初中数学必备公式:初一三角函数知识点归纳

合集下载

初中数学三角函数公式最全

初中数学三角函数公式最全

初中数学三角函数公式最全三角函数是数学中重要的概念和工具之一,在初中数学中也是一个重要的知识点。

掌握了三角函数的基本概念和公式,可以解决很多几何和物理相关的问题。

下面将介绍一些初中数学中三角函数的常见公式。

1.正弦定理:在任意三角形ABC中,边长分别为a,b,c,对应的角度为A,B,C。

则有:a/sin A = b/sin B = c/sin C2.余弦定理:在任意三角形ABC中,边长分别为a,b,c,对应的角度为A,B,C。

则有:c^2 = a^2 + b^2 - 2ab cos C3.正弦函数的性质:sin(A ± B) = sin A cos B ± cos A sin Bsin(180° ± θ) = ±sin θsin²θ + cos²θ = 1sin²θ = 1/2(1 - cos 2θ)4.余弦函数的性质:cos(A ± B) = cos A cos B ∓ sin A sin Bcos(180° ± θ) = -cos θcos²θ + sin²θ = 1cos²θ = 1/2(1 + cos 2θ)5.正切函数的性质:tan(A ± B) = (tan A ± tan B) / (1 ∓ tan A tan B) tan(180° ± θ) = ±tan θ6.三角函数的周期性:sin(θ ± 360°n) = sin θcos(θ ± 360°n) = cos θtan(θ ± πn) = tan θ7.三角函数的倒数关系:sin θ = 1 / csc θcos θ = 1 / sec θtan θ = 1 / cot θ8.三角函数的和差化积公式:sin(A ± B) = sin A cos B ± cos A sin Bcos(A ± B) = cos A cos B ∓ sin A sin Btan(A ± B) = (tan A ± tan B) / (1 ∓ tan A tan B)9.三角函数的倍角公式:sin 2θ = 2sin θ cos θcos 2θ = cos²θ - sin²θ= 2cos²θ - 1= 1 - 2sin²θtan 2θ = 2tan θ / (1 - tan²θ)10.三角函数的半角公式:sin(θ/2) = ±√[(1 - cos θ)/2]cos(θ/2) = ±√[(1 + cos θ)/2]tan(θ/2) = ±√[(1 - cos θ)/(1 + cos θ)]以上是初中数学中常见的三角函数公式,可以通过这些公式来解决各种三角函数的计算问题。

【数学公式】初中数学三角函数有关的知识点汇总

【数学公式】初中数学三角函数有关的知识点汇总

【数学公式】初中数学三角函数有关的知识点汇总1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方a2+b2=c2。

2、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)6、正弦、余弦的增减性:当0°≤α≤90°时,sinα随α的增大而增大,cosα随α的增大而减小。

7、正切、余切的增减性:当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小。

锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

正弦(sin):对边比斜边,即sinA=a/c余弦(cos):邻边比斜边,即cosA=b/c正切(tan):对边比邻边,即tanA=a/b余切(cot):邻边比对边,即cotA=b/a正割(sec):斜边比邻边,即secA=c/b余割(csc):斜边比对边,即cscA=c/a1、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。

2、判断三条线段能否组成三角形。

①a+b>c(a b为最短的两条线段)②a-b3、第三边取值范围:a-b < c4、对应周长取值范围若两边分别为a,b则周长的取值范围是 2a如两边分别为5和7则周长的取值范围是14感谢您的阅读,祝您生活愉快。

初中数学三角函数公式汇总

初中数学三角函数公式汇总

初中数学三角函数公式汇总0 1定义式0 2函数公式倒数关系:①②③商数关系:①②平方关系:①②③0 3诱导公式公式1:设为任意角,终边相同的角的同一三角函数的值相等:公式2:设为任意角,与的三角函数值之间的关系:公式3:任意角与的三角函数值之间的关系:公式4:与的三角函数值之间的关系:公式5:与的三角函数值之间的关系:公式6:及与的三角函数值之间的关系:记背诀窍:奇变偶不变,符号看象限,即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。

形如2k×90°±α,则函数名称不变。

0 4基本公式【和差角公式】◆二角和差公式◆三角和公式【和差化积公式】口诀:正加正,正在前,余加余,余并肩,正减正,余在前,余减余,负正弦.【积化和差公式】【倍角公式】◆二倍角公式◆三倍角公式◆四倍角公式sin4a=-4*[cosa*sina*(2*sina^2-1)]cos4a=1+(-8*cosa^2+8*cosa^4)tan4a=(4*tana-4*tana^3)/(1-6*tana^2+tana^4)◆五倍角公式◆半角公式(正负由所在的象限决定)◆万能公式◆辅助角公式◆余弦定理◆三角函数公式算面积定理:在△ABC中,其面积就应该是底边对应的高的1/2,不妨设BC边对应的高是AD,那么△ABC的面积就是AD*BC*1/2。

而AD是垂直于BC的,这样△ADC就是直角三角形了,显然,由此可以得出,AD=ACsinC,将这个式子带回三角形的计算公式中就可以得到:,同理,即可得出三角形的面积等于两邻边及其夹角正弦值的乘积的一半。

