自适应模糊神经网络MATLAB代码

合集下载

matlab模糊函数代码

matlab模糊函数代码

matlab模糊函数代码在数学和图像处理领域中,模糊函数是一种常用的工具,用于对图像进行模糊处理以达到一定的效果。

Matlab提供了一些内置函数来实现图像的模糊处理,本文将介绍如何使用Matlab编写模糊函数代码。

Matlab中有多种不同类型的模糊函数,例如高斯模糊、均值模糊和运动模糊等。

下面将逐一介绍这些模糊函数代码的实现方式。

1. 高斯模糊:高斯模糊是最常用的模糊算法之一,它通过卷积图像与一个高斯核来实现。

以下是Matlab中实现高斯模糊的代码示例:```matlabfunction blurredImage = gaussianBlur(image, sigma)kernelSize = 2 * ceil(3 * sigma) + 1; % 根据sigma计算高斯核大小kernel = fspecial('gaussian', [kernelSize kernelSize], sigma); % 生成高斯核blurredImage = imfilter(image, kernel, 'conv'); % 对图像进行卷积操作end```2. 均值模糊:均值模糊是一种简单但常用的模糊算法,它通过计算邻域像素的平均值来实现。

以下是Matlab中实现均值模糊的代码示例:```matlabfunction blurredImage = meanBlur(image, kernelSize)kernel = ones(kernelSize) / (kernelSize^2); % 生成均值核blurredImage = imfilter(image, kernel, 'conv'); % 对图像进行卷积操作end```3. 运动模糊:运动模糊是一种模糊算法,它通过模拟相机快门打开时的移动效果来实现。

以下是Matlab中实现运动模糊的代码示例:```matlabfunction blurredImage = motionBlur(image, angle, distance)PSF = fspecial('motion', distance, angle); % 生成运动模糊核blurredImage = imfilter(image, PSF, 'conv'); % 对图像进行卷积操作end```以上是几种常见的模糊函数的Matlab代码实现。

在Matlab中实现神经网络的方法与实例

在Matlab中实现神经网络的方法与实例

在Matlab中实现神经网络的方法与实例神经网络是一种模拟人类大脑神经系统的计算模型,它能够通过学习数据的模式和关联性来解决各种问题。

在计算机科学和人工智能领域,神经网络被广泛应用于图像识别、自然语言处理、预测等任务。

而Matlab作为一种功能强大的科学计算软件,提供了一套完善的工具箱,可以方便地实现神经网络的建模和训练。

本文将介绍在Matlab中实现神经网络的方法与实例。

首先,我们会简要介绍神经网络的基本原理和结构,然后详细讲解在Matlab中如何创建并训练神经网络模型,最后通过几个实例展示神经网络在不同领域的应用。

一、神经网络的原理和结构神经网络模型由神经元和它们之间的连接构成。

每个神经元接收输入信号,并通过权重和偏置进行加权计算,然后使用激活函数对结果进行非线性变换。

这样,神经网络就能够模拟复杂的非线性关系。

常见的神经网络结构包括前馈神经网络(Feedforward Neural Network)和循环神经网络(Recurrent Neural Network)。

前馈神经网络是最基本的结构,信号只能向前传递,输出不对网络进行反馈;而循环神经网络具有反馈连接,可以对自身的输出进行再处理,适用于序列数据的建模。

神经网络的训练是通过最小化损失函数来优化模型的参数。

常用的训练算法包括梯度下降法和反向传播算法。

其中,梯度下降法通过计算损失函数对参数的梯度来更新参数;反向传播算法是梯度下降法在神经网络中的具体应用,通过反向计算梯度来更新网络的权重和偏置。

二、在Matlab中创建神经网络模型在Matlab中,可以通过Neural Network Toolbox来创建和训练神经网络模型。

首先,我们需要定义神经网络的结构,包括输入层、隐藏层和输出层的神经元数量,以及每个神经元之间的连接权重。

例如,我们可以创建一个三层的前馈神经网络模型:```matlabnet = feedforwardnet([10 8]);```其中,`[10 8]`表示隐藏层的神经元数量分别为10和8。

Matlab里的神经网络参数设置

Matlab里的神经网络参数设置

Matlab⾥的神经⽹络参数设置Matlab⾥的神经⽹络参数设置训练函数训练⽅法traingd 梯度下降法traingdm 有动量的梯度下降法traingda ⾃适应lr梯度下降法traingdx ⾃适应lr动量梯度下降法trainrp 弹性梯度下降法traincgf Fletcher-Reeves共轭梯度法traincgp Ploak-Ribiere共轭梯度法traincgb Powell-Beale共轭梯度法trainscg 量化共轭梯度法trainbfg 拟⽜顿算法trainoss ⼀步正割算法trainlm Levenberg-Marquardt传递函数名:函数名函数解释compet 竞争型传递函数hardlim 阈值型传递函数hardlims 对称阈值型传输函数logsig S型传输函数poslin 正线性传输函数purelin 线性传输函数radbas 径向基传输函数satlin 饱和线性传输函数satlins 饱和对称线性传输函数softmax 柔性最⼤值传输函数tansig 双曲正切S型传输函数tribas 三⾓形径向基传输函数训练设置:参数名称解释适⽤⽅法net.trainParam.epochs 最⼤训练次数(缺省为10) traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.goal 训练要求精度(缺省为0) traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.lr 学习率(缺省为0.01) traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.max_fail 最⼤失败次数(缺省为5) traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.min_grad 最⼩梯度要求(缺省为1e-10) traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.show 显⽰训练迭代过程(NaN表⽰不显⽰,缺省为25) traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.time 最⼤训练时间(缺省为inf) traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.mc 动量因⼦(缺省0.9) traingdm、traingdxnet.trainParam.lr_inc 学习率lr增长⽐(缺省为1.05) traingda、traingdxnet.trainParam.lr_dec 学习率lr下降⽐(缺省为0.7) traingda、traingdxnet.trainParam.max_perf_inc 表现函数增加最⼤⽐(缺省为1.04) traingda、traingdxnet.trainParam.delt_inc 权值变化增加量(缺省为1.2) trainrpnet.trainParam.delt_dec 权值变化减⼩量(缺省为0.5) trainrpnet.trainParam.delt0 初始权值变化(缺省为0.07) trainrpnet.trainParam.deltamax 权值变化最⼤值(缺省为50.0) trainrpnet.trainParam.searchFcn ⼀维线性搜索⽅法(缺省为srchcha) traincgf、traincgp、traincgb、trainbfg、trainossnet.trainParam.sigma 因为⼆次求导对权值调整的影响参数(缺省值5.0e-5) trainscg/doc/9f16135255.htmlmbda Hessian矩阵不确定性调节参数(缺省为5.0e-7) trainscgnet.trainParam.men_reduc 控制计算机内存/速度的参量,内存较⼤设为1,否则设为2(缺省为1) trainlm net.trainParam.mu 的初始值(缺省为0.001) trainlmnet.trainParam.mu_dec 的减⼩率(缺省为0.1) trainlmnet.trainParam.mu_inc 的增长率(缺省为10) trainlmnet.trainParam.mu_max 的最⼤值(缺省为1e10)。

Matlab里的神经网络参数设置

Matlab里的神经网络参数设置
logsig
S型传输函数
poslin
正线性传输函数
purelin
线性传输函数
radbas
径向基传输函数
satlin
饱和线性传输函数
satlins
饱和对称线性传输函数
softmax
柔性最大值传输函数
tansig
双曲正切S型传输函数
tribas
三角形径向基传输函数
elliot2sig
ettrainparamepoch最大训练次数缺省为10traingdtraingdmtraingdatraingdxtrainrptraincgftraincgptraincgbtrainscgtrainbfgtrainosstrainlmnettrainparamgoal训练要求精度缺省为0traingdtraingdmtraingdatraingdxtrainrptraincgftraincgptraincgbtrainscgtrainbfgtrainosstrainlmnettrainparamlr学习率缺省为001traingdtraingdmtraingdatraingdxtrainrptraincgftraincgptraincgbtrainscgtrainbfgtrainosstrainlmnettrainparammaxfail最大失败次数缺省为5traingdtraingdmtraingdatraingdxtrainrptraincgftraincgptraincgbtrainscgtrainbfgtrainosstrainlmnettrainparammingrad最小梯度要求缺省为1e10traingdtraingdmtraingdatraingdxtrainrptraincgftraincgptraincgbtrainscgtrainbfgtrainosstrainlmnettrainparamshow显示训练迭代过程nan表示不显示缺省为25traingdtraingdmtraingdatraingdxtrainrptraincgftraincgptraincgbtrainscgtrainbfgtrainosstrainlmnettrainparamtime最大训练时间缺省为inftraingdtraingdmtraingdatraingdxtrainrptraincgftraincgptraincgbtrainscgtrainbfgtrainosstrainlmnettrainparammc动量因子缺省09traingdmtraingdxnettrainparamlrinc学习率lr增长比缺省为105traingdatraingdxnettrainparamlrdec学习率lr下降比缺省为07traingdatraingdxnettrainparammaxper

