锂离子电池隔膜及粘结剂基础知识

合集下载

最新锂电池隔膜基础知识

最新锂电池隔膜基础知识

精品文档.电池隔离膜1.功用:(1)阻隔电池正负极2)让离子电流(ionic current )通过,但阻力要尽可能地小。

因此,吸收电解液之后所表现出来的离子导电度便与(1)隔离膜孔隙度(porosity )、(2)孔洞弯曲度(tortuosity )、(3)电解液导电度、(4)隔离膜厚度、及(5)电解液对隔离膜的润湿程度等因素有关系隔离膜的引入而对离子传导所额外产生之电阻,应该是隔离膜吸收电解液之后的电阻减去与隔离膜相同面积和厚度之纯电解液的电阻,亦即R (隔离膜) = R (隔离膜 +电解液) – R (电解液) 电阻R 的定义为:Aσ1R ⨯=( 是离子传导途径的长度,A 是离子传导的有效面积,σ是离子导电度(比电阻ρ的倒数))多孔薄膜的孔洞弯曲度d s T =s 是离子经由隔离膜所必须行经之长度,d 则是隔离膜的厚度。

多孔薄膜的孔隙度P 之定义为孔洞的体积和隔离膜外观几何体积的比值Ad A P s s =(其中A s 代表隔离膜负责离子传导的有效面积)所以得T P A A s ⨯= ⎪⎪⎭⎫ ⎝⎛-⨯=1 R 2P T R 電解液隔離膜 吸收了电解液之后的隔离膜,其电阻是原先没有隔离膜存在时的 (T 2/P) 倍。

当孔洞弯曲度T 愈大,薄膜孔隙度P 愈小时,隔离膜的电阻就愈大2. 隔离膜之材质与制备隔离膜具多孔性的结构,孔径范围约在0.1 μm 或100 nm ,表面积非常大,受到电解液侵蚀的机率也当然跟着提高,材料的选择重要。

材质有塑料类、玻璃类、和纤维素(cellulose )类等,以塑料类为最大宗,最常见的有聚氯乙烯(polyvinyl chloride ;PVC )、聚醯胺(polyamide )、聚乙烯(polyethylene ;PE )、及聚丙烯(polypropylene ;PP )。

塑料类隔离膜之所以应用地最广,除了是因为它比较易于控制厚度之外,也跟1960年代开始日益成熟的高分子科学及加工技术有密不可分的关系.目前, 商业化的锂离子电池都是采用聚烯烃类(polyolefin )的多孔高分子薄膜(如表1.1)作为隔离膜,有的是PP ,有的是PE ,也有用PP/PE/PP 三层合一的。

锂离子电池隔膜基础知识培训手册

锂离子电池隔膜基础知识培训手册

●有一定的保护电池安全的能力。

2、隔膜机理隔膜中具有大量曲折贯通的微孔,电解液中的离子载体可以在微孔中自由通过,在正负极之间迁移形成电池内部导电回路,而电子则通过外部回路在正负电极之间迁移形成电流,供用电设备利用。

(四)锂离子电池隔膜的主要用途各种液态锂离子电池,如手机电池、便携式DVD电池、笔记本电脑电池、电动工具电池、GPS电池、电动车和储能装置电池等。

聚烯烃隔膜原料和生产原理(一)聚烯烃隔膜分类分类方法按材料分类按工艺分类按结构分类种类PP、PE、PP/PE复合干法、湿法单层PP、P E 多层PP、P E 三层PP/PE/P P(二)聚烯烃隔膜的主要原料隔膜使用的聚烯烃材料目前主要是聚丙烯(PP)、聚乙烯(P E )两类。

聚烯烃材料具有强度高、耐酸碱腐蚀性好、防水、耐化学试剂、生物相容性好、无毒性等优点,在众多领域得到了广泛的应用。

当前,商品化的液态锂离子电池大多使用微孔聚烯烃隔膜,因为聚烯烃化合物在合理的成本范围内可以提供良好的机械性能和化学稳定性,而且具有高温自闭性能,更加确保了锂离子二次电池在日常使用上的安全性。

(三)聚烯烃隔膜的主要生产方法1、热致相分离法(湿法—TIPS)利用高分子材料和特定的溶剂在高温条件下完全相容,冷却后产生相分离的特性,使溶剂相连续贯穿于聚合物相形成的连续固态相中,经过拉伸扩孔后,将溶剂萃取后在聚合物相中形成微孔。

在目前湿法隔膜制造过程中,通常将聚烯烃树脂原料和一些其它低分子量的物质同混合,加热熔融混合均匀、经挤出拉伸成膜,再用易挥发溶剂把低分子物质抽提出来,形成微孔膜。

2、熔融拉伸法(干法—MSCS)熔融拉伸法的制备原理是,高聚物熔体挤出时在拉伸应力作用冷却下结晶,形成平行排列的结晶结构,经过热处理后的薄膜在拉伸后晶体之间分离而形成狭缝状微孔,再经过热定型制得微孔膜。

