信号与系统总复习(课堂PPT)

合集下载

信号与系统复习总结PPT课件

信号与系统复习总结PPT课件

1、周期信号的傅立叶级数

三角函数形式:f (t) a0 (an cos n1t bn sin n1t) n1

余弦形式:f (t) c0 cn cos(n1t n ) n1

指数函数形式: f (t) Fne jn1t
n
Fn

1 T14
F0
(
j)

n1
F0 ( j)为单脉冲信号的傅氏变换

五 信号的三大变换
(一)傅立叶变换
2、周期信号的频谱

单边谱 f (t) c0 cn cos(n1t n ) n 1
双边谱

f (t)
Fne jn1t
n
周期信号频谱的特点:离散性、谐波性、收敛性
四 典型信号
(二)离散时间信号 1、单位样值信号
2、单位阶跃序列
3、矩形序列 4、指数序列 5、正弦序列 6、复指数序列
12

五 信号的三大变换
1
傅立叶变换
2
拉普拉斯变换
3
Z变换
连续时间信号
离散时间信号
13

五 信号的三大变换
(一)傅立叶变换
•单位样值序列 (n) 1
•单位阶跃序列 u(n) z z 1
( z 1)
•斜变序列 nu(n) z (z 1)2
( z 1)
•指数序列 anu(n) z
( z a)
za
anu(n 1) z
( z a)
za
30

五 信号的三大变换
2、收敛域

双边 X (z) x(n)zn n

信号与系统复习课件全

信号与系统复习课件全

(2) (b)计算零状态响应:
yzs [k ]
n
x[n]h[k
n]
u[k
]
3(
1 2
)
k
2( 1 ) k 3
u[k
]
n
u[n]
3(
1 2
)kn
2( 1 ) k n 3
u[k
-
n]
k n0
3(
1 2
)k
n
2( 1 ) k n 3
k 3(1 )kn k 2(1)kn
n0 2
CLTI系统数学模型——线性常系数微分方程,冲
激响应h(t);系统函数H(s);频率响应特性H( jw)
H (s) Yzs (s) X (s)
LT
h(t) H(s)
H ( j) H (s) |s j (系统稳定)
FT
h(t) H(j )
26
DLTI系统数学模型——线性常系数差分方程;冲
激响应h(n);系统函数H(z);频率响应特性H(ejw).

yzi[k ]
C1
(
1 2
)k
C2
(
1 )k 3
,k
0
代入初始条件,有:
y[1] 2C1 3C2 0
y[2] 4C1 9C2 1 C1 1/ 2, C2 1/ 3

yzi[k ]
1 2
(1)k 2
1 3
( 1 ) k ,k 3
0
= ( 1 )k1 (1)k1,k 0
2
3
17
n0 3
[ 3 3(1)k (1)k ]u[k] 23
完全响应: y[k] yzi[k] yzs[k]
[ 1 7 (1)k 4 (1)k ]u[k]

信号与系统期末复习ppt课件

信号与系统期末复习ppt课件

PPT学习交流
11
例2.2-1 已知系统的传输算子H(p)= 2p/(p+3)(p+4) , 初始条件yzi(0)=1, yzi(0)2 , 试求系统的零输入
解响应。H(p)(p32)p(p4)
特征根λ1=-3, λ2=-4 零输入响应形式为
yzi(t)=C1e-3t+C2e-4t t>0 将特征根及初始条件y(0)=1, y′(0)=2代入
8
离散系统 (5) (P256,例5.2-1(1),5.2-2(1))
1) y(n)=T[x(n)]=ax(n)+b; 是非线性系统、时不变系统。
2) y(n)= ax(n)+b x(n-1)+c (6) (P257,例5.2-2(2))
1)y(n)=T[x(n)]=nx(n)。 是线性、时变系统
2)y(n)=n3x(n)
PPT学习交流
9
第二章 时域解法
重点
1)求系统的全响应的时域解法 2)卷积及其运算
PPT学习交流
10
一、 时域解法
1)用算子法解零输入响应yzi;
2)用卷积解零状态响应yzs ;
注意:1) 微分方程的算子表示法; 2) 单位冲激响应h(t) 3) 卷积的积分表示式及计算;
(1) f1(t)co 2t)s 5 c ( o 4 t)s((1-3(1))
(2) f2(t)[1c0o3ts)(2 ] (1-3(2))
PPT学习交流
5
二、系统及其性质
1、线性系统:
1)可分解性
2)零输入线性
3)零状态线性
2、时不变系统:
f( t) y ( t) f( t t0 ) y ( t t0 )