Matlab中的神经网络预测方法

Matlab中的神经网络预测方法

Matlab中的神经网络预测方法引言神经网络是一种模拟人脑神经元的计算模型,通过构建输入层、隐藏层和输出层之间的连接,可以对复杂的非线性问题进行建模和预测。

在Matlab中,有丰富的神经网络工具箱,提供了多种神经网络预测方法和算法。

本文将介绍一些常用的神经网络预测方法,并说明其在Matlab中的实现原理和应用场景。

一、前馈神经网络(Feedforward Neural Network)前馈神经网络是最常见的神经网络模型,也是最基本的一种。

其模型结构包括输入层、隐藏层和输出层,信号在网络中只能向前传播,不会回流。

前馈神经网络使用反向传播算法进行训练,通过不断调整连接权值和阈值来提高网络的预测能力。

在Matlab中,可以使用feedforwardnet函数创建前馈神经网络模型。

该函数的输入参数包括隐藏层节点数、训练算法和激活函数等。

例如,以下代码创建一个具有10个隐藏层节点的前馈神经网络模型:```matlabnet = feedforwardnet(10);```创建好的神经网络模型可以通过train函数进行训练,如下所示:```matlabnet = train(net, X, Y);```其中X和Y为训练数据的输入和输出。

训练完成后,可以使用sim函数对新的数据进行预测,如下所示:```matlabY_pred = sim(net, X_pred);```Y_pred为预测结果,X_pred为待预测的输入数据。

二、递归神经网络(Recurrent Neural Network)递归神经网络是另一种常见的神经网络模型,不同于前馈神经网络,递归神经网络允许信号在网络中进行循环传播,使得模型可以处理序列数据和时间序列数据。

递归神经网络拥有记忆功能,可以通过上一时刻的输出来影响当前时刻的输出。

在Matlab中,可以使用narnet函数创建递归神经网络模型。

该函数的输入参数包括隐藏层节点数、训练算法和激活函数等。

神经网络及深度学习(包含matlab代码)

神经网络及深度学习(包含matlab代码)

f ( x)
1 1 e Qx
(2.3)
它反映了神经元的饱和特性。 上式中, Q 为表示神经元非线性的参数, 称增益值(Gain), 也称调节参数。 Q 值越大, S 形曲线越陡峭; 反之, Q 值越小, S 形曲线越平坦; 一般取 Q=1。 (b)双曲正切激励函数,一般取为(-1,1)内连续取值:
神经网络及深度学习
(包含 MATLAB 仿真) 人工神经网络(Artificial Neural Network,即 ANN ) ,作为对人脑最简单的一种抽象和 模拟,是人们模仿人的大脑神经系统信息处理功能的一个智能化系统,是 20 世纪 80 年代 以来人工智能领域兴起的研究热点。 人工神经网络以数学和物理方法以及信息处理的角度对 人脑神经网络进行抽象, 并建立某种简化模型, 旨在模仿人脑结构及其功能的信息处理系统。 人工神经网络最有吸引力的特点就是它的学习能力。因此从 20 世纪 40 年代人工神经 网络萌芽开始, 历经两个高潮期及一个反思期至 1991 年后进入再认识与应用研究期, 涌现 出无数的相关研究理论及成果, 包括理论研究及应用研究。 最富有成果的研究工作是多层网 络 BP 算法,Hopfield 网络模型,自适应共振理论,自组织特征映射理论等。因为其应用价 值, 该研究呈愈演愈烈的趋势, 学者们在多领域中应用人工神经网络模型对问题进行研究优 化解决。 人工神经网络是由多个神经元连接构成,因此欲建立人工神经网络模型必先建立人工 神经元模型,再根据神经元的连接方式及控制方式不同建立不同类型的人工神经网络模型。 一、人工神经元及神经网络 1.1 人工神经元模型 仿生学在科技发展中起着重要作用,人工神经元模型的建立来源于生物神经元结构的 仿生模拟,用来模拟人工神经网络。人们提出的神经元模型有很多,其中最早提出并且影响 较大的是 1943 年心理学家 McCulloch 和数学家 W. Pitts 在分析总结神经元基本特性的基础上 首先提出的 MP 模型。该模型经过不断改进后,形成现在广泛应用的 BP 神经元模型。人工 神经元模型是由人量处理单元厂泛互连而成的网络,是人脑的抽象、简化、模拟,反映人脑 的基本特性。一般来说,作为人工神经元模型应具备三个要素: (1) 具有一组突触或连接,常用 wij 表示神经元 i 和神经元 j 之间的连接强度。 (2) 具有反映生物神经元时空整合功能的输入信号累加器 。 (3) 具有一个激励函数 f 用于限制神经元输出。激励函数将输出信号限制在一个允许 范围内。 一个典型的人工神经元模型如图 1-11-1 所示。

使用Matlab进行神经网络优化问题求解的方法

使用Matlab进行神经网络优化问题求解的方法

使用Matlab进行神经网络优化问题求解的方法一、引言在当今信息时代,神经网络已经成为解决复杂问题的重要工具。

随着计算能力的提升,神经网络优化问题的求解变得越来越重要。

而Matlab作为一种强大的科学计算软件,能够提供丰富的工具和函数来解决神经网络优化问题。

本文将介绍如何使用Matlab来解决神经网络优化问题。

二、神经网络优化问题的建模在使用Matlab解决神经网络优化问题之前,首先需要对问题进行建模。

通常来说,神经网络优化问题可以分为两类:单目标优化问题和多目标优化问题。

单目标优化问题是指希望优化网络的某个特定输出,常见的问题有回归问题和分类问题。

而多目标优化问题则是希望在多个指标上获得最优解,常见的问题有多目标分类和多目标回归问题。

在建模过程中,需要确定网络的结构和参数。

神经网络的结构通常由输入层、隐藏层和输出层组成。

输入层接受原始数据,隐藏层进行特征提取,输出层给出最终的结果。

而参数则包括权重和偏置,这些参数需要进行调整以达到最优解。

三、使用Matlab解决单目标优化问题1. 数据准备在解决单目标优化问题之前,首先需要准备好数据集。

数据集应该包含输入值和对应的目标值。

2. 网络训练使用Matlab的神经网络工具箱,可以方便地进行网络训练。

首先,需要创建一个神经网络对象,并设置好网络的结构和参数。

然后,使用训练函数对网络进行训练,常见的训练函数有Levenberg-Marquardt算法和梯度下降算法。

通过训练函数,可以不断调整网络的权重和偏置,直到达到最优解。

3. 网络评估训练完网络后,需要对网络进行评估。

可以使用测试数据集来评估网络的性能,通常采用预测误差、准确率等指标来评估网络的表现。

四、使用Matlab解决多目标优化问题解决多目标优化问题与解决单目标优化问题的方法类似,只是目标变成了多个。

可以使用多种方法来解决多目标优化问题,如加权法、约束法和分级法等。

1. 加权法加权法是一种常用的解决多目标优化问题的方法。

神经网络及深度学习(包含matlab代码).pdf

神经网络及深度学习(包含matlab代码).pdf

神经网络及深度学习(包含matlab代码).pdf
神经网络可以使用中间层构建出多层抽象,正如在布尔电路中所做的那样。

如果进行视觉模式识别,那么第1 层的神经元可能学会识别边;第2 层的神经元可以在此基础上学会识别更加复杂的形状,例如三角形或矩形;第3 层将能够识别更加复杂的形状,以此类推。

有了这些多层抽象,深度神经网络似乎可以学习解决复杂的模式识别问题。

正如电路示例所体现的那样,理论研究表明深度神经网络本质上比浅层神经网络更强大。

《深入浅出神经网络与深度学习》PDF+代码分析
《深入浅出神经网络与深度学习》PDF中文,249页;PDF英文,292页;配套代码。

提取码: 6sgh
以技术原理为导向,辅以MNIST 手写数字识别项目示例,介绍神经网络架构、反向传播算法、过拟合解决方案、卷积神经网络等内容,以及如何利用这些知识改进深度学习项目。

