EViews统计分析在计量经济学中的应用综合案例
计量经济学EIVEWS实验步骤和案例
一元线性回归检验个人的收入与消费是密不可分的,为了考察城镇居民可支配收入和其人均消费支出的关系,利用计量经济学的方法进行回归。
1990-2011年城镇居民可支配收录和人均消费支出数据如表1.1所示表1.1 城镇居民可支配收录和人均消费支出图2-1数据来源:《中国民政统计年鉴2012》作城镇居民可支配收录(X)和人均消费支出(Y)的散点图图2. 2从散点图可以看出居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)大体呈现为线性关系,所以建立的计量经济模型为如下线性模型:12i i i Y X u ββ=++三、估计参数假定所建模型及随机扰动项i u 满足古典假定,可以用OLS 法估计其参数。
运用计算机软件EViews 作计量经济分析十分方便。
利用EViews 作简单线性回归分析的步骤如下:1、建立工作文件首先,双击EViews 图标,进入EViews 主页。
在菜单一次点击File\New\Workfile图2-3选择数据类型和起止日期。
时间序列提供起止日期(年、季度、月度、周、日),非时间序列提供最大观察个数。
本例中在Start Data 里输入1990,在End data 里输入2011,见图2-3。
单击OK 后屏幕出现Workfile 工作框,如图2-4所示。
图2-4二、输入和编辑数据建立或调入工作文件以后,可以输入和编辑数据。
在主菜单上单击Quick→Empty Group(见图2-5)图2-5再用方向键将光标移到每一列的顶部之后,输入各个变量名,回车后输入数据(见图2-7)。
另外数据还可以从Excel中直接复制到空组。
然后为每个时间序列取序列名。
单击数据表中的SER01,在数据组对话框中的命令窗口输入该序列名称,如本例中输入X,回车后Yes。
采用同样的步骤修改序列名Y(见图2-8)。
数据输入操作完成。
图2-8数据输入完毕,单击工作文件窗口工具条的Save或单击菜单兰的File→Save将数据存入磁盘。
EViews统计分析在计量经济学中的应用EViews概述
5/7/2023
EViews统计分析在计量经济学中的应用
2
2
EViews历史
EViews是由Quantitative Micro Software 〔QMS〕公司开发的,专门从事数据分析、回归 分析和预测的工具。EViews结合了电子表格和 相关的数据库技术以及传统统计软件分析功能, 并且使用了单击图形用户界面。EViews特点是 对于时间序列数据有较强的分析能力,另外在 预测分析、科学数据分析与评价、金融分析、 经济预测、销售预测和本钱分析等领域应用非 常广泛。
5/7/2023
EViews统计分析在计量经济学中的应用
22 22
图形操作
将图形插入文献中:Eviews可以将图形插入到 Word文档中。首先将图形翻开,然后点击 Eviews主画面顶部主按钮Edit/Copy/click弹出 对话框。选择〞Copy to clipboard〞,点击 OK,然后在Word文档中指指定位置粘贴即可。
EViews统计分析在计量经 济学中的应用EViews概述
1
:EViews简介
o 实验目的:熟悉和掌握Eviews在一元线性回 归模型中的应用。
o 实验数据:2019年中国各地区城市居民人均 年消费支出〔CS〕和可支配收入〔INC〕 〔相关数据在文件夹“书中资料/第3章〞〕 。
o 实验原理:普通最小二乘法(OLS) o 实验预习知识:普通最小二乘法、t检验、
可翻开下拉式菜单〔或再下
一级菜单,如果有的话〕,
点击某个选项电脑就执行对 应的操作响应〔File,Edit的 编辑功能与Word, Excel中的 相应功能相似〕
图1-1 EViews主窗口界面
5/7/2023
计量经济学案例-基于Eviews的二元回归计量经济模型分析
计量经济学案例:基于Eviews的二元回归计量经济模型分析来源:中华人民共和国国家统计局一、背景连锁经营模式10年前开始在中国餐饮业,在近几年大规模应扩张,发展势头强劲。
在东部地区和大城市仍然是集中区,但是向西部地区和中型城市渗透的速度在加快。
连锁经营是企业提高效率、降低成本的经营方式,更重要的是能够帮助企业突破发展中的管理瓶颈。
它具有极强的竞争能力,成为中国餐饮业经营模式的主要发展方向.利用计量经济学软件Eveiws分析中国2008年连锁餐饮企业情况显得有其重要性。
二、模型建立与参数估计1.录入数据,建立包括31个地区连锁餐饮企业营业额Y与门店总数X1、商品购进总额X2的工作表文件。
点击查看散点图如下所示:2。
根据散点图,建立回归模型:Y=a+b ln X1+clnX2+u,利用Eveiws 软件对该模型进行估计.三、模型检验与预测1. 经济意义检验参数估计量的符号和数值范围都正确,可进行下一步。
2。
统计意义检验给定5%的显著性水平,查表得临界值F0。
05(2,24)=3。
4<64。
77T0。
025(24)=2.064,所以总体上看,lnX1和lnX2对lnY的线性关系是显著成立的。
调整后的可决系数=0。
83065表明:连锁餐饮企业营业额对数值的83.1%的变化可以由门店总数对数与商品购进总额对数的变化来解释.0.2573表明:商品购进总额不变时,门店总数每增加1%,企业营业额将增加0.2573%. 0。
6982表明:门店总数不变时,商品购进总额每增加1%,企业营业额将增加0。
6982%。
3。
计量经济学检验(1)一般经验告诉我们,对于采取截面数据做样本的计量经济学问题,由于在不同的样本点上解释变量以外的其他因素的差异较大,所以往往存在异方差性。
在本问题中利用White检验异方差性。
显然,根据给出的概率进行判断:0.005417<0。
05,因而拒接原假设,认为模型存在异方差性。
(2)接着,采用加权最小二乘法对模型进行估计。
计量经济学EVIEWS模型案例
数据收集
数据来源: 《中国统计年鉴》 其中:
Y ——各项税收收入(亿元)
X2——国内生产总值(亿元) X3——财政支出(亿元) X4——商品零售价格指数(%)