信号与系统ppt课件

信号与系统ppt课件

02
时不变:系统的特性不随时间变 化。
系统的数学模型为非线性微分方 程或差分方程。
03
频域分析方法不适用,需采用其 他方法如几何法、状态空间法等

04
时变系统
系统的特性随时间变 化,即系统在不同时 刻的响应具有不同的 特性。
时域分析方法:积分 方程、微分方程等。
系统的数学模型为时 变微分方程或差分方 程。
信号与系统PPT课件
目录
CONTENTS
• 信号与系统概述 • 信号的基本特性 • 系统分析方法 • 系统分类与特性 • 系统应用实例
01
CHAPTER
信号与系统概述
信号的定义与分类
总结词
信号是传输信息的一种媒介,具有时间和幅度的变化特性。
详细描述
信号是表示数据、文字、图像、声音等的电脉冲或电磁波,它可以被传输、处理和记录。根据不同的特性,信号 可以分为模拟信号和数字信号。模拟信号是连续变化的物理量,如声音、光线等;数字信号则是离散的二进制数 据,如计算机中的数据传输。
04
CHAPTER
系统分类与特性
线性时不变系统
线性
系统的响应与输入信号的 线性组合成正比,即输出 =K*输入+常数。
时不变
系统的特性不随时间变化 ,即系统在不同时刻的响 应具有相同的特性。
频域分析方法
傅里叶变换、拉普拉斯变 换等。
非线性时不变系统
01
系统的响应与输入信号的非线性 关系,即输出不等于K*输入+常 数。
系统的定义与分类
总结词
系统是由相互关联的元素组成的整体,具有输入、输出和转 换功能。
详细描述
系统可以是一个物理装置、生物体、组织或抽象的概念,它 能够接收输入、进行转换并产生输出。根据不同的分类标准 ,系统可以分为线性系统和非线性系统、时不变系统和时变 系统等频域分析方法将信号和系统从时间域转换到频率域,通过分析系统的频率响应 来了解系统的性能,如系统的幅频特性和相频特性,这种方法特别适用于分析 周期信号和非周期信号。

《信号和系统》课件

《信号和系统》课件
信号处理:MATL AB可以进行信号的滤波、变换、分析等操作
系统建模:MATL AB可以建立系统的数学模型,并进行仿真和优化
控制系统设计:MATL AB可以进行控制系统的设计、分析和优化 信号和系统分析:MATL AB可以进行信号和系统的分析,包括频谱分析、 时域分析等
MATL AB在系统设计中的应用
互动性强:设置问 答、讨论等环节, 增强学生的学习兴 趣和参与度
信号基础知识
信号定义
信号是信息的载体, 是信息的表现形式
信号可以分为模拟 信号和数字信号
模拟信号是连续变 化的物理量,如声 音、图像等
数字信号是离散变 化的物理量,如二 进制数据等
信号分类
连续信号:在时 间上和数值上都
是连续的信号
结构图描述法:通过结构 图来描述系统的结构关系
系统分析的基本概念
系统:由相互关联的 组件组成的整体,具 有特定的功能和目标
信号:信息的载体, 可以是数字、模拟或
其他形式
输入:系统的输入信 号,决定了系统的行
为和输出
输出:系统的输出信 号,是系统对输入信
号的处理结果
反馈:系统对输出信 号的监测和调整,以 实现更好的性能和稳
适用人群
电子信息工程、 通信工程、自 动化等专业的
学生
信号处理、通 信系统、控制 系统等领域的
工程师
对信号和系统 感兴趣的科研
人员
信号和系统课 程的教师和助

