大学物理期末复习磁学部分
大学物理知识点(磁学与电磁感应)
y
Idl B
B
dF
dF
I
Idl
x L 任意闭合平面载流导线在均匀磁场中所受的力为零 。 F3 P 注:载流线圈在均匀磁 F2 M 场中所受力矩不一定为 零 B I O F 1 M Npm B en N F4
在均匀磁场中
F BIL
o
P
**应用介质中安培环路定理解题方法**
I 0 Bo
2R
2 IR 0 pm B 0 3 3
2x
2πx
注意:在一定的x处,磁场强弱随载流环的半径变 化,故可用求极值的方法讨论轴线某一定点处磁 场随载流环半径变化的趋势。
无限长柱面电流的磁场
无限长柱体电流的磁场
L1
r
R
I
L2
r
B
0 I
2π R
o R
r
二、磁场的基本性质
1、 感生电动势
S定
B dS i s t
方向由楞次定律判断
o
B变
2、 感生电场
B Ei dl s t dS
感生电场是涡旋场,其电场线与磁感 应强度增大的方向成左手螺旋关系。
3、 感生电场与感生电动势的计算 感生电场 : 当变化的磁场的分布具有特殊对称性时: 1 dB Ei r (r R) 2 dt
五、磁场的能量
1、通电线圈的自感磁能 2、磁场的磁能
1 2 Wm LI 2
目前范畴内:
1 1 2 1 2 w m H B BH 2 2 2
W m V w m dV
电磁学基本物理图象
运动
电荷
激 发
电流
激 发
大学物理上期末知识点总结
大学物理上期末知识点总结关键信息:1、力学部分知识点质点运动学牛顿运动定律动量守恒定律和能量守恒定律刚体定轴转动2、热学部分知识点气体动理论热力学基础3、电磁学部分知识点静电场恒定磁场电磁感应电磁场和电磁波11 力学部分111 质点运动学位置矢量、位移、速度、加速度的定义和计算。
运动方程的表达式和求解。
曲线运动中的切向加速度和法向加速度。
相对运动的概念和计算。
112 牛顿运动定律牛顿第一定律、第二定律、第三定律的内容和应用。
常见力的分析,如重力、弹力、摩擦力等。
牛顿定律在质点和质点系中的应用。
113 动量守恒定律和能量守恒定律动量、冲量的定义和计算。
动量守恒定律的条件和应用。
功、功率的计算。
动能定理、势能的概念和计算。
机械能守恒定律的条件和应用。
114 刚体定轴转动刚体定轴转动的运动学描述,如角速度、角加速度等。
转动惯量的计算和影响因素。
刚体定轴转动定律的应用。
力矩的功、转动动能、机械能守恒在刚体定轴转动中的应用。
12 热学部分121 气体动理论理想气体的微观模型和假设。
理想气体压强和温度的微观解释。
能量均分定理和理想气体内能的计算。
麦克斯韦速率分布律。
122 热力学基础热力学第一定律的内容和应用。
热力学过程,如等容、等压、等温、绝热过程的特点和计算。
循环过程和热机效率。
热力学第二定律的两种表述和微观意义。
13 电磁学部分131 静电场库仑定律、电场强度的定义和计算。
电场强度的叠加原理。
电通量、高斯定理的应用。
静电场的环路定理、电势的定义和计算。
等势面、电场强度与电势的关系。
132 恒定磁场毕奥萨伐尔定律、磁感应强度的定义和计算。
磁感应强度的叠加原理。
磁通量、安培环路定理的应用。
安培力、洛伦兹力的计算。
133 电磁感应法拉第电磁感应定律的应用。
动生电动势和感生电动势的计算。
自感和互感的概念和计算。
磁场能量的计算。
134 电磁场和电磁波位移电流的概念。
麦克斯韦方程组的积分形式和微分形式。
电磁波的产生和传播特性。
磁学知识点总结大学
磁学知识点总结大学1. 磁场的基本概念磁场是指周围空间中存在磁力的区域。
磁场具有方向和大小,通常用磁感应强度表示。
磁场由磁性物质产生,其作用范围称为磁场区域。
磁场的方向可以用磁力线表示,磁力线是磁场中任意点的切线方向。
在磁场中,物体会受到磁力的作用。
磁场通常由磁铁或电流产生,磁场的强弱取决于磁体的大小和形状,以及电流的大小和方向。
2. 磁场的性质磁场具有一些特殊的性质,主要包括磁场的方向性、磁场的非平衡性和磁场的相互作用性。
磁场的方向性指的是磁场具有方向性,即具有南北极之分,磁场线从磁北极指向磁南极。
磁场的非平衡性指的是磁场能够将磁性物质排列成不同的磁态,表现出磁性。
磁性物质在外磁场的作用下会受到磁化,形成磁矩,具有磁性。
磁场的相互作用性指的是磁场可以相互作用,并对相互作用的物体产生一定影响。
3. 电磁感应电磁感应是指磁场和电场相互作用产生电流的现象。
电磁感应根据磁场的变化形式可以分为恒定磁场中的电磁感应和变化磁场中的电磁感应。
恒定磁场中的电磁感应主要是指在磁场中运动的导体上会感应出感应电动势,从而产生感应电流。
变化磁场中的电磁感应是指当磁场的磁感应强度发生变化时,也会感应出感应电动势,从而产生感应电流。
4. 电磁感应现象的应用电磁感应现象在现实生活和工业生产中有着广泛的应用。
例如,变压器就是利用电磁感应现象实现电能的传输和功率的调整。
电磁感应现象还用于发电机的工作原理中,通过电磁感应产生电流,从而实现能量的转化。
电磁感应现象还广泛应用于感应炉、电磁制动器、电磁铁等工业设备中。
5. 磁性材料的特性磁性材料是指在外磁场的作用下,能够形成磁化和显示磁性的物质。
根据磁性材料的不同性质,可以将其分为铁磁材料、铁氧体材料和顺磁材料三类。
铁磁材料是指在外磁场的作用下,能够产生较强的磁化和显示出较强的磁性,例如铁、镍、钴等。
铁氧体材料是指在外磁场的作用下,可以产生磁化和显示出磁性,但磁性较弱,如铁氧体、铁氧氧石、铁氧氢石等。
大学物理电磁学题库及答案
一、选择题:(每题3分)1、均匀磁场的磁感强度B垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 (A) 2r 2B . (B) r 2B .(C) 0. (D) 无法确定的量. [ B ]2、在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B 的夹角为 ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) r 2B . (B) 2r 2B . (C) -r 2B sin . (D) -r 2B cos . [ D ]3、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) . (B) .(C) . (D) . [ C ]4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A) 方向垂直环形分路所在平面且指向纸内.(B) 方向垂直环形分路所在平面且指向纸外.(C) 方向在环形分路所在平面,且指向b . (D) 方向在环形分路所在平面内,且指向a . (E) 为零. [ E ]5、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P .[ D ]6、边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为 (A) 01=B ,02=B . (B) 01=B ,l IB π=0222μ.(C) l IB π=0122μ,02=B .(D) l I B π=0122μ,lIB π=0222μ.[ ]7、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为n Bα Sc Id b aa I I I a aa a 2a I P Q O aIB 1I B 12a b c dI(A)R140πμ. (B)R 120πμ. (C) 0. (D) R140μ. [ ]8、一个电流元l Id 位于直角坐标系原点 ,电流沿z 轴方向 ,点P (x ,y ,z )的磁感强度沿x 轴的分量是:(A) 0. (B) 2/32220)/(d )4/(z y x l Iy ++π-μ. (C) 2/32220)/(d )4/(z y x l Ix ++π-μ.(D) )/(d )4/(2220z y x l Iy ++π-μ. [ ]9、电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B、2B 和3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 3= 0,但021≠+B B.(D) B ≠ 0,因为虽然021=+B B,但B 3≠ 0. [ ]10、电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 与圆心O 三点在同一直线上.设直电流1、2及圆环电流分别在O 点产生的磁感强度为1B、2B 及3B ,则O 点的磁感强度的大小 (B) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0. (D) B ≠ 0,因为虽然B 1 = B 2 = 0,但B 3≠ 0.(E) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0. [ ]11、电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B、2B 和3B 表示,则O 点的磁感强度大小(C) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 3 = 0、B 1= 0,但B 2≠ 0.