学完后,将能够通过编写Python 代码来解决复杂的模式识别问题。

Matlab中的神经网络算法实现指南

Matlab中的神经网络算法实现指南

Matlab中的神经网络算法实现指南1. 引言神经网络是一种基于生物神经系统的模型,旨在模拟人脑的学习和决策过程。

在现代机器学习领域,神经网络被广泛应用于图像识别、语言处理、预测分析等各种任务中。

而Matlab作为一种功能强大的数值计算和可视化软件,提供了丰富的神经网络工具箱,可以帮助开发人员快速实现和调试各种神经网络算法。

本文将介绍Matlab中的神经网络工具箱,并提供一些实现神经网络算法的指南。

2. Matlab中的神经网络工具箱Matlab提供了一个名为"Neural Network Toolbox"的工具箱,包含了大量的函数和工具,用于构建、训练和评估神经网络模型。

该工具箱支持多种类型的神经网络结构,包括前馈神经网络、递归神经网络、卷积神经网络等。

此外,Matlab还提供了各种用于优化神经网络的算法,如反向传播算法、遗传算法等。

3. 构建神经网络模型在Matlab中,我们可以使用"feedforwardnet"函数来构建一个前馈神经网络模型。

该函数接受一个包含神经网络层结构的向量作为输入参数,并返回一个神经网络对象。

我们可以通过修改这个向量的元素来调整神经网络的结构和参数。

例如,下面的代码展示了如何构建一个包含两个隐藏层的前馈神经网络模型:```matlabnet = feedforwardnet([10, 5]);```4. 导入和预处理数据导入和预处理数据对于构建和训练神经网络模型至关重要。

Matlab提供了各种用于数据导入和预处理的函数和工具。

例如,可以使用"csvread"函数来导入CSV 格式的数据文件;可以使用"mapminmax"函数来对数据进行归一化处理;可以使用"splittingData"函数将数据划分为训练集、验证集和测试集等。

5. 为神经网络模型训练数据在Matlab中,我们可以通过调用"train"函数来训练神经网络模型。

matlab训练神经网络分类器方法,用神经网络做训练和分类的matlab代码

matlab训练神经网络分类器方法,用神经网络做训练和分类的matlab代码

matlab训练神经⽹络分类器⽅法,⽤神经⽹络做训练和分类的matlab代码close allclear allclcx=xlsread('training_data.xls',['B2:G401']);y=xlsread('training_data.xls',['I2:K401']);inputs = x';targets = y';% 创建⼀个模式识别⽹络(两层BP⽹络),同时给出中间层神经元的个数,这⾥使⽤20hiddenLayerSize = 20;net = patternnet(hiddenLayerSize);% 对数据进⾏预处理,这⾥使⽤了归⼀化函数(⼀般不⽤修改)% For a list of all processing functions type: help nnprocessnet.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'};% 把训练数据分成三部分,训练⽹络、验证⽹络、测试⽹络% For a list of all data division functions type: help nndividenet.divideFcn = 'dividerand'; % Divide data randomlynet.divideMode = 'sample'; % Divide up every samplenet.divideParam.trainRatio = 70/100;net.divideParam.valRatio = 15/100;net.divideParam.testRatio = 15/100;% 训练函数% For a list of all training functions type: help nntrainnet.trainFcn = 'trainlm'; % Levenberg-Marquardt% 使⽤均⽅误差来评估⽹络% For a list of all performance functions type: help nnperformancenet.performFcn = 'mse'; % Mean squared error% 画图函数% For a list of all plot functions type: help nnplotnet.plotFcns = {'plotperform','plottrainstate','ploterrhist', ...'plotregression', 'plotfit'};% 开始训练⽹络(包含了训练和验证的过程)[net,tr] = train(net,inputs,targets);% 测试⽹络outputs = net(inputs);errors = gsubtract(targets,outputs);performance = perform(net,targets,outputs)% 获得训练、验证和测试的结果trainTargets = targets .* tr.trainMask{1};valTargets = targets .* tr.valMask{1};testTargets = targets .* tr.testMask{1};trainPerformance = perform(net,trainTargets,outputs) valPerformance = perform(net,valTargets,outputs) testPerformance = perform(net,testTargets,outputs)% 可以查看⽹络的各个参数view(net)% 根据画图的结果,决定是否满意% Uncomment these lines to enable various plots. figure, plotperform(tr)figure, plottrainstate(tr)figure, plotconfusion(targets,outputs)figure, ploterrhist(errors)%如果你对该次训练满意,可以保存训练好⽹络save('training_net.mat','net','tr');下⾯是⽤来分类的代码clear allclose allclcload 'training_net.mat'%% You can change the filename, sheet name, and range %导⼊测试数据new_input = xlsread('new_data.xls',['A2:F25']);new_output = round(net(new_input'));xlswrite('new_data.xls',new_output','result','G2');%把⼆进制转换成对应的类别。

MATLAB程序代码--神经网络基础问题整理

MATLAB程序代码--神经网络基础问题整理

MATLAB程序代码--神经网络基础问题整理所选问题及解答大部分来源于/bbs/资料大部分为江南一纪收集整理对其他参与整理的版友(不一一列举)及资料的原创者一并表示感谢因江南对神经网络的理解也不是很多错误之处难勉请谅解有什么问题可以来/bbs/的『人工神经网络专区』交流***************************************************************** 1神经网络的教材哪本比较经典神经网络原理Simon Haykin ? 叶世?史忠植译神经网络设计神经网络书籍神经网络模型及其matlab仿真程序设计周开利(对神经网络工具箱函数及里面神经网络工具箱的神经网络模型的网络对象及其属性做了详细的论述,后者在神经网络理论与matlab7实现那本书里面是没有的)神经网络理论与matlab7实现(这本书对初学这入门还是挺不错的,看过了,就对matlab神经网络工具箱有教好的了解)神经网络设计(我认为这是一本很好的书,讲理论不是很多,看过之后就会对神经网络的原理有更好的了解)神经网络结构设计的理论与方法(这本书对提高网络的泛化能力的一些方法做了讲述,并且书后有程序,对网络结构的设计应该是挺有帮助的)摘自给初学matlab神经网络的一点建议/bbs/read.php?tid=1111&keyword=2 神经网络理论的发展与前沿问题神经网络理论的发展与前沿问题刘永?摘要系统地论述了神经网络理论发展的历史和现状,在此基础上,对其主要发展趋向和所涉及的前沿问题进行了阐述.文中还作了一定的评论,并提出了新的观点.关键词神经网络理论,神经计算,进化计算,基于神经科学和数学的研?查看原文/bbs/read.php?tid=5374&keyword=%C9%F1%BE%AD%CD%F8%C2%E73 神经网络的权值和阈值分别是个什么概念??权值和阈值是神经元之间的连接,将数据输入计算出一个输出,然后与实际输出比较,误差反传,不断调整权值和阈值假如p1=[1 1 -1]';p2=[1 -1 -1]';属于不同的类须设计分类器将他们分开这里用单层神经元感知器初始权值w=[0.2 0.2 0.3] b=-0.3输出a1 a2a1=hardlims(w*p1+b)a2=hardlims(w*p2+b)如果不能分开,还须不断调整w,b这里说明一下权值w 阈值b 而已简单地说,阈值也可以看作一维权值,只不过它所对应的那一维样本永远是-1(也有的书上说是1),这样就把输入样本增加了一维,更有利于解决问题./bbs/read.php?tid=6078&keyword=%C9%F1%BE%AD %CD%F8%C2%E74 神经网络归一化看了研学和ai创业研发俱乐部神经网络版及振动论坛部分帖子内容,对归一化做一下整理,冒昧引用了一些他人的观点,有的未列出其名,请谅解-------------------------------------------------------------------------------------------------------关于神经网络归一化方法的整理由于采集的各数据单位不一致,因而须对数据进行[-1,1]归一化处理,归一化方法主要有如下几种,供大家参考:(by james)1、线性函数转换,表达式如下:y=(x-MinValue)/(MaxValue-MinValue)说明:x、y分别为转换前、后的值,MaxValue、MinValue分别为样本的最大值和最小值。