◆公式:若△ABC中角A,B,C所对的三边是a,b,c:则S△ABC=1/2absinC=1/2bcsinA=1/2acsinB.◆反三角函数反三角函数主要是三个:y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]y=arccos(x),定义域[-1,1] ,值域[0,π]y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2)sinarcsin(x)=x,定义域[-1,1],值域【-π/2,π/2】◆反三角函数公式:arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotxarcsinx+arccosx=π/2=arctanx+arccotxsin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x当x∈〔0,π〕,arccos(cosx)=xx∈(—π/2,π/2),arctan(tanx)=xx∈(0,π),arccot(cotx)=x x〉0,arctanx=arctan1/x,arccotx类似若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)。

初中数学必背三角函数公式大全

初中数学必背三角函数公式大全

初中数学必背三角函数公式大全初中数学必背的知识点,三角函数公式大全同学们总结归纳过吗?如果没有快来小编这里瞧瞧。

下面是由小编为大家整理的“初中数学必背三角函数公式大全”,仅供参考,欢迎大家阅读。

初中数学必背三角函数公式大全常用三角函数公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB- ctgA+ctgBsin(A+B)/sinAsinB拓展阅读:三角函数导数公式大全(sinx)' = cosx(cosx)' = - sinx(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx(cscx)'=-cotx·cscx(arcsinx)'=1/(1-x^2)^1/2(arccosx)'=-1/(1-x^2)^1/2(arctanx)'=1/(1+x^2)(arccotx)'=-1/(1+x^2)(arcsecx)'=1/(|x|(x^2-1)^1/2)(arccscx)'=-1/(|x|(x^2-1)^1/2)(sinhx)'=coshx(coshx)'=sinhx(tanhx)'=1/(coshx)^2=(sechx)^2(coth)'=-1/(sinhx)^2=-(cschx)^2(sechx)'=-tanhx·sechx(cschx)'=-cothx·cschx。

初中数学必背公式大全初中数学重要公式定律汇总

初中数学必背公式大全初中数学重要公式定律汇总

初中数学必背公式大全初中数学重要公式定律汇总
一、几何公式
1、三角形面积公式
△ABC的面积S=1/2ab sin C
其中a、b为△ABC的两边,C为两边夹角
2、四边形面积公式
正方形面积公式:S=a2
长方形面积公式:S=ab
其中a、b分别为正方形或长方形的边长
3、圆的面积公式
S=πr2
其中r为圆的半径
4、梯形面积公式
S=(a+b)h/2
其中a、b分别为梯形的上下底,h为梯形的高
5、椭圆面积公式
S=πab
其中a、b分别为椭圆的长轴短轴
6、圆柱体体积公式
V=πr2h
其中r为圆柱体的底面半径,h为圆柱体的高
7、圆锥体体积公式
V=1/3πr2h
其中r为圆锥体的底面半径,h为圆锥体的高
8、球的表面积公式
S=4πr2
其中r为球的半径
9、球的体积公式
V=4/3πr3
其中r为球的半径
10、圆柱和圆锥的体积比公式
V1:V2=r2:2r
其中V1为圆柱体体积,V2为圆锥体体积,r为两个体积半径相同
二、三角函数
1、正弦定理
a/sinA=b/sinB=c/sinC=(2S)/R
其中a、b、c分别为△ABC的三边,A、B、C分别为两边夹角,S为△ABC的面积,R为三角形的外接圆半径
2、余弦定理
a2=b2+c2-2bc cosA
其中a、b、c分别为△ABC的三边,A为两边夹角3、正切关系
tanA= a/b
cotA= b/a
其中a、b分别为△ABC的两边,A为两边夹角4、正弦定理的应用
1)角的大小。

初中三角函数公式大全

初中三角函数公式大全

初中三角函数公式大全初中阶段主要学习的三角函数公式有正弦定理、余弦定理、正切定理以及诱导公式等。

下面将分别介绍这些公式。

一、正弦定理正弦定理是用来求解三角形的边长和角度的重要公式。

设三角形ABC的边长分别为a、b 和c,对应的角度分别为A、B和C,则正弦定理可以表示为:a/sinA = b/sinB = c/sinC根据正弦定理,如果我们已知两个角和它们对应的两条边的长度,可以通过公式求解第三条边的长度;如果我们已知一个角和它对应的两条边的长度,可以通过公式求解另外两个角的大小。

二、余弦定理余弦定理是在已知三角形的两边和夹角情况下,求解第三边的长度的重要公式。

设三角形ABC的边长分别为a、b和c,对应的角度分别为A、B和C,则余弦定理可以表示为:c² = a² + b² - 2abcosC根据余弦定理,如果我们已知三角形的两边和它们之间的夹角,可以通过公式求解第三边的长度;如果我们已知三角形的三个边长,可以通过公式求解任意一个角的大小。