(D) B ≠ 0,因为虽然021≠+B B,但3B ≠ 0. [ ]12、电流由长直导线1沿平行bc 边方向经过a 点流入由电阻均匀的导线构成的正三角形线框,由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).已知直导线上的电流为I ,三角框的每一边长为l .若载流导线1、2和三角框中的电流在三角框中心O 点产生的磁感强度分别用1B、2B 和3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为021=+B B,B 3= 0.(C) B ≠0,因为虽然021=+B B,但B 3≠ 0.(D) B ≠0,因为虽然B 3= 0,但021≠+B B. [ ]13、电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿半径方向流出,经长直导线2返回电源(如图).已知直导线上电流为I ,圆环的半径为R ,且a 、b 与圆心O 三点在一直线上.若载流直导线1、2和圆环中的电流在O 点产生的磁感强度分别用1B、2B 和3B 表示,则O 点磁感强度的大小为(D) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然021=+B B,但B 3≠ 0.(D) B ≠ 0,因为虽然B 3 = 0,但021≠+B B. [ ]14、电流由长直导线1沿切向经a 点流入一个电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上.设长直载流导线1、2和圆环中的电流分别在O 点产生的磁感强度为1B、2B 、3B ,则圆心处磁感强度的大小(E) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为B 1≠ 0、B 2≠ 0,B 3≠ 0.(D) B ≠ 0,因为虽然B 3 = 0,但021≠+B B. [ ]15、电流由长直导线1沿半径方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿半径方向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,∠aOb =30°.若长直导线1、2和圆环中的电流在圆心O 点产生的磁感强度分别用1B、2B 、3B 表示,则圆心O 点的磁感强度大小 (F) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 3= 0,但021≠+B B.(D) B ≠ 0,因为B 3≠ 0,021≠+B B,所以0321≠++B B B . [ ]16、如图所示,电流由长直导线1沿ab 边方向经a 点流入由电阻均匀的导线构成的正方形框,由c 点沿dc 方向流出,经长直导线2返回电源.设载流导线1、2和正方形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 、3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B.B 3 = 0(C) B ≠ 0,因为虽然021=+B B,但B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B. [ ]17、 如图所示,电流I 由长直导线1经a 点流入由电阻均匀的导线构成的正方形线框,由b 点流出,经长直导线2返回电源(导线1、2的延长线均通过O 点).设载流导线1、2和正方形线框中的电流在框中心O 点产生的磁感强度分别用 1B、2B 、3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0、B 3≠ 0,但0321=++B B B.(C) B ≠ 0,因为虽然021=+B B,但B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B. [ ]18、在一平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流i 的大小相等,其方向如图所示.问哪些区域中有某些点的磁感强度B 可能为零 (A) 仅在象限Ⅰ. (B) 仅在象限Ⅱ. (C) 仅在象限Ⅰ,Ⅲ. (D) 仅在象限Ⅰ,Ⅳ.(E) 仅在象限Ⅱ,Ⅳ. [ ]19、如图,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为(A) B 1 = B 2. (B) B 1 = 2B 2.(C) B 1 = 21B 2. (D) B 1 = B 2 /4. [ ]20、边长为L 的一个导体方框上通有电流I ,则此框中心的磁感强度 (A) 与L 无关. (B) 正比于L 2. (C) 与L 成正比. (D) 与L 成反比. (E) 与I 2有关. [ ]21、如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中哪一个是正确的 (A) I l H L 2d 1=⎰⋅ . (B) I l H L =⎰⋅2dI I ab12c d O II a b 12OⅠ ⅢⅡ Ⅳ ii C q q qq OL 2 L 1 L 3 L 42I I(C) I l H L -=⎰⋅3d . (D) I l H L -=⎰⋅4d.[ ]22、如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知(A) 0d =⎰⋅Ll B,且环路上任意一点B = 0. (B) 0d =⎰⋅Ll B,且环路上任意一点B ≠0. (C) 0d ≠⎰⋅L l B,且环路上任意一点B ≠0.(D) 0d ≠⎰⋅L l B,且环路上任意一点B =常量. [ ]23、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅Ll B d 等于(A) I 0μ. (B) I 031μ.(C) 4/0I μ. (D) 3/20I μ. [ ]24、若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对称性,则该磁场分布 (A) 不能用安培环路定理来计算. (B) 可以直接用安培环路定理求出. (C) 只能用毕奥-萨伐尔定律求出.(D) 可以用安培环路定理和磁感强度的叠加原理求出. [ ]25、取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则(A) 回路L 内的I 不变,L 上各点的B不变.(B) 回路L 内的I 不变,L 上各点的B改变.(C) 回路L 内的I 改变,L 上各点的B不变.(D) 回路L 内的I 改变,L 上各点的B改变. [ ]26、距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) ×10-2T . (D) T .(已知真空的磁导率0 =4×10-7 T ·m/A) [ ] 27、在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则: L OIIIa bc d120°L 2P 1 P 2I 1 I 2 I 3I 1 I 2 (a)(b)⊙⊙ ⊙⊙ ⊙(A) =⎰⋅1d L l B⎰⋅2d L l B, 21P P B B =(B) ≠⎰⋅1d L l B⎰⋅2d L l B , 21P P B B =. (C) =⎰⋅1d L l B⎰⋅2d L l B, 21P P B B ≠.(D) ≠⎰⋅1d L l B⎰⋅2d L l B, 21P P B B ≠. [ ]28、如图,一个电荷为+q 、质量为m 的质点,以速度v沿x 轴射入磁感强度为B 的均匀磁场中,磁场方向垂直纸面向里,其范围从x = 0延伸到无限远,如果质点在x = 0和y = 0处进入磁场,则它将以速度v -从磁场中某一点出来,这点坐标是x = 0 和(A) qBm y v +=. (B) qB m y v 2+=. (C) qB m y v 2-=. (D) qB m y v-=. [ ]29、一运动电荷q ,质量为m ,进入均匀磁场中,(A) 其动能改变,动量不变. (B) 其动能和动量都改变. (C)其动能不变,动量改变. (D) 其动能、动量都不变. [ ]30、A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设R A ,R B 分别为A 电子与B 电子的轨道半径;T A ,T B 分别为它们各自的周期.则(A) R A ∶R B =2,T A ∶T B =2. (B) R A ∶R B 21=,T A ∶T B =1.(C) R A ∶R B =1,T A ∶T B 21=. (D) R A ∶R B =2,T A ∶T B =1. [ ]31、一铜条置于均匀磁场中,铜条中电子流的方向如图所示.试问下述哪一种情况将会发生 (A) 在铜条上a 、b 两点产生一小电势差,且U a > U b . (B) 在铜条上a 、b 两点产生一小电势差,且U a < U b . (C) 在铜条上产生涡流. (D) 电子受到洛伦兹力而减速.]32、一电荷为q 的粒子在均匀磁场中运动,下列哪种说法是正确的 (A) 只要速度大小相同,粒子所受的洛伦兹力就相同.