七年级下册数学知识点总结人教版

合集下载

初一下数学重点

初一下数学重点

初一下数学重点
初一数学的重点内容通常包括:
1. 整数运算:包括整数的加减乘除运算,绝对值等概念。

2. 代数表达式:包括代数式的认识、简单的代数式的化简与计算。

3. 方程:包括一元一次方程的解法和应用。

4. 平面图形:包括平行四边形、三角形、四边形等图形的性质与计算。

5. 比例与百分数:包括比例的意义、比例线段定理、百分数与实际问题的应用。

6. 数据的收集和处理:包括调查统计、频数分布表、直方图、折线图等。

7. 几何初步:包括角的认识、角的度量、同位角、对顶角等基本概念。

这些内容是初一数学的重点,学生需要通过理论学习和大量的练习来掌握这些知识。

1/ 1。

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下相交线和平行线知识点总结本章介绍了平面内两条直线相交与平行的关系,重点探讨了两条直线相交时形成角的特征、两条直线互相垂直的特性、两条直线平行的条件和特征,以及有关图形平移变换的性质。

本文将对其中的重点知识点进行总结。

5.1 相交线1.邻补角与对顶角当两条直线相交时,所形成的四个角具有不同的关系。

其中,对顶角是具有特殊位置关系的两个角,它们的大小相等;邻补角则是互为反向延长线的两个角,它们的和为180度。

2.垂线垂线是指当两条直线相交时,其中一个角为直角的情况。

垂线具有两个性质:一是过一点只有一条直线与已知直线垂直;二是连接直线外一点与直线上各点的垂线段最短。

3.垂线的画法画垂线的方法有两种:一是过直线上一点画已知直线的垂线;二是过直线外一点画已知直线的垂线。

画法可采用“一靠二移三画”的方法。

4.点到直线的距离点到直线的距离是指直线外一点到这条直线的垂线段的长度。

记忆时应结合图形进行理解。

本章内容的重点是垂线和其性质、平行线的判定方法和性质、平移和其性质,以及这些知识点的组织运用。

在研究这些知识点时,需要注意记忆其定义和性质,掌握其画法和应用方法。

垂线是指从一个点垂直于一条直线或平面的线段,而垂线段则是垂线的长度。

它们都具有垂直的性质,可以用来计算点到直线的距离或两点间的距离。

点到直线的距离是特殊的两点(即已知点与垂足)间距离,而两点间的距离是点与点之间的长度。

线段和距离都是长度的概念,但线段是一种图形,不能等同于距离。

平行线是指在同一平面内不相交的两条直线,它们的位置关系只有两种:相交和平行。

判断两条直线的位置关系可以根据它们的公共点个数来确定,有且只有一个公共点时两直线相交,无公共点时两直线平行,两个或两个以上公共点时两直线重合。

平行公理指出,经过直线外一点,有且只有一条直线与这条直线平行。

同时,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

三线八角是指两条直线被第三条直线所截形成的八个角,包括同位角、内错角和同旁内角。

七年级下册数学知识点总结人教版

七年级下册数学知识点总结人教版

七年级下册数学知识点总结人教版七年级下册数学知识点总结(人教版)一、实数1. 有理数和无理数的概念- 有理数:整数和分数统称为有理数,包括正整数、负整数、正分数、负分数和零。

