数学发展史大全(到2008年)
数学发展史简介

近代数学时期 (公元17世纪——19世纪初)
我下们面来主简要要介说绍明以这下个这时个期时的期数世界学的成经果济和背数景学和历名史家背: 景。
3经41..济.代微背笛数分景卡基方:尔本家程的定庭、坐理手变标(工分系1业法(79作、196年坊微37)分→年几→的何《工、几场复何手变学工函》业数)→、→概机率器论大工业;
•而个的变微是证分分基函明法和数。研积本。该究分定结的也理是就果断这立言样刻,,一成在如种为复极必解数值要范问的析围题了里几,…,所…何n求”次的、多极项微值式不方积是程点分有或n、个数根,。 微 已分成方为程高,等高学等校代数数学、教概育率的论 主等 要内,容。 ••推几微那然2微学对微与5已纪.广何积么科.积的时分微经里在“到问分这学牛分一间几分成,1分三 题 及8样的顿的些的何几为其世析维的其,中和起新关是何与繁纪”情代中由心莱源问系关相代荣,、形数变于布,题求于联→数程由“,技量→经尼主,路曲系、度微代并巧、“济兹要已程线的几远积数突的函变扩的来知;和解何远分”破界数量张微自路二曲析并超、、了限和、的积对程是面几列过微“笛。极函需分解对几的何的了分几卡限数要(决时何一在数代方何尔等”,两间学般11学数程78”当概。对个的的理的和世世、三年念运方关一论三几纪纪变大解,动面系些。大何后也分分析运和 问 求 老学。半有法支几动变题速问科期长等何、化的度题,)足构仅变的需,,并的成仅化研要及且发的作等究:已在展“为思成一知这,分求想了是速个被析解,自力度世”
综述,第三时期(近代数学时期) •历这微恩史一分格背时方斯景期程::代论“贸数研数易学究学及的的中殖主是的民题这转地仍样折→然一点→是种是代航方笛数海程卡方业,儿程空方的。前程变1发中数8世展的,纪。未有的知了最项变后不数一是,年数运,,
数学大事年表

数学大事年表约公元前3000年埃及象形数字公元前2400~前1600年早期巴比伦泥版楔形文字,采用60进位值制记数法。
已知勾股定理公元前1850~前1650年埃及纸草书(莫斯科纸草书与莱茵德纸草书),使用10进非位值制记数法公元前1400~前1100年中国殷墟甲骨文,已有10进制记数法周公(公元前11世纪)、商高时代已知勾三、股四、弦五约公元前600年希腊泰勒斯开始了命题的证明约公元前540年希腊毕达哥拉斯学派,发现勾股定理,并导致不可通约量的发现约公元前500年印度《绳法经》中给出√2相当精确的值,并知勾股定理约公元前460年希腊智人学派提出几何作图三大问题:化圆为方、三等分角和二倍立方约公元前450年希腊埃利亚学派的芝诺提出悖论公元前430年希腊安提丰提出穷竭法约公元前380年希腊柏拉图在雅典创办“学园”,主张通过几何的学习培养逻辑思维能力公元前370年希腊欧多克索斯创立比例论约公元前335年欧多莫斯著《几何学史》中国筹算记数,采用十进位值制约公元前300年希腊欧几里得著《几何原本》,是用公理法建立演绎数学体系的最早典范公元前287~前212年希腊阿基米德,确定了大量复杂几何图形的面积与体积;给出圆周率的上下界;提出用力学方法推测问题答案,隐含近代积分论思想公元前230年希腊埃拉托塞尼发明“筛法”公元前225年希腊阿波罗尼奥斯著《圆锥曲线论》约公元前150年中国现存最早的数学书《算数书》成书(1983~1984年间在湖北江陵出土)约公元前100年中国《周髀算经》成书,记述了勾股定理中国古代最重要的数学著作《九章算术》经历代增补修订基本定形(一说成书年代为公元50~100年间),其中正负数运算法则、分数四则运算、线性方程组解法、比例计算与线性插值法盈不足术等都是世界数学史上的重要贡献约公元62年希腊海伦给出用三角形三边长表示面积的公式(海伦公式)约公元150年希腊托勒密著《天文学》,发展了三角学约公元250年希腊丢番图著《算术》,处理了大量不定方程问题,并引入一系列缩写符号,是古希腊代数的代表作约公元263年中国刘徽注解《九章算术》,创割圆术,计算圆周率,证明圆面积公式,推导四面体及四棱锥体积等,包含有极限思想约公元300年中国《孙子算经》成书,系统记述了筹算记数制,卷下“物不知数”题是孙子剩余定理的起源公元320年希腊帕普斯著《数学汇编》,总结古希腊各家的研究成果,并记述了“帕普斯定理”和旋转体体积计算法公元410年希腊许帕提娅,历史上第一位女数学家,曾注释欧几里得、丢番图等人的著作公元462年中国祖冲之算出圆周率在 3.1415926与3.1415927之间,并以22/7为约率,355/113为密率(现称祖率)中国祖冲之和他的儿子祖暅提出“幂势既同则积不容异”的原理,现称祖暅原理,相当于西方的卡瓦列里原理(1635)公元499年印度阿耶波多著《阿耶波多文集》,总结了当时印度的天文、算术、代数与三角学知识。
数学发展史简介

