自适应模糊神经网络MATLAB代码
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
function [ c, sigma , W_output ] = SOFNN( X, d, Kd )
%SOFNN Self-Organizing Fuzzy Neural Networks
%Input Parameters
% X(r,n) - rth traning data from nth observation
% d(n) - the desired output of the network (must be a row vector) % Kd(r) - predefined distance threshold for the rth input
%Output Parameters
% c(IndexInputVariable,IndexNeuron)
% sigma(IndexInputVariable,IndexNeuron)
% W_output is a vector
%Setting up Parameters for SOFNN
SigmaZero=4;
delta=0.12;
threshold=0.1354;
k_sigma=1.12;
%For more accurate results uncomment the following
%format long;
%Implementation of a SOFNN model
[size_R,size_N]=size(X);
%size_R - the number of input variables
c=[];
sigma=[];
W_output=[];
u=0; % the number of neurons in the structure
Q=[];
O=[];
Psi=[];
for n=1:size_N
x=X(:,n);
if u==0 % No neuron in the structure?
c=x;
sigma=SigmaZero*ones(size_R,1);
u=1;
Psi=GetMePsi(X,c,sigma);
[Q,O] = UpdateStructure(X,Psi,d);
pT_n=GetMeGreatPsi(x,Psi(n,:))';
else
[Q,O,pT_n] = UpdateStructureRecursively(X,Psi,Q,O,d,n);
end;
KeepSpinning=true;
while KeepSpinning
%Calculate the error and if-part criteria
ae=abs(d(n)-pT_n*O); %approximation error
[phi,~]=GetMePhi(x,c,sigma);
[maxphi,maxindex]=max(phi); % maxindex refers to the neuron's index if ae>delta
if maxphi %enlarge width [minsigma,minindex]=min(sigma(:,maxindex)); sigma(minindex,maxindex)=k_sigma*minsigma; Psi=GetMePsi(X,c,sigma); [Q,O] = UpdateStructure(X,Psi,d); pT_n=GetMeGreatPsi(x,Psi(n,:))'; else %Add a new neuron and update structure ctemp=[]; sigmatemp=[]; dist=0; for r=1:size_R dist=abs(x(r)-c(r,1)); distIndex=1; for j=2:u if abs(x(r)-c(r,j)) distIndex=j; dist=abs(x(r)-c(r,j)); end; end; if dist<=Kd(r) ctemp=[ctemp; c(r,distIndex)]; sigmatemp=[sigmatemp ; sigma(r,distIndex)]; else ctemp=[ctemp; x(r)]; sigmatemp=[sigmatemp ; dist]; end; end; c=[c ctemp]; sigma=[sigma sigmatemp]; Psi=GetMePsi(X,c,sigma); [Q,O] = UpdateStructure(X,Psi,d); KeepSpinning=false; u=u+1; end; else if maxphi %enlarge width [minsigma,minindex]=min(sigma(:,maxindex)); sigma(minindex,maxindex)=k_sigma*minsigma; Psi=GetMePsi(X,c,sigma); [Q,O] = UpdateStructure(X,Psi,d); pT_n=GetMeGreatPsi(x,Psi(n,:))'; else %Do nothing and exit the while KeepSpinning=false; end; end; end; end; W_output=O; end function [Q_next, O_next,pT_n] = UpdateStructureRecursively(X,Psi,Q,O,d,n) %O=O(t-1) O_next=O(t) p_n=GetMeGreatPsi(X(:,n),Psi(n,:)); pT_n=p_n'; ee=abs(d(n)-pT_n*O); %|e(t)| temp=1+pT_n*Q*p_n; ae=abs(ee/temp); if ee>=ae L=Q*p_n*(temp)^(-1); Q_next=(eye(length(Q))-L*pT_n)*Q; O_next=O + L*ee; else Q_next=eye(length(Q))*Q; O_next=O; end; end function [ Q , O ] = UpdateStructure(X,Psi,d) GreatPsiBig = GetMeGreatPsi(X,Psi); %M=u*(r+1) %n - the number of observations [M,~]=size(GreatPsiBig); %Others Ways of getting Q=[P^T(t)*P(t)]^-1