- 无理数:不能表示为分数形式的实数,如√2、π等。

2. 实数的运算- 加法:同号相加,异号相减,取绝对值大的数的符号。

- 减法:减去一个数等于加上它的相反数。

- 乘法:正数与正数得正,负数与负数得正,正数与负数得负。

- 除法:除以一个数等于乘以它的倒数。

- 乘方:求一个数的幂。

3. 算术平方根和平方根- 算术平方根:一个数的平方根中最大的正数。

- 平方根:一个数的平方根有两个,一个正数和一个负数。

4. 实数的性质和比较大小- 性质:实数的加法、减法、乘法、除法和乘方的性质。

- 比较大小:正实数大于零,负实数小于零,正实数大于所有负实数。

二、代数1. 代数式- 单项式:只含有乘法运算的代数式。

- 多项式:由若干个单项式相加或相减组成的代数式。

2. 代数式的运算- 加法和减法:合并同类项。

- 乘法:单项式与单项式相乘,多项式与单项式相乘。

- 除法:多项式除以单项式。

3. 因式分解- 提公因式法:找出多项式中所有项共有的因子。

- 公式法:使用平方差公式、完全平方公式等进行分解。

4. 代数方程- 一元一次方程:只含有一个未知数,且未知数的最高次数为1的方程。

- 二元一次方程组:含有两个未知数,每个未知数的次数都为1的方程组。

5. 不等式- 不等式的性质:包括加法、减法、乘法和除法的性质。

- 解一元一次不等式:通过移项、合并同类项、系数化为1等步骤求解。

三、几何1. 平面图形- 点、线、面的基本性质。

- 直线、射线、线段的定义和性质。

- 角的定义、分类和性质,包括邻角、对顶角、同位角等。

2. 三角形- 三角形的基本性质和分类,如等边三角形、等腰三角形和直角三角形。

- 三角形的内角和定理:三角形内角和为180度。

- 三角形的外角性质:一个三角形的外角等于其不相邻的两个内角的和。

人教版七年级数学下册第七章平面直角坐标系知识点归纳完整版

人教版七年级数学下册第七章平面直角坐标系知识点归纳完整版

人教版七年级数学下册第七章平面直角坐标系知识点归纳HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】平面直角坐标系知识点总结1、在平面内,两条互相垂直且原点重合的数轴组成了平面直角坐标系;2、坐标平面上的任意一点 P 的坐标,都和惟一的一对有序实数对(a,b )一一对应;其中a为横坐标,b为纵坐标;3、x轴上的点,纵坐标等于 0;y轴上的点,横坐标等于 0;Y 坐标轴上的点不属于任何象限; b P(a,b)4、四个象限的点的坐标具有如下特征:1象限横坐标x纵坐标y-3 -2 -1 0 1a x-1第一象限正正-2第二象限负正-3第三象限负负第四象限正负小结:(1)点 P()所在的象限横、纵坐标、y的取值的正负性;(2)点 P(x,y)所在的数轴横、纵坐标x、y中必有一数为零;y5、在平面直角坐标系中,已知点 P (a,b),则a ;b P (a,b )(1)点 P 到x轴的距离为b;(2)点 P 到y轴的距离为ab (3)点 P 到原点 O 的距离为 PO=a2?b2O x6、平行直线上的点的坐标特征:a)在不x轴平行的直线上,所有点的纵坐标相等;YA B点 A、B 的纵坐标都等于m;mXb)在不y轴平行的直线上,所有点的横坐标相等;YC点 C、D 的横坐标都等于n;n7、 对称点的坐标特征:a) 点 P (m , n ) 关于 x 轴的对称点为 P 1 (m ,?n ) , 即横坐标丌变,纵坐标互为相反数; b) 点 P (m , n ) 关于 y 轴的对称点为 P 2 (?m , n ) , 即纵坐标丌变,横坐标互为相反数; c) 点 P (m , n ) 关于原点的对称点为 P 3 (?m ,?n ) ,即横、纵坐标都互为相反数;yyyPPn P2n n POmX? m? mm XO m X O? n P 1 ? nP 3关于 x 轴对称 关于 y 轴对称 关于原点对称d) 点 P (a , b )关于点 Q (m , n ) 的对称点是 M (2m-a ,2n-b );8、 两条坐标轴夹角平分线上的点的坐标的特征:a) 若点 P ( m , n )在第一、三象限的角平分线上,则 m ? n ,即横、纵坐标相等;b) 若点 P ( m , n )在第二、四象限的角平分线上,则 m ???n ,即横、纵坐标互为相反数;yyn P PnOm Xm OX在第一、三象限的角平分线上在第二、四象限的角平分线上9、 用坐标点表示移(1)点的平移将点(x , y )向右(或向左)平移 a 个单位,可得对应点(x+a , y ){或(x-a , y )},可记为“右加左减,纵不变”;将点(x , y )向上(或向下)平移 b 个单位,可得对应点(x , y+b ){或(x , y-b )},可记为“上加下减,横不变”;(2)图形的平移把一个图形各个点的横坐标都加上(或减去)一个正数 a ,相应的新图像就是把原图形向右(或向左)平移 a 个单元得到的。