一大批新的数学分支, 如:级数论、函数论、
变分学、微分方程等。
主要代表人物 费尔马(Fermat 1601-1665 法国) 著有《平 主要思想: 面与立体轨迹引论》。 方程可以描述 曲线, 并可以通过对方程的研究推断曲线的性质
解析 笛卡儿(Descartes 1596-1650 法国) 几何的创始人。 牛顿(Newton 1643-1727 英国) 微积分的创 始人之一。 莱布尼茨(Leibniz 1646-1716 德国) 微积分 的创始人之一。
还未形成独立的学科。 主要以记数为主, 中国,古巴 这一时期贡献最大的国家有: 比伦,埃及,印度。 主要贡献:十进制记数法, 记数符号, 三 角形、梯形和圆的面积的计算, 立方体和柱体 的体积, 截棱锥体的体积公式等。
二、常量数学时期
这一时期又称为初等数学时期, 主要发展 了算术、初等代数、初等几何(平面几何和立
体几何)、平面三角等。这一时期又可 Nhomakorabea为三个阶段:
1.希腊时期(公元前六世纪-公元二世纪) 主要研究几何学, 不仅将几何形成了系统 的理论体系, 即 而且创立了研究数学的方法, 坚持用演绎法证明, 使 重视抽象而非具体问题, 对数的认识从感性提高到理性阶段。 主要代表人物 毕达哥拉斯(Bythagoras)发现三角形内 角和等于两个直角和; 用几何作图法解代数二 次方程; 建立了毕达哥拉斯定理(勾股定理)。
的重心、转动惯量等。
牛顿与莱布尼兹当时建立的微积分概念与演算 是以直观为基础的,概念并不准确,推导公式有 明显的逻辑矛盾,在微积分广泛应用的17—18世 纪,人们没顾得及(也许是还不可能)解决这些 问题,至19世纪,矛盾已积累到非解决不可的程 度。
经过柯西和魏尔斯特拉斯等人的工作, 19世纪, 给微积分奠定了严格的理论基础, 从而兴起了
数学发展史时间轴

数学发展史时间轴
数学发展史可以追溯到人类文明的起源,几乎与人类思维和社会发展同步进行。
下面是一个简要的数学发展史时间轴:
1. 古代数学(约公元前3000年-公元5世纪):
古代数学主要集中在古巴比伦、古埃及、古希腊、古印度和古中国等地。
这个时期的数学主要涉及算术、几何和代数等基本概念和方法的发展。
2. 中世纪数学(公元5世纪-15世纪):
中世纪数学主要由阿拉伯数学家和欧洲学者推动。
阿拉伯人引入了印度-阿拉伯数字系统和代数的进一步发展。
欧洲学者则致力于恢复和传播古代数学知识,推动了几何学的发展。
3. 文艺复兴时期(15世纪-17世纪):
文艺复兴时期是数学发展的黄金时期,涌现出许多伟大的数学家。
代表性的有勒内·笛卡尔和伽利略·伽利雷,他们为代数和几何学的发展做出了重要贡献。
4. 近代数学(17世纪-19世纪):
近代数学的突破主要来自于微积分学的发展。
牛顿和莱布尼茨同
时独立发现了微积分的基本原理。
这一时期还涌现出许多其他重要的数学家,如欧拉、高斯和拉格朗日等。
5. 现代数学(20世纪至今):
现代数学涉及的领域非常广泛,包括数学分析、代数学、几何学、概率论、统计学、拓扑学等。
数学家们不断提出新的理论、方法和应用,推动着数学的不断发展和应用的扩展。
这只是一个简要的数学发展史时间轴,数学的发展一直在不断演进,影响着我们的生活和科学技术的进步。
数学的发展历史概述

数学的发展历史概述
数学的发展历史可以追溯到古代文明时期。
以下是数学发展的一些重要阶段和
里程碑:
古代数学(约公元前3000年-公元前500年):古代数学主要发展在古埃及、
古巴比伦、古印度和古希腊等地。
这个时期的数学主要集中在计数、测量和几何等方面。
古巴比伦人发明了基于60进制的数制系统和计算法则,古希腊人则在几何
学方面作出了重要贡献。
中世纪数学(公元500年-公元1500年):在中世纪,数学的发展主要由阿拉
伯数学家推动。
阿拉伯数学家将印度的十进制数制和零的概念引入欧洲,这对于现代数学的发展起到了重要作用。
同时,他们还对代数学和三角学等领域做出了贡献。
近代数学(公元1500年-1900年):在这个时期,数学经历了重大的变革和发展。
文艺复兴时期的欧洲浮现了许多重要的数学家,如勒内·笛卡尔、伽利略·伽利
雷和爱尔兰的威廉·罗万等人。
他们对代数学、几何学和力学等领域做出了重要贡献。
此外,牛顿和莱布尼茨的微积分的发明也是这个时期的重要成就。
现代数学(20世纪至今):20世纪以来,数学的发展取得了巨大的发展。
在
这个时期,数学分支日益细分,如数理逻辑、抽象代数、拓扑学、数论、概率论和统计学等。
数学在物理学、工程学、计算机科学和经济学等领域的应用也日益广泛。
总的来说,数学的发展历史是一个不断积累和演化的过程,每一个时代都有其
独特的贡献和突破。
数学的发展不仅为人类认识世界提供了工具和方法,也为其他学科的发展提供了基础和支持。
数学发展历史

数学在提出问题和解答问题方面,已经形成了一门特殊的科学。
在数学的发展史上,有很多的例子可以说明,数学问题是数学发展的主要源泉.数学家门为了解答这些问题,要花费较大力量和时间。
尽管还有一些问题仍然没有得到解答,然而在这个过程中,他们创立了不少的新概念、新理论、新方法,这些才是数学中最有价值的东西。
◇公元前600年以前◇据中国战国时尸佼著《尸子》记载:”古者,倕(注:传说为黄帝或尧时人)为规、矩、准、绳,使天下仿焉”,这相当于在公元前2500年前,已有”圆、方、平、直"等形的概念。
公元前2100年左右,美索不达米亚人已有了乘法表,其中使用着六十进位制的算法。
公元前2000年左右,古埃及已有基于十进制的记数法、将乘法简化为加法的算术、分数计算法。
并已有三角形及圆的面积、正方角锥体、锥台体积的度量法等。
中国殷代甲骨文卜辞记录已有十进制记数,最大数字是三万. 公元前约1950年,巴比伦人能解二个变数的一次和二次方程,已经知道”勾股定理” . ◇公元前600——1年◇公元前六世纪,发展了初等几何学(古希腊泰勒斯)。
约公元前六世纪,古希腊毕达哥拉斯学派认为数是万物的本原,宇宙的组织是数及其关系的和谐体系。
证明了勾股定理,发现了无理数,引起了所谓第一次数学危机. 公元前六世纪,印度人求出√2=1.4142156. 公元前462年左右,意大利的埃利亚学派指出了在运动和变化中的各种矛盾,提出了飞矢不动等有关时间、空间和数的芝诺悖理(古希腊巴门尼德、芝诺等).. 公元前五世纪,研究了以直线及圆弧形所围成的平面图形的面积,指出相似弓形的面积与其弦的平方成正比(古希腊丘斯的希波克拉底)。
公元前四世纪,把比例论推广到不可通约量上,发现了"穷竭法"(古希腊,欧多克斯)。
公元前四世纪,古希腊德谟克利特学派用”原子法"计算面积和体积,一个线段、一个面积或一个体积被设想为由很多不可分的"原子”所组成。
数学发展史

