超棒超快的数学心算方法)_

合集下载

超棒超快的数学心算方法

超棒超快的数学心算方法

超棒超快的数学心算方法文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]超棒超快的数学心算方法,让你从此不再用计算器_乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。

例:15×1715 + 7 = 225 × 7 = 35---------------255即15×17 = 255解释:15×17=15 ×(10 + 7)=15 × 10 + 15 × 7=150 + (10 + 5)× 7=150 + 70 + 5 × 7=(150 + 70)+(5 × 7)为了提高速度,熟练以后可以直接用“15 + 7”,而不用“150 + 70”。

例:17 × 1917 + 9 = 267 × 9 = 63即260 + 63 = 323二、个位是1的两位数相乘方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。

例:51 × 3150 × 30 = 150050 + 30 = 80------------------1580因为1 × 1 = 1 ,所以后一位一定是1,在得数的后面添上1,即1581。

数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。

例:81 × 9180 × 90 = 720080 + 90 = 170------------------7370------------------7371原理大家自己理解就可以了。

三、十位相同个位不同的两位数相乘被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。

例:43 × 46(43 + 6)× 40 = 19603 × 6 = 18----------------------1978例:89 × 87(89 + 7)× 80 = 76809 × 7 = 63----------------------7743四、首位相同,两尾数和等于10的两位数相乘十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。

超棒超快的数学心算办法)_

超棒超快的数学心算办法)_

超棒超快的数学心算方法,让你从此不再用计算器_乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。

例:15×1715 + 7 = 225 ×7 = 35---------------255即15×17 = 255解释:7370------------------7371原理大家自己理解就可以了。

三、十位相同个位不同的两位数相乘被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。

例:43 ×46(43 + 6)×40 = 19603 ×6 = 18----------------------1978例:89 ×87(89 + 7)×80 = 76809 ×7 = 63----------------------7743四、首位相同,两尾数和等于10的两位数相乘十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。

例:56 ×54“--得数的排序是右对齐,即向个位对齐。

这个原则很重要。

六、被乘数首尾相同,乘数首尾和是10的两位数相乘。

乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补。

例:66 ×37(3 + 1)×6 = 24--6 ×7 = 42----------------------2442例:99 ×19(1 + 1)×9 = 18--9 ×9 = 81----------------------1881七、被乘数首尾和是10,乘数首尾相同的两位数相乘与帮助6的方法相似。

两首位相乘的积加上乘数的个位数,得数作为前积,两尾数相乘,得数作为后积,没有十位补0。

例:46 ×994 ×9 + 9 = 45--6 ×9 = 54----------------------------------289参阅乘法速算中的“十位是1 的两位相乘”二、个位是1 的两位数的平方底数的十位乘以十位(即十位的平方),得为前积,底数的十位加十位(即十位乘以2),得数为后积,在个位加1。

超棒超快的数学心算方法

超棒超快的数学心算方法

超棒超快的数学心算方法This model paper was revised by LINDA on December 15, 2012.超棒超快的数学心算方法,让你从此不再用计算器_乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。

例:15×1715+7=225×7=35---------------255即15×17=255解释:15×17=15×(10+7)=15×10+15×7=150+(10+5)×7=150+70+5×7=(150+70)+(5×7)为了提高速度,熟练以后可以直接用“15+7”,而不用“150+70”。

例:17×1917+9=267×9=63即260+63=323二、个位是1的两位数相乘方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。

例:51×3150×30=150050+30=80------------------1580因为1×1=1,所以后一位一定是1,在得数的后面添上1,即1581。

数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。

例:81×9180×90=720080+90=170------------------7370------------------7371原理大家自己理解就可以了。

三、十位相同个位不同的两位数相乘被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。

例:43×46(43+6)×40=19603×6=18----------------------1978例:89×87(89+7)×80=76809×7=63----------------------7743四、首位相同,两尾数和等于10的两位数相乘十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。