神经模糊预测控制及其MATLAB实现第6章 模糊神经和模糊聚类及其MATLAB实现

神经模糊预测控制及其MATLAB实现第6章 模糊神经和模糊聚类及其MATLAB实现
i 1 i 2 i n
i A ( x1 ) A ( x2 )… A ( xn ) i A ( x1 ) A ( x2 )… A ( xn )
i 1 i 2 i n

B ( y) i B ( y )
i i
B ( y) i B ( y)
i 1
i
11
m

i 1
m
6.1.2 系统结构 根据上面给出的模糊系统的模糊模型,可设计出如 图6-2所示的模糊神经网络结构。图中所示为MIMO系统 ,它是上面所讨论的MISO情况的简单推广。
图6-2 基于标准模型的模糊神经网络结构图
12
图中第一层为输入层。该层的各个节点直接与输入向量 的各分量xi连接,它起着将输入值x = [x1 x2 …xn]T传送 到下一层的作用。该层的节点数N1= n。 第二层每个节点代表一个语言变量值,如 NB,PS 等。 它的作用是计算各输入分量属于各语言变量值模糊集合 的隶属度函数 ij ,其中
i i
9
从而输出量总的模糊集合为
m
B=
m i 1
Bi
i 1
B ( y) B ( y)
i
若采用加权平均的清晰化方法,则可求得输出的清 晰化量为 y B ( y )dy U
y
y
Uy

B
( y )dy
10
由于计算上式的积分很麻烦,实际计算时通常用下 m 面的近似公式
y
i j A ( xi )
i j
i = 1,2,…,n, j = 1,2,…,mi。n是输入量的维数,mi是xi的 模糊分割数。例如,若隶属函数采用高斯函数表示的铃 ( x c ) 形函数,则 j i e 其中 cij 和 ij 分别表示隶属函数的中心和宽度。该层的 节点总数。 N m

模糊神经和模糊聚类的MATLAB实现

模糊神经和模糊聚类的MATLAB实现

模糊神经和模糊聚类的MATLAB实现模糊神经网络(Fuzzy Neural Networks)是一种结合了模糊逻辑和神经网络的方法,用于处理不确定性和模糊性问题。

它具有模糊逻辑的灵活性和神经网络的学习和优化能力。

在MATLAB中,可以使用Fuzzy Logic Toolbox来实现模糊神经网络。

下面将介绍如何使用MATLAB实现模糊神经网络。

首先,我们需要定义输入和输出的模糊集合。

可以使用Fuzzy Logic Toolbox提供的各种方法来定义模糊集合的隶属函数,例如使用trimf定义三角隶属函数或者使用gaussmf定义高斯隶属函数。

```input1 = trimf(inputRange, [a1, b1, c1]);input2 = gaussmf(inputRange, [mean, sigma]);output = trapmf(outputRange, [d1, e1, f1, g1]);```接下来,可以使用FIS Editor界面来创建和训练模糊神经网络。

在MATLAB命令窗口中输入fuzzy命令即可打开FIS Editor界面。

在FIS Editor界面中,可以添加输入和输出变量,并设置它们的隶属函数。

然后,可以添加规则来定义输入与输出之间的关系。

规则的形式可以使用自然语言或者模糊规则表达式(Fuzzy Rule Expression)。

训练模糊神经网络可以使用基于模糊神经网络的系统识别方法。

在MATLAB中,可以使用anfis函数来进行自适应网络训练。

anfis函数可以根据训练数据自动调整隶属函数参数和规则权重,以优化模糊神经网络的性能。

```fis = anfis(trainingData);```使用trainfis命令可以将训练好的模糊神经网络应用于新的数据。

trainfis命令将输入数据映射到输出模糊集中,并使用模糊推理进行预测。

输出结果是一个模糊集,可以使用defuzz命令对其进行模糊化。

模糊控制在matlab中的实例

模糊控制在matlab中的实例

模糊控制在matlab中的实例以下是一个简单的模糊控制实例,使用Matlab进行实现:假设有一辆小车,需要通过模糊控制来控制它的速度。

1. 首先,我们需要定义输入(error)和输出(delta),并且规定它们的范围:```inputRange = [-2 2];outputRange = [-1 1];```其中,inputRange表示error的范围为-2到2,outputRange表示delta的范围为-1到1。

2. 接下来,我们需要定义模糊变量:```error = fisvar("input", "error", "range", inputRange); delta = fisvar("output", "delta", "range", outputRange); ```这里我们定义了两个模糊变量:输入变量error和输出变量delta。

3. 然后,我们需要用隶属函数来描述模糊变量:```errorFuncs = [fisGaussmf(error, -1, 0.5) % NBfisGaussmf(error, 0, 0.5) % ZOfisGaussmf(error, 1, 0.5) % PB];deltaFuncs = [fisGaussmf(delta, -1, 0.25) % NBfisGaussmf(delta, 0, 0.25) % ZOfisGaussmf(delta, 1, 0.25) % PB];```在这个例子中,我们使用了高斯隶属函数来描述模糊变量。

NB 表示“negative big”(负大),ZO表示“zero”(零),PB表示“positive big”(正大)。

4. 接下来,我们需要定义规则:```ruleList = [1 1 1 3 % NB -> PB2 1 1 2 % ZO -> NB3 1 1 1 % PB -> ZO];```这个规则表达式的意思是:如果error是NB,则delta是PB;如果error是ZO,则delta是NB;如果error是PB,则delta是ZO。

自适应神经模糊系统及其MATLAB实现

自适应神经模糊系统及其MATLAB实现

自适应神经模糊系统及其MATLAB实现摘要:本文介绍了模糊神经网络系统的T-S模型、结构及算法,同时论述了采用网格分割方式生成模糊推论系统函数和自适应神经模糊系统的建模函数,最后用一个例子证明了自适应神经模糊系统在未知非线性的建模方面的良好的性能。

关键词:T-S模型、结构、算法、网格分割、自适应神经模糊系统0 引言模糊神经网络控制在控制领域里目前已经成为一个研究的热点,其原因在于神经网络和模糊系统两者之间的互补关系。

神经网络的一大特点就是其自学习功能,将这种自学习的方法它应用于对模型特征的分析与建模上,产生自适应的神经网络技术,这对于模糊系统的模型建立是非常有效的工具。

而自适应神经模糊系统就是基于数据的建模方法,该系统中的模糊隶属度函数及模糊规则是通过大量的已知数据的学习得到的。

1 基于T-S模型的模糊神经网络由于MIMO的模糊规则可分解为多个MISO模糊规则,因此下面也只讨论MISO模糊系统的模型。

设输入向量,每个分量均为模糊语言变量。

并设式中,是的第j个语言变量值,它是定义在论域上的一个模糊集合。

相应的隶属度函数为。

T-S所提出的模糊规则后件是输入变量的线性组合,即若输入量采用单点模糊集合的模糊化方法,则对于给定的输入x,可以求得对于每条规则的适应度为:模糊系统的输出量为每条规则的输出量的加权平均,即2 自适应神经模糊系统及其MATLAB实现2.1采用网络分割方式生成模糊推理系统函数函数genfis1( )可为训练自适应神经模糊推理系统产生Takagi-Sugeno型模糊推理系统(FIS)结构的初值(隶属度函数参数的初值),它采用网格分割的方式,根据给定数据集生成一个模糊推理系统,一般与函数anfis ( )配合使用。

由genfis1( )生成的模糊推理系统的输入和隶属度函数的类型、数目可以在使用时指定,也可以采用默认值。

2.2 自适应神经模糊系统的建模函数在MATLAB模糊逻辑工具箱中,提供了对基于T-S模型的自适应神经模糊推理系统ANFIS的建模方法,该模糊推理系统利用BP反向传播算法和最小二乘算法来完成对输入/输出数据对的建模。

matlab 通用神经网络代码

matlab 通用神经网络代码

matlab 通用神经网络代码学习了一段时间的神经网络,总结了一些经验,在这愿意和大家分享一下,希望对大家有帮助,也希望大家可以把其他神经网络的通用代码在这一起分享感应器神经网络、线性网络、BP神经网络、径向基函数网络%通用感应器神经网络。