参数估计
假定模型中随机项满足基本假定,可用 假定模型中随机项满足基本假定,可用OLS法估计 法估计 其参数。具体操作: 软件, 其参数。具体操作:用EViews软件,估计结果为: 软件 估 X2t + β2 X3t + β3 X4t + ut
其中: 其中: 各项税收收入(亿元) Y — 各项税收收入(亿元) X2 — 国内生产总值(亿元) 国内生产总值(亿元) X3 — 财政支出(亿元) 财政支出(亿元) 商品零售价格指数( ) X4 — 商品零售价格指数(%)
上机要求: 上机要求:
1、更新数据至2009年,并对模型进行估 计和检验; 2、上网查2010年各解释变量的数据,求 出2010年税收收入的点预测和区间预测, 并与实际值进行比较分析; 3、形成报告于下次上机课上交打印稿。
R 2 = 0.9971
F = 2717.238
df = 21
模型检验: 模型检验: 拟合优度: 较高, 拟合优度:可决系数 R 2 = 0.9974 较高, R 2 = 0.9971 也较高, 修正的可决系数 也较高, 表明模型拟合较好。 表明模型拟合较好。
显著性检验
F检验: 针对 H0 : β2 =,取β4 = 0 检验: 检验 β3 = 查自由度为 k -1=3 和 的临界值 n - k =21
理论分析 影响中国税收收入增长的主要因素可能有: 影响中国税收收入增长的主要因素可能有: (1)从宏观经济看,经济整体增长是税收增长的 )从宏观经济看, 基本源泉。 基本源泉。 2) (2)社会经济的发展和社会保障等都对公共财政 提出要求, 提出要求,公共财政的需求对当年的税收收入可 能会有一定的影响。 能会有一定的影响。 (3)物价水平。中国的税制结构以流转税为主, )物价水平。中国的税制结构以流转税为主, 以现行价格计算的GDP和经营者的收入水平都与 以现行价格计算的 和经营者的收入水平都与 物价水平有关。 物价水平有关。 (4)税收政策因素。 )税收政策因素。
EViews统计分析在计量经济学中的应用综合案例
计量经济学创新实验设计
我们以方正科技(600601)为例,介绍如何通过Eviews 软件进行系数的回归估计。
打开Eviews6.0,选择File-New-Workfile,frequency选择integer date,时间为1至200,点击确定。
计量经济学创新实验设计
计量经济学创新实验设计
二.资本资产定价模型及其检验方法介绍
各种股票的收益和风险呈现正相关,每种资
产的收益由无风险收益和风险贴水两部分构成。 可表示为:
E Ri Rf i E Rm Rf
(1)
其中: E Ri 为股票的期望收益率; Rf 为无风险收益率、 E Rm 为市场证券组合的
期望收益率; i 是股票 i 收益和市场组合收益间的协方差im 与市场组合收益方差 m 2 的比
值,即 i
im
2 m
,常被称为“
系数”(可以看作某种股票收益变动对市场组合收益变
动的敏感度)。
计量经济学创新实验设计
假设关于任何资产的收益是一个公平博弈,换句 话说就是任何资产已实现的平均收益率等于其预 期的收益率。数学上有如下形式:
Rit E Rit imt eit
(2)
其 中 , mt Rmt E Rmt , E mt 0 , eit 为 随 机 误 差 项 , 且 E eit 0 ,
covemt
, eit
0
,
cov eit ,eit1
0
,
i
cov Rmt
,
Rit
Var
Rmt
。
计量经济学创新实验设计
出现下图后,点击Object-New Object,在Type of object中 选择seriers,,并命名为SY和MY,从而创建两个序列。
计量经济学案例分析(Eviews操作)
美股行情对A股的影响性分析——标普500与沪深300相关性分析摘要:本文主要通过分析标准普尔500指数与沪深300指数的相关性,以标普500指数为解释变量,以沪深300指数为被解释变量,利用Eviews软件,使用其中的最小二乘法对其进行线性回归分析,最终得出方程。
并对其进行显著性检验(F,t)、异方差检验、自相关性检验来验证方程的可靠性。
然后解释方程的经济意义,并利用软件对未来指数变动进行预测。
最后在未来几天比较预测结果与实际两个指数的变化情况,验证实际应用情况。
关键词:标普500、沪深300、Eviews、显著性检验、异方差检验、自相关性检验。
一、研究背景1.全球化大环境在经济全球化不断深入发展的今天,全球资本市场,尤其是中美两个超级大国之间的资本流通,早已彼此嵌入,密不可分。
全世界早有不少学者对中美资本流通做了深入研究。
但美国股市发展早于中国十几年,其内部的资金也远远超过中国股市,美国股市的资本流动势必会对中国股市产生一定影响,这种影响不仅体现在情绪面,更反映在指数变动方向上。
2.对外开放资本市场的QFII政策Qualified Foreign Institutional Investor,作为一种过渡性制度安排,QFII制度是在资本项目尚未完全开放的国家和地区,实现有序、稳妥开放证券市场的特殊通道。
外资对中国股市的影响早已不可忽视,而美国市场的变动也一定程度会影响在中国股市外资的操作行为。
所以研究两个指数的变动是很有意义的。
二、数据1.数据选择沪深两个市场各自均有独立的综合指数和成份指数,这些指数不能用来反映沪深两市的整体情况,而沪深300指数则同时考虑了两市的交易情况,是中国A股市场的“晴雨表”。
标准普尔500指数英文简写为S&P 500 Index,是记录美国500家上市公司的一个股票指数。
与道琼斯指数等其他指数相比,标准普尔500指数包含的公司更多,因此风险更为分散,能够反映更广泛的市场变化。
计量经济学论文(eviews分析)
计量经济学论文(eviews分析)我国限额以上餐饮企业营业额的影响因素分析摘要:本文收集了1999年至2009年共11年的相关数据,选取餐饮企业数量、城镇居民人均年消费性支出、全国城镇人口数以及公路里程数作为解释变量构建模型,对我国限额以上餐饮企业营业额的影响因素进行分析。
利用Eviews软件对模型进行参数估计和检验,并加以修正,最后根据模型的最终结果进行经济意义分析,提出自己的看法。