超棒超快地数学心算方法)_

超棒超快地数学心算方法)_

超棒超快的数学心算方法,让你从此不再用计算器_乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。

例:15×1715 + 7 = 225 ×7 = 35---------------255即15×17 = 255解释:15×17=15 ×(10 + 7)=15 ×10 + 15 ×7=150 + (10 + 5)×7=150 + 70 + 5 ×7=(150 + 70)+(5 ×7)为了提高速度,熟练以后可以直接用“15 + 7”,而不用“150 + 70”。

例:17 ×1917 + 9 = 267 ×9 = 63即260 + 63 = 323二、个位是1的两位数相乘方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。

例:51 ×3150 ×30 = 150050 + 30 = 80------------------1580因为1 ×1 = 1 ,所以后一位一定是1,在得数的后面添上1,即1581。

数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。

例:81 ×9180 ×90 = 720080 + 90 = 170------------------7370------------------7371原理大家自己理解就可以了。

三、十位相同个位不同的两位数相乘被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。

例:43 ×46(43 + 6)×40 = 19603 ×6 = 18----------------------1978例:89 ×87(89 + 7)×80 = 76809 ×7 = 63----------------------7743四、首位相同,两尾数和等于10的两位数相乘十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。

心算秘籍_快速算数_心算方法

心算秘籍_快速算数_心算方法

1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。

例:12×14=?解: 1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。

2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。

例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。

3.第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。

例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位。

4.几十一乘几十一:口诀:头乘头,头加头,尾乘尾。

例:21×41=?解:2×4=82+4=61×1=121×41=8615.11乘任意数:口诀:首尾不动下落,中间之和下拉。

例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。

6.十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。

例:13×326=?解:13个位是33×3+2=113×2+6=123×6=1813×326=4238注:和满十要进一。

末同首和十就是相乘的两个数字,个位数完全相同,十位数相加之和刚好为10,举例来说,45×65,两数个位都是5,十位数4+6的结果刚好等于10。

首同末和十就是指两个数字相乘,十位数相同,个位数相加之和为10,67×63,7×3=21,这21就是得数的后两位;6×(6+1)=6×7=42,这42就是得数的前两位,综合起来,67×63=4221它的计算法则是,两数相同的各位数之积为得数的后两位数,不足10的,在十位上补0;两数十位数相乘后加上相同的个位数,结果就是得数的百位和千位数。