P=[-0.5 -0.5 0.3 -0.1 -40;-0.5 0.5 -0.5 1 50];%输入向量T=[1 1 0 0 1];%期望输出plotpv(P,T;%描绘输入点图像net=newp([-40 1;-1 50],1;%生成网络,其中参数分别为输入向量的范围和神经元感应器数量hold onlinehandle=plotpc(net.iw{1},net.b{1};net.adaptparam.passes=3;for a=1:25%训练次数[net,Y,E]=adapt(net,P,T;linehandle=plotpc(net.iw{1},net.b{1},linehandle;drawnow;end%通用newlin程序%通用线性网络进行预测time=0:0.025:5;T=sin(time*4*pi;Q=length(T;P=zeros(5,Q;%P中存储信号T的前5(可变,根据需要而定次值,作为网络输入。

P(1,2:Q=T(1,1:(Q-1;P(2,3:Q=T(1,1:(Q-2;P(3,4:Q=T(1,1:(Q-3;P(4,5:Q=T(1,1:(Q-4;P(5,6:Q=T(1,1:(Q-5;plot(time,T%绘制信号T曲线xlabel('时间';ylabel('目标信号';title('待预测信号';net=newlind(P,T;%根据输入和期望输出直接生成线性网络a=sim(net,P;%网络测试figure(2plot(time,a,time,T,'+'xlabel('时间';ylabel('输出-目标+';title('输出信号和目标信号';e=T-a;figure(3plot(time,ehold onplot([min(time max(time],[0 0],'r:'%可用plot(x,zeros(size(x,'r:'代替hold offxlabel('时间';ylabel('误差';title('误差信号';%通用BP神经网络P=[-1 -1 2 2;0 5 0 5];t=[-1 -1 1 1];net=newff(minmax(P,[3,1],{'tansig','purelin'},'traingd';%输入参数依次为:'样本P范围',[各层神经元数目],{各层传递函数},'训练函数' %训练函数traingd--梯度下降法,有7个训练参数.%训练函数traingdm--有动量的梯度下降法,附加1个训练参数mc(动量因子,缺省为0.9%训练函数traingda--有自适应lr的梯度下降法,附加3个训练参数:lr_inc(学习率增长比,缺省为1.05;% lr_dec(学习率下降比,缺省为0.7;max_perf_inc(表现函数增加最大比,缺省为1.04%训练函数traingdx--有动量的梯度下降法中赋以自适应lr的方法,附加traingdm和traingda 的4个附加参数%训练函数trainrp--弹性梯度下降法,可以消除输入数值很大或很小时的误差,附加4个训练参数:% delt_inc(权值变化增加量,缺省为1.2;delt_dec(权值变化减小量,缺省为0.5; % delta0(初始权值变化,缺省为0.07;deltamax(权值变化最大值,缺省为50.0% 适合大型网络%训练函数traincgf--Fletcher-Reeves共轭梯度法;训练函数traincgp--Polak-Ribiere共轭梯度法; %训练函数traincgb--Powell-Beale共轭梯度法%共轭梯度法占用存储空间小,附加1训练参数searchFcn(一维线性搜索方法,缺省为srchcha;缺少1个训练参数lr%训练函数trainscg--量化共轭梯度法,与其他共轭梯度法相比,节约时间.适合大型网络% 附加2个训练参数:sigma(因为二次求导对权值调整的影响参数,缺省为5.0e-5;% lambda(Hessian阵不确定性调节参数,缺省为5.0e-7% 缺少1个训练参数:lr%训练函数trainbfg--BFGS拟牛顿回退法,收敛速度快,但需要更多内存,与共轭梯度法训练参数相同,适合小网络%训练函数trainoss--一步正割的BP训练法,解决了BFGS消耗内存的问题,与共轭梯度法训练参数相同%训练函数trainlm--Levenberg-Marquardt训练法,用于内存充足的中小型网络net=init(net;net.trainparam.epochs=300; %最大训练次数(前缺省为10,自trainrp后,缺省为100net.trainparam.lr=0.05; %学习率(缺省为0.01net.trainparam.show=50; %限时训练迭代过程(NaN表示不显示,缺省为25net.trainparam.goal=1e-5; %训练要求精度(缺省为0%net.trainparam.max_fail 最大失败次数(缺省为5%net.trainparam.min_grad 最小梯度要求(前缺省为1e-10,自trainrp后,缺省为1e-6%net.trainparam.time 最大训练时间(缺省为inf[net,tr]=train(net,P,t; %网络训练a=sim(net,P %网络仿真%通用径向基函数网络——%其在逼近能力,分类能力,学习速度方面均优于BP神经网络%在径向基网络中,径向基层的散步常数是spread的选取是关键%spread越大,需要的神经元越少,但精度会相应下降,spread的缺省值为1%可以通过net=newrbe(P,T,spread生成网络,且误差为0%可以通过net=newrb(P,T,goal,spread生成网络,神经元由1开始增加,直到达到训练精度或神经元数目最多为止%GRNN网络,迅速生成广义回归神经网络(GRNNP=[4 5 6];T=[1.5 3.6 6.7];net=newgrnn(P,T;%仿真验证p=4.5;v=sim(net,p%PNN网络,概率神经网络P=[0 0 ;1 1;0 3;1 4;3 1;4 1;4 3]';Tc=[1 1 2 2 3 3 3];%将期望输出通过ind2vec(转换,并设计、验证网络T=ind2vec(Tc;net=newpnn(P,T;Y=sim(net,P;Yc=vec2ind(Y%尝试用其他的输入向量验证网络P2=[1 4;0 1;5 2]';Y=sim(net,P2;Yc=vec2ind(Y%应用newrb(函数构建径向基网络,对一系列数据点进行函数逼近P=-1:0.1:1;T=[-0.9602 -0.5770 -0.0729 0.3771 0.6405 0.6600 0.4609...0.1336 -0.2013 -0.4344 -0.500 -0.3930 -0.1647 -0.0988...0.3072 0.3960 0.3449 0.1816 -0.0312 -0.2189 -0.3201];%绘制训练用样本的数据点plot(P,T,'r*';title('训练样本';xlabel('输入向量P';ylabel('目标向量T';%设计一个径向基函数网络,网络有两层,隐层为径向基神经元,输出层为线性神经元%绘制隐层神经元径向基传递函数的曲线p=-3:.1:3;a=radbas(p;plot(p,atitle('径向基传递函数'xlabel('输入向量p'%隐层神经元的权值、阈值与径向基函数的位置和宽度有关,只要隐层神经元数目、权值、阈值正确,可逼近任意函数%例如a2=radbas(p-1.5;a3=radbas(p+2;a4=a+a2*1.5+a3*0.5;plot(p,a,'b',p,a2,'g',p,a3,'r',p,a4,'m--'title('径向基传递函数权值之和'xlabel('输入p';ylabel('输出a';%应用newrb(函数构建径向基网络的时候,可以预先设定均方差精度eg以及散布常数sc eg=0.02;sc=1; %其值的选取与最终网络的效果有很大关系,过小造成过适性,过大造成重叠性net=newrb(P,T,eg,sc;%网络测试plot(P,T,'*'xlabel('输入';X=-1:.01:1;Y=sim(net,X;hold onplot(X,Y;hold offlegend('目标','输出'%应用grnn进行函数逼近P=[1 2 3 4 5 6 7 8];T=[0 1 2 3 2 1 2 1];plot(P,T,'.','markersize',30axis([0 9 -1 4]title('待逼近函数'xlabel('P'ylabel('T'%网络设计%对于离散数据点,散布常数spread选取比输入向量之间的距离稍小一些spread=0.7;net=newgrnn(P,T,spread;%网络测试A=sim(net,P;hold onoutputline=plot(P,A,'o','markersize',10,'color',[1 0 0]; title('检测网络'xlabel('P'ylabel('T和A'%应用pnn进行变量的分类P=[1 2;2 2;1 1]; %输入向量Tc=[1 2 3]; %P对应的三个期望输出%绘制出输入向量及其相对应的类别plot(P(1,:,P(2,:,'.','markersize',30for i=1:3text(P(1,i+0.1,P(2,i,sprintf('class %g',Tc(iendaxis([0 3 0 3];title('三向量及其类别'xlabel('P(1,:'ylabel('P(2,:'%网络设计T=ind2vec(Tc;spread=1;net=newgrnn(P,T,speard;%网络测试A=sim(net,P;Ac=vec2ind(A;%绘制输入向量及其相应的网络输出plot(P(1,:,P(2,:,'.','markersize',30for i=1:3text(P(1,i+0.1,P(2,i,sprintf('class %g',Ac(iendaxis([0 3 0 3]; title('网络测试结果' xlabel('P(1,:' ylabel('P(2,:'。