三、正切定理正切定理是在已知三角形的两边和夹角情况下,求解切线斜率的重要公式。

设三角形ABC 的边长分别为a、b和c,对应的角度分别为A、B和C,则正切定理可以表示为:tanA = a/b根据正切定理,如果我们已知三角形的两边和它们之间的夹角,可以通过公式求解切线斜率;如果我们已知切线斜率和其中一条边的长度,可以通过公式求解夹角的大小。

四、诱导公式诱导公式是将不常用的角度转换为常用角度的公式,常用的诱导公式如下:sin(π-x) = sinxcos(π-x) = -cosxtan(π-x) = -tanxsin(π+x) = -sinxcos(π+x) = -cosxtan(π+x) = tanxsin(2π-x) = -sinxcos(2π-x) = cosxtan(2π-x) = -tanx其中,x为任意角度。

这些公式可以帮助我们在解决三角函数问题时进行角度的转化,简化计算过程。

初中三角函数公式,初中三角函数知识点归纳总结

初中三角函数公式,初中三角函数知识点归纳总结

初中三角函数公式,初中三角函数知识点归纳总结1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。

2、在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B)3.任何锐角的正弦值等于其余角的余弦值;任何锐角的余弦都等于其余角的正弦。

4.任何锐角的正切等于它的余角的余切;任何锐角的余切都等于它的余角的正切。

5、正弦、余弦的增减性:当0°≤α≤90°时,sinα随α的增大而增大,cosα随α的增大而减小。

6、正切、余切的增减性:当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小。

7、初中三角函数两角和与差的三角函数:cos(αβ)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβsinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(αβ)=(tanαtanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1tanα·tanβ)8、初中三角函数倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]9、初中三角函数三倍角公式:sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα10、初中三角函数半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1cosα)/2tan^2(α/2)=(1-cosα)/(1cosα)tan(α/2)=sinα/(1cosα)=(1-cosα)/sinα11、初中三角函数万能公式:sinα=2tan(α/2)/[1tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]12、初中三角函数积化和差公式:sinα·cosβ=(1/2)[sin(αβ)sin(α-β)]cosα·sinβ=(1/2)[sin(αβ)-sin(α-β)]cosα·cosβ=(1/2)[cos(αβ)cos(α-β)]sinα·sinβ=-(1/2)[cos(αβ)-cos(α-β)]13、初中三角函数和差化积公式:sinαsinβ=2sin[(αβ)/2]cos[(α-β)/2]sinα-sinβ=2cos[(αβ)/2]sin[(α-β)/2]cosαcosβ=2cos[(αβ)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(αβ)/2]sin[(α-β)/2]完整初中三角函数值表完整初中三角函数值表如下图所示:常见的三角函数有正弦函数、余弦函数和正切函数。

常用三角函数公式与口诀

常用三角函数公式与口诀

常用三角函数公式与口诀三角函数是数学中的重要概念,它在几何以及物理等领域都有着广泛的应用。

常用的三角函数包括正弦函数(sin)、余弦函数(cos)和正切函数(tan)以及它们的倒数(cosec、sec、cot)。

在使用三角函数时,我们经常需要记住一些常用的三角函数公式和口诀,以便能够快速计算。

下面就是一些常用的三角函数公式和口诀:一、正弦函数(sin)的特点和公式1. 定义:在直角三角形中,对于给定的角θ,它的对边与斜边的比值称为正弦函数,记作sinθ。

2. 该角的定义域是0≤θ≤π,取值范围是-1≤sinθ≤13.三角恒等式:(1) sin(-θ) = -sinθ;(2) sin(π-θ) = sinθ;(3) sin(θ+2πn) = sinθ (其中n为整数);(4) sin(90°-θ) = cosθ (其中θ是角度制的角);(5) sin(θ±φ) = sinθcosφ ± cosθsinφ。

二、余弦函数(cos)的特点和公式1. 定义:在直角三角形中,对于给定的角θ,它的邻边与斜边的比值称为余弦函数,记作cosθ。

2. 该角的定义域是0≤θ≤π,取值范围是-1≤cosθ≤13.三角恒等式:(1) cos(-θ) = cosθ;(2) cos(π-θ) = -cosθ;(3) cos(θ+2πn) = cosθ (其中n为整数);(4) cos(90°-θ) = sinθ (其中θ是角度制的角);(5) cos(θ±φ) = cosθcosφ ± sinθsinφ。

三、正切函数(tan)的特点和公式1. 定义:在直角三角形中,对于给定的角θ,它的对边与邻边的比值称为正切函数,记作tanθ。

2. 该角的定义域是0≤θ<π,取值范围是负无穷<tanθ<正无穷。

3.三角恒等式:(1) tan(-θ) = -tanθ;(2) tan(π-θ) = -tanθ;(3) tan(θ+πn) = tanθ (其中n为整数);(4) tan(π/2-θ) = cotθ;(5) tan(θ±φ) = (tanθ±tanφ)/(1∓tanθtanφ)。