心算秘籍快速算数心算方法

心算秘籍快速算数心算方法

1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。

例:12×14=?解: 1×1=1  2+4=6 2×4=8 12×14=168 注:个位相乘,不够两位数要用0占位。

2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。

例:23×27=?解:2+1=32×3=63×7=21  23×27=621 注:个位相乘,不够两位数要用0占位。

3.第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。

例:37×44=?解:3+1=4  4×4=16 7×4=2837×44=1628注:个位相乘,不够两位数要用0占位。

4.几十一乘几十一:口诀:头乘头,头加头,尾乘尾。

例:21×41=?解:2×4=82+4=61×1=121×41=8615.11乘任意数:口诀:首尾不动下落,中间之和下拉。

例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。

6.十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。

例:13×326=?解:13个位是33×3+2=113×2+6=123×6=1813×326=4238注:和满十要进一。

数字心算最快的方法

数字心算最快的方法

数字心算最快的方法:1、十几乘十几:口诀:头乘头,尾加尾,尾乘尾。

例:12×14=?解: 1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。

2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。

例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。

3、第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。

例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位。

4、几十一乘几十一:口诀:头乘头,头加头,尾乘尾。

例:21×41=?解:2×4=82+4=61×1=121×41=8615、11乘任意数:口诀:首尾不动下落,中间之和下拉。

例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。

6、十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。

例:13×326=?解:13个位是33×3+2=113×2+6=123×6=1813×326=4238注:和满十要进一。

心算数学最快的方法

心算数学最快的方法
4.条形图法
条形图法是指将数字绘制成简单的条形图,并通过比较长度来进行计算。例如,问题是"32+17",我们可以在纸上绘制两个长度分别为32和17的条形,然后将它们放在一起,通过观察条形的总长度来得出结果。
5.快速乘法法则
快速乘法法则是指利用数值的特点和乘法法则来进行快速计算。例如,问题是"27×8",我们可以将8分解为5+3,然后分别计算27×5和27×3,最后将两个结果相加。这种方法在进行大数字乘法时特别有用。
心算数学最快的方法
心算是指不借助任何工具,纯凭头脑进行计算的方法。我们可以通过一些技巧和策略来提高心算速度。以下是一些心算数学最快的方法:
1.固定基数法
固定基数法是指将计算问题中一些数固定为一个基数,然后对其他数进行相对计算。例如,如果问题是"48+25+13",我们可以将48固定为基数,然后计算25+13+48、这种方法减少了头脑中需要同时保存多个数字的负担,简化了计算过程。
2.四舍五入法
四舍五入法可以在计算过程中快速估算数值。例如,问题是"37+19",我们可以四舍五入为40+20=60来快速计算结果。这种方法在加减法中特别有用。
3.数字转化法
数字转化法是指将复杂的计算问题转化为更简单的形式。例如,问题是"48×32",我们可以将32转化为30+2,然后计算48×30和48×2,最后将两个结果相加。这种方法可以将复杂的乘法问题简化为基本的加法和乘法问题。
-灵活运用估算:利用Байду номын сангаас算来验证答案或者加速计算,可以减少不必要的计算步骤和时间消耗。
最后,提高心算速度需要不断的练习和耐心。通过使用这些方法和技巧,并结合个人的实践和经验,可以逐渐提高心算能力,快速准确地进行数学计算。

数学快速心算方法

数学快速心算方法

数学快速心算方法1、十几乘十几口诀:头乘头、尾加尾、尾乘尾。

例如:12×14=?解:1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。

2、头相同,尾互补(尾相加等于10)口诀:一个头加1后,头乘头,尾乘尾。

例如:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。

3、第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。

例如:37×44=?解:3+1=44×4=164×4=2837×44=1628注:个位相乘,不够两位数要用0占位。

4、几十一乘几十一:口诀:头乘头,头加头,尾乘尾。

例如:21×41=?解:2×4=82+4=61×1=121×41=8615、11乘任意数:口诀:首尾不动下落,中间之和下拉。

例如:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。

6、十几乘任意数:口诀:第二乘数首位不动下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,在向下落。

例如:13×326=?解:13个位是33×3+2=113×2+6=123×6=1813×326=4238注:和满十要进一。

小学二(2)班班规一、安全方面1、每天课间不能追逐打闹。

2、中午和下午放学要结伴回家。

3¡¢公路上走路要沿右边走,过马路要注意交通安全。

4¡¢不能在上学路上玩耍、逗留。

二、学习方面1、每天到校后,不允许在走廊玩耍打闹,要进教室读书。

2、每节课铃声一响,要快速坐好,安静地等老师来上课。

超棒超快的数学心算方法完整版

超棒超快的数学心算方法完整版

超棒超快的数学心算方法完整版数学心算方法是指在脑海中进行数学运算的能力,它可以帮助人们迅速准确地解决数学问题。

在这篇文章中,我将介绍一些超棒超快的数学心算方法,帮助你提升运算速度和准确性。

1.快速加法:-利用十进位数的相加,例如:57+38=(50+30)+(7+8)=80+15=95 -利用补数相加,例如:57+38=(57+2)+(38-2)=59+36=95-利用相差法,例如:57+38=57+40-2=97-2=952.快速减法:-利用十进位数的相减,例如:83-29=(80-20)+(3-9)=60-6=54 -利用补数相减,例如:83-29=(83-1)-(29+1)=82-30=52-利用相差法,例如:83-29=83-30+1=53+1=543.快速乘法:-利用十进位数的相乘,例如:34×23=(30×20)+(4×20)+(30×3)+(4×3)=600+80+90+12=782-利用分解法,例如:34×23=(30+4)×23=(30×23)+(4×23)=690+92=782-利用近似法,例如:34×23≈30×23=690。