课件特点
内容全面:涵盖信 号与系统的基本概 念、理论、应用等
逻辑清晰:按照信 号与系统的发展脉 络进行讲解,易于 理解
实例丰富:结合实 际案例,便于学生 理解抽象概念
定常系统:系统参数不随时间变化的系统

信号与系统全套课件

信号与系统全套课件

滤波器设计和应用
滤波器的概念和分类
根据滤波器的频率响应特性,可分为低通、高通、带通和带阻滤 波器等。
滤波器设计方法
包括巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器等设计方法, 以及数字滤波器的设计等。
滤波器的应用
在通信、音频处理、图像处理等领域广泛应用,如信号去噪、平 滑处理、频率选择性传输等。
04 信号与系统复频域分析
状态变量分析法概述
1
状态变量分析法是一种基于系统内部状态变量描 述系统动态行为的方法。
2
它适用于线性时不变系统,可以方便地分析系统 的稳定性、能控性、能观性等重要特性。
3
状态变量分析法通过引入状态变量的概念,将高 阶微分方程转化为一阶微分方程组,从而简化系 统分析和设计的复杂性。
状态方程和输出方程建立
系统函数的性质
系统函数具有因果性、稳定性、频率 响应等性质,这些性质决定了系统的 基本特性和性能指标。
稳定性判据和稳态误差分析
稳定性判据
通过系统函数的极点分布来判断系统的 稳定性,常用的稳定性判据有劳斯判据 、奈奎斯特判据等。
VS
稳态误差分析
稳态误差是指系统对输入信号响应的稳态 分量与期望输出之间的差值,通过分析系 统函数和输入信号的特性,可以对系统的 稳态误差进行定量评估。
信号与系统全套课件
目 录
• 信号与系统基本概念 • 信号与系统时域分析 • 信号与系统频域分析 • 信号与系统复频域分析 • 离散时间信号与系统分析 • 状态变量分析法在信号与系统中的应用
01 信号与系统基本概念
信号定义与分类
信号定义
信号是传递信息的函数,它可以是时间的函数,也可以是其 他独立变量的函数。在信号处理中,通常将信号表示为时间 的函数,即s(t)。

信号与系统PPT全套课件

信号与系统PPT全套课件

T T

T
f (t ) dt
f (t ) dt
2
2
(1.1-1)
1 P lim T 2T

T
T
( 1.1-2 )
上两式中,被积函数都是f ( t )的绝对值平方,所以信号能量 E 和信号功率P 都是非负实数。 若信号f ( t )的能量0 < E < , 此时P = 0,则称此信号 为能量有限信号,简称能量信号(energy signal)。 若信号f ( t )的功率0 < P < , 此时E = ,则称此信 号为功率有限信号,简称功率信号(power signal)。 信号f ( t )可以是一个既非功率信号,又非能量信号, 如单位斜坡信号就是一个例子。但一个信号不可能同时既是 功率信号,又是能量信号。
1.3 系统的数学模型及其分类
1.3.1 系统的概念 什么是系统( system )?广义地说,系统是由若干相互作用 和相互依赖的事物组合而成的具有特定功能的整体。例如, 通信系统、自动控制系统、计算机网络系统、电力系统、水 利灌溉系统等。通常将施加于系统的作用称为系统的输入激 励;而将要求系统完成的功能称为系统的输出响应。 1.3.2 系统的数学模型 分析一个实际系统,首先要对实际系统建立数学模型,在数 学模型的基础上,再根据系统的初始状态和输入激励,运用 数学方法求其解答,最后又回到实际系统,对结果作出物理 解释,并赋予物理意义。所谓系统的模型是指系统物理特性 的抽象,以数学表达式或具有理想特性的符号图形来表征系 统特性。
2.连续信号和离散信号 按照函数时间取值的连续性划分,确定信号可分为连续时 间信号和离散时间信号,简称连续信号和离散信号。 连续信号( continuous signal)是指在所讨论的时间内,对 任意时刻值除若干个不连续点外都有定义的信号,通常用f ( t ) 表示。 离散信号(discrete signal)是指只在某些不连续规定的时刻 有定义,而在其它时刻没有定义的信号。通常用 f(tk) 或 f(kT) [简写 f(k )] 表示,如图1.1-2所示。图中信号 f (tk) 只在t k = -2, -1, 0, 1, 2, 3,…等离散时刻才给出函数值。