(B) 在速度不变的前提下,若电荷q 变为-q ,则粒子受力反向,数值不变. (C) 粒子进入磁场后,其动能和动量都不变. (D) 洛伦兹力与速度方向垂直,所以带电粒子运动的轨迹必定是圆. [ ]×× ×33、一电子以速度v垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将(A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2.(C) 正比于B ,反比于v . (D) 反比于B ,反比于v .[ ]34、图为四个带电粒子在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是(A) Oa . (B) Ob .(C) Oc . (D) Od . [ ]35、如图所示,在磁感强度为B的均匀磁场中,有一圆形载流导线,a 、b 、c是其上三个长度相等的电流元,则它们所受安培力大小的关系为(A) F a > F b > F c . (B) F a < F b < F c .(C) F b > F c > F a . (D) F a > F c > F b . [ ]36、如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中点O 转动,并能靠近或离开ab .当电流方向如图所示时,导线cd 将 (A) 顺时针转动同时离开ab . (B) 顺时针转动同时靠近ab . (C) 逆时针转动同时离开ab .(D) 逆时针转动同时靠近ab . [ ]37、两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为(A) R r I I 22210πμ. (B) R r I I 22210μ.(C) r R I I 22210πμ. (D) 0. [ ]38、两根平行的金属线载有沿同一方向流动的电流.这两根导线将: (A) 互相吸引. (B) 互相排斥.(C) 先排斥后吸引. (D) 先吸引后排斥. [ ]39、有一N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场B中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩M m 值为 (A) 2/32IB Na . (B) 4/32IB Na . (C) ︒60sin 32IB Na . (D) 0. [ ]OO r R I 1I 240、有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为, < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将(A) 转动使角减小.(B) 转动使角增大. (C) 不会发生转动.(D) 如何转动尚不能判定. [ ]41、若一平面载流线圈在磁场中既不受力,也不受力矩作用,这说明: (A) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行. (B) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行. (C) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直.(D) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直.[ ]42、图示一测定水平方向匀强磁场的磁感强度B(方向见图)的实验装置.位于竖直面内且横边水平的矩形线框是一个多匝的线圈.线框挂在天平的右盘下,框的下端横边位于待测磁场中.线框没有通电时,将天平调节平衡;通电后,由于磁场对线框的作用力而破坏了天平的平衡,须在天平左盘中加砝码m 才能使天平重新平衡.若待测磁场的磁感强度增为原来的3倍,而通过线圈的电流减为原来的21,磁场和电流方向保持不变,则要使天平重新平衡,其左盘中加的砝码质量应为 (A) 6m . (B) 3m /2. (C) 2m /3. (D) m /6.(E) 9m /2. [ ]43、如图,无限长直载流导线与正三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将 (A) 向着长直导线平移. (B) 离开长直导线平移.(C) 转动. (D) 不动. [ ]44、四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为(A) I a B π=02μ. (B) I a B 2π=02μ. (C) B = 0. (D) I aB π=μ. [ ]45、一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等.设R = 2r ,则两螺线管中的磁感强度大小B R 和B r 应满足:y AOCDInBαi BI 1I 2 I I II 2a2a O(A) B R = 2 B r . (B) B R = B r . (C) 2B R = B r . (D) B R = 4 B r . [ ]46、四条平行的无限长直导线,垂直通过边长为a =20 cm 的正方形顶点,每条导线中的电流都是I =20 A ,这四条导线在正方形中心O 点产生的磁感强度为(0 =4×10-7 N ·A -2)(A) B =0. (B) B = ×10-4 T . (C) B = ×10-4 T. (D) B =×10-4 T . [ ]47、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的(A) 4倍和1/8. (B) 4倍和1/2.(C) 2倍和1/4. (D) 2倍和1/2. [ ]48、关于稳恒电流磁场的磁场强度H,下列几种说法中哪个是正确的(A) H仅与传导电流有关.(B) 若闭合曲线内没有包围传导电流,则曲线上各点的H必为零.(C) 若闭合曲线上各点H均为零,则该曲线所包围传导电流的代数和为零.(D) 以闭合曲线L为边缘的任意曲面的H通量均相等. [ ]49、图示载流铁芯螺线管,其中哪个图画得正确(即电源的正负极,铁芯的磁性,磁力线方向相互不矛盾.)[ ]50、附图中,M 、P 、O 为由软磁材料制成的棒,三者在同一平面内,当K 闭合后,(A) M 的左端出现N 极. (B) P 的左端出现N 极. (C) O 的右端出现N 极. (D) P 的右端出现N 极. [ ]51、如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为2.0 A 时,测得铁环内的磁感应强度的大小B 为 T ,则可求得铁环的相对磁导率r 为(真空磁导率0 =4×10-7 T ·m ·A -1) (A) ×102 (B) ×102(C) ×102(D) [ ]52、磁介质有三种,用相对磁导率r表征它们各自的特性时,(A) 顺磁质r>0,抗磁质r<0,铁磁质r>>1. (B) 顺磁质r >1,抗磁质r =1,铁磁质r >>1.O a(A)SN (B)SN(C)NS (D)NS ++++----KM OμP-+(C) 顺磁质r >1,抗磁质r <1,铁磁质r>>1.(D) 顺磁质r <0,抗磁质r <1,铁磁质r >0. [ ]53、顺磁物质的磁导率: (A) 比真空的磁导率略小. (B) 比真空的磁导率略大.(C) 远小于真空的磁导率. (D) 远大于真空的磁导率. [ ]54、用细导线均匀密绕成长为l 、半径为a (l >> a )、总匝数为N 的螺线管,管内充满相对磁导率为r 的均匀磁介质.若线圈中载有稳恒电流I ,则管中任意一点的 (A) 磁感强度大小为B = 0 r NI . (B) 磁感强度大小为B = r NI / l . (C) 磁场强度大小为H = 0NI / l .(D) 磁场强度大小为H = NI / l . [ ]55、一闭合正方形线圈放在均匀磁场中,绕通过其中心且与一边平行的转轴OO ′转动,转轴与磁场方向垂直,转动角速度为,如图所示.用下述哪一种办法可以使线圈中感应电流的幅值增加到原来的两倍(导线的电阻不能忽略) (A) 把线圈的匝数增加到原来的两倍. (B) 把线圈的面积增加到原来的两倍,而形状不变. (C) 把线圈切割磁力线的两条边增长到原来的两倍.(D) 把线圈的角速度增大到原来的两倍. [ ]56、一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是 (A) 线圈绕自身直径轴转动,轴与磁场方向平行. (B) 线圈绕自身直径轴转动,轴与磁场方向垂直. (C) 线圈平面垂直于磁场并沿垂直磁场方向平移. (D) 线圈平面平行于磁场并沿垂直磁场方向平移. [ ]57、如图所示,一矩形金属线框,以速度v从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正)[ ]58、两根无限长平行直导线载有大小相等方向相反的电流I ,并各以d I /d t 的变化率增长,一矩形线圈位于导线平面内(如图),则:O BvBI O t(D)IO t (C)O t (B)I I(A) 线圈中无感应电流. (B) 线圈中感应电流为顺时针方向. (C) 线圈中感应电流为逆时针方向.