关键词:餐饮企业营业额、影响因素、计量分析一、研究背景近十年来,投资者进入餐饮企业的数量不断增加。
在他们进入一个行业之前,势必要对该行业的营业额、营业利润等进行估计,当这些因素的估计值能够达到他们的预期时,他们才会对其进行投资。
由于餐饮企业的营业额是影响投资者是否进入餐饮业的一个重要因素,对于我国餐饮企业的营业额问题的深入研究就显得尤为必要,这有助于投资者作出合理的决策。
因此,本文进行了对我国限额以上餐饮企业营业额的计量模型研究。
二、变量的选取影响餐饮企业营业额的因素有很多,包括餐饮企业的数量、营业面积、从业人员、城镇居民人均年消费性支出、全国城镇人口数、餐饮企业的平均价格水平及公路里程数(表示交通状况)。
但综合考虑后,本文选取了其中的一部分变量(企业数、城镇居民人均年消费性支出、全国城镇人口数、公路里程数)进行研究,并对各个变量对餐饮企业营业额的影响进行预测。
1.企业数本文认为餐饮企业营业额与餐饮企业的数量有关,并预测两者之间呈正相关。
2.城镇居民人均年消费性支出本文认为餐饮企业营业额与城镇居民人均年消费性支出有关,并预测两者之间呈正相关。
3.全国城镇人口数本文认为餐饮企业营业额与全国城镇人口数有关,并预测两者之间呈正相关。
4.公路里程数本文认为餐饮企业营业额与公路里程数有关,并预测两者之间呈正相关。
三、相关数据本文收集了1999年至2009年共11年的相关数据,包括营业额(单位:亿元)、企业数(单位:个)、人均年消费性支出(单位:元)、全国城镇人口数(单位:万人)以及公路里程数(单位:万公里)。
用Eviews分析计量经济学问题
计量经济学案例分析一、问题背景高新区自开始设立至今短短十多年的时间,以其惊人的经济发展速度为世人所关注。
随着我国经济发展模式的逐步转变,高新区已经成为我国依靠科技进步和技术创新推动经济社会发展、走中国特色自主创新道路的一面旗帜。
“十二五”时期,面对新的机遇和挑战,国家高新区应注重提升五种能力,努力成为加快转变经济发展方式的排头兵。
为了探索高新经济发展的内在规律性,本文采用截面数据对高新区的投入产出进行分析,力求能够增进对高新区经济发展的了解,对高新区的进一步发展有所帮助。
二、模型设定本文研究的是高新区投入对产出的影响,所以本模型的被解释变量Y 即为高新区的产出。
就目前对高新区数据的统计来看,反映高新区产出的主要有“工业总产值”、“工业增加值”、“技工贸总收入”、“利润”和“上缴税额”几个总量指标。
按照生产函数理论,产出利用增加值,所以模型中我们将使用“工业增加值”指标数据来估计各高新区的总产出。
从高新区的投入来看,对产出有重要影响的因素主要包括以下几个方面:资本K ,劳动力L ,技术投入T ,此外,体制改革,管理模式创新也可以看作是投入的要素,但因其不可量化,因此归入模型的扰动项中。
这样,按照科布道格拉斯形式的生产函数,我们设定函数形式为:u T L AK Y γβα= 两边取自然对数得:u T L K A Y ln ln ln ln ln ln ++++=γβα其中,资本数据K 我们利用的是当年的年末净资产来进行估计,即当年年末资产减去当年年末负债后得到的数据;用当年年末从业人员来估计劳动力L ;用当年技术研发投入来估计技术投入T 。
数据选用的是截面数据。
从《国家高新技术产业开发区十年发展报告(1991-2000年)》得到1999年全国53个高新区各项指标统计数据:三、模型估计用Eviews 软件进行回归分析,得到如下结果:Dependent Variable: Y Method: Least SquaresDate: 13/12/11 Time: 19:31 Sample: 1 53C 0.664556 0.644854 1.030553 0.3078 LNK 0.478131 0.171585 2.786560 0.0076 LNL 0.367855 0.174496 2.108104 0.0402 R-squared0.740558 Mean dependent var6.280427Adjusted R-squared 0.724674 S.D. dependent var 0.440805 S.E. of regression 0.231297 Akaike info criterion -0.017755Sum squared resid 2.621421 Schwarz criterion 0.130946 Log likelihood4.470508 F-statistic 46.62236从表可以看出,回归方程为:TL K Y ln 140542.0ln 367855.0ln 478131.0664556.0ln +++=T= (1.030553) (2.786560) (2.109104) (1.520604)740558.02=R 724674.02=R(1) 经济意义检验从回归结果可以看出,模型估计的γβα,,的参数值都为正、且小于1,与生产函数理论中γβα,,各数值的意义相符。
计量经济学用eviews分析数据
中国储蓄存款总额(Y,亿元)与GDP (元)数据如下表。
表1-1数据来源:《中国统计年鉴》年图1-1解:、估计一元线性回归模型由经济理论知,储蓄存款总额受GDP影响,当GDFP增加时,储蓄存款总额也随着增加,他们之间具有正向的同步变动趋势。
储蓄存款总额除受GDP影响之外, 还受到其他一些变量的影响及随机因素的影响,将其他变量及随机因素的影响均并到随机变量U中,根据X与丫的样本数据,作X与丫之间的散点图可以看出,他们的变化趋势是线性的,由此建立中国储蓄存款总额丫与GDF之间的一员线性回归模型。