在聚丙烯微孔膜制备中除了拉开片晶结构外,还可以通过在聚合物中添加结晶成核剂,形成特定的β晶型,然后在双向拉伸过程中发生β晶型向α晶型转变,晶体体积收缩产生微孔。

锂电池隔膜基础知识

锂电池隔膜基础知识

.电池隔离膜1.功用:(1)阻隔电池正负极2)让离子电流(ionic current )通过,但阻力要尽可能地小。

因此,吸收电解液之后所表现出来的离子导电度便与(1)隔离膜孔隙度(porosity )、(2)孔洞弯曲度(tortuosity )、(3)电解液导电度、(4)隔离膜厚度、及(5)电解液对隔离膜的润湿程度等因素有关系隔离膜的引入而对离子传导所额外产生之电阻,应该是隔离膜吸收电解液之后的电阻减去与隔离膜相同面积和厚度之纯电解液的电阻,亦即R (隔离膜) = R (隔离膜 +电解液) – R (电解液) 电阻R 的定义为:Aσ1R ⨯=( 是离子传导途径的长度,A 是离子传导的有效面积,σ是离子导电度(比电阻ρ的倒数))多孔薄膜的孔洞弯曲度ds T =s 是离子经由隔离膜所必须行经之长度,d 则是隔离膜的厚度。

多孔薄膜的孔隙度P 之定义为孔洞的体积和隔离膜外观几何体积的比值Ad A P s s =(其中A s 代表隔离膜负责离子传导的有效面积)所以得T P A A s ⨯= ⎪⎪⎭⎫ ⎝⎛-⨯=1 R 2P T R 電解液隔離膜 吸收了电解液之后的隔离膜,其电阻是原先没有隔离膜存在时的 (T 2/P) 倍。

当孔洞弯曲度T 愈大,薄膜孔隙度P 愈小时,隔离膜的电阻就愈大2. 隔离膜之材质与制备隔离膜具多孔性的结构,孔径范围约在0.1 μm 或100 nm ,表面积非常大,受到电解液侵蚀的机率也当然跟着提高,材料的选择重要。

材质有塑料类、玻璃类、和纤维素(cellulose )类等,以塑料类为最大宗,最常见的有聚氯乙烯(polyvinyl chloride ;PVC )、聚醯胺(polyamide )、聚乙烯(polyethylene ;PE )、及聚丙烯(polypropylene ;PP )。

塑料类隔离膜之所以应用地最广,除了是因为它比较易于控制厚度之外,也跟1960年代开始日益成熟的高分子科学及加工技术有密不可分的关系.目前, 商业化的锂离子电池都是采用聚烯烃类(polyolefin )的多孔高分子薄膜(如表1.1)作为隔离膜,有的是PP ,有的是PE ,也有用PP/PE/PP 三层合一的。