(D) 线圈中感应电流方向不确定. [ ]59、将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势. (B) 铜环中感应电动势大,木环中感应电动势小. (C) 铜环中感应电动势小,木环中感应电动势大. (D) 两环中感应电动势相等. [ ]60、在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流(A) 以情况Ⅰ中为最大. (B) 以情况Ⅱ中为最大.(C) 以情况Ⅲ中为最大. (D) 在情况Ⅰ和Ⅱ中相同. [ ]61、一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B中,另一半位于磁场之外,如图所示.磁场B的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感应电流,应使(A) 线环向右平移. (B) 线环向上平移. (C) 线环向左平移. (D) 磁场强度减弱. [ ]62、如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪一种情况可以做到(A) 载流螺线管向线圈靠近. (B) 载流螺线管离开线圈.(C) 载流螺线管中电流增大.(D) 载流螺线管中插入铁芯. [ ]63、如图所示,闭合电路由带铁芯的螺线管,电源,滑线变阻器组成.问在下列哪一种情况下可使线圈中产生的感应电动势与原电流I的方向相反. (A) 滑线变阻器的触点A 向左滑动. (B) 滑线变阻器的触点A 向右滑动. (C) 螺线管上接点B 向左移动(忽略长螺线管的电阻).(D) 把铁芯从螺线管中抽出. [ ]b d b cdcd v I64、 一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO ′轴,以匀角速度旋转(如图所示).设t =0时,线框平面处于纸面内,则任一时刻感应电动势的大小为 (A) 2abB | cos t |. (B) abB(C)t abB ωωcos 21. (D) abB | cos t |.(E)abB | sin t |. [ ]65、一无限长直导体薄板宽为l ,板面与z 轴垂直,板的长度方向沿y 轴,板的两侧与一个伏特计相接,如图.整个系统放在磁感强度为B 的均匀磁场中,B的方向沿z 轴正方向.如果伏特计与导体平板均以速度v向y 轴正方向移动,则伏特计指示的电压值为(A) 0. (B) 21vBl .(C) vBl . (D) 2vBl . [ ]66、一根长度为L 的铜棒,在均匀磁场 B中以匀角速度绕通过其一端的定轴旋转着,B 的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势是:(A) )cos(2θωω+t B L . (B) t B L ωωcos 212.(C) )cos(22θωω+t B L . (D) B L 2ω.(E)B L 221ω. [ ]67、如图,长度为l 的直导线ab 在均匀磁场B中以速度v 移动,直导线ab 中的电动势为 (A) Blv . (B) Blv sin . (C) Blv cos . (D) 0. [ ]68、如图所示,导体棒AB 在均匀磁场B 中绕通过C 点的垂直于棒长且沿磁场方向的轴OO 转动(角速度ω与B 同方向),BC 的长度为棒长的31,则(A) A 点比B 点电势高. (B) A 点与B 点电势相等.(B) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点.[ ]69、如图所示,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O 作逆时针方向匀角速转动,O 点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时.图(A)—(D)的--t 函数图象中哪一条属于半圆形导线回路中产生的感应电动势O Bab ωz By lVBω L O θ blb a vαt O (A) t O (C)t O(B)tO (D) C D Oω BOO ′ BB AC[ ]70、如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab 向右平移时,cd(A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ]71、有两个线圈,线圈1对线圈2的互感系数为M 21,而线圈2对线圈1的互感系数为M 12.若它们分别流过i 1和i 2的变化电流且t it i d d d d 21>,并设由i 2变化在线圈1中产生的互感电动势为12,由i 1变化在线圈2中产生的互感电动势为21,判断下述哪个论断正确. (A) M 12 = M 21,21 =12. (B) M 12≠M 21,21≠12. (C) M 12 = M 21,21 >12.(D) M 12 = M 21,21 <12. [ ]72、已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数(A) 都等于L 21. (B) 有一个大于L 21,另一个小于L 21.(C) 都大于L 21. (D) 都小于L 21. [ ]73、面积为S 和2 S 的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用21表示,线圈2的电流所产生的通过线圈1的磁通用12表示,则21和12的大小关系为:(A) 21 =212. (B) 21 >12.(C) 21 =12. (D) 21 =2112.[ ]74、如图所示的电路中,A 、B 是两个完全相同的小灯泡,其内阻r >>R ,L 是一个自感系数相当大的线圈,其电阻与R 相等.当开关K 接通和断开时,关于灯泡A 和B 的情况下面哪一种说法正确(A) K 接通时,I A >I B . (B) K 接通时,I A =I B . (C) K 断开时,两灯同时熄灭.(D) K 断开时,I A =I B . [ ]75、用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m =(A) 只适用于无限长密绕螺线管.(B) 只适用于单匝圆线圈.c abdNMB12S 2 SI I A B I AI Brr L, .RRK(C) 只适用于一个匝数很多,且密绕的螺绕环.(D) 适用于自感系数L一定的任意线圈. [ ]76、两根很长的平行直导线,其间距离d 、与电源组成回路如图.已知导线上的电流为I ,两根导线的横截面的半径均为r 0.设用L 表示两导线回路单位长度的自感系数,则沿导线单位长度的空间内的总磁能W m 为(A) 221LI .(B) 221LI ⎰∞+π-+0d π2])(2π2[2002r r r r d I r I I μμ(C) ∞. (D) 221LI 020ln 2r dI π+μ [ ]77、真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为(A) 200)2(21a I πμμ (B) 200)2(21a I πμμ (C) 20)2(21I a μπ (D) 200)2(21a I μμ [ ]78、电位移矢量的时间变化率t D d /d的单位是(A )库仑/米 2 (B )库仑/秒(C )安培/米 2 (D )安培•米 2[]79、对位移电流,有下述四种说法,请指出哪一种说法正确. (A) 位移电流是指变化电场.(B) 位移电流是由线性变化磁场产生的. (C) 位移电流的热效应服从焦耳─楞次定律.(D) 位移电流的磁效应不服从安培环路定理. [ ]80、在感应电场中电磁感应定律可写成t l E LK d d d Φ-=⎰⋅ ,式中K E 为感应电场的电场强度.此式表明:(A) 闭合曲线L 上K E处处相等. (B) 感应电场是保守力场.(C) 感应电场的电场强度线不是闭合曲线. (D) 在感应电场中不能像对静电场那样引入电势的概念. [ ]二、填空题(每题4分)81、一磁场的磁感强度为k c j b i a B++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为____________Wb .82、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面SI I d 2r 0的磁通量=__________.若通过S 面上某面元Sd 的元磁通为d,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ',则d ∶d '=_________________.83、在非均匀磁场中,有一电荷为q 的运动电荷.当电荷运动至某点时,其速率为v ,运动方向与磁场方向间的夹角为,此时测出它所受的磁力为f m .则该运动电荷所在处的磁感强度的大小为________________.磁力f m 的方向一定垂直________________________________________________________________.84、沿着弯成直角的无限长直导线,流有电流I =10 A .在直角所决定的平面内,距两段导线的距离都是a =20 cm 处的磁感强度B =____________________.