由表1-1中样本观测数据,样本回归模型为用Eviews软件估计结果:Dependent Variable: 丫Method: Least SquaresDate: 12/14/14 Time: 10:41Sample: 1978 2012Included observations: 35R-squared 0.995724 Mean dependent var 78882.56Adjusted R-squared 0.995595 S.D. dependent var 108096.8S.E. of regression 7174.769 Akaike info criterion 20.64997Sum squared resid 1.70E+09 Schwarz criterion 20.73885Log likelihood -359.3745 Hannan-Quinn criter. 20.68065F-statistic 7684.717 Durbin-Watson stat 1.224720Prob(F-statistic) 0.000000即样本回归方程为:-4.678592 87.66252二、对估计结果做结构分析(1)对回归方程的结构分析0.762529是样本回归方程的斜率,他表示GDP勺边际增长率,说明GDP每增加1元,将有0.762529用于储蓄;-7304.294是样本回归方程的截距,他表示不受GDP影响的自发性储蓄增长。
计量经济学---EViews的基本操作案例
说明总离差平方和的99.88%被样本回归直线解释,仅有0.12%未被解释,因此,样
本回归直线对样本点的拟合优度很高。也即用人均年收入解释消费性支出变化效 果很好。
回归系数显著性检验(t检验)
提出原假设H0:β 1=0 备择假设H1:β 1≠0
取显著性水平α =0.05,在自由度为v=17-2=15下,查t分布表,得:t
R² =0.998726
F=12952.03 n=17 DW=1.025082
(7)回归预测
点估计。假定预测出2002年、2003年的平均每人年收入分别为
X2002=6932.91元,X2003=7334.37元。预测Ŷ2002,Ŷ2003的值。
将X2002=6932.91,X2003=7334.37代入估计的回归方程的点估计值 Ŷ2002=132.0125+0.768761*6932.91=5461.76(元)
(3)画散点图
确定了模型后,需要在直观上初步探明变量之间的相互关系,
为此,以人均年收入为横轴,以人均年消费支出为纵轴,描 出样本变量观测值的散点分布图。如下图所示:
根据上图散点分布情况可以看出,在1985~2001年期间,我国城镇
居民人均年消费和可支配收入之间存在较为明显的线性关系。
(4)显示估计结果Fra bibliotekTHANKS
利用Eviews的最小二乘法程序,输出的结果如下: Dependent Variable(从属变量):Y Method:Least Squares(最小二乘法) Sample:1985 2001 Included observations:17
(5)模型检验
可决系数检验:R² =1-ESS/TSS=0.9988
Xi——表示城镇居民人均年收入水平 ui——表示随机误差项 现给定样本观测值(Xi,Yi),i=1,2,…,17,n=17为样本容量。则建立样 本回归模型:Yi=β0+β1Xi+ei 其中,β0,β1分别为β0、β1的估计值,ei为残差项。样本回归方程: Ŷi=β0+β1Xi 其中,Ŷi表示样本观测值Yi的估计值。
基于EVIEWS软件的计量经济学建模检验案例解读
基于EVIEWS软件的计量经济学建模检验案例解读计量经济学是经济学领域的一个重要分支,它运用数理统计方法对经济学模型进行定量分析和预测。
而EVIEWS软件则是计量经济学常用的数据分析与建模工具。
本文将通过一个实例案例,解读基于EVIEWS软件的计量经济学建模检验的方法和过程。
首先,我们需要了解案例的背景和研究问题。
假设我们想研究某国家的经济增长与就业率之间的关系。
我们提出了一个假设:经济增长对就业率有积极的影响。
第一步是数据收集和准备。
我们需要收集与经济增长和就业率相关的数据。
以中国为例,我们可以从国家统计局等官方机构获取国内生产总值(GDP)和就业率的数据。
这些数据应该是时间序列数据,通常包括一定的时间跨度和频率(例如月度或年度数据)。
第二步是数据预处理。
我们需要对收集到的数据进行清洗和处理,以确保数据的质量。
具体来说,我们需要检查数据是否存在缺失值、异常值等,确保数据的连续性和一致性。
第三步是建立计量经济学模型。
在本案例中,我们使用一个简单的线性回归模型来研究经济增长对就业率的影响。
假设就业率(Y)是经济增长(X)的线性函数,即Y = β0 +β1X + ε,其中β0和β1是回归系数,ε是误差项。
第四步是模型检验。
在EVIEWS软件中,我们可以利用OLS(Ordinary Least Squares)方法进行模型的估计和检验。
OLS方法是最小二乘法的一种形式,用于估计回归系数的值。
此外,我们还可以通过检验模型的显著性和拟合优度来评估模型的质量。
具体来说,我们可以通过检验回归系数的t值和p值来判断是否存在统计显著性。
如果t值的绝对值较大且p值小于设定的显著性水平(通常是0.05),则可以认为回归系数是显著的,即具有统计意义。
此外,我们还可以计算回归方程的R-squared值来评估模型的拟合优度,R-squared值越接近1,说明模型的解释能力越强。
最后,我们需要进行模型诊断。
模型诊断用于检验回归模型的假设是否成立,以及模型是否满足统计方法的要求。
计量经济学案例eviews
案例分析1.问题的提出和模型的设定根据我国1978—1997年的财政收入Y 和国民生产总值X 的数据资料,分析财政收入和国民生产总值的关系建立财政收入和国民生产总值的回归模型。
假定财政收入和国民收入总值之间满足线性约束,则理论模型设定为i i i u X Y ++=21ββ其中i Y 表示财政收入,i X 表示国民生产总值。