锂离子电池常用的粘结剂的种类作用及性能

锂离子电池常用的粘结剂的种类作用及性能

锂离子电池常用的粘结剂的种类作用及性能锂离子电池是一种常见的充电式电池,由于其高能量密度、轻量化等优势,在移动电子设备、电动汽车等领域得到广泛应用。

粘结剂是锂离子电池中重要的组分之一,主要用于固定电池正负极材料及电解质层,以提高电池的结构强度和电池性能。

下面将介绍锂离子电池中常用的粘结剂种类、作用及性能。

1.聚乙烯醇(PVA)聚乙烯醇是一种常用的粘结剂,其优点是成本低、水溶性好。

在锂离子电池中,PVA主要用于固定电极材料和电解质之间的粘结,可以提高电池的结构强度和耐高温性能。

2.聚乙烯酮(PVP)聚乙烯酮是一种高分子聚合物,可以作为锂离子电池的粘结剂。

它具有良好的粘结性能和高温稳定性,可以有效提高电池的充放电性能和循环寿命。

3.聚甲基丙烯酸酯(PMMA)聚甲基丙烯酸酯是一种高分子有机化合物,具有良好的粘结性能和热稳定性。

在锂离子电池中,PMMA主要用于固定电池正负极材料,可以提高电池的机械强度和抗振动性能。

4.聚偏氟乙烯(PVDF)聚偏氟乙烯是一种常用的粘结剂,其耐高温、耐腐蚀、电绝缘等性能使其在锂离子电池中表现出色。

PVDF可与电极材料有效结合,提高电池的结构强度和循环寿命。

5.纳米硅胶纳米硅胶是一种集合了硅胶和纳米技术的新型材料,具有较大的比表面积和孔隙结构。

在锂离子电池中,纳米硅胶可以作为粘结剂使用,与电极材料结合,增加电池的结构强度和电池的能量密度。

总的来说,锂离子电池常用的粘结剂种类包括聚乙烯醇、聚乙烯酮、聚甲基丙烯酸酯、聚偏氟乙烯和纳米硅胶等。

不同的粘结剂具有不同的优点和适用场景,可以提高锂离子电池的结构强度、耐高温性能、循环寿命等方面的性能。

在锂离子电池的发展过程中,粘结剂的选择和性能优化将继续为电池的发展做出重要贡献。

锂离子电池隔膜基础知识

锂离子电池隔膜基础知识

收卷
湿法工艺流程图
在线测厚
3.隔膜的市场情况
3.1市场的发展趋势
从体体积积上上
小体积 隔膜厚度越薄越好
手机、 数码相机等
大体积 隔膜厚度有一定的要求
电动自行车、 电动汽车
3.隔膜的市场情况
电池隔膜的研究重点:开发制造工艺简单、制造成本低的途径,这对于提高电池
性能和降低电池成本具有重要的实际意义,最终要使产品的孔径尺寸适当、孔隙率 高、机械强度能满足要求。
通道畅通无阻,而且在电池体系中,不可避免的会有大量的副反应发生,消耗大量的电解液,
所以必须有足够的贮备,否则就会由于电解液的缺少引起界面电阻的增加,同时还会加速电解
液的消耗,这将是恶性的循环,所以吸液率是个很重要的隔膜参数。
pcuptake (M2 M1) M1
式中 M1—浸泡后质量(g); M2—干膜质量(g)
电池隔膜发展的趋势:要求有较高的孔隙率和抗撕裂强度、较低的电阻、较好的
抗酸碱能力和良好的弹性等。
电池隔膜具有高附加值:聚丙烯原料的价格为8000元/吨,加工成隔膜后为300
万元/吨。
3.2生产隔膜企业介绍
1.美国Celgard公司 Celgard公司成立于1981年,注册资本2亿
美金,全球共分四个事业部,电池隔膜事业 部2007年全球总销售金额为8.5亿美金。 Celgard持有干法单向拉伸制造工艺的专利, 并且有MBI、BYD两大客户的支持,成为干 法聚烯烃隔膜的领跑者。
原理:熔融挤出/拉伸/热定型法的制备原理是聚合物熔体在高应力场下结晶,
形成具有垂直于挤出方向而又平行排列的片晶结构,然后经过热处理得到弹性材料。 具有硬弹性的聚合物膜拉伸后片晶之间分离,并出现大量微纤,由此而形成大量的 微孔结构,再经过热定型即制得微孔膜。

锂离子电池粘结剂选择难题,终于有人能讲明白了

锂离子电池粘结剂选择难题,终于有人能讲明白了

锂离子电池粘结剂选择难题,终于有人能讲明白了粘结剂是锂离子电池极片的重要组成材料之一,是将电极片中活性物质和导电剂粘附在电极集流体上的高分子化合物,具有增强活性材料、导电剂和集流体间接触性以及稳定极片结构的作用,是锂离子电池材料中技术含量较高的附加材料。

研究表明,虽然粘结剂在电极片中用量较少,但粘结剂性能的优劣直接影响电池的容量、寿命及安全性。

1.正极binder---PVDF•聚偏氟乙烯PVDF(Poly-vinylidene fluoride)主要是指偏氟乙烯均聚物、偏氟乙烯与其他化合物的共聚物。

•PVDF是结晶性聚合物,结晶度一般为50%左右,熔融温度在140-180 ℃之间。

•由于C-F键长短,键能高(486kJ/mol) ,故PVDF具有良好的抗氧化性、耐化学腐蚀性、耐高温性,特别是在碳酸酯类溶剂( EC、DEC、DMC 等)中稳定性好。

1.1 PVDF主要种类•均聚类PVDF,是VF2的均聚物,如HSV900, 5130等;•共聚物类PVDF,主要使用的是VF2(偏二氟乙烯)/HFP(六氟丙烯)的共聚物,如2801,LBG等。

1.2 PVDF合成方法通常由偏氟乙烯通过悬浮聚合或乳液聚合而成,反应方程式如下所示:CH2=CF2→(CH2CF2)n1.3 分子量对PVDF的影响•不同聚合度的VDF均聚物,其熔点温度差异不大;但PVDF分子量的大小会影响其在溶剂中的溶解难易程度。

•在一定分子量范围内,分子量的提高有助于粘结力和内聚力的提高;l改性对PVDF结晶度/溶胀度影响•掺杂的-HFP量越多,其结晶度越低,导致熔点相应降低;•结晶度降低,聚合物溶胀程度增大(甚至溶解)。

1.4 PVDF面临的问题与挑战过高分子量(>150W)对粘结力的提升效果不明显,但会造成更难溶解2. 负极binder---SBRSBR(丁苯橡胶乳液)由丁二烯及苯乙烯两种单体经自由基乳液聚合而成。

常用的锂离子电池SBR粘结剂除上述两种单体外,通常都引入了新的功能单体,用以提高其离子电导率或粘附力。

锂离子电池隔膜基础知识

锂离子电池隔膜基础知识
挤出混合系统是薄膜生产的核心环 节之一。挤出混合的好坏,直接影 响到后续工序的生产和最终的产品 质量。挤出混合需要满足如下的要 求:(1)能够具备较强的剪切塑化 能力,让主料快速、均匀的塑化; (2)能够产生很好的混合效果,让 主料与成孔剂均匀混合: (3)能够 让物料与挤出机之、司不打滑、不 倒流、能够稳定进料。
6.洗涤烘干系统
湿 法 生 产 流锂 程离 分子 解电 池 隔 膜
洗涤过程就是溶剂(萃取剂)萃取成 孔剂,溶剂取代成孔剂剂位置的过 程;而烘干过程就是加快萃取剂 的挥发,空气取代萃取剂位置的过 程,当然烘干过程也是萃取剂循环 回收的过程。经过洗涤烘干后的薄 膜由透明变成了白色,这说明锂离 子隔膜的微孔已经形成了。

隔膜是一种具有纳米级微孔的 高分子功能材料。也叫电池隔 膜、隔膜纸、多孔膜、离子交 换膜、分离膜、离子渗透膜等。 生产方法:湿法、干法(单项 拉伸、吹膜法、双向拉伸)
隔 膜 及 制 法 介 绍