神经pid,模糊pid,常规pid的matlab比较

神经pid,模糊pid,常规pid的matlab比较

图4.BP神经网络PID系统输出响应曲线图6. PID 参数自适应模糊控制器系统框图图7.e,ec,Kp,Ki,Kd的隶属度函数通过不断进行仿真实验和借鉴专家经验可以得到如下的49条规则:图8.模糊PID控制系统输出曲线图9.模糊PID控制系统误差曲线图中1为常规整定PID 阶跃响应曲线,2为BP 神经网络PID 阶跃响应曲线,3为模糊自适应整定PID 阶跃响应曲线。

从曲线中以看出,三种PID控制方式中模糊PID几乎没有超调,调节时间短,控制效果最好;BP 网络PID效果次之;都比常规PID 效果好。

比较图5神经PID与图9模糊PID的误差曲线可以看出,模糊PID具有更短的学习时间。

仿真和实验结果均证明了神经网络PID 控制算法能有效地控制大时滞大惯性的温控系统,将神经网络与PID控制相结合,可以在线调整PID控制器的各个参数,减少了凭经验整定参数带来的误差,提高了温控系统的鲁棒性和自适应性。

此外,神经网络PID控制器还能有效的抑制干扰,而且对对象模型要求不高,具有较好的抗干扰性。

同时也可以进一步优化BP神经网络的结构和算法,使温度控制最终趋于最优,更好地满足实际生产对温度控制的要求。

但是由于该控制器的初始权值是随机值,控制输出在开始时波动很大,随着网络的自学习,不断调整权值控制输出来跟踪输入。

由于神经网络收敛速度慢,回到稳定状态所需时间较长,这个问题有待进一步研究解决。

,模糊PID控制响应几乎没有超调,但是响应速度较慢;在模型失配的情况下,模糊PID虽然产生了震荡,超调量也有所增加,但总体来说还能够保持稳定;在添加干扰后,系统持续产生小幅震荡,但超调量很小,系统整体还是稳定的,抗干扰能力强。