信号与系统总复习共97页

信号与系统总复习共97页
能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
信号与系统总复习

46、寓形宇内复几时,曷不委心任去 留。

47、采菊东篱下,悠然见南山。

48、啸傲东轩下,聊复得此生。

49、勤学如春起之苗,不见其增,日 有所长 。

50、环堵萧然,不蔽风日;短褐穿结 ,箪瓢 屡空, 晏如也 。

信号与系统 课件 ppt

信号与系统 课件 ppt

02
信号的基本性质
信号的时域特性
信号的幅度
描述信号在某一时刻的强度。
信号的频率
描述信号周期性变化的快慢程度。
信号的相位
描述信号在某一时刻相对于参考相位的偏移 。
信号的周期
描述信号重复变化的时间间隔。
信号的频域特性
01
02
03
幅度谱
描述信号在不同频率下的 幅度大小。
相位谱
描述信号在不同频率下的 相位偏移。
信号的叠加原理线性性质若两个信号来自足线性性质,则它们的和也是信号 。
独立性
两个信号之和的图形与它们各自的图形没有交点 。
叠加原理的应用
在电路中,多个信号源共同作用产生的电流可以 叠加。
信号的相加与相乘
信号相加
两个信号的图形在时间上对齐,求和后得到一个新的信号。
信号相乘
两个信号相乘得到一个新的信号,称为卷积。
感谢您的观看
THANKS
卷积的性质
两个信号相乘后,其卷积的图形与两个信号分别作图形变换后的 图形有类似形状。
信号的频谱合成与分解
频谱的概念
01
一个周期信号可以分解为多个不同频率的正弦波的和。
傅里叶级数
02
将周期信号分解为正弦波的级数,其中每个正弦波都有一个特
定的频率。
频谱分析
03
通过傅里叶变换将时域信号转换为频域信号,可以观察到信号
信号与系统 课件
目录
CONTENTS
• 信号与系统概述 • 信号的基本性质 • 系统的基本性质 • 信号与系统的基本分析方法 • 信号的合成与分解 • 系统的响应与稳定性分析
01
信号与系统概述
信号的定义与分类

信号与系统分析PPT全套课件 (3)可修改全文

信号与系统分析PPT全套课件 (3)可修改全文

f (2t)
倒相
f (t)
f (t)
1.3 信号时域变换
例1-8
1.4 信号时域运算
相加
f1(t)
f2 (t)
fn (t)
相乘 f1(t)
f2 (t)
y(t) f1(t) f2 (t) fn (t) y(t) f1(t) f2 (t)
1.4 信号时域运算
数乘
f (t)
a
y(t) af (t)
y
(
k
)
(0
)
y (k) (0 )
y y
(0
(k)
) (0
)
y zi
(0
y
(k zi
)
) (0
y )
zs (0
y
(k zs
) ) (0
)
在零输入条件下,且系统的内部结构和参数 不发生变化时,有:
y(0 y (k )
) (0
)
yzi (0
y
(k zi
)
) (0
)
3.初始状态和初始值的确定
A1 y1(t) A2 y2 (t)
y(t)
y(t t0 )
1.7 线性时不变系统的性质
微分性
f (t)
df (t) dt
积分性
f (t)
t
f ( )d
系统 系统
y(t)
dy(t) dt
y(t)
t
y( )d
1.8 信号与系统分析概述
1.8.1 基本内容与方法
确定信号和线性时不变系统
建立与求解系统的数学模型
2.2.2 零输入响应与零状态响应
1.零输入响应 2.零状态响应