数学发展史数学发展简史数学是人类最古老的科学知识之一。
就人类对数的认识和运用来看,一般讲从公元前3000年左右的埃及象形文字就已开始,迄今已有5000年的历史。
那么到底什么是数学呢?实际上数学是一门历史性很强的科学或者说累积性很强,它的内涵随着时代的变化而变化,给数学下一个一劳永逸的定义是不可能的。
从公元前4世纪的希腊哲学家亚里士多德到17世纪的笛卡儿、19世纪的恩格斯、20世纪的罗素等很多数学家都曾给数学下过定义。
用的较多也较容易理解的是恩格斯的定义。
他说,数学,是研究数量关系与空间形式的一门科学。
20世纪80年代的一批美国学者将数学定义为:数学这个领域已被称作模式的科学,其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。
这一定义以其高度的概括性,已日益引起关注并获得大多数数学家的认同与接受。
第一阶段:数学的萌芽阶段(公元前3000年—公元前600年)这一阶段,我们称之为数学的萌芽阶段,或者说准学科阶段。
在这一阶段里,数学还没有发展成为一门有明确结构的独立的理性的学科,还不具备抽象,还没有方法论,还没有论证和推理。
数学文化在这一阶段的杰出代表是古巴比伦数学、中国数学、埃及数学、印度数学等。
这一阶段的世界数学文化呈一种多元发展态势。
第二阶段:数学的形成阶段(公元前5世纪—公元16世纪)这一阶段,通常称之为数学科学的形成时期,它的开始是以希腊人的出场为典型标志,结束于公元16世纪,也就是在变量数学产生之前,人们常称此阶段为常量数学阶段,也就是数学学科完成了以常量为主要内容的框架体系。
这一时期,希腊数学家取得辉煌成绩,他们引入了证明,提出了抽象,发现了自然数,发现了无理数(注:这是数学史上第一次危机。
《原本》第五卷中将比例理论由可公度量推广到不可公度量,使它能适用与更广泛的几何命题证明,从而巧妙的回避了无理量引起的麻烦。
但问题的根本解决要到19世纪借助极限过程对无理数做出严格定义之后)。
数学大事年表,涨知识了!

数学大事年表,涨知识了!1901年·德国希尔伯特证明了狄利克雷原理,开创变分法的直接解法。
·意大利里奇、列维-齐维塔创立绝对微分法,是微分几何学的一个重要理论。
1902年·法国勒贝格发表论文《积分、长度与面积》,建立了“勒贝格测度”和“勒贝格积分”的概念,开创现代积分理论。
·英国伯恩塞德提出伯恩塞德猜想:每一个非交换的单群都是偶数阶的 (1963年由汤普森等人证明)。
1903年·英国罗素提出“罗素悖论”,促进了数学基础研究。
1904年·德国策梅罗提出选择公理,并证明“良序定理”:任何集合都能良序化。
·法国勒贝格证明了有界函数黎曼可积的充要条件是其不连续点构成一个零测度集,完全解决了黎曼可积性的问题。
·法国庞加莱提出“庞加莱猜想”。
1905年·德国舒尔重建群的特征理论,同年爱因斯坦发表了他的物理学发现。
1906年·法国弗雷歇引入函数空间的一般概念,定义“度量空间”;引入“泛函”概念,并给出泛函的连续性和可微性的定义。
·俄国马尔可夫提出“马尔可夫链”的概念,用以研究自然过程。
·美国维尔钦斯基发表《曲线和直纹曲面的射影微分几何》,这是现代射影微分几何学的开端之一。
1907年·匈牙利里斯证明矩阵力学与波动力学等价的数学基本定理。
·荷兰布劳威尔提出直觉主义数学,是构造性数学的开端。
·法国庞加莱证明了复变函数论的一个基本定理-黎曼共形映射定理。
·德国E.施密特定义了以复数无穷序列为元素的函数空间,确定了范数等概念,推动了泛函分析的发展。
1908年·德国策梅罗发表《集合论基础研究》,建立第一个公理集合论理论系统。
·德国亨泽尔出版《代数数论》。
·英国戈塞特(W. S. Gossett,1876-1937)提出精确样本理论(数理统计)。
数学发展史时间轴及事件

数学发展史时间轴及事件1.古埃及数学(公元前3000年-公元前1000年)数学在古埃及有着悠久的历史。
古埃及人发展出了一套完整的计数系统,以及用于计算和测量的一系列实用技术和工具。
例如,他们使用了“象形数字”来表达数值,同时发明了一种称为“祭坛测量的土地”的算法,用于计算矩形或金字塔的面积。
2.古希腊数学(公元前600年-公元500年)古希腊数学在西方数学史上占据了重要的地位。
在这个时期,出现了许多杰出的数学家,如毕达哥拉斯、欧几里得和阿基米德等。
他们为数学界的发展做出了巨大的贡献,如毕达哥拉斯提出了著名的勾股定理,欧几里得写下了著名的《几何原本》,阿基米德则发明了微积分的基本原理。
3.中世纪欧洲数学(公元500年-1500年)在中世纪欧洲,数学得到了进一步的发展。
在这个时期,出现了许多修道士和学者,如奥尔本修道士和尼科马科斯等。
他们对数学进行了深入的研究,并在代数、几何和三角学等领域取得了一些重要成果。
同时,中世纪欧洲的数学教育也变得日益重要,一些大学纷纷开设数学课程。
4.文艺复兴时期数学(公元1500年-1700年)在文艺复兴时期,数学经历了巨大的变革和发展。
人们重新审视古希腊数学,并在此基础上进行创新。
代数学逐渐成为数学的主流,同时平面几何和立体几何也得到了极大的发展。
一些重要的数学思想和方法开始形成,如极限、导数和微积分等。
在这个时期,一些重要的数学家如雷科德、韦达和牛顿等为数学界的发展做出了巨大贡献。
雷科德在其著作《大术》中系统地阐述了代数符号和算术方法,韦达则发展出了符号代数,为现代代数奠定了基础。
牛顿则在微积分和物理学等领域做出了杰出的贡献。
5.近现代数学(公元1800年至今)近现代数学的发展可以说是日新月异。
在19世纪,数学家们开始研究更抽象的问题,如数论、抽象代数和拓扑学等。
同时,概率论和统计学也得到了迅速的发展。
20世纪初,数学开始与物理学、工程学等领域紧密联系,出现了许多应用数学分支,如量子力学、计算机科学、经济学等。
数学发展史(经过一些个人整理)