湿 法 介 绍
湿法也叫热致相分离法(TIPS),或 者溶剂萃取成孔法,其化学原理是 相分离。 基本过程是指在高温下将 聚合物溶于高沸点、低挥发性的溶 剂中形成均相液,然后降温冷却, 导致溶液产生液-固相分离或液- 液相分离,再选用挥发性试剂将高 沸点溶剂萃取出来,经过干燥获得 一定结构形状的高分子微孔膜。 湿法生产的特点是产品均匀性好, 安全性好 ,机械性能良好,孔曲折 度高。
和均一的电流密度,微孔在 整个隔膜材
料中的分布应当均匀。孔径的大小与分 布的均一性对电池性能有直接的影响: 孔径太大,容易使正负极直接接触或易 被锂枝晶刺穿而造成短路;孔径太小 则
会增大电阻。微孔分布不匀,工作时会
形成局部电流过大,影响电池的性能。
(3)孔隙率。孔隙率对膜的透过性和电

锂离子电池隔膜基础

锂离子电池隔膜基础

锂离子电池隔膜基础
隔膜在锂离子电池中起着非常重要的作用,它是电解液在阳极和阴极间的隔离物,允许正负电流通过,但又阻止它们的完全混合。

隔膜的性能会对电池的性能产生非常重要的影响,它必须具有良好的稳定性、良好的水分保护,同时还应具有良好的导电性和柔性。

隔膜的主要功能是防止电解质的渗透,保持正负极的电离状态,并能够有效地抵抗电池内部的氧的析出。

隔膜应具有柔软性,可以使电极表面平坦,无缺洞,并且能够有效地抑制电池内的氢气充放。

隔膜的常见材料有聚合物、金属薄膜和纳米纤维。

1.聚合物隔膜
聚合物隔膜是目前应用最广泛的类型,它的主要成分是石墨烯、碳纳米管、聚酰胺和乙烯基丙烯酸酯。

石墨烯和碳纳米管具有很好的导电性和绝缘性,对电解液渗透具有一定的阻挡性。

聚酰胺和乙烯基丙烯酸酯具有良好的柔韧性,以及很好的抗拉强度和抗撕裂性能,可以提高隔膜的耐湿性能。

2.金属薄膜隔膜
金属薄膜主要由铝、锌、锡和铜等金属组成,它具有较高的导电性,可以有效防止电解液的渗透,而且能够有效地抑制氢气的生成和放出。

3.纳米纤维隔膜。

锂离子电池常用的粘结剂的种类作用及性能

锂离子电池常用的粘结剂的种类作用及性能

锂离子电池常用的粘结剂的种类作用及性能
一、简介
锂离子电池粘结剂(Lithium-Ion Battery Adhesive)是指用于将锂离子电池的各种部件(电池芯、管芯、阴极板、阳极板、加热器等)粘合在一起,而且可以保证固定牢固以及防止因振动而产生损伤的一种粘结剂(adhesive)。

锂离子电池粘结剂(Lithium-Ion Battery Adhesive)具有优异的高分子特性,以及高的电学连接性能,可以保证高能量密度的锂离子电池的安全性,可以提高锂离子电池的可靠性,实现持久高性能,是锂离子电池的重要组成部分。

二、性能
1.耐温:锂离子电池粘结剂(Lithium-Ion Battery Adhesive)的耐热性或耐低温性是其关键性能之一,其耐热性或耐低温性取决于挥发溶剂类型、表面及形状、粘结体系的枝结构、粘结接触的表面力、以及粘结剂的构酯树脂的结构组成等,影响其导电行为和黏弹性能。

2.抗拉力:锂离子电池粘结剂(Lithium-Ion Battery Adhesive)的抗拉力特性是衡量粘结剂的性能的一个有效指标,其耐拉力以及拉伸强度的高低直接影响着电池的可靠性。

3.导电性:锂离子电池粘结剂(Lithium-Ion Battery Adhesive)的电导率是其关键性能之一,由于电池存在多层的结构,其导电性能要在不同结构层次得到有效的释放,以保证电池的稳定及安全性。