初中三角函数知识点总结

初中三角函数知识点总结

初中三角函数知识点总结一、角和弧度制角是由一条射线绕着一个固定点旋转形成的。

角的单位有度和弧度两种,其中度是最常用的单位。

角的度数决定了它所对应的弧长。

一个角的弧长和它所对应的弧度数之间有一个固定的关系:1弧度等于180°/π。

二、正弦、余弦和正切在直角三角形中,我们可以根据三角形的边长来定义三个比率:正弦、余弦和正切。

1. 正弦(sine)的定义为:sinθ = 对边/斜边。

2. 余弦(cosine)的定义为:cosθ = 邻边/斜边。

3. 正切(tangent)的定义为:tanθ = 对边/邻边。

三、特殊角的三角函数值在一个单位圆上,特殊角的三角函数值有着特定的规律。

1.0°、90°、180°和270°分别对应的三角函数值是:sin0° = 0, sin90° = 1, sin180° = 0, sin270° = -1;cos0° = 1, cos90° = 0, cos180° = -1, cos270° = 0;tan0° = 0, tan90° = 无穷大, tan180° = 0, tan270° = 无穷大。

2.对于30°、45°和60°,它们在单位圆上对应的三角函数值还有特殊的规律:sin30° = 1/2, sin45° = √2/2, sin60° = √3/2;cos30° = √3/2, cos45° = √2/2, cos60° = 1/2;tan30° = 1/√3, tan45° = 1, tan60° = √3四、三角函数的性质三角函数有一些重要的性质:1. sin(-θ) = -sinθ,cos(-θ) = cosθ,tan(-θ) = -tanθ。

初中三角函数公式大全

初中三角函数公式大全

初中三角函数公式大全三角函数是初中数学中的重要内容,它们在几何、代数、解析几何等方面都有着广泛的应用。

在学习三角函数的过程中,掌握三角函数的基本公式是非常重要的。

本文将为大家详细介绍初中三角函数的公式大全,希望能够帮助大家更好地理解和掌握这一知识点。

1. 正弦函数公式。

正弦函数是三角函数中的一种基本函数,它在数学中有着重要的应用。

正弦函数的公式可以表示为:\[ \sin A = \frac{a}{c} \]其中,A为角度,a为对边,c为斜边。

2. 余弦函数公式。

余弦函数是三角函数中的另一种基本函数,它的公式如下所示:\[ \cos A = \frac{b}{c} \]其中,A为角度,b为邻边,c为斜边。

3. 正切函数公式。

正切函数是三角函数中的另一种基本函数,它的公式可以表示为:\[ \tan A = \frac{a}{b} \]其中,A为角度,a为对边,b为邻边。

4. 三角函数的基本关系。

在学习三角函数的过程中,我们需要掌握三角函数之间的基本关系。

根据正弦函数、余弦函数和正切函数的定义,我们可以得到以下基本关系:\[ \sin A = \frac{a}{c}, \cos A = \frac{b}{c}, \tan A = \frac{a}{b} \]5. 三角函数的诱导公式。

在解决三角函数相关问题时,有时候需要用到三角函数的诱导公式。

三角函数的诱导公式包括以下几种:\[ \sin(-A) = -\sin A, \cos(-A) = \cos A, \tan(-A) = -\tan A \]\[ \sin(\pi A) = \sin A, \cos(\pi A) = -\cos A, \tan(\pi A) = -\tan A \]\[ \sin(\pi + A) = -\sin A, \cos(\pi + A) = -\cos A, \tan(\pi + A) = \tan A \]6. 三角函数的和差化积公式。

【初中数学】三角函数定名法则公式定理大全

【初中数学】三角函数定名法则公式定理大全

【初中数学】三角函数定名法则公式定理大全【—三角函数定名法则】公式要领:y=cosx对称轴:x=kπ(k∈z)对称中心:(kπ+π/2,0)(k∈z)。

命名规则90°的奇数倍+α的三角函数,其绝对值与α三角函数的绝对值互为余函数。

90°的偶数倍+α的三角函数与α的三角函数绝对值相同。

也就是“奇余偶同,奇变偶不变”。

符号规则将α看做锐角(注意是“看做”),按所得的角的象限,取三角函数的符号。

也就是“象限定号,符号看象限”。

(或为“奇变偶不变,符号看象限”)。

在Kπ/2中,如果K是偶数,则函数名保持不变;如果是奇数,函数名将变为相反的函数名。

在原始函数中,符号α是象限的符号。

关于符号有一些精辟的公式;一个全正、两个正弦、三个正切和四个余弦,即第一象限均为正,第二象限角度正弦为正,第三象限正切、余弦为正,第四象限余弦为正。

)它也可以缩写为:COS在sin上的右Tan对角线,即sin的正值在x轴之上,COS的正值在y轴的右边,Tan的正值是倾斜的。

比如:90°+α。

定名:90°是90°的奇数倍,所以应取余函数;定号:将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,余弦为负。

所以sin(90°+α)=cosα,cos(90°+α)=-sinα这个非常神奇,屡试不爽~还有一个简洁的公式“垂直变化和水平变化保持不变,符号看象限”,例如:sin (90°)+α),90°的最终边缘在垂直轴上,因此函数名成为相反的函数名,即cos,它将α作为锐角,那么90°+α是第二象限角。