数学发展史数学是一门伟大的科学,数学作为一门科学具有悠久的历史,与自然科学相比,数学更是积累性科学,它是经过上千年的演化发展才逐渐兴盛起来。
同时数学也反映着每个时代的特征,美国数学史家克莱因曾经说过:"一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。
这种关系在我们这个时代尤为明显"。
"数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说"。
数学发展具有较明显的阶段性,因此根据一定的原则把数学史分成若干时期。
目前通常将数学发展划分为以下五个时期:1.数学萌芽期(公元前600年以前);2.初等数学时期(公元前600年至17世纪中叶);3.变量数学时期(17世纪中叶至19世纪20年代);4.近代数学时期(19世纪20年代至第二次世界大战);5.现代数学时期(20世纪40年代以来)而谈到数学的发展历史,就不得不谈到历史上三次著名的数学危机,危机的产生并不在于数学本身,由于自然科学和社会的发展,人们用已有的数学工具无法解决所面临的自然界的现实问题,自然而然人们要去寻求一种解决问题新的途径和方法,去建立新的理论体系。
那么就要导致与传统观念的冲突,无法用传统的、已有的理论解释、解决问题,那么就产生了数学危机。
数学危机的出现,自然要促使人们进行思维,进行数学革命,突破危机,突破传统观念的束缚,创立新的数学理论体系,改进和推动科学技术的发展和社会的进步。
无理数的发现──第一次数学危机大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。
当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的和谐规律性。
他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。
数学史大事年表

伊朗:纳西尔·丁与三角学
法国:约丹努斯与先进的代数;莱雅·本·热尔松与归纳法;奥雷姆与运动学
英国:速度,加速度,以及平均鲁:用于保持记录的“基普”
1400-1600
印度:正弦、余弦和反正切幂级数的发现
意大利:三次方程的代数解
德国:透视与几何
多变函数微积分的发展
微积分正确逻辑基础的尝试
拉格朗日与多项式方程求解的分析
1800-1900
代数数论
伽罗瓦理论
群和域
四元量和非交换代数的发现
矩阵论
分析的算术化
复分析的发展
向量分析
微分几何
非欧几何
射影几何
几何基础
1900-2000
集合论
拓扑学的发展
数学的代数化
计算机的影响
数学史大事年表
3000B.C1000B.C08001000120016001800
3000-2000B.C
埃及:象形数字起源,吉萨金字塔建成.
伊拉克:美索不达米亚楔形数字起源.
2000-1000B.C
埃及:莱茵德纸草书;线性方程,体积,面积.
伊拉克:楔形泥版数学文书,包括有毕达哥拉斯定理,二次方程,方程组.
1000-500B.C
印度:平方根计算,毕达哥拉斯定理.
中国:筹算数字,毕达哥拉斯定理.
希腊:理论几何学起源.
500-300B.C
希腊:柏拉图、亚里士多德与公理化数学;不可公度量的发现;欧多克斯和比例论。
埃及:欧几里德和《几何原本》
300-0B.C
中国:平方根和立方根及方程组
意大利:阿基米德和理论物理学.
埃及:阿波罗尼乌斯和圆锥曲线。
土耳其:希帕科斯和三角学。
数学发展史

自哈拉巴文化时期起,古印度人用的就是十进位制 阿拉伯数字并不是阿拉伯人创造的,他们只是起了传播作用。 而真正对阿拉伯数字有贡献的,正是古印度人。 《准绳经》是现存古印度最早的数学著作,这是一部讲述祭坛 修筑的书,大约成于公元前5至前4世纪,其中包含有一些几何学方 面的知识。 这部书表明,他们那时已经知道了勾股定理,幵使用圆周率π为 3.09,古印度人在天文计算的时候已经运用了三角形,公元499年成 书的 《圣使集》中有关数学的内容共有66条,包括了算术运算、乘 方、开方以及一些代数学、几何学和三角学的规则。 圣使还研究了两个无理数相加的问题,得到正确的公式,在三角学 方面他又引迚了正矢函数,他算出的π为3.1416。
在算术方面,他们对整数和分数有了较系统的写法,在记数中, 已经有了位值制的观念,从而把算术推进到一定的高度,并用之于 解决许多实际问题,特别是天文方面的问题,如现在延用的“十二 进制”的计时方法。 在代数方面,巴比伦人用特殊的名称和记号来表示未知量,采 用了少数运算记号,解出了含有一个或较多个未知量的几种形式的 方程,特别是解出了二次方程,这些都是代数的开端。 在几何方面,巴比伦人认识到了关于平行线间的比例关系和初 步的毕达哥拉斯定理,会求出简单几何图形的面积和体积,并建立 了在特定情况下的底面是正方形的棱台体积公式。
第四个悖论是游行队伍悖论,内容大体相似。这说明希腊人已 经看到“无穷小”与“很小很小”的矛盾。
智人学派提出几何作图的三大问题:
(1)化圆为方问题的结果 我们都知道化圆为方是由古希腊著名学者阿纳克萨戈勒斯提出的, 但是阿纳克萨戈勒斯一生也未能解决自己提出的问题。 实际上,这个化圆为方问题中的正方形的边长是圆面积的算数平方 根。我们假设圆的半径为单位1,那么正方形的边长就是根号π。 直到1882年,化圆为方的问题才最终有了合理的答案。德国数学家 林德曼(Lindemann,1852~1939)在这一年成功地证明了圆周率 π=3.1415926......是超越数,并且尺规作图是不可能作出超越数来,所以用 尺规作图的方式解决化圆为方的问题才被证明是不可能实现的。 (2)倍立方积和三等分角问题的结果 直到1830年,18岁的法国数学家伽罗华首创了后来被命名为“伽罗 华理论” 理论,该理论能够证明倍立方积和三等分角问题都是尺规作图 不能做到的问题。1837年,法国数学家汪策尔(Wantzel,1814~1848)终于 给出三等分角和倍立方积的问题都是尺规作图不可能问题的证明。 (3)三大几何作图难题的意义 虽然三大几何作图难题都被证明是不可能由尺规作图的方式做到的, 但是为了解决这些问题,数学家们进行了前赴后继的探索,最后得到了 不少新的成果,发现了许多新的方法。同时,它反映了数学作为一门科 学,它时一片浩瀚深邃的海洋,仍有许多未知的谜底等待这我们去发现。
数学文化大事记——来看看数学发展史上的重大事件