信号与系统 全套课件完整版ppt教学教程最新最全

信号与系统 全套课件完整版ppt教学教程最新最全
2.积分 信号的积分是指信号在区间(-∞,t)上的积分。可表示为
t
y(t)
f()df( 1)(t)
1.2.3 信号的相加、相乘及综合变换 1.相加
信号相加任一瞬间值,等于同一瞬间相加信号瞬时值的和。即
y (t)f1 (t)f2 (t) ...
1.2.3 信号的相加、相乘及综合变换 2.相乘
信号相乘任一瞬间值,等于同一瞬间相乘信号瞬时值的积。即
离散时间系统是指输入系统的信号是离散时间信号,输出也是离散 时间信号的系统,简称离散系统。如图连续时间系统与离散时间系统(b) 所示。
1.3.1 系统的定义及系统分类 2. 线性系统与非线性系统
线性系统是指具有线性特性的系统,线性特性包括齐次性与叠加性。线 性系统的数学模型是线性微分方程和线性差分方程。
2.1.2 MATLAB语言的特点
1、友好的工作平台和编程环境 2、简单易用的程序语言 3、强大的科学计算机数据处理能力 4、出色的图形处理功能
1、友好的工作平台和编程环境
MATLAB由一系列工具组成。这些工具方 便用户使用MATLAB的函数和文件,其中 许多工具采用的是图形用户界面。
新版本的MATLAB提供了完整的联机查询、 帮助系统,极大的方便了用户的使用。简 单的编程环境提供了比较完备的调试系统, 程序不必经过编译就可以直接运行,而且 能够及时地报告出现的错误及进行出错原 因分析。
y (t)f1 (t) f2 (t) ...
1.2.3 信号的相加、相乘及综合变换 3.综合变换 在信号分析的处理过程中,通常的情况不是以上某种单一信号的运算,往
往都是一些信号的复合变换,我们称之为综合变换。
1.3 系统
1.3.1 系统的定义及系统分类

信号与系统总复习精品PPT课件

信号与系统总复习精品PPT课件
• 要求掌握的内容 1、掌握单位阶跃函数和冲激函数的性质 2、掌握信号脉冲分解的方法 3、掌握阶跃与冲激响应的求解方法; 4. 了解卷积运算的方法 5、熟悉卷积的主要性质 • 典型题目 例2.2-1 例2.2-2 例2.2-3 例2.2-4例2.3-1 例2.3-2 例2.4-2 例2.4-4 作业:2.1,2.2,2.4,2.5 2.6 2.7, 2.15 2.16 2.17
4.7-2 例4.7-3,例4.8-1 例4.8-3 例4.8-4
第五章 连续系统的S域分析
• 要求掌握的内容 1、掌握拉氏变换定义和收敛域 2、掌握拉普拉斯变换的性质,并能熟练应用 3、熟悉求拉普拉斯逆变换的方法; 4. 掌握系统函数及其求解方法 5、熟悉卷积的主要性质 • 典型题目 例5.1-1例5.1-2 例5.1-3,例5.2-1例5.2-2 例5.2-3 例5.2-4 例5.2-5 例5.3-3 例5.3-4 例5.3-6,例5.4-1 例5.4-2
信号与线性系统
总复习
内容回顾
• 1、信号分析
时域:信号分解为冲激信号的线性组合
连续信号 频域:信号分解为不同频率正弦信号的线性组合
复频域:信号分解为不同频率复指数的线性组合






时域:信号分解为脉冲序列的线性组合
离散信号 频域:不作要求
z域:信号分解为不同频率复指数的线性组合
• 2、系统分析
7.3-2 例7.3-3 例7.4-1 例7.4-2 例7.4-3
第八章 系统的状态变量分析
• 要求掌握的内容 1. 熟悉状态变量、状态方程等状态变量描述法中的基本概念 2. 掌握从一般的输入输出方程以及实际的电路中建立状态方程和输出方