第二象限角的正弦为正,因此sin(90°)+α)=cosα对称轴与对称中心Y=SiNx对称轴:x=kπ+π/2(k∈ z)对称中心:(Kπ,0)(K)∈ z)公式要领总结:y=tanx对称轴:无对称轴:对称中心:(kπ/2,0)(k∈z)。

初中三角函数知识点总结

初中三角函数知识点总结

初中三角函数知识点总结初中三角函数主要包括三角比,解三角形,三角方程,向量与三角函数,定理与推论,和三角函数的应用等知识点。

以下是对这些知识点的详细总结:一、三角比1.正弦、余弦、正切-正弦:在直角三角形中,对于一个锐角,其正弦等于对边与斜边的比值。

-余弦:在直角三角形中,对于一个锐角,其余弦等于邻边与斜边的比值。

-正切:在直角三角形中,对于一个锐角,其正切等于对边与邻边的比值。

2.相互之间的关系- 正弦定理:对于任意三角形ABC,有a/sinA=b/sinB=c/sinC。

- 余弦定理:对于任意三角形ABC,有c²=a²+b²-2ab*cosC。

- 正切定理:对于任意三角形ABC,有tanA=(b*sinC)/(a-b*cosC)。

二、解三角形1.根据已知条件求解未知量-已知两边及夹角,可以使用余弦定理求解第三边。

-已知两角及一边,可以使用正弦定理求解其它两边。

-已知两角及两边,可以使用正切定理求解第三边。

三、三角方程1.基本概念-三角方程是含有未知数角的方程,其中角的取值范围在给定区间内。

- 常见的三角方程有sinx=a, cosx=a, tanx=a等形式。

2.解三角方程的一般步骤-利用特殊角的正弦、余弦和正切值,化简方程。

-观察方程的周期性,求解其一个基本解,并利用周期性解得所有解。

4.解三角方程的方法-单调区间法:首先确定方程在一个周期内的单调增区间,然后根据函数图象和方程的特点逐步缩小解的范围。

-观察法:利用特殊角的正弦、余弦和正切值,观察方程在给定区间内的解。

四、向量与三角函数1.向量-平面向量:由大小和方向确定的量,用有向线段表示。

-向量的模长:向量AB的长度。

-向量的方向角:向量与坐标轴正方向的夹角。

2.向量的坐标与分解-向量的坐标:用有序数对表示向量的坐标。

-向量的分解:将一个向量分解为两个方向平行的向量的和。

3.向量的数量积-数量积的定义:向量的数量积等于它们的模长乘积与夹角的余弦值。

初中数学三角函数公式知识点总结

初中数学三角函数公式知识点总结

初中数学三角函数公式知识点总结三角函数公式表sin是对边比斜边,cos是邻边比斜边,tan是对边比邻边cot邻边比对边。

sin30是二分之一,sin45是二分之根二,sin60是二分之根三。

cos30是二分之根三,cos45是二分之根二,cos60是二分之一tan30是三分之根三,tan45是一,tan60是根三。

cot30是根三,cot45是一,cot60是三分之根三。

(1)互余关系sinA=cos(90°—A),cosA=sin(90°—A)tanA=cot(90°—A),cotA=tan(90°—A)(2)平方关系sin2A+cos2A=1(3)倒数关系tanAtan(90°—A)=1(4)弦切关系tanA= sinA/cosA(5)三角函数的增减性当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小)(2)余弦值随着角度的增大(或减小)而减小(或增大)(3)正切值随着角度的增大(或减小)而增大(或减小)(4)余切值随着角度的增大(或减小)而减小(或增大)三角函数和差化积公式sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]三角函数积化和差公式sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]三角函数万能公式sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]三角函数半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα三角函数三倍角公式sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα三角函数倍角公式sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)]三角函数两角和与差公式cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)三倍角公式推导tan3α=sin3α/cos3α=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)上下同除以cos^3(α),得:tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))sin3α=sin(2α+α)=sin2αcosα+cos2αsinα=2sinαcos^2(α)+(1-2sin^2(α))sinα=2sinα-2sin^3(α)+sinα-2sin^3(α)=3sinα-4sin^3(α)cos3α=cos(2α+α)=cos2αcosα-sin2αsinα=(2cos^2(α)-1)cosα-2cosαsin^2(α)=2cos^3(α)-cosα+(2cosα-2cos^3(α))=4cos^3(α)-3cosα即sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα。

