin sin a b ck k A B C++=>++;或sin a k A =,sin b k B =,sin c k C =(0)k >(2)正弦定理的应用范围:①已知两角和任一边,求其它两边及一角; ②已知两边和其中一边对角,求另一边的对角。

Ⅴ.课后作业第10页[习题1.1]A 组第1(1)、2(1)题。

●板书设计 ●授后记课题: §1.1.2余弦定理授课类型:新授课●教学目标 知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。

过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题 情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。

●教学重点余弦定理的发现和证明过程及其基本应用; ●教学难点勾股定理在余弦定理的发现和证明过程中的作用。

●教学过程 Ⅰ.课题导入C 如图1.1-4,在∆ABC 中,设BC=a,AC=b,AB=c,已知a,b 和∠C ,求边c b aA c B(图1.1-4)Ⅱ.讲授新课 [探索研究]联系已经学过的知识和方法,可用什么途径来解决这个问题? 用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。

由于涉及边长问题,从而可以考虑用向量来研究这个问题。

A如图1.1-5,设CB a =,CA b =,AB c =,那么c a b =-,则 b c()()2222 2c c c a b a ba ab b a ba b a b=⋅=--=⋅+⋅-⋅=+-⋅ C a B从而 2222cos c a b ab C =+- (图1.1-5)同理可证 2222cos a b c bc A =+-2222cos b a c ac B =+-于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。

即 2222cos a b c bc A =+-2222cos b a c ac B =+- 2222cos c a b ab C =+-思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?(由学生推出)从余弦定理,又可得到以下推论:222cos 2+-=b c a A bc 222cos 2+-=a cb B ac 222cos 2+-=b ac C ba[理解定理]从而知余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边; ②已知三角形的三条边就可以求出其它角。

思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?(由学生总结)若∆ABC 中,C=090,则cos 0=C ,这时222=+c a b 由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。

[例题分析]例1.在∆ABC 中,已知=a c 060=B ,求b 及A ⑴解:∵2222cos =+-b a c ac B=222+-⋅cos 045=2121)+- =8∴=b求A 可以利用余弦定理,也可以利用正弦定理:⑵解法一:∵cos 2221,22+-=b c a A bc∴060.=A解法二:∵sin 0sin sin45,=a A B b2.4 1.43.8,+=21.8 3.6,⨯=∴a <c ,即00<A <090,∴060.=A评述:解法二应注意确定A 的取值范围。

例2.在∆ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形(见课本第8页例4,可由学生通过阅读进行理解) 解:由余弦定理的推论得:cos 2222+-=b c a A bc22287.8161.7134.6287.8161.7+-=⨯⨯0.5543,≈ 05620'≈A ; cos 2222+-=c a b B ca222134.6161.787.82134.6161.7+-=⨯⨯0.8398,≈ 03253'≈B ;0000180()180(56203253)''=-+≈-+C A B Ⅲ.课堂练习第8页练习第1(1)、2(1)题。

[补充练习]在∆ABC 中,若222a b c bc =++,求角A (答案:A=1200)Ⅳ.课时小结(1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;(2)余弦定理的应用范围:①.已知三边求三角;②.已知两边及它们的夹角,求第三边。

Ⅴ.课后作业①课后阅读:课本第9页[探究与发现]②课时作业:第11页[习题1.1]A 组第3(1),4(1)题。

●板书设计 ●授后记课题: §1.1.3解三角形的进一步讨论授课类型:新授课●教学目标 知识与技能:掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。

相关文档
最新文档