锂离子电池隔膜相关知识

锂离子电池隔膜相关知识

锂离子电池隔膜相关知识锂离子电池是一种广泛应用于手机、平板电脑、电动汽车等领域的电池。

而隔膜是锂离子电池中极为重要的组成部分,起到分隔正负极的作用。

本文将围绕锂离子电池隔膜展开详细介绍。

一、锂离子电池隔膜的作用隔膜是锂离子电池中的重要组成部分,不仅要分隔正负极,而且要能够让锂离子通过。

它的主要作用有以下几个方面:1.防止正负极之间短路,以免电池发生故障。

2.热量不均匀时,隔膜还可以阻止热流向正负极传递,保护电池安全性。

3.能够防止电池内部严重的化学反应发生,保证电池寿命。

4.通过调整隔膜孔径和孔隙度的大小,可以影响电池中锂离子的传输性能,达到增加电池容量的目的。

二、锂离子电池隔膜的种类锂离子电池隔膜的种类一般有以下三种:1.聚丙烯隔膜聚丙烯隔膜具有良好的热稳定性和化学稳定性,使用寿命长,且在电池过充和过放时不易熔化。

它是目前应用最广泛的隔膜。

2.聚酰胺隔膜聚酰胺隔膜在电池的容量和寿命上相对聚丙烯隔膜有更好的表现,但其价格相对较高。

3.陶瓷隔膜陶瓷隔膜具有良好的化学稳定性,耐高温,耐电化学腐蚀,且有良好的防火性能。

但其价格较高,制造难度也较大。

三、锂离子电池隔膜的发展趋势锂离子电池技术的不断升级,为研发更加稳定、高效、安全的电池隔膜提供了宝贵的机遇。

近年来,一些新型材料,如锂离子导体和多层复合膜,已经应用在电池隔膜中,可以有效提高电池的性能和安全性。

此外,目前锂离子电池的生产已逐步向智能化、自动化方向发展。

通过引入大数据分析、人工智能等技术,优化锂离子电池的生产流程和制造质量,将成为未来隔膜发展的一大趋势。

四、锂离子电池隔膜应该如何选择在选择锂离子电池隔膜时,应该从以下几个方面考虑:1. 电池容量和寿命根据电池的容量和使用的环境选择对应的隔膜。

2. 安全性和可靠性选择具有良好化学稳定性和耐高温、耐电化学腐蚀性、防火性能良好的隔膜。

3. 成本对于普通的使用场合,选择价格相对较低的聚丙烯隔膜即可。

总之,锂离子电池隔膜是锂离子电池的关键组成部分之一,其质量和性能直接影响到电池的使用寿命和安全性。

锂离子电池隔膜基础知识培训手册

锂离子电池隔膜基础知识培训手册

锂离子电池隔膜基础知识培训手册第一章:引言(200字)随着现代社会对便携式电子设备和电动汽车等的需求不断增加,锂离子电池作为一种高能量、高功率储能装置得到了广泛应用。

而隔膜作为其中的一个重要组成部分,对电池的性能和安全性起到至关重要的作用。

本手册旨在对锂离子电池隔膜的基础知识进行培训,帮助读者深入了解隔膜的原理、分类、性能要求以及应用等方面的知识。

第二章:锂离子电池隔膜的原理与结构(400字)2.1锂离子电池隔膜的作用2.2锂离子电池隔膜的结构锂离子电池隔膜通常由微孔膜、隔膜保护层和粘结剂组成。

其中,微孔膜是隔膜的主要结构,其特点是具有一定的孔径和孔隙率,能够促进离子的传输。

隔膜保护层用于改善隔膜的化学和机械稳定性,降低隔膜的热收缩性。

粘结剂则用于固定微孔膜和隔膜保护层。

第三章:锂离子电池隔膜的分类(300字)3.1根据材料根据材料的不同,锂离子电池隔膜主要可以分为聚烯烃隔膜和陶瓷隔膜两类。

聚烯烃隔膜通常由聚丙烯(PP)或聚乙烯(PE)等高分子材料制成,具有较高的电导率和较低的成本,广泛应用于电池领域。

陶瓷隔膜则具有较高的热稳定性和机械强度,适用于高温和高功率应用场景。

3.2根据结构根据结构的不同,锂离子电池隔膜可以分为单层隔膜和复合隔膜两类。

单层隔膜通常由一层微孔膜制成,其优点是电池内部电阻较低。

复合隔膜则由两层或多层微孔膜通过层间粘结剂粘合而成,具有较好的机械强度和热稳定性。

第四章:锂离子电池隔膜的性能要求(400字)4.1电导率隔膜的电导率是衡量其性能的重要指标之一、较高的电导率能够降低电池的内阻,提高电池的功率性能。

因此,锂离子电池隔膜应具有较高的电导率,以确保电池的正常工作和性能的发挥。

4.2热稳定性4.3机械强度第五章:锂离子电池隔膜的应用(200字)锂离子电池隔膜广泛应用于各种领域,包括便携式电子设备、电动汽车、储能系统等。

在便携式电子设备中,隔膜能够确保电池的安全性和稳定性,提供持久的电力支持。

一文读懂锂电池正负极粘结剂

一文读懂锂电池正负极粘结剂

粘接剂作为锂离子电池电极制造中不可缺少的组成部分,在电极中占有较小的比例,但不同种类的粘接剂与锂离子电池电化学性能有非常密切的关系。

硅作为一种储量非常丰富,理论比容量很高的负极材料,很有希望成为下一代锂离子电池的电极材料。

正文粘结剂作为锂离子电池电极的重要组成部分,其主要作用是保证电池在使用过程中活性物质颗粒间以及活性颗粒与集流体间具有一定的粘结强度,且有利于SEI膜形成。

在锂离子电池使用过程中,伴随着充放电,锂离子在活性物质的脱/嵌导致活性物质体积膨胀/收缩,石墨晶体晶面间距从0.335nm增加到0.372nm,相应的石墨负极颗粒体积膨胀率达到10%,因而要求粘结剂对活性物质的膨胀/收缩能够起到一定缓冲作用。

同时,锂离子电池制作和使用过程中,均在一定温度下进行,最高温度达到150℃,故粘接剂须能够承受较高温度。

可见,粘接剂性能好坏对电池性能的影响很大。

一般高分子粘结剂在电极中存在三种状态:1)与活性颗粒表面部分成键的固定高分子;2)存在于电极材料间隙的游离高分子;3)包覆活性颗粒表面以及导电碳表面的界面高分子。