极客数学帮数学文化大事记,盘点历史上数学发展过程中的重大事件,一起来看看吧。
401-1000年五世纪,算出了π的近似值到七位小数,比西方早一千多年(中国祖冲之)。
五世纪,著书研究数学和天文学,其中讨论了一次不定方程式的解法、度量术和三角学等(印度阿耶波多)。
六世纪中国六朝时,提出祖氏定律:若二立体等高处的截面积相等,则二者体积相等。
西方直到十七世纪才发现同一定律,称为卡瓦列利原理(中国祖暅)。
七世纪,研究了定方程和不定方程、四边形、圆周率、梯形和序列。
给出了ax+by=c(a ,b,c,是整数)的第一个一般解(印度婆罗摩笈多)。
九世纪,发表《印度计数算法》,使西欧熟悉了十进位制(阿拉伯阿尔·花刺子模)。
1001-1500年十一世纪,第一次解出x2n+axn=b型方程的根(阿拉伯阿尔·卡尔希)。
十一世纪,完成了一部系统研究三次方程的书《代数学》(阿拉伯卡牙姆)。
十一世纪,解决了“海赛姆”问题,即要在圆的平面上两点作两条线相交于圆周上一点,并与在该点的法线成等角(埃及阿尔·海赛姆)。
十二世纪,《立剌瓦提》一书是东方算术和计算方面的重要著作(印度拜斯迦罗)。
1202年,发表《计算之书》,把印度-阿拉伯记数法介绍到西方(意大利费婆拿契)。
1464年,在《论各种三角形》(1533年出版)中,系统地总结了三角学(德国约·米勒)。
1 494年,发表《算术集成》,反映了当时所知道的关于算术、代数和三角学的知识(意大利帕奇欧里)。
1501-1600年1545年,卡尔达诺在《大法》中发表了非尔洛求三次方程的一般代数解的公式(意大利卡尔达诺、非尔洛)。
1550─1572年,出版《代数学》,其中引入了虚数,完全解决了三次方程的代数解问题(意大利邦别利)。
1591年左右,在《美妙的代数》中出现了用字母表示数字系数的一般符号,推进了代数问题的一般讨论(德国韦达)。
1596─1613年,完成了六个三角函数的间隔10秒的十五位小数表(德国奥脱、皮提斯库斯)。
数学的发展历程

数学的发展历程一、古代数学(公元前3000年 - 公元5世纪)1. 古埃及数学- 古埃及人在公元前3000年左右就有了初步的数学知识。
他们主要为了满足实际生活的需要,如土地测量、建筑工程等。
- 埃及人发展了一套独特的计数系统,以10为基数,但不是位值制。
例如,他们用象形文字表示数字,一个竖线表示1,一个倒置的U形符号表示10等。
- 在几何学方面,他们能够计算简单的面积和体积。
如计算三角形、梯形面积,并且在建造金字塔等建筑时运用了一定的几何知识。
2. 古巴比伦数学- 古巴比伦人大约在公元前1800年就有了较为发达的数学。
他们的计数系统是60进制,这种进制对现代的时间(60秒为1分钟,60分钟为1小时)和角度(360度,1度 = 60分,1分 = 60秒)计量有深远影响。
- 他们能解一元二次方程,有泥板记录了大量的数学问题,包括商业中的算术问题、土地划分等几何问题等。
3. 古希腊数学- 早期希腊数学(公元前600 - 公元前300年)- 泰勒斯被认为是古希腊第一位数学家,他引入了演绎推理的思想,证明了一些几何定理,如等腰三角形两底角相等。
- 毕达哥拉斯及其学派强调数的和谐,发现了毕达哥拉斯定理(勾股定理),并且对数字进行了分类,如奇数、偶数、完全数等。
但他们也有一些神秘主义的数学观念,如认为数是万物的本原。
- 古典希腊数学(公元前300 - 公元前200年)- 希腊化时期数学(公元前200 - 公元5世纪)- 阿基米德是这一时期最伟大的数学家之一。
他在几何学方面取得了巨大成就,计算出许多复杂图形的面积和体积,如球的表面积和体积公式。
他还善于将数学应用于实际问题,如利用杠杆原理计算物体的重量等。
同时,他也是一位伟大的物理学家。
4. 古代中国数学- 中国古代数学有着悠久的历史。
早在商代(公元前1600 - 公元前1046年)就有了甲骨文记载的数字。
- 南北朝时期(公元420 - 589年)的祖冲之进一步将圆周率精确到3.1415926和3.1415927之间,这一成果领先世界近千年。
数学发展历史