信号系统第一章信号与系统PPT课件

信号系统第一章信号与系统PPT课件

系统具有输入、输出、 转换、反馈等基本特 性。
系统的分类
01
根据系统的特性,可以 将系统分为线性系统和 非线性系统。
02
03
04
根据系统的动态特性, 可以将系统分为时不变 系统和时变系统。
根据系统的参数是否随时 间变化,可以将系统分为 连续系统和离散系统。
根据系统的功能和用途,可 以将系统分为控制系统、信 号处理系统、电路系统等。
控制系统中的信号处理
01
02
03
信号采集与转换
将物理量转换为电信号, 以便进行后续处理和控制。
信号处理算法
如PID控制、模糊控制等, 对采集到的信号进行计算 和分析,以实现系统的自 动控制。
信号反馈与调节
将系统的输出信号反馈给 控制器,通过调节输入信 号来控制系统的运行状态。
图像处理中的信号处理
变化规律是确定的,例如正弦波;随机 续变化的信号,例如声音的波形;数字
信号则是指信号的变化规律是不确定的, 信号则是指幅度离散变化的信号,例如
例如噪声。
计算机中的进制数。
02
系统的定义与分类
系统的基本概念
系统是由相互关联、 相互作用的若干组成 部分构成的有机整体。
系统可以用于描述自 然界、工程领域、社 会现象等各种领域中 的事物。
冲激响应与阶跃响应
冲激响应
系统对单位冲激信号的响应,反 映了系统对单位冲激信号的传递 特性。
阶跃响应
系统对单位阶跃信号的响应,反 映了系统对单位阶跃信号的传递 特性。
卷积积分与卷积和
卷积积分
描述信号与系统的相互作用,通过将 输入信号与系统的冲激响应进行卷积 积分来计算输出信号。
卷积和
将卷积积分简化为离散时间系统的卷 积和运算,用于计算离散时间系统的 输出序列。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
第四章 傅里叶变换和系统的频域分析
• 要求掌握的内容 1.理解并掌握信号在正交函数集中的分解, 2. 掌握周期性连续信号的傅里叶级数展开 3. 掌握非周期性连续信号的傅里叶变换 4.掌握傅里叶变换的性质,并能应用于傅里叶变换的计算 5. 熟悉能量谱与功率谱,从能量或功率的角度研究信号在各个频率分量上的能量或功 率,以频谱的形式表达出 6. 掌握常用信号的频谱 7. 掌握用傅里叶变换进行信号分析的方法 8. 了解系统的激励与响应在频域中的关系 9. 掌握无失真传输的条件 10. 熟悉时域取样定理
7
第二章 连续系统的时域分析
• 要求掌握的内容 1、掌握单位阶跃函数和冲激函数的性质 2、掌握信号脉冲分解的方法 3、掌握阶跃与冲激响应的求解方法; 4. 了解卷积运算的方法 5、熟悉卷积的主要性质
• 典型题目 例2.2-1 例2.2-2 例2.2-3 例2.2-4例2.3-1 例2.3-2 例2.4-2 例2.4-4 作业:2.1,2.2,2.4,2.5 2.6 2.7, 2.15 2.16 2.17


数据流图
系 统时域: yzs (k Nhomakorabea f (k ) * h(k )
系统响应 的求解
频域: 不 作 要 求
Y 复频域: zs ( z) F ( z) H ( z)
3
两对关系式
欧拉
e jt cos(t) j sin( t)
公式
e jt cos(t) j sin( t)
推出 公式
sin( t) 1 (e jt e jt )
2j
cos(t) 1 (e jt e jt )
2
4
核心内容
两大LTI系统:连续时间系统、离散时间系统 (连续时间信号)、(离散时间信号)
三类分析:时域分析、频域分析和变换域分析
三大变换:傅立叶变换、拉普拉斯变换和Z 变换
5
贯穿课程的三个基本问题
• 基本信号及其响应 •以信号分解为核心思想,研究确知信号的分析方法 •以信号分析为基础,建立分析LTI系统的相应方法
信号与线性系统
总复习
西南大学 电子信息工程学院 李传东
1
内容回顾
• 1、信号分析
时域:信号分解为冲激信号的线性组合
连续信号 频域:信号分解为不同频率正弦信号的线性组合
复频域:信号分解为不同频率复指数的线性组合