人教版七年级下册数学知识点总结归纳

人教版七年级下册数学知识点总结归纳

人教版七年级下册数学知识点总结归纳七年级下册数学知识点1概率1.一般地,在大量重复试验中,如果事件A发生的频率n/m会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。

2.随机事件:在一定的条件下可能发生也可能不发生的事件,叫做随机事件。

3.互斥事件:不可能同时发生的两个事件叫做互斥事件。

4.对立事件:即必有一个发生的互斥事件叫做对立事件。

5.必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件。

6.不可能事件:那些在每一次实验中都一定不会发生的事件称为不可能事件。

2相交线与平行线1.相交线在同一平面内,两条直线的位置关系有相交和平行两种。

如果两条直线只有一个公共点时,称这两条直线相交。

2.垂线当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。

3.同位角两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角。

4.内错角两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角。

5.同旁内角两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角。

6.平行线几何中,在同一平面内,永不相交(也永不重合)的两条直线叫做平行线。

平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

7.平移平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

3平面直角坐标系1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。

2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。

人教版七年级数学下册知识点总结(第八章-二元一次方程组)

人教版七年级数学下册知识点总结(第八章-二元一次方程组)

第八章 二元一次方程组一、知识网络结构二、知识要点1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。

2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式为c by ax =+(c b a 、、为常数,并且00≠≠b a ,)。

使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解,一个二元一次方程一般有无数组解。

3、方程组含有两个未知数,并且含有未知数的项的次数都是1,这样的方程组叫二元一次方程组。

使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。

⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧三元一次方程组解法问题二元一次方程组与实际加减法代入法二元一次方程组的解法方程组的解定义二元一次方程组方程的解定义二元一次方程二元一次方程组4、用代入法解二元一次方程组的一般步骤:观察方程组中,是否有用含一个未知数的式子表示另一个未知数,如果有,则将它直接代入另一个方程中;如果没有,则将其中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。

5、用加减法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相加或相减,消去一个未知数;(3)解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。

6、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。

人教版七年级下数学知识点归纳总结(全)-七下数学学习总结

人教版七年级下数学知识点归纳总结(全)-七下数学学习总结

Ⅶ、假设a>0,b<0,a+b>0,那么a、-a、b、-b的大小关系是〔〕A、-a<b<-b<aB、-a<-b<b<aC、-b<a<-a<bD、-b<-a<a<bⅧ、当-1<a<0时,那么有〔〕A、1/a>aB、∣-a3∣>-a3C、-a>a2D、a3<-a2Ⅸ、如果x>2,那么以下四个式子中:①x2>2x②xy>2y③2x>x④1/x<1/2正确的个数是〔〕A、4个B、3个C、2个D、1个Ⅹ、假设x+y>x-y,y-x>y,那么以下式子正确的选项是〔〕A、x+y>0B、y-x<0C、xy<0D、y/x>0Ⅺ、如果关于x的方程x+2m-3=3x+7的解为不大于2的非负数,那么〔〕A、m=6B、m等于5,6,7C、5<m<7D、5≤m≤7Ⅻ、-1<b<0,0<a<1,那么在代数式a-b,a+b,a+b2,a2+b中,对任意的a、b,对应的代数式的值最大的是〔〕A、a+bB、a-bC、a+b2D、a2+b4、运用不等式的性质比较大小:例:ⅰ、制作某产品有两种用料方案:方案1是用5X A型钢板,7X B型钢板;方案2是用3X A型钢板,9X B型钢板。