4.快速除法:-利用估算法,例如:430÷8≈400÷8=50。

-利用倍数法,例如:430÷8=(400÷8)+(30÷8)=50+3.75=53.755.快速平方:-利用公式法,例如:23²=(20+3)²=(20²)+(2×20×3)+(3²)=400+120+9=529-利用近似法,例如:23²≈20²=400。

6.快速立方:-利用近似法,例如:23³≈20³=8000。

除了以上的数学运算方法,还有一些通用的数学技巧可以帮助加快心算速度:1.使用近似值:将复杂的数进行适当的近似,可以减少心算过程中的计算量,提高速度。

心算秘诀全集

心算秘诀全集

心算秘诀 1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。

例:12×14=?解: 1×1=1 2+4=62×4=8 12×14=168 注:个位相乘,不够两位数要用 0 占位。

2.两位数头相同,尾互补(尾相加等于 10):口诀:一个头加1后,头乘头,尾乘尾。

例:23×27=?解:2+1=32×3=63×7=21 23×27=621 注:个位相乘,不够两位数要用 0 占位。

3.两位数第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。

例:37×44=?解:3+1=4 4×4=16 7×4=28 37×44=1628 注:个位相乘,不够两位数要用 0 占位。

4.几十一乘几十一:口诀:头乘头,头加头,尾乘尾。

例:21×41=?解:2×4=8 2+4=6 1×1=1 21×41=861 5.11 乘任意数:口诀:首尾不动下落,中间之和下拉。

例:11×23125=?解:2+3=5 3+1=4 1+2=3 2+5=7 2 和 5 分别在首尾 11×23125=254375 注:和满十要进一。

6.十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。

例:13×326=?解:13 个位是 3 3×3+2=11 3×2+6=12 3×6=18 13×326=4238 注:和满十要进一。

教育专家给家长的 100 条建议!!!(建议永久保存)教育篇: 1.每天花半个小时和孩子交流。

2.和孩子在家也要使用文明用语,“早上好,请,谢谢,晚安”等等。

3.让孩子养成爱卫生的好习惯。

4.多听听孩子的声音!——用耐心、用爱心、用开心,心是长着眼睛的! 5.不要为了提醒孩子,而总是揭孩子的伤疤。

数学快速心算方法

数学快速心算方法

数学快速心算方法1、十几乘十几口诀:头乘头、尾加尾、尾乘尾。

例如:12×14=?解:1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。

2、头相同,尾互补(尾相加等于10)口诀:一个头加1后,头乘头,尾乘尾。

例如:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。

3、第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。

例如:37×44=?解:3+1=44×4=164×4=2837×44=1628注:个位相乘,不够两位数要用0占位。

4、几十一乘几十一:口诀:头乘头,头加头,尾乘尾。

例如:21×41=?解:2×4=82+4=61×1=121×41=8615、11乘任意数:口诀:首尾不动下落,中间之和下拉。

例如:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。

6、十几乘任意数:口诀:第二乘数首位不动下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,在向下落。

例如:13×326=?解:13个位是33×3+2=113×2+6=123×6=1813×326=4238注:和满十要进一。

(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。

可复制、编制,期待你的好评与关注)。

心算秘籍快速算数心算方法

心算秘籍快速算数心算方法

心算秘籍快速算数心算方法心算是指在心中进行计算的一种方法,而快速心算则是指在较短的时间内完成较复杂的计算。

快速心算能力不仅可以提高计算的效率,还可以训练大脑的思维能力和记忆力。

下面将介绍一些常用的心算秘籍和快速心算方法,帮助您提高心算能力。

一、乘法的心算方法1.近似法当计算两个较大的数相乘时,可以使用近似法进行心算。

例如,计算38×57时,可以分解为(30+8)×57=30×57+8×57,然后计算两部分的结果,最后相加即可。

2.跳着算法有时候需要计算一个数乘以一些数字的时候,可以利用跳着算法进行心算。

例如,计算39×8时,可以先计算39×10,然后再减去39×2得到结果。

3.十位数的技巧当计算两个十位数相乘时,可以利用以下技巧进行心算。

例如,计算47×38时,可以计算两个十位数的乘积(40×30=1200),然后计算个位数的乘积(40×8+7×30=320+210=530),最后相加得到结果(1200+530=1730)。