表1我国1978—1997年财政收入和国民生产总值2.参数估计进入EViews 软件包,确定时间范围;编辑输入数据;选择估计方程菜单,估计样本回归函数如下表 2obsX Y 19783624.100 1132.260 19794038.200 1146.380 19804517.800 1159.930 19814860.300 1175.790 19825301.800 1212.330 19835957.400 1366.950 19847206.700 1624.860 19858989.100 2004.820 198610201.40 2122.010 198711954.50 2199.350 198814922.30 2357.240 198916917.80 2664.900 199018598.40 2937.100 199121662.50 3149.480 199226651.90 3483.370 199334560.50 4348.950 199446670.00 5218.100 199557494.90 6242.200 199666850.50 7407.990 1997 73452.50 8651.140估计结果为Y=858.3108 + 0.100031X(12.78768) (46.04788)R^2=0.991583 S.E.=208.508 F=2120.408括号内为t统计量值。
3.检验模型的异方差(一)图形法1、EViews软件操作。
计量经济学案例分析报告eviews
第二章案例分析一、研究的目的要求居民消费在社会经济的持续开展中有着重要的作用。
居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体表现。
改革开放以来随着中国经济的快速开展,人民生活水平不断提高,居民的消费水平也不断增长。
但是在看到这个整体趋势的同时,还应看到全国各地区经济开展速度不同,居民消费水平也有明显差异。
例如,2002年全国城市居民家庭平均每人每年消费支出为元, 最低的某某省仅为人均元,最高的某某市达人均10464元,某某是某某的倍。
为了研究全国居民消费水平与其变动的原因,需要作具体的分析。
影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。
为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。
二、模型设定我们研究的对象是各地区居民消费的差异。
居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例与经济结构有较大差异,最具有直接比照可比性的是城市居民消费。
而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出〞来比拟,而这正是可从统计年鉴中获得数据的变量。
所以模型的被解释变量Y选定为“城市居民每人每年的平均消费支出〞。
因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。
因此建立的是2002年截面数据模型。
影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产〞和“购物环境〞;有的与居民收入可能高度相关,如“就业状况〞、“居民财产〞;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数〞、“利率〞。
EViews统计分析在计量经济学中的应用EViews概述教程文件
5
1.2EViews窗口介绍
进入Windows/双击EViews7快捷 方式,进入EViews窗口;如 图;主菜单栏上共有9个选项: File,Edit,Objects, View,Procs,Quick, Options,Window,Help。 用鼠标点击可打开下拉式菜
类型-时间序列);
图1-12选择数据类型-时间序列
6/9/2020
EViews统计分析在计量经济学中的应用
10
创建工作文件具体操作过程
(2)
Unstructured/Undat ed,见图1-13(图113 选择数据类型-非 结构化数据);
6/9/2020
图1-13 选择数据类型
EViews统计分析在计量经济学中的应用
(7)对联立方程进行线性和非线性的估计;
(8)估计和分析向量自回归系统;
(9)多项式分布滞后模型的估计;
6/9/2020
EViews统计分析在计量经济学中的应用
4
EViews功能
(10)回归方程的预测; (11)模型的求解和模拟; (12)数据库管理; (13)与外部软件进行数据交换
11
创建工作文件具体操作过程
(3)Balanced Panel, 见图1-14(选择数据类 型-面板数据);
6/9/2020
图1-14选择数据类型
EViews统计分析在计量经济学中的应用
12
创建工作文件具体操作过程
例如我们选择年度数据 (Annual),在起始日 (Start date)、终止日 (End date)分别键入 2002、2011,然后点击 OK,一个新的workfile就 建立了点击OK确认,得新 建工作文件窗口,见图115(工作文件);
EViews统计分析在计量经济学中的应用
数据导出
将EViews中的分析结果导出为多 种格式的文件,如Excel、Word、 PDF等,方便用户进行报告编写和 分享。
数据预处理
提供数据清洗、缺失值处理、异常 值检测等功能,确保数据的准确性 和完整性。
数据变换与描述性统计分析
01
02
03
数据变换
支持多种数据变换方法, 如对数变换、差分变换等 ,以满足不同计量经济学 模型的需求。
EViews在计量经济学中的贡献与不足
01
不足
02
对于某些高级计量经济学方法支持不足,需要借助 其他软件或编程实现。
03
在处理大规模数据时,性能表现不够优秀,需要进 一步优化算法和提高计算效率。
未来发展趋势及挑战
01
发展趋势
02 加强与其他软件和编程语言的集成,提高数据处 理和分析的效率和灵活性。
根据时间序列的自相关图和偏自相关图,初步确定ARIMA 模型的阶数,并利用最小二乘法等方法进行参数估计。
EViews实现步骤
在EViews中,可通过“Quick->Estimate Equation”功 能,选择合适的ARIMA模型形式并输入相应参数,实现模 型的快速估计和检验。
案例分析
案例背景
以某地区季度GDP数据为例,探讨如何利用时间序列模型进行预测和 决策支持。
金融产品创新