数学发展历史LT学史研究证明:数学的发源地除古代非洲的尼罗河,还有西亚的底格里斯河和幼发拉底河、中南亚的印度河和恒河、东亚的黄河和长江。
知识简介:尼罗河-世界上最长的大河尼罗河纵贯非洲大陆东北部,流经布隆迪、卢旺达、坦桑尼亚、乌干达、埃塞俄比亚、苏丹、埃及,跨越世界上面积最大的撒哈拉沙漠,最后注入地中海。
流域面积约335万平方公里,占非洲大陆面积的九分之一,全长6650公里,年平均流量每秒3100立方米,为世界最长的河流。
尼罗河——阿拉伯语意为“大河”。
“尼罗,尼罗,长比天河”,是苏丹人民赞美尼罗河的谚语。
古埃及人在这里创造出高度的文明。
世界三大河流:非洲尼罗河、南美洲亚马逊河、亚洲长江中国第一大河——长江长江的上源沱沱河出自青海省西南边境唐古拉山脉各拉丹冬雪山,干流全长6300公里。
以干流长度和入海水量论,长江均居世界第三位。
长江流经青海、西藏、四川、重庆、云南、湖北、湖南、江西、安徽、江苏、上海,注入东海。
长江在湖北省宜昌市以上为上游,宜昌至江西省湖口间为中游,湖口以下为下游长江流域是中国人口密集经济繁荣的地区,沿江重要城市有重庆、武汉、南京、上海。
长江在四川奉节以下至湖北宜昌为雄伟险峻的三峡江段(瞿塘峡、巫峡、西陵峡)世界最大的水利枢纽工程三峡工程位于西陵峡中段的三斗坪(1994年12月14日开工,总工期17年)中华民族的母亲河—黄河黄河,发源于青海省巴颜喀拉山脉的约古宗列渠,流经青海、四川、甘肃、宁夏、内蒙古、陕西、山西、河南、山东9个省区,最后于山东省东营垦利县注入渤海。
干流河道全长5464千米,仅次于长江,为中国第二长河,世界第五长河黄河从源头到内蒙古自治区托克托县河口镇为上游,河口镇至河南郑州桃花峪间为中游,桃花峪以下为下游.数学的发展史一般分为四个时期(有很多分法),即数学的萌芽时期,古代数学时期,近代数学时期和现代数学时期。
一、数学萌芽时期(公元前6世纪以前)1.“数”概念的产生早在远古时代,人类就已具备了识别事物多少的能力。
数学大事年表

数学大事年表约公元前3000年埃及象形数字公元前2400~前1600年早期巴比伦泥版楔形文字,采用6 0进位值制记数法。
已知勾股定理公元前1850~前1650年埃及纸草书(莫斯科纸草书与莱茵德纸草书),使用10进非位值制记数法公元前1400~前1100年中国殷墟甲骨文,已有10进制记数法周公(公元前11世纪)、商高时代已知勾三、股四、弦五约公元前600年希腊泰勒斯开始了命题的证明约公元前540年希腊毕达哥拉斯学派,发现勾股定理,并导致不可通约量的发现约公元前500年印度《绳法经》中给出√2相当精确的值,并知勾股定理约公元前460年希腊智人学派提出几何作图三大问题:化圆为方、三等分角和二倍立方约公元前450年希腊埃利亚学派的芝诺提出悖论公元前430年希腊安提丰提出穷竭法约公元前380年希腊柏拉图在雅典创办“学园”,主张通过几何的学习培养逻辑思维能力公元前370年希腊欧多克索斯创立比例论约公元前335年欧多莫斯著《几何学史》中国筹算记数,采用十进位值制约公元前300年希腊欧几里得著《几何原本》,是用公理法建立演绎数学体系的最早典范公元前287~前212年希腊阿基米德,确定了大量复杂几何图形的面积与体积;给出圆周率的上下界;提出用力学方法推测问题答案,隐含近代积分论思想公元前230年希腊埃拉托塞尼发明“筛法”公元前225年希腊阿波罗尼奥斯著《圆锥曲线论》约公元前150年中国现存最早的数学书《算数书》成书(1983~1984年间在湖北江陵出土)约公元前100年中国《周髀算经》成书,记述了勾股定理中国古代最重要的数学著作《九章算术》经历代增补修订基本定形(一说成书年代为公元 50~100年间),其中正负数运算法则、分数四则运算、线性方程组解法、比例计算与线性插值法盈不足术等都是世界数学史上的重要贡献约公元62年希腊海伦给出用三角形三边长表示面积的公式(海伦公式)约公元150年希腊托勒密著《天文学》,发展了三角学约公元250年希腊丢番图著《算术》,处理了大量不定方程问题,并引入一系列缩写符号,是古希腊代数的代表作约公元263年中国刘徽注解《九章算术》,创割圆术,计算圆周率,证明圆面积公式,推导四面体及四棱锥体积等,包含有极限思想约公元300年中国《孙子算经》成书,系统记述了筹算记数制,卷下“物不知数”题是孙子剩余定理的起源公元320年希腊帕普斯著《数学汇编》,总结古希腊各家的研究成果,并记述了“帕普斯定理”和旋转体体积计算法公元410年希腊许帕提娅,历史上第一位女数学家,曾注释欧几里得、丢番图等人的著作公元462年中国祖冲之算出圆周率在3.1415926与3.14 15927之间,并以22/7为约率,355/113为密率(现称祖率)中国祖冲之和他的儿子祖暅提出“幂势既同则积不容异”的原理,现称祖暅原理,相当于西方的卡瓦列里原理(1635)公元499年印度阿耶波多著《阿耶波多文集》,总结了当时印度的天文、算术、代数与三角学知识。
数学文化3数学发展简史