不同的存在状态反应出粘结剂的粘结力、在电解液中的稳定性、柔韧性、耐碱性以及亲水性等特征,这些性能决定了电池内阻大小、循环寿命长短等。

锂离子电池常用粘结剂主要包括聚乙烯醇(PVA),聚四氟乙烯(PTFE),聚烯烃类(PP,PE 以及其他共聚物),聚偏氟乙烯(PVDF);改性SBR橡胶、氟化橡胶、聚胺酯等。

正极用粘接剂正极常用粘结剂主要以油性PVDF为主,NMP做溶剂,PVDF作为正极粘结剂具有良好的抗氧化性、耐化学品性,特别是在常规碳酸酯类溶剂(EC、DEC、DMC等)稳定性好;但PVDF 并不是能够满足锂离子电池粘结剂应具有的所有特征,如在离子液体电解液环境下,由于PVDF易被溶胀,电极膜片与集流体之间粘结性变差,电池容量易衰减。

以羧化聚偏二氟乙烯(C-PVDF)为粘结剂的LiFePO4研究显示,电极同集流体(铝箔)之间的粘结强度及其电化学性能会有所提高。

锂离子电池隔膜相关知识

锂离子电池隔膜相关知识

锂离子电池隔膜相关知识锂离子电池隔膜是电池中非常重要的一个部件,主要作用是隔离正、负极,防止电解质在两极之间短路,从而影响电池的正常运行。

除此之外,隔膜还具有控制电池内部反应速率、稳定电压和提高电池寿命等重要作用。

下面就来介绍一下锂离子电池隔膜的相关知识。

一、隔膜的类型目前,锂离子电池隔膜的类型主要有以下几种:1.聚合物隔膜:是目前用得最多的一种隔膜,具有较高的热稳定性、较小的内阻和良好的电解液湿润性。

2.玻璃纤维隔膜:通常用于高温应用,具有较高的耐热性,但对于电解质的湿润性较差。

3.陶瓷隔膜:是目前最新研发的一种隔膜,具有优异的耐高温性和机械性能。

4.晶格氧化物隔膜:通过在金属箔上沉积氧化物陶瓷保护层制成,具有优异的抗渗透性和高电导率。

二、隔膜的材料及制造工艺隔膜的材料主要有聚合物、陶瓷、玻璃纤维和晶格氧化物等。

其中,聚合物材料由于其良好的湿润性、塑性和热稳定性,成为了制造锂离子电池隔膜的主要选择。

聚合物隔膜的制造工艺可以分为两种:一种是湿法制造,利用溶剂交联等方法制备;另一种是干法制造,通过高压和高温的方法制造而成。

三、隔膜的性能参数1.厚度:隔膜厚度对于电池的内阻、容量和性能具有重要影响。

一般隔膜的厚度为10-50um。

2.孔径:隔膜的孔径可以影响电解液的传导及电池的实际性能表现。

3.热稳定性:隔膜的热稳定性主要指在高温环境下,隔膜的变形率、气泡、缩孔等,越低越好。

4.抗渗透性:隔膜的渗透性指隔膜对电解液的耗损程度,抗渗透性越好,电池的寿命越长。

5.氧化还原性能:隔膜的氧化还原性能能够影响电池的负荷承载能力和寿命。

综上所述,锂离子电池隔膜作为电池中至关重要的一个部件,对于电池的安全性、性能和寿命等方面有着至关重要的影响。

在电池生产中,应该根据实际需求和使用环境选择适当的隔膜材料和制造工艺,并注意控制隔膜的厚度、孔径、热稳定性、抗渗透性和氧化还原性能等关键性能指标,以进一步提高锂离子电池的性能和可靠性。