时域:信号分解为脉冲序列的线性组合
离散信号 频域:不作要求
z域:信号分解为不同频率复指数的线性组合
6
第一章 信号与系统
• 要求掌握的内容 1. 掌握基本信号时域描述方法、特点及性质; 2. 掌握信号的基本运算; 3. 冲激函数与阶跃函数的定义和性质 4. 掌握系统的描述方法 要求掌握的内容 5. 熟悉线性时不变系统的基本特性;
• 典型题目 例1.4-2; 习题:1.1;1.2;1.6;1.7;1.10
• 典型题目 例7.1-1 例7.1-2 例7.1-3 例7.2-1 例7.2-2,例7.2-1 例7.2-2 例7.3-1, 例7.3-2 例7.3-3 例7.4-1 例7.4-2 例7.4-3
13
第八章 系统的状态变量分析
• 要求掌握的内容 1. 熟悉状态变量、状态方程等状态变量描述法中的基本概念 2. 掌握从一般的输入输出方程以及实际的电路中建立状态方程和输 出方程
• 典型题目 例6.1-1 例6.1-2 例6.1-3,例6.2-1 例6.2-2 例6.2-4 例6.2-5 例6.2-7, 例6.2-10 例6.2-11 例6.2-12 例6.3-3 例6.3-5
12
第七章 系统函数
• 要求掌握的内容 1. 熟悉系统函数零、极点分布的概念 2. 掌握极零点与系统的稳定性的关系 3. 掌握线性系统稳定性判定法则 4. 掌握线性系统稳定性判定法则 5. 熟悉线性系统的信号流图 6. 掌握用梅森公式求解系统函数的方法 7. 熟悉系统函数的实现方式
2
• 2、系统分析
系统的描述:线性常系数微分方程,方框图,S域模拟图,
连 续 系
数据流图
时域: yzs (t ) f (t ) * h(t)


系统响应 的求解
频域:
Yzs ( j ) F ( j )H ( j )
统 分
复频域: Yzs (s) F (s) H (s)

系统的描述:线性常系数差分方程,方框图,Z域模拟图,
• 典型题目 例5.1-1例5.1-2 例5.1-3,例5.2-1例5.2-2 例5.2-3 例5.2-4 例5.2-5 例5.3-3 例5.3-4 例5.3-6,例5.4-1 例5.4-2
11
第六章 离散系统的Z域分析
• 要求掌握的内容 1、熟悉Z变换的定义、收敛域以及与拉普拉斯变换之间的关系 2. 熟悉基本序列的Z变换 3. 熟悉Z变换的主要性质; 4. 掌握用部分分式法求解逆z变换 5. 掌握离散系统Z域的分析方法 6. 了解Z域与S域的映射关系
• 典型题目 例8.2-1 例8.2-2 例8.2-3 例8.2-4
14
(二) 典型信号
阶跃、冲激和冲激偶信号
冲激信号
t
( )d (t)
(t) d (t)
dt
冲激偶信号
定义
(t)dt 1
t
( )d (t)
奇偶性
(t) (t)
(t)dt 0
t
( )d (t)
• 典型题目 例4.3-1 例4.4-1 例4.4-2 例4.4-1,例4.5-1 例4.5-2 例4.5-3 例4.5-4,例4.6-1 例4.7-1
例4.7-2 例4.7-3,例4.8-1 例4.8-3 例4.8-4
10
第五章 连续系统的S域分析
• 要求掌握的内容 1、掌握拉氏变换定义和收敛域 2、掌握拉普拉斯变换的性质,并能熟练应用 3、熟悉求拉普拉斯逆变换的方法; 4. 掌握系统函数及其求解方法 5、熟悉卷积的主要性质
8
第三章 离散系统的时域分析
• 要求掌握的内容 1. 了解离散信号与系统的基本概念 2. 掌握零输入响应的求解方法 3. 掌握离散信号单位序列响应和阶跃响应的求解方法 4. 掌握利用性质求解卷积和的方法
• 典型题目 例3.1-1 例3.1-2 例3.1-3 例3.1-4 例3.1-5,例3.2-1 例3.2-2 例3.2-3 例3.3-1 例3.3-2 例3.3-3 例3.3-4
相关文档
最新文档