非参数和半参数方法还可以应用于金 融产品的创新设计。例如,在衍生品 定价方面,可以采用非参数方法对标 的资产的价格路径进行模拟,从而得 到衍生品的理论价格;在投资组合优 化方面,可以利用半参数模型刻画资 产收益与风险之间的非线性关系,为 投资者提供最优的投资组合方案。
07
总结与展望
EViews在计量经济学中的贡献与不足
计量经济学 案例分析 Eviews
一、研究课题:通过对1984——2003年某国GDP和出口的分析,研究GDP和出口量的相关关系并对参数估计值进行检验。
二、模型及数据来源:GDP为因变量,出口量为自变量。
选择模型是一元线性回归模型y=c0+c1x+u(y代表GDP,x代表出口量,u表示残差项)数据来自《计量经济学软件——eviews的使用》135页表12.1。
提取其进口和国内生产总值两列数据:annual export gdp1984 580.5 71711985 808.9 8964.41986 1082.1 10202.21987 1470 11962.51988 1766.7 14928.31989 1956 16909.21990 2985.8 18547.91991 3827.1 21617.81992 4676.3 26638.11993 5284.8 34634.41994 10421.8 46759.41995 12451.8 58478.11996 12576.4 67884.61997 15160.7 74462.61998 15233.6 78345.21999 16159.8 82067.52000 20634.4 89468.12001 22024.4 97314.82002 26947.4 105172.32003 36287.9 117251.9三、作业1、根据表格得到曲线图、散点图、X-Y曲线图:1200001000008000060000400002000084868890929496980002曲线图05000010000015000010000200003000040000EXPORTG D P散点图20000400006000080000100000120000100002000030000EXPORTG D PX-Y 曲线图2、数据描述统计分析024681001234563、简单的回归估计Dependent Variable: GDP Method: Least Squares Date: 06/14/09 Time: 16:38 Sample: 1984 2003 Variable Coefficient Std. Error t-Statistic Prob. C 11772.77 2862.419 4.112873 0.0007 R-squared0.946953 Mean dependent var 49439.02 Adjusted R-squared 0.944006 S.D. dependent var 36735.19 S.E. of regression 8692.656 Akaike info criterion 21.07298 Sum squared resid1.36E+09 Schwarz criterion21.17256Log likelihood -208.7298 F-statistic 321.3229Durbin-Watson stat 0.604971 Prob(F-statistic) 0.000000y t=-11772.77+3.547790x t R2=0.946953 df=18检验回归系数显著性的原假设和备择假设是(给定α = 0.05)H0:c1= 0;H1:c1≠ 0。
计量经济学---EViews的基本操作案例
THANKS
利用Eviews的最小二乘法程序,输出的结果如下: Dependent Variable(从属变量):Y Method:Least Squares(最小二乘法) Sample:1985 2001 Included observations:17
(5)模型检验
可决系数检验:R² =1-ESS/TSS=0.9988
R² =0.998726
F=12952.03 n=17 DW=1.025082
(7)回归预测
点估计。假定预测出2002年、2003年的平均每人年收入分别为
X2002=6932.91元,X2003=7334.37元。预测Ŷ2002,Ŷ2003的值。
将X2002=6932.91,X2003=7334.37代入估计的回归方程的点估计值 Ŷ2002=132.0125+0.768761*6932.91=5461.76(元)
说明总离差平方和的99.88%被样本回归直线解释,仅有0.12%未被解释,因此,样
本回归直线对样本点的拟合优度很高。也即用人均年收入解释消费性支出变化效 果很好。
回归系数显著性检验(t检验)
提出原假设H0:β 1=0 备择假设H1:β 1≠0
取显著性水平α =0.05,在自由度为v=17-2=15下,查t分布表,得:t
Ŷ2003=132.0125+0.768761*7334.37=5770.389(元)
(8)作预测值曲线图
从图中可以看出,在样本区间内,城镇居民平均每人年消费 性支出样本值及其估计值非常接近,2002年、2003年预测 值的变化趋势也符合样本区间的变化趋势说明以上建立的先 行回归模型无论是结构分析、统计检验,还是预测效果,都 是比较好的。
EViews统计分析在计量经济学中的应用---联立方程模型省公开课获奖课件市赛课比赛一等奖课件
2024/9/21
30
总体模型检验
(1)样本期模型检验
将样本期外生变量值带入模型,计算各内生变量旳估计值,将它们与内
生变量旳实际观察值比较,以检验模型对样本观察值旳拟合优度。常用旳检
验统计量为“均方百分比误差”,用RMS表达。在多种拟合优度检验统计量中
第 章 联立方程模型
7.1 联立方程旳辨认 7.2 联立方程旳估计措施及比较 7.3 联立方程旳检验 7.4 习题(略)
2024/9/21
1
7.1:联立方程旳辨认
构造式方程旳辨认