锂离子电池隔膜基础知识

锂离子电池隔膜基础知识

锂离子电池隔膜基础知识锂离子电池是一种广泛应用于便携式电子设备和电动汽车等领域的重要能量存储装置。

而隔膜作为锂离子电池的关键组成部分之一,起着分隔正负极电解液,防止短路和通电性能的调控等重要作用。

下面将针对锂离子电池隔膜的基础知识进行详细介绍。

锂离子电池隔膜的基本结构包括基材和涂层两部分。

基材主要由聚乙烯(PE)、聚丙烯(PP)等高分子材料构成,它们具有良好的化学稳定性、物理性能和导电性能。

涂层则主要由聚丙烯酸(PPA)等材料构成,它们能提供一定的离子导电性。

1.隔离正负极电解液:锂离子电池隔膜能有效地分隔正负极电解液,阻止锂离子的直接接触。

这样可以避免正负极短路,减少电池的安全风险。

2.调控通电性能:锂离子电池隔膜的孔径大小和形状可以影响锂离子的传输速率和电池的内阻。

通过调控隔膜的孔径大小和形状,可以提高电池的输出功率和循环寿命。

3.限制电解液的扩散:锂离子电池隔膜可以限制电解液中的溶剂和盐类的扩散,防止电解液的流失和混合,维持电池的稳定性和可靠性。

1.良好的机械强度:锂离子电池隔膜需要具有足够的机械强度,以抵抗外界的挤压和变形。

2.优异的热稳定性:锂离子电池运行时会产生较高的温度,因此隔膜需要具备良好的热稳定性,以避免隔膜的热退化和电池性能的下降。

3.良好的离子导电性:隔膜要具备良好的离子传输性能,以保证锂离子的快速传输,提高电池的输出功率。

4.优异的化学稳定性:隔膜需要具备良好的化学稳定性,以避免与电解液中的溶剂和盐类发生反应,导致隔膜的化学降解和电池性能的下降。

5.适当的孔径和孔隙率:隔膜的孔径大小和孔隙率会影响锂离子的传输速率和电池的内阻。

孔径和孔隙率过大会导致电池容量下降,而孔径和孔隙率过小会导致电池内阻过高。

隔膜的制备方法:1.干法制备:干法制备的隔膜是利用电解纸或高分子薄膜的物理和化学性质进行制备。

常见的干法制备方法有水热法、吹膜法、拉伸法等。

2.液相制备:液相制备的隔膜是利用溶液中的高分子材料通过涂覆、浸渍等方法形成的。

锂离子电池隔膜及粘结剂基础知识

锂离子电池隔膜及粘结剂基础知识

锂离子电池隔膜及粘结剂基础知识首先,我们来了解一下锂离子电池隔膜的作用和特点。

隔膜主要用于隔离正负极之间的电解液,防止直接接触造成短路,同时能允许锂离子的传输。

隔膜一般由聚合物材料制成,具有较好的电解质浸透性、电解质阻挡特性和机械稳定性等特点。

目前市场上主要使用的隔膜材料包括聚丙烯膜(PP)、聚乙烯膜(PE)、聚砜膜等。

其中,聚丙烯膜是最常用的隔膜材料,因其具有较好的化学稳定性、热稳定性和机械强度。

隔膜的关键性能包括电导率、孔隙率、耐热性和耐化学腐蚀性等。

电导率是指电解质在隔膜中传导的性能,高电导率可以提高锂离子电池的放电性能。

孔隙率指隔膜中的孔隙比例,较高的孔隙率可以增加电解液的浸透性,提高锂离子的传输速率。

耐热性是指隔膜在高温环境下的抗变形能力,耐化学腐蚀性则是指隔膜具有较强的耐腐蚀性,能够抵御主要成分为六氟磷酸锂的锂离子电池电解液的腐蚀。

接下来,我们来了解一下锂离子电池粘结剂的作用和特点。

粘结剂主要用于固定正负极材料和隔膜,确保它们之间的稳固连接,同时提供一定的机械支撑性。

一般来说,锂离子电池使用的粘结剂主要有聚合物粘结剂和无机粘结剂两种。

聚合物粘结剂具有较好的粘结性能和柔韧性,能够提供较好的机械支撑性,而无机粘结剂则具有较好的导电性能和耐高温性能。

粘结剂的关键性能包括黏度、粘结强度、导电性和耐化学腐蚀性等。

黏度是指粘结剂的流动性,越低代表越容易涂布在材料表面。

粘结强度是指粘结剂与正负极材料和隔膜之间的黏结程度,强的粘结强度可以确保电池组件的稳固连接。

导电性是指粘结剂能否良好地导电,较好的导电性能能提高锂离子电池的放电性能。

耐化学腐蚀性是指粘结剂具有较强的耐腐蚀性,能够抵御锂离子电池电解液的腐蚀。

总之,锂离子电池隔膜和粘结剂是保证锂离子电池性能稳定与安全的关键部件。

优质的隔膜可以提高电池的性能表现,如电导率和孔隙率等;而优质的粘结剂则可以确保电池组件的稳固连接和较好的导电性能。

因此,在锂离子电池的研制过程中,对于隔膜和粘结剂的选择和优化是十分重要的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

③浸润度
为保证电池的内阻不是太大,要求隔膜是能够被电 池所用电解液完全浸润,这与隔膜材料本身和隔膜的 表面及内部微观结构相关。 粗略判断:取典型电解液(如 EC : DMC=1:1 , 1M LiPF6),滴在隔膜表面,看是否液滴会迅速消失被隔 膜吸收 。 精确判断:用超高时间分辨的摄像机记录从液滴接触 隔膜到液滴消失的过程,计算时间,通过时间的长短
主要内容