(0 =4×10-7 N/A 2)85、在真空中,将一根无限长载流导线在一平面内弯成如图所示的形状,并通以电流I ,则圆心O 点的磁感强度B 的值为_________________.86、电流由长直导线1沿切向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿切线流出,经长直导线2返回电源(如图).已知直导线上的电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上,则O 点的磁感强度的大小为______________.87、在真空中,电流由长直导线1沿半径方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上的电流强度为I ,圆环半径为R .a 、b 和圆心O 在同一直线上,则O 处的磁感强度B 的大小为__________________________.88、如图,球心位于O 点的球面,在直角坐标系xOy 和xOz 平面上的两个圆形交线上分别流有相同的电流,其流向各与y 轴和z 轴的正方向成右手螺旋关系.则由此形成的磁场在O 点的方向为________________.89、如图,两根导线沿半径方向引到铁环的上A 、A ′两点,并在很远处与电源相连,则环中心的磁感强度为____________.90、一质点带有电荷q =×10-10 C ,以速度v =×105 m ·s -1在半径为R =×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =__________________,该带电 质点轨道运动的磁矩p m =___________________.(0 =4×10-7 H ·m -1)IIIa Oa I1 O2a b1 O 2xyzOII A A ′O + -。
大学物理复习题
大学物理复习题(电磁学部分)一、选择题1.三个一样大小的绝缘金属小球A 、B 、C ,A 、B 两小球带有等量同号电荷,它们之间的距离远大于小球本身的直径,相互作用力为F ,若将不带电的小球C 引入,先和A 小球接触,然后和B 小球接触后移去,这时A 小球与B 小球间的相互作用力将变为: A .F/2 B. F/4 C. F/8 D. 3F/8 2、电场中高斯面上各点的电场强度是由:A 、分布在高斯面内的电荷决定的;B 、分布在高斯面外的电荷决定的;C 、空间所有的电荷决定的;D 、高斯面内电荷代数和决定的。
3、以下说法正确的是:A 、场强为零的地方,电势一定为零;电势为零的地方,均强也一定为零。
B 、场强大小相等的地方,电势也相等,等势面上各点场强大小相等。
C 、带正电的物体,电势一定是正的,不带电的物体,电势一定等于零。
D 、沿着均场强的方向,电势一定降低。
4.关于导体有以下几种说法: A .接地的导体都不带电。
B .接地的导体可带正电,也可带负电。
C .一导体的电势零,则该导体不带电。
D .任何导体,只要它所带的电量不变,则其电势也是不变的。
5.在半径为R 的均匀带电球面上,任取面积元S ∆,则此面积元上的电荷所受的电场力应是: A 0 ; B2S σε⋅∆(σ是电荷面密度); C22Sσε⋅∆ ; D 以上说法都不对。
6.平行板电容器在接入电源后,把两板间距拉大,则电容器的:A 电容增大;B 电场强度增大;C 所带电量增大;D 电容、电量及两板内场强都减小。
7.一个电阻,一个电感线圈和一个电容器与交流电源组成串联电路,通过电容器的电流应与下列哪一个的电压同位相A 电阻;B 电感线圈;C 电容器;D 全电路。
8.以下关于磁场的能量密度正确的是: A 、22B Bw μ=B 、012B w E B ε=⨯C 、012B w B μ=D 、22B w B μ=9.如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中点O 转动,并能靠近或离开ab .当电流方向如图所示时,导线cd 将A .顺时针转动同时离开ab ;B .顺时针转动同时靠近ab ;C .逆时针转动同时离开ab ;D .逆时针转动同时靠近ab 。
大学物理电磁学知识点汇总
稳恒电流1.电流形成的条件、电流定义、单位、电流密度矢量、电流场(注意我们又涉及到了场的概念)2.电流连续性方程(注意和电荷守恒联系起来)、电流稳恒条件。
3.欧姆定律的两种表述(积分型、微分型)、电导、电阻定律、电阻、电导率、电阻率、电阻温度系数、理解超导现象4.电阻的计算(这是重点)。
5.金属导电的经典微观解释(了解)。
6.焦耳定律两种形式(积分、微分)。
(这里要明白一点:微分型方程是精确的,是强解。
而积分方程是近似的,是弱解。
)7.电动势、电源的作用、电源做功。
、8.含源电路欧姆定律。
9.基尔霍夫定律(节点电流定律、环路电压定律。
明白两者的物理基础。
)习题:13.19;13.20真空中的稳恒磁场电磁学里面极为重要的一章1. 几个概念:磁性、磁极、磁单极子、磁力、分子电流2. 磁感应强度(定义、大小、方向、单位)、洛仑磁力(磁场对电荷的作用)3. 毕奥-萨伐尔定律(稳恒电流元的磁场分布——实验定律)、磁场叠加原理(这是磁场的两大基本定律——对比电场的两大基本定律)4. 毕奥-萨伐尔定律的应用(重点)。
5. 磁矩、螺线管磁场、运动电荷的磁场(和毕奥-萨伐尔定律等价——更基本)6. 稳恒磁场的基本定理(高斯定理、安培环路定理——与电场对比)7. 安培环路定理的应用(重要——求磁场强度)8. 磁场对电流的作用(安培力、安培定律积分、微分形式)9. 安培定律的应用(例14.2;平直导线相互作用、磁场对载流线圈的作用、磁力矩做功)10. 电场对带电粒子的作用(电场力);磁场对带电粒子的作用(洛仑磁力);重力场对带电粒子的作用(引力)。
11. 三场作用叠加(霍尔效应、质谱仪、例14.4)习题:14.20,14.22,14.27,14.32,14.46,14.47磁介质(与电解质对比)1.几个重要概念:磁化、附加磁场、相对磁导率、顺磁质、抗磁质、铁磁质、弱磁质、强磁质。
(请自己阅读并绘制磁场和电场相关概念和公式的对照表)2.磁性的起源(分子电流)、轨道磁矩、自旋磁矩、分子矩、顺磁质、抗磁质的形成原理。
大物力学和电磁学复习
大学物理力学公式总结第一章(质点运动学)1.r=r(t)=x(t)i+y(t)j+z(t)kΔr=r(t+Δt)- r(t)一般地|Δr|≠Δr2.v=dr / dt a=dv / dx=d^2r / dt^23.匀加速运动:a=常矢v0=v x+v y+v z r=r0+v0t+at24.匀加速直线运动:v= v0+at x=v0t+at2 v2-v02=2ax5.抛体运动:a x=0 a y=-gv x=v0cos v y=v0sinθ-gtx=v0cosθ•t y=v0sinθ•t-gt26.圆周运动:角速度ω=dθ / dt=v/t角加速度α=dω/ dt加速度a=a n+a t法相加速度a n=v^2 / R=Rω,指向圆心切向加速度a t=dv/dt=Rα,沿切线方向7.伽利略速度变换:v=v’+u第二章(牛顿运动定律)1.牛顿运动定律:第一定律:惯性和力的概念,惯性系的定义第二定律:F=dp/dt , p=m v当m为常量时,F=m a第三定律:F12=-F21力的叠加原理:F=F1+F2+……2.常见的几种力:重力:G=m g弹簧弹力:f=-kx3.用牛顿定律解题的基本思路:1)认物体2)看运动3)查受力(画示力图)4)列方程(一般用分量式)第三章(动量与角动量)1.动量定理:合外力的冲量等于质点(或质点系)动量的增量,即F dt=d p2.动量守恒定律:系统所受合外力为零时,p=i pi=常矢量3.质心的概念:质心的位矢r c=(i miri)/m(离散分布) 或r c = rdm/m(连续分布)4.质心运动定理:质点系所受的合外力等于其总质量乘以质心的加速度,即F=m a c5.质心参考系:质心在其中静止的平动参考系,即零动量参考系。
6.质点的角动量:对于某一点,L=r×p=m r×v7.角动量定理:M=dL/dt其中M 为合外力距,M=r×F,他和L都是对同一定点说的。
大学物理2期末复习
(A) 4倍和 1 / 8 ,
(B) 4倍和 1 / 2 ,
(C) 2倍和 1 / 4 , (D) 2倍和 1 / 2 。
[B]
11
B 0I
2R
B1
0I
2R
, B2
2
0I
2r
.
R 2r
B2 2 R 4 B1 r
Pm IS Pm R2I , Pm 2r 2I.
Pm Pm
2
r2 R2
(A) 1 /(2a) (B) 1 / a (C) 1/ 2a (D) 1/ a
(x) 2 1 cos2 3x
a 2a
x 5a 6
(5 a) 2 1 6 2a
[A]
29
21.氢原子中处于2P态的电子,描述其量子态的四个 量子数(n,,m ,ms)可能取的值为:
(A) (3,2,1,-1/2) (B) (2,0,0,1/2) (C) (2,1,-1,-1/2)(D) (1,0,0,1/2)
(A) 7.96 102 , (B) 3.98 102 ,
(C) 1.99 102 , (D) 63.3 。
[B ]
B 0r nI
19
13. 如图,两个线圈 P 和 Q 并联地接到一电动势恒定 的电源上,线圈 P 的自感和电阻分别是线圈 Q 的两 倍。当达到稳定状态后,线圈 P 的磁场能量与 Q 的 磁场能量的比值是:
M
dI dt
)
(L
M
Hale Waihona Puke )dI dt1
2
(2L
2M
)
dI dt
比较: L dI
dt
17
11. 顺磁物质的磁导率:
(A)比真空的磁导率略小,
大学物理磁学部分复习资料..