假设联立方程系统旳构造式 BY+ΓZ=μ 中旳第i个方程中涉及ki个内生 变量和gi个先决变量,系统中旳内生变量先决变量旳数目仍用k和g比奥斯 ,矩阵(B0 , Γ0)表达第i个方程中未涉及旳变量(涉及内生变量和先决变 量)在其他k-1个方程中相应旳系统所构成旳矩阵。于是,判断第i个构造 方程辨认状态旳构造式辨认条件为
2024/9/21
3
7.2: 联立方程旳估计措施及比较
试验目旳:经过此次试验,掌握方程2SLS 估计旳操作措施和估计环节;掌握利用 2SLS估计措施处理实际问题,对方程估计 成果进行合理旳解释阐明。
试验数据:1991-2023年我国旳全国居民 消费(CSt)、国民生产总值(Yt)、投资(It )、政府消费(Gt)(有关数据在文件夹 ““Material/Chapter 7/Data和 Material/Chapter 7/Workfile””) 。
2024/9/21
10
变量输入对话框
图7.3 变量输入对话框
2024/9/21
计量经济分析方法与建模Eviews应用与实例-高铁梅
性。计算公式如下
1 S N
i 1
N yi y ˆ Nhomakorabea 3
s ( N 1) / N 是变量方差的有偏估计。如果序列的分布
是对称的,S值为0;正的S值意味着序列分布有长的右拖尾,负
的S值意味着序列分布有长的左拖尾。例1.1中X的偏度为0,说明
X的分布是对称的;而例1.3中GDP增长率的偏度是0.78,说明 GDP增长率的分布是不对称的。
T l xt x y t l y l 0,1,2,3 T t 1 c xy l T l y t y xt l x l 0,1,2 T t 1 注意与自相关不同,交叉相关不必围绕滞后期对称。交
21
可以选与如下的理论分布的分位数相比较: Normal(正态)分布:钟形并且对称的分布. Uniform(均匀)分布:矩形密度函数分布. Exponential( 指数 ) 分布:联合指数分布是一个有着一条 长右尾的正态分布. Logistic(逻辑)分布:除比正态分布有更长的尾外是一种 近似于正态的对称分布. Extreme value(极值)分布:I型极小值分布是有一条左长 尾的负偏分布,它非常近似于对数正态分布. 可以在工作文件中选择一些序列来与这些典型序列的分 位数相比较,也可以在编辑框中键入序列或组的名称来选择 对照的序列或组, EViews将针对列出的每个序列计算出 QQ 图。
到核密度估计。
2
打开工作文件,双击一个序列名,即进入序列的对话 框。单击“view”可看到菜单分为四个区,第一部分为序列 显示形式,第二和第三部分提供数据统计方法,第四部分是 转换选项和标签。
3
§1.1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Rit E Rit imt eit
(2)
其 中 , mt Rmt E Rmt , E mt 0 , eit 为 随 机 误 差 项 , 且 E eit 0 ,
covemt
, eit
பைடு நூலகம்
0
,
cov eit ,eit1
0
,
i
cov Rmt
,
Rit
Var
Rmt
。
计量经济学创新实验设计
电子商务市场上存在的价格离散现象曾引 起经济学界的广泛关注。价格离散是指 在同一市场同一时间不同卖家同种商品 的价格分布。“淘宝网”上的消费者保 障计划是一种典型的第三方中介信用担 保机制。总之,本实验旨在利用“淘宝 网”上的交易数据,实证分析在声誉机 制与第三方担保机制的共同影响下的网 络商品交易价格。
(1)股票品种的选取
本项研究采用上海股票市场代码自600601至600640 的37支股票,由于代码600625、 600629与600633三 支股票在采样期间内没有连续观察值,所以没有采用。37 支股票的行业分布为:房地产股3支,公用事业类股3支, 商业类股4支,综合类股2支,工业类股25支。这37支股 票均为任意选择,目的是为了科学地体现随机性。由行业 分布可以看出,这37支股票分布在多种行业,具有较好的 代表性。
计量经济学创新实验设计
表2 逐步回归(Stepwise)回归结果
系数
0
-0.742
1
2.342
R2
0.433
F检验
8.072
T检验 -3. 751 2. 841
sig
0. 001 0. 007
计量经济学创新实验设计
从表 2 可以得出如下结论:第一,i2 的系数 2 的 T 检验结果并不显著,表明风险与收 益之间并不存在非线性相关关系;第二,ei 的系数 3 的 T 检验结果并不显著,表明非系统 风险在资产组合定价中并不起作用;第三, 0 的估计值为负,即资金的时间价值为负,表
将方程(1)代入方程(2)可得:
Rit Rft i • E Rmt Rft i •mt eit
Rft Rmt Rft • i eit
所以,对资本资产定价模型进行检验时,一般用如下模型:
Rit Rft Rmt Rft • i eit
(3)
检验模型(3)时,首先要估计系数。通常 采用的方法是对单个股票或股票组合的收益 率与市场指数的收益率进行时间序列的回归, 模型为:
第8章 综合案例
26.07.2020
8.1 电子商务产品定价模型
计量经济学创新实验设计
一.实验课题背景
近年来,随着信息技术的飞速发展和因特网的 普及,电子商务行业得到了蓬勃发展,网上交 易这一全新的商业模式逐渐为人们所熟悉。相 比一般形式的商业活动,网上交易的优势在于 减少了信息收集成本和信息传播成本。
系数
0
-0.742
1
2.342
R2
0.433
F检验
8.072
T检验 -3.751 2.841
计量经济学创新实验设计
(2)采用FM模型进行横截面回归及检验
FM模型如下:
R i 0 1i 2i 2 3e i i (8)
对资本资产定价模型的横截面的检验采用多元回归中的逐 步回归分析法(Stepwise),即在回归分析中首先从所 有自变量中选择一个自变量,使相关系数最大,再逐步加 入新的自变量,同时删去可能变为不显著的自变量,并保 证相关系数上升,最终保证结果中的所有自变量的系数均 显著不为0并且被排除在模型之外的自变量的系数均不显 著。用Eviews统计软件进行处理,可得表2的结果。
计量经济学创新实验设计