二、除法的心算方法1.估算法当计算两个较大的数相除时,可以使用估算法进行心算。

例如,计算827÷19时,可以先估算出结果在40左右,然后根据这个估算结果进行调整。

2.近似法当计算一个数除以一些数字的时候,可以利用近似法进行心算。

例如,计算837÷37时,可以先计算两个近似的数的商,然后再进行适当的调整。

三、加法和减法的心算方法1.进位运算在进行加法计算时,可以利用进位运算进行心算。

例如,计算768+598时,可以先进行个位数的相加(8+8=16),然后进位(1),接着进行十位数的相加(6+9+1=16),继续进位(1),最后进行百位数的相加(7+5+1=13)得到结果。

2.集中法在进行减法计算时,可以利用集中法进行心算。

例如,计算986-324时,可以从个位数开始逐位相减,得到结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超棒超快的数学心算方法,让你从此不再用计算器_乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。

例:15×1715 + 7 = 225 ×7 = 35---------------255即15×17 = 255解释:15×17=15 ×(10 + 7)=15 ×10 + 15 ×7=150 + (10 + 5)×7=150 + 70 + 5 ×7=(150 + 70)+(5 ×7)为了提高速度,熟练以后可以直接用“15 + 7”,而不用“150 + 70”。

例:17 ×1917 + 9 = 267 ×9 = 63即260 + 63 = 323二、个位是1的两位数相乘方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最例:51 ×3150 ×30 = 150050 + 30 = 80------------------1580因为1 ×1 = 1 ,所以后一位一定是1,在得数的后面添上1,即1581。

数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。

例:81 ×9180 ×90 = 720080 + 90 = 170------------------7370------------------7371原理大家自己理解就可以了。

三、十位相同个位不同的两位数相乘被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。

例:43 ×46(43 + 6)×40 = 19603 ×6 = 18----------------------例:89 ×87(89 + 7)×80 = 76809 ×7 = 63----------------------7743四、首位相同,两尾数和等于10的两位数相乘十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。

例:56 ×54(5 + 1) ×5 = 30--6 ×4 = 24----------------------3024例: 73 ×77(7 + 1) ×7 = 56--3 ×7 = 21----------------------5621例: 21 ×29(2 + 1) ×2 = 6--1 ×9 = 9----------------------609“--”代表十位和个位,因为两位数的首位相乘得数的后面是两个零,请大家明白,不要忘了,这点是很容易被忽略的。

五、首位相同,尾数和不等于10的两位数相乘两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。

例:56 ×585 ×5 = 25--(6 + 8 )×5 = 7--6 ×8 = 48----------------------3248得数的排序是右对齐,即向个位对齐。

这个原则很重要。

六、被乘数首尾相同,乘数首尾和是10的两位数相乘。

乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补。

例:66 ×37(3 + 1)×6 = 24--6 ×7 = 42----------------------2442例:99 ×19(1 + 1)×9 = 18--9 ×9 = 81----------------------1881七、被乘数首尾和是10,乘数首尾相同的两位数相乘与帮助6的方法相似。

两首位相乘的积加上乘数的个位数,得数作为前积,两尾数相乘,得数作为后积,没有十位补0。

例:46 ×994 ×9 + 9 = 45--6 ×9 = 54-------------------4554例:82 ×338 ×3 + 3 = 27--2 ×3 = 6-------------------2706八、两首位和是10,两尾数相同的两位数相乘。