磁 学基本内容一、稳恒磁场 磁感应强度1. 稳恒磁场电流、运动电荷、永久磁体在周围空间激发磁场。
稳恒磁场是指不随时间变化的磁场。
稳恒电流激发的磁场是一种稳恒磁场。
2. 物质磁性的电本质无论是永磁体还是导线中的电流,它们的磁效应的根源都是电荷的运动。
因此,磁场是运动电荷的场。
3. 磁感应强度磁感应强度B是描述磁场的基本物理量,它的作用与E 在描述电场时的作用相当。
磁场对处于其中的载流导线、运动电荷、载流线圈、永久磁体有力及力矩的作用。
可以根据这些作用确定一点处磁场的强弱和方向——磁感应强度B。
带电q 的正点电荷在磁场中以速度v运动,若在某点不受磁力,则该点磁感应强度B 的方向必与电荷通过该点的速度v 平行。
当该电荷以垂直于磁感应强度B 通过该点时受磁力⊥F ,则该点磁感应强度大小qvF B ⊥=,且⊥F ,v ,B两两互相垂直并构成右手系。
二、毕奥—萨伐尔定律 运动电荷的磁场1. 磁场的叠加原理空间一点的磁感强度等于各电流单独存在时在该点产生磁感应强度的矢量和:∑=ii B B 可推广为 ⎰=B d BB d是电流强度有限而长度无限小的电流元l d I 或电流强度无限小而空间大小不是无限小的元电流的磁场。
上式中矢量号一般不能略去,只有当各电流产生磁场方向相同时,才能去掉矢量号。
2. 毕奥—萨伐尔定律电流元l d I 在空间一点产生的磁场B d为: 304rr l d I B d πμ⨯= 大小: 02I sin(I ,r)dB 4rdl dl μπ∠=方向:B d 垂直于电流元l d I 与r 所形成的平面,且B d与l d I 、r构成右手螺旋。
3. 电流与运动电荷的关系导体中电荷定向运动形成电流,设导体截面积为S ,单位体积载流子数为n 。
每个载流子带电q ,定向运动速率为v ,则nqvS I =。
电量为q 的带电体作半径为R 、周期为T 的匀速圆周运动相当于半径为R 、电流强度T q I /=的圆电流,具有磁矩TqR I R p m 22ππ==。
大学物理期末复习磁学部分
二、磁通量 磁场的高斯定理
(一) 磁通量 1.定义:通过磁场中某一曲面的磁感应线
的数目,定义为磁通量,用Ф表示。
2、计算(先考虑匀强场中的平面) b. S 跟B成 角 a. S垂直B
m BS
4
R
1 5 Pm kR 5
方向:垂直盘面向外
M Pm B
1 M kR 5 B 所以大小 5
方向 向上
圆弧形电流在圆心处的磁场是什么结果?
I
B0 2 R 2
0 I
o
R
方向: 注:仍可由右手螺旋法则或毕萨定律判 定方向!
思考其它几种典型电流激发的磁场
(1) R I
B0
0 I
4R
(3)
o (2) I
R
0 I BA 4π d
d *A
R1
R2
I
B0
o
0 I
8R
(4) I
B
n B
n
(二)磁场的高斯定理
1、内容
通过任意闭合曲面的磁通量必等于零。
B dS 0
2、解释
S
磁感应线是闭合的,因此 有多少条磁感应线进入闭 合曲面,就一定有多少条 磁感应线穿出该曲面。
S
B
B
3、说明
•磁场是无源场; 电场是有源场 •磁极相对出现,不存在磁单极; 单独存在正负电荷 人类对磁单极的探寻从未停止,一旦发现磁单极,将 改写电磁理论。
•受力情况
F3
M
I
P
N F4
大学物理复习题(电磁学)
【课后习题】 第12章 一、填空题1、两个大小完全相同的带电金属小球,电量分别为2q 和-1q ,已知它们相距为r 时作用力为F ,则将它们放在相距3r 位置同时其电量均减半,相互作用力大小为____1/36________F 。
2、电场强度可以叙述为电场中某一点上单位正电荷所受的_____电场力___________;电场中某一点的电势可以叙述为:单位正电荷在该点所具有的__电势能_________。
3、真空环境中正电荷q 均匀地分布在半径为R 的细圆环上,在环环心O 处电场强度为____0________,环心的电势为__R q o πε4/_________。
4、高斯定理表明磁场是 无源 场,而静电场是有源场。
任意高斯面上的静电场强度通量积分结果仅仅取决于该高斯面内全部电荷的代数和。
现有图1-1所示的三个闭合曲面S 1、S 2、S 3,通过这些高斯面的电场强度通量计算结果分别为:⎰⎰⋅=Φ11S SE d ,⎰⎰⋅=Φ22S SE d ,⎰⎰⋅=Φ33S SE d ,则Φ1=___o q ε/_______;Φ2+Φ3=___o q ε/-_______。
5、静电场的场线只能相交于___电荷或无穷远________。
6、两个平行的无限大均匀带电平面,其电荷面密度分别如图所示,则A 、B 、C 三个区域的电场强度大小分别为:E A =_o εσ/4________;E B =_o εσ/________;E C =__o εσ/4_______。
7、由一根绝缘细线围成的边长为l 的正方形线框,使它均匀带电,其电荷线密度为λ,则在正方形中心处的电场强度的大小E =____0____________.8、初速度为零的正电荷在电场力的作用下,总是从__高____电势处向_低____电势处运动。
9、静电场中场强环流为零,这表明静电力是__保守力_________。
10、如图所示,在电荷为q 的点电荷的静电场中,将一电荷为q 0的试验电荷从a 点经任意路径移动到b 点,外力所作的功 W =___⎪⎪⎭⎫ ⎝⎛-120114r r Qq πε___________.11、真空中有一半径为R 的均匀带电半园环,带电量为Q ,设无穷远处为电势零点,则圆心O 处的电势为___RQ 04πε_________;若将一带电量为q 的点电荷从无穷远处移到O 点,电场力所作的功为__RqQ 04πε__________。
大学物理(电磁学部分)试题库及答案解析
大学物理(电磁学部分)试题库及答案解析一、 选择题1.库仑定律的适用范围是()A 真空中两个带电球体间的相互作用; ()B 真空中任意带电体间的相互作用; ()C 真空中两个正点电荷间的相互作用; ()D 真空中两个带电体的大小远小于它们之间的距离。
〔 D 〕2.在等量同种点电荷连线的中垂线上有A 、B 两点,如图所示,下列结论正确的是()A A B E E ,方向相同;()B A E 不可能等于B E ,但方向相同;()C A E 和B E 大小可能相等,方向相同;()D A E 和B E 大小可能相等,方向不相同。
〔 C 〕4.下列哪一种说法正确()A 电荷在电场中某点受到的电场力很大,该点的电场强度一定很大;()B 在某一点电荷附近的任一点,若没放试验电荷,则这点的电场强度为零;()C 若把质量为m 的点电荷q 放在一电场中,由静止状态释放,电荷一定沿电场线运动;()D 电场线上任意一点的切线方向,代表点电荷q 在该点获得加速度的方向。
〔 D 〕5.带电粒子在电场中运动时()A 速度总沿着电场线的切线,加速度不一定沿电场线切线;()B 加速度总沿着电场线的切线,速度不一定沿电场线切线;()C 速度和加速度都沿着电场线的切线;()D 速度和加速度都不一定沿着电场线的切线。
〔 B 〕7.在真空中的静电场中,作一封闭的曲面,则下列结论中正确的是A.通过封闭曲面的电通量仅是面内电荷提供的B.封闭曲面上各点的场强是面内电荷激发的C.由高斯定理求得的场强仅由面内电荷所激发的D.由高斯定理求得的场强是空间所有电荷共同激发的〔 D 〕9、下面说法正确的是(A)等势面上各点场强的大小一定相等;(B)在电势高处,电势能也一定高;(C)场强大处,电势一定高;(D)场强的方向总是从电势高处指向低处〔 D 〕10、已知一高斯面所包围的体积内电量代数和为零,则可肯定:(A )高斯面上各点场强均为零。
(B )穿过高斯面上每一面元的电通量均为零。
大学物理电磁学知识点