开方术。后来在西方被十九世纪初英国数学家威廉·霍纳重新发现,被称作霍纳算法。
霍纳在1819年发表《解所有次方程》论文,被评为“必使发明人因为发现此算法而置身于
重要发明家之列”。
53
秦九韶的《数书九章》 卷一“大衍总数术”
“贾宪三角”, 也称“杨辉三角”
54
朱世杰的《四元玉鉴》
四元高次方程组,(天、地、人、物 —— x、y、z、w)
23
毕达哥拉斯 —— “ 万物皆数”
欧几里得 —— 几何《原本》
阿基米德 —— 面积、体积
阿波罗尼奥斯 —— 《圆锥曲线论》
托勒密
—— 三角学
丢番图
—— 不定方程
24
毕达哥拉斯(公元前580年~公元前500年)
25
26
The School of Athens by Raphael
柏拉图 与 亚里士多德
2
数学发展史大致可以分为四个阶段
一、数学起源时期 二、初等数学时期 三、近代数学时期 四、现代数学时期
3
一、数学起源时期
( 远古(4000年前) —— 公元前5世纪 )
这一时期:建立自然数的概念;认识简单的几何 图形;算术与几何尚未分开。
4
数学起源于四个“河谷文明”地域
非洲的 尼罗河---埃及:几何的故乡 西亚的 底格里斯河与幼发拉底河:巴比伦---代
式:“……以日下为勾,日高为
股,勾股各自乘,并而开方除之,
得邪至日。”
46
中国数学史上最先完成 勾股定理的证明
赵爽(东汉末至三国时代,生平不详,约生活 于公元3世纪) 研究过张衡的天文学著作《灵宪》 和刘洪的《乾象历》,也提到过“算术”。
他的主要贡献是约在222年深入研究了《周 牌算经》,为该书写了序言,并作了详细注释。 其中一段530余字的“勾股圆方图”注文是数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1679,德国数学家戈特弗里德。莱布尼兹最早使用只用 两个数的二进制算术。 1683,日本数学家关孝和首次将行列式引进数学。行列 式是由正方矩阵的元素所决定的数,用于解决联立方程 式及其它数学问题。 1706,威尔士数学家威廉。琼斯首先将符号π作为圆周 1717,英国天文学家亚伯拉罕。夏普交将圆周率的数值 计算到小数点后72位 1718,法国数学家亚伯拉罕。德。棣莫弗创作出《机会 论》,这是他的关于概率的第一本书。 1719,英国数学家布鲁克。泰勒验证了透视图中的消失 1743,法国数学家让。达朗贝尔因其著作《论动力学》 一书而建立数学动力学。三年后他提出复数理论。 1743,英国数学家托马斯。辛普森提出辛普森法则,计 算曲线围成的面积的系统方法。 1767,瑞士数学家莱昂哈德。欧拉发表著作《代数学完 整引论》,制定了代数规则。 1777,瑞士数学家莱昂哈德。欧拉将i引入数学概念, 成为-1的平方根。 1784,法国数学家阿德里安-玛丽。勒让德确定了勒让 德多项式,这个多项式的数学意义在于与物理学难题相 关的微分方程有了解决方法。 1796,德国物理学业家卡尔。高斯提出了直线或者曲线 与图形上的点的距离的最小二乘法。 1796,丹麦数学家卡斯帕尔。韦塞尔提出了用矢量表示 复数。 1806,瑞士科学家让。罗伯特。阿尔冈修改了阿尔冈图 表,用坐标平面里的点表示复数z=x+y,X轴表示实数部 分,Y轴表示虚拟部分 1815,英国学者彼得。罗杰修改了计算尺,增加了对数 坐标,极大简化了简洁和除法 1822,法国数学家约瑟夫。傅里叶提出傅里叶分析,用 正统函数和余弦函数分析连续函数 1824,德国天文学家、数家家弗里德里希。贝塞尔提出 了贝塞乐函数(最早是11817年提出的)。贝塞尔函数 形成一个无穷极函数,能解决天文和物理学方面的偏微 分方程的问题。 1827,德国物理学家卡尔。高斯发展了微分几何 1830,英国数学家乔治。皮考克在他的《代数论》中首 次提出了数字法则 1837,法国数学家、物理学家西蒙。泊松发现了泊松分 布曲线,一种在统计研究中非常重要的标准分布曲线 1843,爱尔兰数学家威廉。哈密顿修改了四元法,复数 第不能交替的。 1847,英国数学家奥古斯都。德。摩根提出了德。摩根 定律,为逻辑学奠定了基础 1851,法国数学家约瑟夫。刘维尔发表了著作,确认了 超越数的存在(不是代数概念里的数) 1854,英国数学家乔治。布尔引入了布尔代数概念 1854,德国数学家伯纳德。黎曼形成了非欧几德几何 学,后来这个理论又应用于相对论 1872,德国数学家理查德。戴德金发表了他的无理数理 1873,法国数学家查尔斯。赫密特证明了e(自然对数 的底数)是超级数(代数中无法用等式表现的无理数 1873,黄精数学家威廉。申克斯将π计算到小数点后
前2950,中国人-农历
前3500,埃及人-指时针、日晷 前3000,苏美尔人-360天的日历,12个月,每月30天。 每隔8年增加一个月以保持和季节同步。 前2500,苏美尔商人-标准重量体系,包括舍客勒和迈 纳等重量单位。 前2600,埃及建筑师-三角尺确定直角,利用铅垂线校 正垂线 前3200,埃及人用水位计来测量每年尼罗河洪灾。 前3400,苏美尔人使用图示文字,后发展为楔形文字 前3100,埃及人开始使用象形文字为记写方式。 前2000,巴比伦的数学家根据60进位制提出了按位记数 系统。 公元前1650年,埃及数学家学会解析简单方程 前1200,奥尔梅克人有了月历 前1360,中国数学家-非按位记数系统(没有0)。具有 乘法。 前1000,印度-含360天的月历出现 前975,希伯来人-基色月历(12个月,每月27或28天) 前300,希腊数学家欧几里得写了一本关于几何的书《 几何原理》 前235,希腊埃拉托色尼计算了地球的周长 前245,希腊埃拉托色尼发明了找出素数的埃拉托色尼 筛选法 前230,希腊数学家阿波罗尼斯撰写了《圆锥曲线论 》,解决了圆锥曲线问题 前100,中国天文学家开始使用负数 1,中国刘歆提出了十进制小数 100,希腊数学家尼可马修斯撰写了《算术引论》 250,埃及数学家丢蕃力创建了代数 263,中国数学家刘徽较精确的计算出圆周率到第五位 小数3.14159 534,中国数学被日本接受 610,印度-10进制数字系统开始应用 789,罗马帝国皇帝查理曼下令使用规范的重量单位和 测量单位 760,起源于印度的阿拉伯数字在巴格达应用 876,印度数学家提出了一个代表0的符号 26,希腊数学家希罗描述了各种面积和体积的计算 110,希腊数学家和天文学家门纳劳斯在他的《球面学 》一书中介绍了球面几何 340,希腊数学家帕普斯撰写了《数学汇编》,这是一 问关于几何问题的大全,对《几何原本》和《天文学大 成》进行了评注