参考文献:1、陶永华.新型PID控制及其应用(第二版) [ M].北京:机械工业出版社,2002.2、杨智,朱海锋,黄以华.PID控制器设计与参数整定方法综述[ J ].化工自动化及仪表,2 005,32 ( 5 ):1-7 .3、杨智.工业自整定P ID调节器关键设计技术综述[J].化工自动化及仪表,2000,27 ( 2 ):5-10.4、王伟,张晶涛,柴天佑.PID参数先进整定方法综述[ J ].自动化学报,2000,26 (5):347-355.5、何宏源,徐进学,金妮.PID继电自整定技术的发展综述[ J ].沈阳工业大学学报,2005,27 (4):4 09-413.6、叶岚.基于继电反馈的PI D控制器的参数整定[ D].上海:上海交通大学自动化系,2007.7、李少远.基于继电反馈的PID控制器的参数整定[D].上海:上海交通大学自动化系,2007.8、吴泽宁等.BP神经网络的改进及应用[J ].河南科学,2003-4:202 -2069、李遵基编著.热工自动控制系统[M].中国电力出版社,1997.1010、俞海斌,褚健.CFB锅炉汽包水位的专家PID控制[J].机电工程,2000(3):103~10611、潘祥高等.模糊PID控制在工业锅炉控制系统中的应用[J].工业出版社,200412、刘金琨.先进PID 控制MA TLAB仿真M7.2 版.北京电子工业出版社,200413、薛定宇.控制系统计算机辅助设计MA TLAB 语言与应用M7.2 版.北京清华大学出版社,2006常规PID实现程序:clear all;close all;ts=10;sys=tf([1],[150,1],'inputdelay',50);dsys=c2d(sys,ts,'z oh');[num,den]=tfdata(dsys,'v');u_1=0;u_2=0;u_3=0;u_4=0;u_5=0;u_6=0;y_1=0;y_2=0;y_3=0;error_1=0;error_2=0;ei=0;for k=1:1:1000time(k)=k*ts;yout(k)=-den(2)*y_1+num(2)*u_6;rin(k)=1;error(k)=rin(k)-yout(k);ei=ei+error(k)*ts;kp=0.03;kd=1;ki=0.004;u(k)=kp*error(k)+kd*(error(k)-error_1)/ts+ki*ei; if u(k)>=10u(k)=10;endif u(k)<=-10u(k)=-10;endif k==200u(k)=u(k)+1;endu_6=u_5;u_5=u_4;u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k); y_3=y_2;y_2=y_1;y_1=yout(k);error_2=error_1;error_1=error(k);endfigure(1);plot(time,rin,'b',time,yout,'r');xlabel('time(s)');ylabel('rin,yout');figure(2);plot(time,u,'r');xlabel('time(s)');ylabel('u');BP神经网络PID程序:%BP based PID Controlclear all;close all;xite=0.9;IN=4;H=5;Out=3; %NN Structurewi=[-0.6394 -0.2696 -0.3756 -0.7023;-0.8603 -0.2013 -0.5024 -0.2596;-1.0749 0.5543 -1.6820 -0.5437;-0.3625 -0.0724 -0.6463 -0.2859;0.1425 0.0279 -0.5406 -0.7660];%wi=0.50*rands(H,IN);wi_1=wi;wi_2=wi;wi_3=wi;wo=[0.7576 0.2616 0.5820 -0.1416 -0.1325;-0.1146 0.2949 0.8352 0.2205 0.4508;0.7201 0.4566 0.7672 0.4962 0.3632];%wo=0.50*rands(Out,H);wo_1=wo;wo_2=wo;wo_3=wo;x=[0,0,0];du_1=0;u_1=0;u_2=0;u_3=0;u_4=0;u_5=0;u_6=0;y_1=0;y_2=0;Oh=zeros(H,1); %Output from NN middle layerI=Oh; %Input to NN middle layererror_2=0;error_1=0;ts=10;for k=1:1:1000time(k)=k*ts;rin(k)=1.0;%Unlinear modelyout(k)=0.9355*y_1+0.0645*u_6;error(k)=rin(k)-yout(k);xi=[rin(k),yout(k),error(k),1];x(1)=error(k)-error_1;x(2)=error(k);x(3)=error(k)-2*error_1+error_2;epid=[x(1);x(2);x(3)];I=xi*wi';for j=1:1:HOh(j)=(exp(I(j))-exp(-I(j)))/(exp(I(j))+exp(-I(j))); %Middle Layer endK=wo*Oh; %Output Layerfor l=1:1:OutK(l)=exp(K(l))/(exp(K(l))+exp(-K(l))); %Getting kp,ki,kd endkp(k)=K(1);ki(k)=K(2);kd(k)=K(3);Kpid=[kp(k),ki(k),kd(k)];du(k)=Kpid*epid;u(k)=u_1+du(k);dyu(k)=sign((yout(k)-y_1)/(du(k)-du_1+0.0001));%Output layerfor j=1:1:OutdK(j)=2/(exp(K(j))+exp(-K(j)))^2;endfor l=1:1:Outdelta3(l)=error(k)*dyu(k)*epid(l)*dK(l);endfor l=1:1:Outfor i=1:1:Hd_wo=xite*delta3(l)*Oh(i)+alfa*(wo_1-wo_2);endendwo=wo_1+d_wo+alfa*(wo_1-wo_2);%Hidden layerfor i=1:1:HdO(i)=4/(exp(I(i))+exp(-I(i)))^2;endsegma=delta3*wo;for i=1:1:Hdelta2(i)=dO(i)*segma(i);endif k==200u(k)=u(k)+1;endd_wi=xite*delta2'*xi;wi=wi_1+d_wi+alfa*(wi_1-wi_2);%Parameters Updatedu_1=du(k);u_6=u_5;u_5=u_4;u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k);y_2=y_1;y_1=yout(k);wo_3=wo_2;wo_2=wo_1;wo_1=wo;wi_3=wi_2;wi_2=wi_1;wi_1=wi;error_2=error_1;error_1=error(k);endfigure(1);plot(time,rin,'r',time,yout,'b');xlabel('time(s)');ylabel('rin,yout');figure(2);plot(time,error,'r');xlabel('time(s)');ylabel('error');figure(3);plot(time,u,'r');xlabel('time(s)');ylabel('u');figure(4);subplot(311);plot(time,kp,'r');xlabel('time(s)');ylabel('kp');subplot(312);plot(time,ki,'g');xlabel('time(s)');ylabel('ki');subplot(313);plot(time,kd,'b');xlabel('time(s)');ylabel('kd');模糊PID程序:clear all;close all;a=newfis('fuzzpid');a=addvar(a,'input','e',[-3,3]); %Parameter e a=addmf(a,'input',1,'NB','zmf',[-3,-1]);a=addmf(a,'input',1,'NM','t rimf',[-3,-2,0]);a=addmf(a,'input',1,'NS','trimf',[-3,-1,1]);a=addmf(a,'input',1,'Z','t rimf',[-2,0,2]);a=addmf(a,'input',1,'PS','trimf',[-1,1,3]);a=addmf(a,'input',1,'PM','t rimf',[0,2,3]);a=addmf(a,'input',1,'PB','smf',[1,3]);a=addvar(a,'input','ec',[-3,3]); %Parameter ec a=addmf(a,'input',2,'NB','zmf',[-3,-1]);a=addmf(a,'input',2,'NM','t rimf',[-3,-2,0]);a=addmf(a,'input',2,'NS','trimf',[-3,-1,1]);a=addmf(a,'input',2,'Z','t rimf',[-2,0,2]);a=addmf(a,'input',2,'PS','trimf',[-1,1,3]);a=addmf(a,'input',2,'PM','t rimf',[0,2,3]);a=addmf(a,'input',2,'PB','smf',[1,3]);a=addvar(a,'output','kp',[-0.3,0.3]); %Parameter kp a=addmf(a,'output',1,'NB','zmf',[-0.3,-0.1]);a=addmf(a,'output',1,'NM','t rimf',[-0.3,-0.2,0]);a=addmf(a,'output',1,'NS','trimf',[-0.3,-0.1,0.1]);a=addmf(a,'output',1,'Z','t rimf',[-0.2,0,0.2]);a=addmf(a,'output',1,'PS','trimf',[-0.1,0.1,0.3]);a=addmf(a,'output',1,'PM','t rimf',[0,0.2,0.3]);a=addmf(a,'output',1,'PB','smf',[0.1,0.3]);a=addvar(a,'output','ki',[-0.06,0.06]); %Parameter kia=addmf(a,'output',2,'NB','zmf',[-0.06,-0.02]);a=addmf(a,'output',2,'NM','t rimf',[-0.06,-0.04,0]);a=addmf(a,'output',2,'NS','trimf',[-0.06,-0.02,0.02]);a=addmf(a,'output',2,'Z','t rimf',[-0.04,0,0.04]);a=addmf(a,'output',2,'PS','trimf',[-0.02,0.02,0.06]);a=addmf(a,'output',2,'PM','t rimf',[0,0.04,0.06]);a=addmf(a,'output',2,'PB','smf',[0.02,0.06]);a=addvar(a,'output','kd',[-3,3]); %Parameter kpa=addmf(a,'output',3,'NB','zmf',[-3,-1]);a=addmf(a,'output',3,'NM','t rimf',[-3,-2,0]);a=addmf(a,'output',3,'NS','trimf',[-3,-1,1]);a=addmf(a,'output',3,'Z','t rimf',[-2,0,2]);a=addmf(a,'output',3,'PS','trimf',[-1,1,3]);a=addmf(a,'output',3,'PM','t rimf',[0,2,3]);a=addmf(a,'output',3,'PB','smf',[1,3]);rulelist=[1 1 7 1 5 1 1;1 2 7 1 3 1 1;1 3 6 2 1 1 1;1 4 6 2 1 1 1;1 5 5 3 1 1 1;1 6 4 4 2 1 1;1 7 4 4 5 1 1;2 1 7 1 5 1 1;2 2 7 1 3 1 1;2 3 6 2 1 1 1;2 4 5 3 2 1 1;2 5 5 3 2 1 1;2 6 4 43 1 1;2 7 34 4 1 1;3 1 6 1 4 1 1;3 2 6 2 3 1 1;3 3 6 3 2 1 1;3 45 3 2 1 1;3 5 4 4 3 1 1;36 3 5 3 1 1;37 3 5 4 1 1;4 1 6 2 4 1 1;4 2 6 2 3 1 1;4 3 5 3 3 1 1;4 4 4 4 3 1 1;4 5 3 5 3 1 1;4 6 2 6 3 1 1;4 7 2 6 4 1 1;5 1 5 2 4 1 1;5 2 5 3 4 1 1;5 3 4 4 4 1 1;5 4 3 5 4 1 1;5 5 3 5 4 1 1;5 6 2 6 4 1 1;5 7 2 7 4 1 1;6 1 5 4 7 1 1;6 2 4 4 5 1 1;6 3 3 5 5 1 1;6 4 2 5 5 1 1;6 5 2 6 5 1 1;6 6 27 5 1 1;6 7 1 7 7 1 1;7 1 4 4 7 1 1;7 2 4 4 6 1 1;7 3 2 5 6 1 1;7 4 2 6 6 1 1;7 5 2 6 5 1 1;7 6 1 7 5 1 1;7 7 1 7 7 1 1];a=addrule(a,rulelist);a=setfis(a,'DefuzzMethod','centroid');writefis(a,'fuzzpid');a=readfis('fuzzpid');%PID Controllerts=10;sys=tf([1],[150,1],'inputdelay',50);dsys=c2d(sys,ts,'t ustin');[num,den]=tfdata(dsys,'v');u_1=0.0;u_2=0.0;u_3=0.0;u_4=0.0;u_5=0.0;u_6=0.0;y_1=0;y_2=0;x=[0,0,0]';error_2=0;error_1=0;e_1=0.0;ec_1=0.0;kp0=0.0929;kd0=0.0078;ki0=0.0518;for k=1:1:1000time(k)=k*ts;rin(k)=1;%Using fuzzy inference to tunning PIDk_pid=evalfis([e_1,ec_1],a);kp(k)=kp0+k_pid(1);ki(k)=ki0+k_pid(2);kd(k)=kd0+k_pid(3);u(k)=kp(k)*x(1)+kd(k)*x(2)+ki(k)*x(3);if u(k)>=10u(k)=10;endif u(k)<=-10u(k)=-10;endif k==200u(k)=u(k)+1;endyout(k)=-den(2)*y_1+num(2)*u_6;error(k)=rin(k)-yout(k);%%%%%%%%%%%%%%Return of PID parameters%%%%%%%%%%%%%%% u_6=u_5;u_5=u_4;u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k);y_2=y_1;y_1=yout(k);x(1)=error(k); % Calculating Px(2)=error(k)-error_1; % Calculating Dx(3)=x(3)+error(k); % Calculating Ie_1=x(1);ec_1=x(2);error_2=error_1;error_1=error(k);endshowrule(a)figure(1);plot(time,rin,'b',time,yout,'r');xlabel('time(s)');ylabel('rin,yout');figure(2);plot(time,error,'r');xlabel('time(s)');ylabel('error');figure(3);plot(time,u,'r');xlabel('time(s)');ylabel('u');。

MATLAB神经网络算法实例讲解【附源代码】

MATLAB神经网络算法实例讲解【附源代码】

MA TLAB神经网络算法实例讲解【附源代码】例1 采用动量梯度下降算法训练BP 网络。

训练样本定义如下:输入矢量为p =[-1 -2 3 1-1 1 5 -3]目标矢量为t = [-1 -1 1 1]解:本例的MA TLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练% SIM——对BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本% P 为输入矢量P=[-1, -2, 3, 1; -1, 1, 5, -3];% T 为目标矢量T=[-1, -1, 1, 1];pause;clc% 创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值inputW eights=net.IW{1,1}inputbias=net.b{1}% 当前网络层权值和阈值layerW eights=net.LW{2,1}layerbias=net.b{2}pauseclc% 设置训练参数net.trainParam.show = 50;net.trainParam.lr = 0.05;net.trainParam.mc = 0.9;net.trainParam.epochs = 1000;net.trainParam.goal = 1e-3;pauseclc% 调用TRAINGDM 算法训练BP 网络[net,tr]=train(net,P,T);pauseclc% 对BP 网络进行仿真A = sim(net,P)% 计算仿真误差E = T - AMSE=mse(E)pauseclcecho off例2 采用贝叶斯正则化算法提高BP 网络的推广能力。