三角函数相关知识点总结

三角函数相关知识点总结

三角函数相关知识点总结一、三角函数的定义。

1. 锐角三角函数。

- 在直角三角形中,设一个锐角为α。

- 正弦sinα=(对边)/(斜边)。

例如,在直角三角形ABC中,∠ C = 90^∘,∠A=α,BC为∠ A的对边,AB为斜边,则sinα=(BC)/(AB)。

- 余弦cosα=(邻边)/(斜边),对于上述三角形,AC为∠ A的邻边,cosα=(AC)/(AB)。

- 正切tanα=(对边)/(邻边)=(BC)/(AC)。

2. 任意角三角函数(单位圆定义)- 设角α终边上一点P(x,y),r=√(x^2)+y^{2}。

- sinα=(y)/(r)。

- cosα=(x)/(r)。

- tanα=(y)/(x)(x≠0)。

二、三角函数的基本性质。

1. 定义域。

- y = sin x和y=cos x的定义域都是R(全体实数)。

- y=tan x的定义域是<=ft{xx≠ kπ+(π)/(2),k∈ Z}。

2. 值域。

- y = sin x和y=cos x的值域都是[ - 1,1]。

- y=tan x的值域是R。

3. 周期性。

- y = sin x和y=cos x的最小正周期都是2π。

即sin(x + 2kπ)=sin x,cos(x +2kπ)=cos x,k∈ Z。

- y=tan x的最小正周期是π,tan(x + kπ)=tan x,k∈ Z。

4. 奇偶性。

- y=sin x是奇函数,因为sin(-x)=-sin x。

- y = cos x是偶函数,因为cos(-x)=cos x。

- y=tan x是奇函数,因为tan(-x)=-tan x。

5. 单调性。

- y=sin x在<=ft[-(π)/(2)+2kπ,(π)/(2)+2kπ](k∈ Z)上单调递增,在<=ft[(π)/(2)+2kπ,(3π)/(2)+2kπ](k∈ Z)上单调递减。

- y=cos x在[2kπ-π,2kπ](k∈ Z)上单调递增,在[2kπ,2kπ + π](k∈ Z)上单调递减。

初中三角函数公式及定理大全

初中三角函数公式及定理大全

初中三角函数的公式有半角公式sin(A/2)=±√((1-cosA)/2)、倍角公式Sin2A=2SinA*CosA、两角和与差公式Sin2A=2SinA*CosA、平方关系公式sin²α+cos²α=1、倒数关系公式tanα·cotα=1等等。

1初中数学三角函数公式锐角三角函数公式sinα=∠α的对边/斜边cosα=∠α的邻边/斜边tanα=∠α的对边/∠α的邻边cotα=∠α的邻边/∠α的对边2倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2是sinA的平方sin2(A))2初中三角函数正切定理公式在平面三角形中,正切定理说明任意两条边的和除第一条边减第二条边的差所得的商等于这两条边的对角的和的一半的正切除第一条边对角减第二条边对角的差的一半的正切所得的商。

正切定理:(a+b)/(a-b)=tan((α+β)/2)/tan((α-β)/2)。

3初中三角函数余弦定理定义:对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

对于边长为a、b、c而相应角为A、B、C的三角形,有:a^2=b^2+c^2-2bc·cosAb^2=a^2+c^2-2ac·cosBc^2=a^2+b^2-2ab·cosC也可表示为:cosC=(a^2+b^2-c^2)/2abcosB=(a^2+c^2-b^2)/2accosA=(c^2+b^2-a^2)/2bc这个定理也可以通过把三角形分为两个直角三角形来证明。

如果这个角不是两条边的夹角,那么三角形可能不是唯一的(边-边-角)。

要小心余弦定理的这种歧义情况。

延伸定理:第一余弦定理(任意三角形射影定理)设△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有:a=b·cosC+c·cosB,b=c·cosA+a·cosC,c=a·cosB+b·cosA。