锂离子电池隔膜简介 锂离子电池隔膜生产工艺 隔膜市场现状 隔膜部分生产设备
隔膜简介
在锂离子电池中,隔膜的作用主要有两个 方面:一方面起到分隔正、负极,防止短路 的作用;另一方面,隔膜能够让锂离子通过, 形成充放电回路。 隔膜性能的优劣直接影响着电池内阻、放 电容量、循环使用寿命以及安全性能。隔膜 越薄,孔隙率越高,电池内阻越小,高倍率 放电性能越好,性能优异的隔膜对提高电池 的综合性能具有重要的作用。
隔膜市场的现状
国内隔膜的总体水平落后
国内由于多方面技术上的综合差距,不能达到 国外一样的精密控制。产品差距主要在于厚度、 强度、孔隙率等指标不能得到整体兼顾,且量产 批次稳定性较差。
因此研究开发低成本、制作工艺简单、孔径尺 寸适当、空隙率高、机械强度能满足要求的微孔 聚合物隔膜对于提高电池性能和降低电池成本具 有重要的实际意义。
锂离子电池隔膜性能参数
①厚度
对于消耗型锂离子电池(手机、笔记本电脑、数码 相机中使用的电池),25微米的隔膜逐渐成为标准。 然而,由于人们对便携式产品的使用的日益增长,更 薄的隔膜,比如说 20 微米、18 微米、16 微米、甚至 更薄的隔膜开始大范围的应用。 对于动力电池来说,由于装配过程的机械要求, 往往需要更厚的隔膜,当然对于动力用大电池,安全 性也是非常重要的,而厚一些的隔膜往往同时意味着 更好的安全性, EV/HEV 使用的是厚度为 40 微米左右 的隔膜。
②透气率
MacMullin 数 :含电解液的隔膜的电阻率和电解液本 身的电阻率之间的比值 。此数值越小越好,消耗型锂离 子电池的这个数值为接近 8。 Gurley 数 :一定体积的气体,在一定压力条件下通过 一定面积的隔膜所需要的时间。与隔膜装配的电池的内阻 成正比,即该数值越大,则内阻越大。 单纯比较两种不同隔膜的 Gurley 数是没有意义的,因 为可能两种隔膜的微观结构完全不一样;但同一种隔膜的 Gurley 数的大小能很好的反应出内阻的大小,因为同一 种隔膜相对来说微观结构是一样的或可比较的。
⑦热稳定性
隔膜需要在电池使用的温度范围内(-20℃~60℃)保持 热稳定。一般来说目前隔膜使用的PE或PP材料均可以满足 上述要求。 通常,真空条件下,90℃恒温60分钟,隔膜横向纵向收 缩应小于5%。
⑧热关闭温度
热关闭温度:将模拟电池(两平面电极中间夹一隔膜, 使用通用锂离子电池用电解液)加热,当内阻提高三 个数量级时的温度。 闭孔温度:外部短路或非正常大电流通过时产生的热 量使隔膜微孔闭塞时的温度。 熔融破裂温度:将隔膜加热,当温度超过试样熔点使 试样发生破裂时的温度。 大多数锂离子电池隔膜孔隙率在30%-50%之间。孔隙 率的大小和内阻有一定的关系,但不同种隔膜之间的 空隙率的绝对值无法直接比较。
目前所使用的电极颗粒一般在 10 微米的量级,而所使 用的导电添加剂则在 10 纳米的量级,不过很幸运的是 一般碳黑颗粒倾向于团聚形成大颗粒。一般来说,亚微 米孔径的隔膜足以阻止电极颗粒的直接通过,当然也不 排除有些电极表面处理不好,粉尘较多导致的一些诸如 微短路等情况。
⑥穿刺强度
穿刺强度:在一定的速度(每分钟 3-5 米)下,让一个 没有锐边缘的直径为1mm 的针刺向环状固定的隔膜,为穿 透隔膜所施加在针上的最大力。 由于测试的时候所用的方法和实际电池中的情况有很大的 差别,直接比较两种隔膜的穿刺强度不是特别合理,但在 微结构一定的情况下,相对来说穿刺强度高的,其装配不 良率低。但单纯追求高穿刺强度,必然导致隔膜的其他性 能下降。
锂离子电池隔膜作用示意图
锂离子电池隔膜实物图
锂离子电池对隔膜的要求
① 具有电子绝缘性,保证正负极的机械隔离; ② 有一定的孔径和孔隙率,保证低的电阻和高 的离子电导率,对锂离子有很好的透过性; ③ 耐电解液腐蚀,电化学稳定性好; ④ 对电解液的浸润性好并具有足够的吸液保湿 能力; ⑤ 具有足够的力学性能,包括穿刺强度、拉伸 强度等; ⑥ 空间稳定性和平整性好; ⑦ 热稳定性和自动关断保护性能好。
商品化隔膜的典型特征参数
锂离子电池粘接剂

粘接剂的作用及性能; (1)保证活性物质制浆时的均匀性和 安全性; (2)对活性物质颗粒间起到粘接作用; (3)将活性物质粘接在集流体上; (4)保持活性物质间以及和集流体间 的粘接作用; (5)有利于在碳材料(此种隔膜有两层(PP/PE)隔膜、三层(PP/PE/PP) 隔膜。三层膜在温度升高时,中部的PE在130度熔化 收缩造成热关闭,但是由于外部的PP熔化温度为160 度,隔膜还可以保持一定的安全性,因此三层膜也较 适用于动力电池。目前Celgard与UBE掌握此种技术 及专利权。
隔膜性能对电池性能的影响
全球主要隔膜生产企业产能分布(2010年)
厂商
产能 (Mm2 /年 )
美国 Celgar d
11000
宇部 UBE
2000
格瑞恩
佛山 金辉
1600
星源 材质
1500
新时 科技
500
3500
根据台湾工研院的数据,预计到2013年隔膜需求量可达5.63 亿平米,产值近17亿美元,但由上面的产能表可见,隔膜的产 能远不能满足市场需求。
来比较两种隔膜的浸润度。
④化学稳定性
要求隔膜在电化学反应中是惰性的,且对强还原、 强氧化不活泼,机械强度不衰减,不产生杂质。一般 认为,目前隔膜用材料PE或PP可满足化学惰性要求。
⑤孔径
防止电极颗粒直接通过隔膜 ,要求隔膜孔径为 0.010.1μ m, 小 于 0.01μ m 时 , 锂 离 子 穿 透 能 力 太 小 , 大 于 0.1μ m时,电池内部枝晶生成时电池易短路。
相关文档
最新文档