自适应模糊神经控制系统及其MATLAB实现

自适应模糊神经控制系统及其MATLAB实现

目前模 糊神经 网络控 制在 控制领 域 里 已经 成为一
个研究 的热 点 ,其 原 因在 于神 经 网络和模糊 系统 两者 之 间的互补 关 系。 管模糊 推 理系统 的设计 ( 属度 函 尽 隶 数和 模糊规 则 的建 立 ) 主要依 靠对 象 的模 型 , 是它 不 但 却相 当依靠 专家或操 作人 员 的经验 和知识 。若 缺乏这 样 的经验 和知识 ,则很难 期望 它能 获得满 意 的控制效 果 。而神经 网络 的一大 特点就 是其 自学 习功能 ,将这 种 自学 习 的方法 应用 于对 模 型 特征 的分 析与 建模 上 , 产生 自适应 的神经 网络技 术 。这种 自适应 的神 经 网络 技术 对于模 糊 系统 的模 型建立 ( 模糊 规则 库 的建 立 ) 是 非常 有效 的工具 。 自适应 模糊 神经 系统 是基于 数据 的 建模 方法 ,该 系统 中的模 糊隶 属度 函数及 模糊 规则是 通过 大量 的 已知数 据 的学习得 到 的 ,而 不是基 于经验 和直 觉任意 给定 的 ,这对 于那 些特性 还不 被人们 所完 全 了解或者 特性非 常复 杂 的系统尤 为重要 。 1 自适应模 糊神 经 网络控制 系统 的结构 自适应 模糊神 经 网络系统 是指 具有学 习算 法 的模 糊神 经 网络 系统 ,这里 的模糊 神经 网络 系统是 由服从 模糊 逻辑规 则 的一 系列 “ 如果一 则 ” 规则 所构 造 的 ; 而 学 习算法则 依靠数 据信 息来对 模糊 神经 系统 的参数进
模糊神 经 网络 控制 系统 的结构 如 图 1所示 。其 中 NF NC为模糊 神经 网络控 制器 ; 为输入 信号 ; E R E、 分别 为误差 及误 差变化 量化后 的模 糊量 ; 、K K 、K 为量 化 因子 ; 为控 制信 号 ;Y为输 出信 号 。 2 模 糊推理 系统 生成 方式 在 MAT I AB模 糊逻辑 工具 箱 中 ,提供 了有 关对 自适 应 模 糊 神 经 推 理 系统 进 行 初 始 化 和建 模 的 函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

function [ c, sigma , W_output ] = SOFNN( X, d, Kd )%SOFNN Self-Organizing Fuzzy Neural Networks%Input Parameters% X(r,n) - rth traning data from nth observation% d(n) - the desired output of the network (must be a row vector) % Kd(r) - predefined distance threshold for the rth input%Output Parameters% c(IndexInputVariable,IndexNeuron)% sigma(IndexInputVariable,IndexNeuron)% W_output is a vector%Setting up Parameters for SOFNNSigmaZero=4;delta=0.12;threshold=0.1354;k_sigma=1.12;%For more accurate results uncomment the following%format long;%Implementation of a SOFNN model[size_R,size_N]=size(X);%size_R - the number of input variablesc=[];sigma=[];W_output=[];u=0; % the number of neurons in the structureQ=[];O=[];Psi=[];for n=1:size_Nx=X(:,n);if u==0 % No neuron in the structure?c=x;sigma=SigmaZero*ones(size_R,1);u=1;Psi=GetMePsi(X,c,sigma);[Q,O] = UpdateStructure(X,Psi,d);pT_n=GetMeGreatPsi(x,Psi(n,:))';else[Q,O,pT_n] = UpdateStructureRecursively(X,Psi,Q,O,d,n);end;KeepSpinning=true;while KeepSpinning%Calculate the error and if-part criteriaae=abs(d(n)-pT_n*O); %approximation error[phi,~]=GetMePhi(x,c,sigma);[maxphi,maxindex]=max(phi); % maxindex refers to the neuron's index if ae>deltaif maxphi<threshold%enlarge width[minsigma,minindex]=min(sigma(:,maxindex));sigma(minindex,maxindex)=k_sigma*minsigma;Psi=GetMePsi(X,c,sigma);[Q,O] = UpdateStructure(X,Psi,d);pT_n=GetMeGreatPsi(x,Psi(n,:))';else%Add a new neuron and update structurectemp=[];sigmatemp=[];dist=0;for r=1:size_Rdist=abs(x(r)-c(r,1));distIndex=1;for j=2:uif abs(x(r)-c(r,j))<distdistIndex=j;dist=abs(x(r)-c(r,j));end;end;if dist<=Kd(r)ctemp=[ctemp; c(r,distIndex)];sigmatemp=[sigmatemp ; sigma(r,distIndex)];elsectemp=[ctemp; x(r)];sigmatemp=[sigmatemp ; dist];end;end;c=[c ctemp];sigma=[sigma sigmatemp];Psi=GetMePsi(X,c,sigma);[Q,O] = UpdateStructure(X,Psi,d);KeepSpinning=false;u=u+1;end;elseif maxphi<threshold%enlarge width[minsigma,minindex]=min(sigma(:,maxindex));sigma(minindex,maxindex)=k_sigma*minsigma;Psi=GetMePsi(X,c,sigma);[Q,O] = UpdateStructure(X,Psi,d);pT_n=GetMeGreatPsi(x,Psi(n,:))';else%Do nothing and exit the whileKeepSpinning=false;end;end;end;end;W_output=O;endfunction [Q_next, O_next,pT_n] = UpdateStructureRecursively(X,Psi,Q,O,d,n) %O=O(t-1) O_next=O(t)p_n=GetMeGreatPsi(X(:,n),Psi(n,:));pT_n=p_n';ee=abs(d(n)-pT_n*O); %|e(t)|temp=1+pT_n*Q*p_n;ae=abs(ee/temp);if ee>=aeL=Q*p_n*(temp)^(-1);Q_next=(eye(length(Q))-L*pT_n)*Q;O_next=O + L*ee;elseQ_next=eye(length(Q))*Q;O_next=O;end;endfunction [ Q , O ] = UpdateStructure(X,Psi,d)GreatPsiBig = GetMeGreatPsi(X,Psi);%M=u*(r+1)%n - the number of observations[M,~]=size(GreatPsiBig);%Others Ways of getting Q=[P^T(t)*P(t)]^-1%********************************************************************** ****%opts.SYM = true;%Q = linsolve(GreatPsiBig*GreatPsiBig',eye(M),opts);%%Q = inv(GreatPsiBig*GreatPsiBig');%Q = pinv(GreatPsiBig*GreatPsiBig');%********************************************************************** ****Y=GreatPsiBig\eye(M);Q=GreatPsiBig'\Y;O=Q*GreatPsiBig*d';end%This function works too with x% (X=X and Psi is a Matrix) - Gets you the whole GreatPsi% (X=x and Psi is the row related to x) - Gets you just the column related with the observationfunction [GreatPsi] = GetMeGreatPsi(X,Psi)%Psi - In a row you go through the neurons and in a column you go through number of %observations **** Psi(#obs,IndexNeuron) ****GreatPsi=[];[N,U]=size(Psi);for n=1:Nx=X(:,n);GreatPsiCol=[];for u=1:UGreatPsiCol=[ GreatPsiCol ; Psi(n,u)*[1; x] ];end;GreatPsi=[GreatPsi GreatPsiCol];end;endfunction [phi, SumPhi]=GetMePhi(x,c,sigma)[r,u]=size(c);%u - the number of neurons in the structure%r - the number of input variablesphi=[];SumPhi=0;for j=1:u % moving through the neuronsS=0;for i=1:r % moving through the input variablesS = S + ((x(i) - c(i,j))^2) / (2*sigma(i,j)^2);end;phi = [phi exp(-S)];SumPhi = SumPhi + phi(j); %phi(u)=exp(-S)end;end%This function works too with x, it will give you the row related to xfunction [Psi] = GetMePsi(X,c,sigma)[~,u]=size(c);[~,size_N]=size(X);%u - the number of neurons in the structure%size_N - the number of observationsPsi=[];for n=1:size_N[phi, SumPhi]=GetMePhi(X(:,n),c,sigma);PsiTemp=[];for j=1:u%PsiTemp is a row vector ex: [1 2 3]PsiTemp(j)=phi(j)/SumPhi;end;Psi=[Psi; PsiTemp];%Psi - In a row you go through the neurons and in a column you go through number of %observations **** Psi(#obs,IndexNeuron) ****end;end。

相关文档
最新文档