(完整版)初中三角函数公式表

(完整版)初中三角函数公式表

(完整版)初中三角函数公式表一、三角函数的基本定义在初中数学中,三角函数主要涉及正弦函数(sin)、余弦函数(cos)和正切函数(tan)。

这些函数与直角三角形的三边长度有着密切的关系。

1. 正弦函数(sin):正弦函数表示直角三角形中,对应于一个锐角的斜边与斜边与邻边之比。

公式为:sin(θ) = 对边 / 斜边。

2. 余弦函数(cos):余弦函数表示直角三角形中,对应于一个锐角的邻边与斜边之比。

公式为:cos(θ) = 邻边 / 斜边。

3. 正切函数(tan):正切函数表示直角三角形中,对应于一个锐角的斜边与邻边之比。

公式为:tan(θ) = 对边 / 邻边。

二、三角函数的相互关系1. 正弦函数和余弦函数的关系:sin(θ) = cos(90° θ),cos(θ) = sin(90° θ)。

2. 正切函数和余弦函数的关系:tan(θ) = sin(θ) / cos(θ)。

3. 正切函数和正弦函数的关系:tan(θ) = sin(θ) / cos(θ)。

三、三角函数的特殊值1. 0°:sin(0°) = 0,cos(0°) = 1,tan(0°) = 0。

2. 30°:sin(30°) = 1/2,cos(30°) = √3/2,tan(30°) =1/√3。

3. 45°:sin(45°) = √2/2,cos(45°) = √2/2,tan(45°)= 1。

4. 60°:sin(60°) = √3/2,cos(60°) = 1/2,tan(60°) = √3。

5. 90°:sin(90°) = 1,cos(90°) = 0,tan(90°) 无定义。

四、三角函数的周期性三角函数具有周期性,即函数值在一定的周期内会重复出现。

初一数学三角形公式总结归纳

初一数学三角形公式总结归纳

初一数学三角形公式总结归纳常见三角诱导公式公式一:终边相同的角的同一三角函数的值相等设α为任意锐角,弧度制下的角的表示:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:π+α的三角函数值与α的三角函数值之间的关系设α为任意角,弧度制下的角的表示:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα初中数学三角函数公式大全两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积公式2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB倍角公式Sin2A=2SinA.CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2是sinA的平方sin2(A))半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))积化和差公式sinαsinβ=[cos(α-β)-cos(α+β)]/2cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]三角形的公式定理1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线和已知直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也互相平行9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12.两直线平行,同位角相等13.两直线平行,内错角相等14.两直线平行,同旁内角互补15.定理三角形两边的和大于第三边16.推论三角形两边的差小于第三边17.三角形内角和定理三角形三个内角的和等于180°18.推论1直角三角形的两个锐角互余19.推论2三角形的一个外角等于和它不相邻的两个内角的和20.推论3三角形的一个外角大于任何一个和它不相邻的内角21.全等三角形的对应边、对应角相等22.边角边公理有两边和它们的夹角对应相等的两个三角形全等23.角边角公理有两角和它们的夹边对应相等的两个三角形全等24.推论有两角和其中一角的对边对应相等的两个三角形全等25边边边公理有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27.定理1:在角的平分线上的点到这个角的两边的距离相等28.定理2:到一个角的两边的距离相同的点,在这个角的平分线上29.角的平分线是到角的两边距离相等的所有点的集合30.等腰三角形的性质定理等腰三角形的两个底角相等31.推论1:等腰三角形顶角的平分线平分底边并且垂直于底边32.等腰三角形的顶角平分线、底边上的中线和高互相重合33.推论3:等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35.推论1:三个角都相等的三角形是等边三角形36.推论2:有一个角等于60°的等腰三角形是等边三角形37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38.直角三角形斜边上的中线等于斜边上的一半39.定理线段垂直平分线上的点和这条线段两个端点的距离相等40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42.定理1关于某条直线对称的两个图形是全等形43.定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44.定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47.勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48.定理四边形的内角和等于360°49.四边形的外角和等于360°50.多边形内角和定理n边形的内角的和等于(n-2)×180°51.推论任意多边的外角和等于360°52.平行四边形性质定理1平行四边形的对角相等53.平行四边形性质定理2平行四边形的对边相等54.推论夹在两条平行线间的平行线段相等55.平行四边形性质定理3平行四边形的对角线互相平分56.平行四边形判定定理1两组对角分别相等的四边形是平行四边形57.平行四边形判定定理2两组对边分别相等的四边形是平行四边形58.平行四边形判定定理3对角线互相平分的四边形是平行四边形59.平行四边形判定定理4一组对边平行相等的四边形是平行四边形60.矩形性质定理1矩形的四个角都是直角61.矩形性质定理2矩形的对角线相等62.矩形判定定理1有三个角是直角的四边形是矩形63.矩形判定定理2对角线相等的平行四边形是矩形64.菱形性质定理1菱形的四条边都相等65.菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66.菱形面积=对角线乘积的一半,即S=(a×b)÷267.菱形判定定理1四边都相等的四边形是菱形68.菱形判定定理2对角线互相垂直的平行四边形是菱形69.正方形性质定理1正方形的四个角都是直角,四条边都相等70.正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71.定理1关于中心对称的两个图形是全等的72.定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73.逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74.等腰梯形性质定理等腰梯形在同一底上的两个角相等75.等腰梯形的两条对角线相等76.等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77.对角线相等的梯形是等腰梯形78.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79.推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰80.推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边81.三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83.(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85.(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87.推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88.定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91.相似三角形判定定理1两角对应相等,两三角形相似(ASA)92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93.判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94.判定定理3三边对应成比例,两三角形相似(SSS)95.定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96.性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97.性质定理2相似三角形周长的比等于相似比98.性质定理3相似三角形面积的比等于相似比的平方初一数学三角形公式总结。