基本事件
公元前4236年,古埃及人发明了一个365天的日历(12 个月,每月30天,外加一个5天的假期),公元前3000 年苏美尔人日历出现前的精确日历
公元前3400年,埃及人采用了计量超过10的数字记法
公元前2000年,巴比伦数学家提出按位记数系统 公元前1800年,美索不达米亚数学家发现“沟股定理”
数字事件 《科学与发明简史》28页 “文字和数字”
公元前3400年,埃及使用 数字(10进位)
公元前3100年,埃及象形 文字 公元前2400年楔形文字 公元前1700年早期中国文 公元前1700年原始迦南字 母表 公元前1000年腓尼字母表
460,希腊数学家普罗克洛斯指出,通过给定一点只有 一条直线平行已知直线。这一平等公理在1795年由英格 兰数学家约翰。普莱费尔探案,成为普莱费尔公理。 350,印度公布带有三角正弦表的天文学报告《苏利亚 465,中国祖冲之用直径3米的圆计算出圆周率到10位小 680,柬埔寨和苏门答腊地区的计算中出现了0用于补位 867,印度瓜瘳尔地区的人首先开始使用数字0 880,阿拉伯天文学家阿尔巴塔尼将三角引入阿拉伯天 1142,英国哲学家巴思的阿德拉德将欧几得的《几何原 理》翻译成拉丁文 1145,英国学者罗伯特将阿拉伯数学家阿什。扎法。穆 罕默德。伊本。穆薩。花刺子密所著的《代数学》一书 翻译成拉丁语。 1105,波斯数学家兼诗人欧玛尔。海亚姆解出了立方方 程(三次方代数方程) 1075,阿拉伯天文学家阿尔-扎恰里提出行星轨道是椭 圆而不是圆 1202,意大利数学家列昂纳多。斐波那契发现整数“斐 波那契数列”,即每个整数都是数列中前两个数的和的 数列。 1225,德国数学家约丹努斯。内莫拉里乌斯在所著的《 算术》书中,用字母表示变量。 1220,中国数学家引进“零”的符号 1321,法裔希伯来数学家、哲学家莱维。本。热尔松引 进数学的排列-组合 1336,巴黎大学领导层使数学成为所有学生的必修课 1365,法国教士、哲学家尼科尔。奥雷姆发表了一问内 容广泛的教学科教书《形态的幅度》,书中提出了像解 析几何、微积分等理论。 1435,意大利建筑师、艺术家利昂。阿尔贝蒂出版一部 包括科学透视法的书,这是投影几何的基础。 1464,德国数学家雷乔蒙塔努斯创作出《论各种三角形 》,对三角几何进行概述 1478,意大利出版第一本通俗数学书《特雷维索算术 》,书中列有常见类型的计算规则。 1482,意大利数学家约翰内斯。坎帕努斯将《几何原理 》翻译成拉丁文,并将译文发表 1494,意大利数学家卢卡。帕乔利在一本早期的数学书 中描述了复式记帐法。这本书名为《算术、几何、比与 比例概要》也译作《数学大全》 1525,德国数学家克里斯托夫。鲁道夫首次使用数学符 号平方根 1541,德国数学家瑞提克斯发表了一套三角函数表。 1543,哥白尼将阿拉伯科学家研究出来的定理应用于数 学和天文学中。 1585,佛兰德数学家西蒙。斯蒂文首先将十进制小数引 入常用计算中。 1642,法国科学家布莱斯。帕斯卡成功制作出一台木制 计算器 1653,法国科学家布莱斯。帕斯卡创立数学三角形,帕 斯卡三角形中,每个数都是其上面两个数之和 1657,克里斯蒂安。惠更斯创作出关于数学概率论的第 一本书 1659,德国数学家约翰。雷恩最早把除号引入数学 1665,英国科学家、数学家艾萨克。牛顿首次提出使代 数中表达式(x+y)4,生于俄国的德国数学家乔治。康托尔将超限数概 念引入了数学领域 1881,英国数学家约翰。维恩出版了《符号逻辑》一 书,书中介绍了对于逻辑关系的理解,还提出了维恩图 1881,美国化学家、数学物理学家J。维拉德。吉伯斯 引入了三维矢量体系 1906,俄国数学家安德烈。马尔科夫创立马尔科夫链理 论:处于链条上的一系列随机事件的发生概率取决于先 前的事件 1906,法国数学家莫里斯。弗雷歇将函数演算引入数学 领域 1908,德国数学家恩斯特。策梅洛在数学领域推出集合 1921,英国经济学家约翰。梅纳德。凯恩斯出版《概率 论》 1930,荷兰数学家巴特尔。范德瓦尔登出版《近世代数 》,成为研究抽象代数的经典著作 1931,生于奥地利的美国数学家库尔特。哥德尔证明包 含算术定理的任意一个数学系统必定是不完整或不一致 1936,英国数学家和逻辑学家艾论。图灵“发明”假想 的图灵机,用以判断能否用计算机解决问题,一年后提 出自动运算的数学理论模型,发表论文《论可计算数》 1937,苏联数学家伊万。维诺格拉多夫证明所有大偶数 可表达成4个质数之和 1939,一群法国数学家化名“尼古拉。布尔马巴基”出 版最早的当代高等数学专著《数学原本》 1941,美国数学家亚伯拉罕。阿尔伯特开始确立非结合 代数理论,1942年公开发表 1944年美国数学家约翰。冯。诺依曼与奥斯卡。摩根斯 特恩提出博弈论的数学依据 1988,日本数学家关一宫冈提供了费马大定理的证明不 够严谨,1994年得出一个有效证明