两首位相乘,积加上一个尾数,得数作为前积,两尾数相乘(即尾数的平方),得数作为后积,没有十位补0。

例:78 ×387 ×3 + 8 = 29--8 ×8 = 64-------------------例:23 ×832 ×8 +3 = 19--3 ×3 = 9--------------------1909B、平方速算一、求11~19 的平方底数的个位与底数相加,得数为前积,底数的个位乘以个位相乘,得数为后积,满十前一。

例:17 ×1717 +7 = 24-7 ×7 = 49---------------289参阅乘法速算中的“十位是1 的两位相乘”二、个位是1 的两位数的平方底数的十位乘以十位(即十位的平方),得为前积,底数的十位加十位(即十位乘以2),得数为后积,在个位加1。

例:71 ×717 ×7 = 49--7 ×2 = 14------------------参阅乘法速算中的“个位数是1的两位数相乘”三、个位是5 的两位数的平方十位加1 乘以十位,在得数的后面接上25。

例:35 ×35(3 + 1)×3 = 12--25----------------------1225四、21~50 的两位数的平方在这个范围内有四个数字是个关键,在求25~50之间的两数的平方时,若把它们记住了,就可以很省事了。

它们是:21 ×21 = 44122 ×22 = 48423 ×23 = 52924 ×24 = 576求25~50 的两位数的平方,用底数减去25,得数为前积,50减去底数所得的差的平方作为后积,满百进1,没有十位补0。

例:37 ×3737 - 25 = 12--(50 - 37)^2 = 169----------------------1369注意:底数减去25后,要记住在得数的后面留两个位置给十位和个位。

例:26 ×2626 - 25 = 1--(50-26)^2 = 576-------------------676C、加减法一、补数的概念与应用补数的概念:补数是指从10、100、1000……中减去某一数后所剩下的数。

例如10减去9等于1,因此9的补数是1,反过来,1的补数是9。

补数的应用:在速算方法中将很常用到补数。

例如求两个接近100的数的乘法或除数,将看起来复杂的减法运算转为简单的加法运算等等。

D、除法速算一、某数除以5、25、125时1、被除数÷ 5= 被除数÷(10 ÷2)= 被除数÷10 ×2= 被除数×2 ÷102、被除数÷25= 被除数×4 ÷100= 被除数×2 × 2 ÷1乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。

例:15×1715 + 7 = 225 ×7 = 35---------------255即15×17 = 255解释:15×17=15 ×(10 + 7)=15 ×10 + 15 ×7=150 + (10 + 5)×7=150 + 70 + 5 ×7=(150 + 70)+(5 ×7)为了提高速度,熟练以后可以直接用“15 + 7”,而不用“150 + 70”。

例:17 ×1917 + 9 = 267 ×9 = 63即260 + 63 = 323二、个位是1的两位数相乘方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。

例:51 ×3150 ×30 = 150050 + 30 = 80------------------1580因为1 ×1 = 1 ,所以后一位一定是1,在得数的后面添上1,即1581。

数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。

例:81 ×9180 ×90 = 720080 + 90 = 170------------------7370------------------7371原理大家自己理解就可以了。

三、十位相同个位不同的两位数相乘被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。

例:43 ×46(43 + 6)×40 = 19603 ×6 = 18----------------------1978例:89 ×87(89 + 7)×80 = 76809 ×7 = 63----------------------7743四、首位相同,两尾数和等于10的两位数相乘十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。

例:56 ×54(5 + 1) ×5 = 30--6 ×4 = 24----------------------3024例: 73 ×77(7 + 1) ×7 = 56--3 ×7 = 21----------------------5621例: 21 ×29(2 + 1) ×2 = 6--1 ×9 = 9----------------------609“--”代表十位和个位,因为两位数的首位相乘得数的后面是两个零,请大家明白,不要忘了,这点是很容易被忽略的。

五、首位相同,尾数和不等于10的两位数相乘两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。

例:56 ×585 ×5 = 25--(6 + 8 )×5 = 7--6 ×8 = 48----------------------3248得数的排序是右对齐,即向个位对齐。

相关文档
最新文档