真 空 中 的 静 电 场知识点:1. 场强 (1) 电场强度的定义0q F E (2) 场强叠加原理 iE E (矢量叠加) (3) 点电荷的场强公式rr qE ˆ420 (4) 用叠加法求电荷系的电场强度r r dq E ˆ4202. 高斯定理 真空中 内q S d E S 01电介质中自由内,01q S d D SE E D r 03. 电势 (1) 电势的定义 零势点p p l d E V对有限大小的带电体,取无穷远处为零势点,则 p p l d E V(2) 电势差b a b a l d E V V (3) 电势叠加原理 iV V (标量叠加)(4) 点电荷的电势 r q V 04 (取无穷远处为零势点)电荷连续分布的带电体的电势r dq V 04 (取无穷远处为零势点) 4. 电荷q 在外电场中的电势能a a qV w 5. 移动电荷时电场力的功 )(b a ab V V q A 6. 场强与电势的关系 V E静 电 场 中 的 导 体知识点:1.导体的静电平衡条件(1) 0 内E(2) 导体表面表面 E2. 静电平衡导体上的电荷分布导体内部处处静电荷为零.电荷只能分布在导体的表面上.0 表面E3. 电容定义U qC 平行板电容器的电容d S C r 0电容器的并联 i C C (各电容器上电压相等)电容器的串联 i C C 11 (各电容器上电量相等)4. 电容器的能量 222121CV C Q W e电场能量密度 221E W e5、电动势的定义L k i l d E 式中k E 为非静电性电场.电动势是标量,其流向由低电势指向高电势。
静 电 场 中 的 电 介 质知识点:1. 电介质中的高斯定理2. 介质中的静电场3. 电位移矢量真 空 中 的 稳 恒 磁 场知识点:1. 毕奥-萨伐定律电流元l Id产生的磁场 20ˆ4r r l Id B d式中, l Id 表示稳恒电流的一个电流元(线元),r 表示从电流元到场点的距离, rˆ表示从电流元指向场点的单位矢量..2. 磁场叠加原理在若干个电流(或电流元)产生的磁场中,某点的磁感应强度等于每个电流(或电流元)单独存在时在该点所产生的磁感强度的矢量和. 即 i B B3. 要记住的几种典型电流的磁场分布(1)有限长细直线电流 )cos (cos 4210a I B式中,a 为场点到载流直线的垂直距离, 1 、2 为电流入、出端电流元矢量与它们到场点的矢径间的夹角. a) 无限长细直线电流 r IB 20b) 通电流的圆环2/32220)(2R x I R B 圆环中心 04I B rad R单位为:弧度()(4) 通电流的无限长均匀密绕螺线管内nI B 0 4. 安培环路定律真空中 内I l d B L 0 磁介质中 内0I l d H LH H B r 0 当电流I 的方向与回路l 的方向符合右手螺旋关系时, I 为正,否则为负.5. 磁力(1) 洛仑兹力 B v q F质量为m 、带电为q 的粒子以速度v 沿垂直于均匀磁场B 方向进入磁场,粒子作圆周运动,其半径为qB mvR周期为qB m T 2(2) 安培力 B l Id F(3) 载流线圈的磁矩 nNIS p m ˆ 载流线圈受到的磁力矩B p M m (4) 霍尔效应 霍尔电压 b IB ne V1电 磁 感 应 电 磁 场知识点:1. 楞次定律:感应电流产生的通过回路的磁通量总是反抗引起感应电流的磁通量的改变.2. 法拉第电磁感应定律 dtd i N3. 动生电动势: 导体在稳恒磁场中运动时产生的感应电动势.l d B v b a ab )( 或l d B v )( 4. 感应电场与感生电动势: 由于磁场随时间变化而引起的电场成为感应电场. 它产生电动势为感生电动势. dt d l d E i 感局限在无限长圆柱形空间内, 沿轴线方向的均运磁场随时间均匀变化时, 圆柱内外的感应电场分别为 )(2R r dt dBr E 感)(22R r dt dBr R E 感5. 自感和互感自感系数 I L自感电动势 dt dIL L自感磁能 221LI W m互感系数 212121I I M互感电动势 dt dI M 1216. 磁场的能量密度BH B w m 21227. 位移电流 此假说的中心思想是: 变化着的电场也能激发磁场.通过某曲面的位移电流强度d I 等于该曲面电位移通量的时间变化率. 即S D d S d t D dt d I位移电流密度 t D j D8. 麦克斯韦方程组的积分形式V S dV q S d DS d t B dt d l d E S m L0 S S d BS d t D S d j l d H S S L第七章气体动理论主要内容一.理想气体状态方程:112212PV PV PV C T T T ; m PV RT M; P nkT 8.31J R k mol g ;231.3810J k k;2316.02210A N mol ;A R N k g 二. 理想气体压强公式23kt p n 212kt mv 分子平均平动动能 三. 理想气体温度公式21322kt mv kT四.能均分原理1. 自由度:确定一个物体在空间位置所需要的独立坐标数目。
大学物理(2)期末复习试题库
大学物理(2)期末复习试题库第四篇 电磁学一、判断题1.关系H B μ=对所有各向同性线性介质都成立。
( )2.静电场中任何两条电力线不相交,说明静电场中每一点的场强是唯一的。
( )3.导体内部处处没有未被抵消的静电荷,静电荷只分布在导体的表面上。
( )4.电源电动势的方向是自正极经电源内部到负极的方向。
( )5.自感系数只依赖线圈本身的形状、大小及介质的磁导率而与电流无关。
( )6.恒定磁场中定理∑⎰=⋅I l d H 成立。
( )7.关系E D ε=对所有各向同性电介质都成立。
( )8. 0ε∑⎰⎰=⋅q s d E 对任意电场均成立。
( ) 9.可以把电子的自旋运动和宏观物体的自转运动相类比。
( )10.无论是在稳恒磁场还是非稳恒磁场中安培环路定理∑⎰=⋅i LI l d H 都成立。
( )11.导体静电平衡的条件是导体内部场强处处为零。
( )12.有人把⎰⎰=⋅0S B d 称为磁场高斯定理,它只对恒定磁场成立,在变化磁场中⎰⎰≠⋅0S B d 。
( )13.由电容计算公式ab U q C =,理解为当0=q 时电容0=C 。
( )14.洛伦兹力不能改变运动电荷速度的大小,只能改变速度的方向。
( )15.任何导体内部场强都处处为零。
( )16.由安培环路定理∑⎰=⋅I l d H 可知,H 仅与传导电流有关。
( )17. 自感系数为L 的载流线圈磁场能量的公式221LI W =只适用于无限长密绕螺线管。
( )18.当一个带电导体达到静电平衡时, 表面上电荷密度较大处电势较高。
( )19.高斯定理⎰⎰=⋅VS dV d ρS D ,只对静电场成立,对变化的电场不成立。
( ) 20.在电场中,电场强度为零的点,电势不一定为零。
( )21.稳恒电流磁场的磁场强度H 仅与传导电流有关 。
( )22.当一个带电导体达到静电平衡时, 导体内任一点与其表面上任一点的电势差等于零。
( )23.有人把0=⋅⎰Sd S B 称为磁高斯定理,它只对恒定磁场成立,在变化的磁场中该式不成立。
《大学物理》第三篇电磁学
找比较对象 类象
重要作用: (1) 是提出科学假说的重要途径; (2) 是科学阐述或理论证明的辅助手段; (3) 在解决问题的过程中起启发思路、触类旁通的作用。
注意:类比推理所得结论是或然的,需证实或证伪。
3-15-2
磁场
静电场 电
感生 场 电场
一般 电场
高斯定理
SB dS 0
S D0 dS
物质存在的两种基本形式:实物和场
共性:能量、动量、质量
•场能对其中的物体做功 ——表明场有能量
•引力红移与偏折、光压等实验 ——表明场有质量和动量
可相互转化(如正负电子对湮没、同步辐射)
1、电磁场的能量密度与能量
电场能量密度
1 we 2 E D
磁场能量密度
wm
1 2
BH
电磁场能量密度
w
we
S D0 dS
ρdV
V
L E0 dl 0
SB dS 0
D
LH dl S ( j t ) dS
SB dS 0
LH dl S j dS
静电场 基本方程
静电场 基本方程
麦克斯韦方程组是对电磁场宏观规律的 全面总结和概括!