三角函数的知识点有哪些

三角函数的知识点有哪些

三角函数的知识点有哪些一、三角函数的基本概念。

1. 角的概念。

- 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。

- 按旋转方向可分为正角(按逆时针方向旋转)、负角(按顺时针方向旋转)和零角(没有旋转)。

- 与角α终边相同的角的集合为{ββ = k·360^∘+α,k∈ Z}(角度制)或{ββ = 2kπ+α,k∈ Z}(弧度制)。

2. 弧度制。

- 把长度等于半径长的弧所对的圆心角叫做1弧度的角。

- 弧度与角度的换算:180^∘=π弧度,所以1^∘=(π)/(180)弧度,1弧度=((180)/(π))^∘。

3. 任意角的三角函数定义。

- 设α是一个任意角,α终边上任意一点P(x,y),r = √(x^2)+y^{2}。

- 正弦sinα=(y)/(r),余弦cosα=(x)/(r),正切tanα=(y)/(x)(x≠0)。

二、同角三角函数的基本关系。

1. 平方关系。

- sin^2α+cos^2α = 1。

2. 商数关系。

- tanα=(sinα)/(cosα)(cosα≠0)。

三、三角函数的诱导公式。

1. 公式一。

- sin(α + 2kπ)=sinα,cos(α + 2kπ)=cosα,tan(α+ 2kπ)=tanα,k∈ Z。

2. 公式二。

- sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα。

3. 公式三。

- sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα。

4. 公式四。

- sin(π-α)=sinα,cos(π-α)=-cosα,tan(π - α)=-tanα。

5. 公式五。

- sin((π)/(2)-α)=cosα,cos((π)/(2)-α)=sinα。

6. 公式六。

- sin((π)/(2)+α)=cosα,cos((π)/(2)+α)=-sinα。

四、三角函数的图象与性质。

1. 正弦函数y = sin x- 图象:正弦函数的图象是正弦曲线,它是通过“五点法”((0,0),((π)/(2),1),(π,0),((3π)/(2), - 1),(2π,0))画出的周期为2π的曲线。

初中数学知识点三角函数:三角函数万能公式

初中数学知识点三角函数:三角函数万能公式

初中数学知识点——三角函数:三角函数万能公式万能公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC三角函数万能公式为什么万能?万能公式为:设tan(A/2)=tsinA=2t/(1+t^2)(A≠2kπ+π,k∈Z)tanA=2t/(1-t^2)(A≠2kπ+π,k∈Z)家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。

我和家长共同配合,一道训练,幼儿的阅读能力提高很快。

cosA=(1-t^2)/(1+t^2)(A≠2kπ+π,且A≠kπ+(π/2)k∈Z)唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。

初中数学必备公式:初一三角函数知识点归纳

初中数学必备公式:初一三角函数知识点归纳

初中数学必备公式:初一三角函数知识点归

三角函数:和差化积
和差化积公式,包括正弦、余弦、正切和余切的和差化积公式,是三角函数中的一组恒等式。

三角函数:倍角
倍角公式,是三角函数中非常实用的一类公式。

就是把二倍角的三角函数用本角的三角函数表示出来。

在计算中可以用来化简计算式、减少求三角函数的次数,在工程中也有广泛的运用。

三角函数:半角
半角公式(Half angle formula)是利用某个角(如∠A)的正弦值、余弦值、正切值,及其他三角函数值,来求其半角的正弦值,余弦值,正切值,及其他三角函数值的公式。

三角函数:两角和
两角和(差)公式包括两角和差的正弦公式、两角和差的余弦公式、两角和差的正切公式。

两角和与差的公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式基础上变形得到的。

三角函数:倍角
倍角公式,是三角函数中非常实用的一类公式。

就是把二倍角的三角函数用本角的三角函数表示出来。

在计算中可以用来化简计算式、减少求三角函数的次数,在工程中也有广泛的运用。

初一三角函数知识点不只如此,如果本文的知识点同学们都消化了,那么就请自动前往数学公式栏目吧!那里你会发现意想不到的新大陆!。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学必备公式:初一三角函数知识点归

三角函数是初中数学最重要的一部分,也是很多同学都无法克服的难关,想要学好三角函数一定要有相对的学习方法。

今儿栏目小编就为大家整理了一些初一三角函数知识点,只要同学们认真看,一定会找到适合自己的学习方法。

三角函数:和差化积
和差化积公式,包括正弦、余弦、正切和余切的和差化积公式,是三角函数中的一组恒等式。

三角函数:倍角
倍角公式,是三角函数中非常实用的一类公式。

就是把二倍角的三角函数用本角的三角函数表示出来。

在计算中可以用来化简计算式、减少求三角函数的次数,在工程中也有广泛的运用。

三角函数:半角
半角公式(Half angle formula)是利用某个角(如∠A)的正弦值、余弦值、正切值,及其他三角函数值,来求其半角的正弦值,余弦值,正切值,及其他三角函数值的公式。

三角函数:两角和
两角和(差)公式包括两角和差的正弦公式、两角和差的余弦公式、两角和差的正切公式。

两角和与差的公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式基础上
变形得到的。

三角函数:倍角
语文课本中的文章都是精选的比较优秀的文章,还有不少名
家名篇。

如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。

现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。

结果教师费劲,学生头疼。

分析完之后,学生收效甚微,没过几天便忘的一干二净。

造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。

常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强
语感,增强语言的感受力。

久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作
中自觉不自觉地加以运用、创造和发展。

倍角公式,是三角函数中非常实用的一类公式。

就是把二倍角的三角函数用本角的三角函数表示出来。

在计算中可以用来化简计算式、减少求三角函数的次数,在工程中也有广泛的运用。

初一三角函数知识点不只如此,如果本文的知识点同学们都"消化"了,那么就请自动前往查字典数学网数学公式栏目吧!那里你会发现意想不到的"新大陆"!
语文课本中的文章都是精选的比较优秀的文章,还有不少名
家名篇。

如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。

现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。

结果教师费劲,学生头疼。

分析完之后,学生收效甚微,没过几天便忘的一干二净。

造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。

常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强
语感,增强语言的感受力。

久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作
中自觉不自觉地加以运用、创造和发展。

相关文档
最新文档