首先,将数据保存在“诺基亚N97数据22” 的excel数据表中,然后将表格导入Eview6 中,如下图所示:
计量经济学创新实验设计
导入后,数据显示如下:
计量经济学创新实验设计
选择quick-equation estimation,按 下图填入变量名称,点击确定即可。
计量经济学创新实验设计
计量经济学创新实验设计
二.资本资产定价模型及其检验方法介绍
各种股票的收益和风险呈现正相关,每种资
产的收益由无风险收益和风险贴水两部分构成。 可表示为:
E Ri Rf i E Rm Rf
(1)
其中: E Ri 为股票的期望收益率; Rf 为无风险收益率、 E Rm 为市场证券组合的
计量经济学创新实验设计
四、数据的获取和处理
本实验选择在“淘宝网”上购买量较大的手机商品——诺 基亚N97作为样本。按照“淘宝网”的商品分类,依次点 击“手机”——“诺基亚N97”,在默认的搜索网页中,搜 集了“淘宝网”2010年10月25日至10月30日5天中诺 基亚N73的成交信息。之所以选择诺基亚N97是因为此款 手机在中国具有很好的口碑,产品本身质量的不确定较小, 因此消费者在购买时主要考虑的是卖家的诚信程度,从而 避免了因不可观测的产品特征而产生的遗漏变量问题。本 实验用3个虚拟变量来分别表示卖家是否加入了“30天维 修”、“7 天退换”和“如实陈述”计划。本实验采集了 130个数据,为了消除误差选择了100个数据。
本文选用上述37支A股股票的周收盘价格数据作为样本 观察值,时间跨度是2000年6 月30日—2002年9月27 日,共计109周。
计量经济学创新实验设计
(2)股市指数的选择 目前在上海股市中有上证指数、A股指数、B
股指数及各分类指数。其中,上证综合指数是一 种价值加权指数,其编制是借鉴了国际上股价指 数的编制经验的,故其编制方法合理科学,能反 映整个股市的变动趋势和上市公司全部资本价值 的变化与成长,并包括了上海股市中各种证券, 符合资本资产定价模型市场组合构造的要求。所 以本文选择上证指数作为市场组合指数,并用上 证指数的收益率代表市场组合。
期望收益率; i 是股票 i 收益和市场组合收益间的协方差im 与市场组合收益方差 m 2 的比
值,即 i
im
2 m
,常被称为“
系数”(可以看作某种股票收益变动对市场组合收益变
动的敏感度)。
计量经济学创新实验设计
假设关于任何资产的收益是一个公平博弈,换句 话说就是任何资产已实现的平均收益率等于其预 期的收益率。数学上有如下形式:
计量经济学创新实验设计
风险与收益关系的检验
(1)用B JS方法进行时间序列回归及检验
将一阶回归得出的系数的估计值作为独立变量代入二阶回 归方程来估计和。二阶回归方程为:
R i01iui
(7)
计量经济学创新实验设计
通过Eviews统计软件对方程(7)进行回归,可 以得到表1的结果。
表1 二阶回归结果
R itiiR m tit (6)
计量经济学创新实验设计
我们以方正科技(600601)为例,介绍如何通过Eviews 软件进行系数的回归估计。
打开Eviews6.0,选择File-New-Workfile,frequency选择integer date,时间为1至200,点击确定。
计量经济学创新实验设计
出现下图后,点击Object-New Object,在Type of object中 选择seriers,,并命名为SY和MY,从而创建两个序列。
计量经济学创新实验设计
选中SY和MY两个序列,右键选择Open as group,打开如下图将 数据填入相应的变量下面,如下图所示:
选择quick-equation estimation,按下图填入变量名称,点击确定即可。
卖方好评度PositiveRatio、真实陈述虚变量Accurate、 卖家地域Location变量的t检验虽然在严格的统计检验效 果上并不好,但是在经济学意义上通过检验。另外,因为 采集的数据量不是很大,不可避免的会出现一些误差,因 此,通过淘宝商品诺基亚N97的网上交易信息的市政研究, 我们验证了电子商务产品多因素定价模型的正确性。
计量经济学创新实验设计
六:结论
本实验主要在声誉信号理论的框架内分析了在 卖家声誉存在差异的情况下,考察了第三方中介 信用担保机制对网上交易市场定价的效应,首先 根据文献调研和实际经验提出了被解释变量和解 释变量以及控制变量,然后采用从“淘宝网”收 集的真实交易数据进行实证研究,验证了本实验 的电子商务产品多因素的定价模型。
Ri
计量经济学创新实验设计
(4)收益率的计算
在上述样本的基础上,按下面公式来分别计算个 股和指数的周收益率: Ri=(今周收盘价格/前周收盘价格-1)*100, Rm=(今周收盘综合指数/前周收盘综合指数-1) *100。
计量经济学创新实验设计
上海股票市场资本资产定价模型的估计与检验 (1)个股β系数的估计 利用上证综合指数的周回报率与每支股票的周回 报率作时间序列回归,估计每支股票与市场的风 险系数——系数,采用如下的单指数模型:
由于中国股票市场的特殊性,研究CAPM在这一市 场中的适用性是非常重要的。与西方成熟的市场相 比,中国股票市场的特殊性着重体现在以下两个方 面:其一,它是一个新兴市场,存在许多不完善的 地方,如以散户为主体,投资者的短期投机性动机 很强,禁止卖空等。其二,它仍然保留了许多计划 经济的特征,如股票发行和上市的审批制度直到 2000年才逐步改革,市场缺乏退出机制,无法实 现上市公司的优胜劣汰;同时,市场受到政府政策 的巨大影响。因此,即使CAPM在西方成熟市场中 是适用的,中国股票市场的这种特殊性也很可能使 得CAPM所蕴涵的资产的均衡收益率与其系数之间 的线性关系不复存在。
计量经济学创新实验设计
二.电子商务产品定价模型指标变量
计量经济学创新实验设计
三、电子商务产品定价模型 在卖家信誉机制和第三方担保机制的共同影响下, 本实验确定电子商务产品多因素的定价模型为:
p ric e 0 1 P o sitiv e R a tio 2 Q u a lity + 3 R e fu n d in g 4 A c c u ta te 5 L o c a tio n