是经典物理三大支柱之一。
再看积分形式的麦克斯韦方程组
jE
2 t
由矢量运算公式: a (b c ) (a b) c b (a c )
(H E) ( H ) E H ( E)
1
(D E
BH)
(H
E)
jE
2 t
(E H ) j E
dW 1
dt
2 V t (D E B H )dV
jD πr 2
2) r >R
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁场的方向
I
1 0 ,
0 I B 2a
2. 直导线及其延长线上点
B
0 或 , dB 0
B0
磁场方向与无限长直电流之间符合右手螺旋关系:
B
0 I
2πa
I
I
B
X
B
半无限长载流长直导线的磁场
π 1 2 2 π
I
y
I
Idl
L
B
o
P
x
结论 1 ★ 任意形状载流导线在均匀磁场中 所受的力等效为由起点指向终点的载流直 导线的受力。 结论 2 ★均匀磁场中计算导线受力永远不 用微积分,用 F BIl sin
安培定律
例3:在磁感强度为B的均匀磁场中,通过一半径 为R的半圆导线中的电流为I。若导线所在平面与B 垂直,求该导线所受的安培力。 y 解:
dΦ BdS
0 I
ldx
安培环路定理
n B dl 0 I i i 1
一闭合路径的积分的值,等于 0 乘以该闭合路径 所包围的各电流的代数和.(注意电流强度的正负号)
即在真空的稳恒磁场中,磁感应强度 B 沿任
例1 求长直密绕螺线管内磁场 (已知 n I )
.
I
B dB l ro ctg 统 ro 一 o Idl sin d 变 dl 2 sin 4 r 2 量 o I (cos 1 cos 2 ) r ro / sin 4 ro
2 1
7
0 I (cos 1 cos 2 ) 有限长直导线激发的磁场: B 4a
Pm ISn
M(N) F1
(O)P
B
en
en与 I 成右螺旋
线圈所受 磁力矩:
M Pm B
•讨论:
=/2, =0,最大力矩Mmax=ISB =0, =BS,力矩M=0,稳定平衡 =, =-BS,力矩M=0,非稳定平衡
例:求磁场中非均匀带电圆盘所受磁力矩
根据等效结论
F 2 BIR
方向向上
I
x
下面举例4,5 ——非匀强磁场 中导线受力!需用微积分解决
三、磁场作用于载流线圈的磁力矩
F3=BIl1 sin BIl1 sin 向上 F4=BIl1 sin 向下
两者大小相等,方向相反,且在 同一直线上,故对于线圈来说, 它们二者的合力矩为零。
综述:m B S
B
m BS cos
c. 通过任一曲面的 磁通量 m B dS
S
S
n B
dS
n
B
S
3、说明
•对于闭合曲面,规定n的方向垂直于曲面向外 穿出时,磁通量为正(θ<π/2, cosθ>0) 穿入时,磁通量为负(θ>π/2, cosθ<0) •穿过曲面磁通量可直观地理解为穿过该面的磁感应线条数 •单位:韦伯(wb) 1Wb=1T· 2 m
dq dI T
0, B 0, B
dr
向外 向内
2 π rdr rdr 2π 0dI 0 dB dr 2r 2
B
0
2
R
0
dr
0 R
2
复 习
• 磁场
电 流
磁
电
流
运动电荷 磁 铁
运动电荷
场
磁
铁
• 毕奥-萨伐尔定律
l
B MN 0nMNI
B 0 nI
n 是匝数密度 无限长载流螺线管内部磁场处处相等 , 外部磁场 为零.且内部磁感应强度为 0
B nI
例2 求载流螺绕环内的磁场 (已知 n N I)
解 1) 对称性分析;环内 B 线为同心圆,环外 B 为零.
l B d l 2π RB 0 NI 0 NI B 2π R 令 L 2 πR B 0 NI L
解 1 ) 对称性分析螺旋管内为均匀场 , 方向沿 轴向, 外部磁感强度趋于零 ,即 B 0 .
2 ) 选回路
L.
M N +++ + + + ++++++ L O P
NO OP PM
磁场 B 的方向与
电流
B
I 成右螺旋.
MN
B d l B d l B d l B d l B d l
•磁感应线是环绕电流的无头尾的闭合曲线,无起点无终点; •磁感应线不相交。 •磁感应线与电流成右手关系
二、磁通量 磁场的高斯定理
(一) 磁通量 1.定义:通过磁场中某一曲面的磁感应线
的数目,定义为磁通量,用Ф表示。
2、计算(先考虑匀强场中的平面) b. S 跟B成 角 a. S垂直B
m BS
即
当
2)选回路(顺时针圆周) .
d
R
B 0 nI
2R d 时,螺绕环内可视为均匀场 .
★重要结论——等效结论
例3 无限长载流圆柱面电流的磁场,已知总电流强度为I
L1
r
R
I
L2
0 I 2π R
B
r
o R r
解 0 r R B d l B 2 r 0 B 0 L1 0 I r R L B d l B2 r 0 I B
求磁通量 :
例1 如图载流长直导线的电流为I , 试求通过矩 形面积的磁通量.(用微积分及磁通量定义式) 解:先取面积微元,
B
求其中的 d m ,再积分得 m 0 I B // S B 2π x
I
l
d1 d2
o
x
2π x 0 Il d2 dx Φ S B dS d1 2π x 0 Il d 2 Φ ln 2π d1
4
R
1 5 Pm kR 5
方向:垂直盘面向外
M Pm B
1 M kR 5 B 所以大小 5
方向 向上
*o
B 注意方向! 0
0 I
4 R2
0 I
4 R1
0 I
4π R1
例3 半径 为 R 的带电薄圆盘的电荷面密度 为 , 并以角速度 绕通过盘心垂直于盘面的轴转 动 ,求圆盘中心的磁感强度. 解:用叠加原理法——将圆盘视作大量圆线圈的叠加 等效圆线圈的电流强度 dI :
R o r
第八章
产生原因:
电流与磁场
本章研究真空中稳恒电流所激发的恒定磁场的物理性质。
•静止电荷产生——静电场(上学期内容)
•运动电荷(电流)产生——磁场
•稳恒电流产生的磁场不随时间变化——稳恒磁场
主要涉及概念:
•描述磁场性质的主要基本物理量——磁感应强度 •电流元产生磁场的基本方程——毕-萨(Biot-savart)定律 •磁场性质的基本方程——高斯定理与安培环路定理(律)
B
n B
n
Hale Waihona Puke (二)磁场的高斯定理1、内容
通过任意闭合曲面的磁通量必等于零。
B dS 0
2、解释
S
磁感应线是闭合的,因此 有多少条磁感应线进入闭 合曲面,就一定有多少条 磁感应线穿出该曲面。
S
B
B
3、说明
•磁场是无源场; 电场是有源场 •磁极相对出现,不存在磁单极; 单独存在正负电荷 人类对磁单极的探寻从未停止,一旦发现磁单极,将 改写电磁理论。
R
B
已知:
kr k 为常数) ( R . B . . 求: M
(用微积分法!先求总磁矩) 解:在带电圆盘上取半径 r ,宽 dr 的圆环 dq 2rdr
dr
r
o
B
dI dq 2 rdr 2 2
dP dI r m
2
1 5 P dP k r dr k R m m 5 0
l MN NO OP PM
=2 B l= 0 j l
故
B
0 j / 2
第九章
磁场对电流的作用
回旋加速器
§9-1 磁场对载流导线的作用
一、安培定律(电流元受力规律)
dF Idl B
dF IdlB sin
•对于有限长载流导线
dl
B
F Idl B
BP
0 I
4πa
I
o
a
* P
I
讨论
o
R
x
*
B
圆电流中轴线上磁场
x
B
0 IR
2
2 2 3
(x R )2 2
S
1) 无论 x>0 或 x<0,B与X轴同向 2)当 x = 0时,圆心处:
B
o I
2R
N
3)轴线以外的磁场较复杂,可定性给出 磁感应线, 电流与B线仍服从右手螺旋关系。
B E Bi E
i
0 Idl r dB 3 4π r
毕萨定律的矢量式
dB 方向为
Idl r
例 判断下列各点磁感应强度的方向
1无 8 2
7
Idl
R
6 5无 4
3
例1. 有限长直导线,其电流强度为I,求导线旁任意一点 P(距导线 ro )的磁感应强度 B? (已知P点与导线两端连 线与导线方向的夹角 1 2 ) y 解:根据毕—萨定律 2 取任意电流元 Idl ro P 计算其在P点产生的磁感应强度微元: o o Idl sin l r 方向向里 dB 2 4 r Idl 各电流元产生的 dB 方向都向里可直接积 1