A型钢板比B型钢板的面积大,从省料的角度考虑,应选哪种方案?〔用求差法比较大小〕ⅱ、设a>2,b>3,c>6,令M=abc,N=ab+bc+ac,那么M、N的大小关系是〔〕<提示:用作商比较法>A、M>NB、M<NC、M=ND、以上三种情况都有可能ⅲ、甲从一个鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均每条b元,后来他又以每条〔a+b〕/2的价格把鱼全部卖出去,结果发现亏了钱,原因是〔〕A、a>bB、a<bC、a=bD、与a、b的大小无关ⅳ、a、b、c、d都是正实数,且a/b<c/d,比较b/(a+b)和d/(c+d)的大小。

〔提示:用求倒数法〕5、不等式与方程、方程组的结合:2x+y=1+3m例:ⅰ、方程组满足x+y<0,那么〔〕A、m>-1B、m>1C、m<-1D、m<1x+2y=1-mⅱ、方程x+2k=4(x+k)+1的解是正数,求k的取值X围。

人教版七年级下数学知识点归纳总结(全)-七下数学学习总结(最新最全)

人教版七年级下数学知识点归纳总结(全)-七下数学学习总结(最新最全)

第五章相交线与平行线平面内,点与直线之间的位置关系分为两种:①点在线上②点在线外同一平面内,两条或多条不重合的直线之间的位置关系只有两种:①相交②平行一、相交线1、两条直线相交,有且只有一个交点。

(反之,若两条直线只有一个交点,则这两条直线相交。

)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。

邻补角互补。

要注意区分互为邻补角与互为补角的异同。

对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。

对顶角相等。

注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。

反过来亦成立。

②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。

例如:判断对错:因为∠ABC +∠DBC = 180°,所以∠DBC是邻补角。

()相等的两个角互为对顶角。

()2、垂直是两直线相交的特殊情况。

注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。

垂足:两条互相垂直的直线的交点叫垂足。

垂直时,一定要用直角符号表示出来。

过一点有且只有一条直线与已知直线垂直。

(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。

垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。

垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。

垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。

(或说直角三角形中,斜边大于直角边。

)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。

注:距离指的是垂线段的长度,而不是这条垂线段的本身。

所以,如果在判断时,若没有“长度”两字,则是错误的。

4、同位角、内错角、同旁内角三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。

注意:要熟练地认识并找出这三种角:①根据三种角的概念来区分②借助模型来区分,即:同位角——F型,内错角——Z型,同旁内角——U型。

人教版七年级下册数学知识点汇总

人教版七年级下册数学知识点汇总

一、相交线与平行线1. 相交线•邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

邻补角互补。

•对顶角:一个角的两边分别是另一个角的两边的反向延长线,像这样的两个角互为对顶角。

对顶角相等。

•垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

垂线的性质包括:过一点有且只有一条直线与已知直线垂直;连接直线外一点与直线上各点的所有线段中,垂线段最短。

2. 平行线•定义:在同一平面内,永不相交的两条直线叫做平行线。

•平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论是,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

•平行线的性质:o两直线平行,同位角相等。

o两直线平行,内错角相等。

o两直线平行,同旁内角互补。

•平行线的判定:o同位角相等,两直线平行。

o内错角相等,两直线平行。

o同旁内角互补,两直线平行。

3. 平移•定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。

平移不改变物体的形状和大小。

•对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

连接各组对应点的线段平行且相等。

二、平面直角坐标系•有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)。

•平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

•坐标:对于平面内任一点P,过P分别向x轴、y轴作垂线,垂足分别在x 轴、y轴上,对应的数a、b分别叫点P的横坐标和纵坐标。

三、三角形•三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

•高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

•中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

(完整版)人教版七年级下册数学知识点总结大全

(完整版)人教版七年级下册数学知识点总结大全

(完整版)人教版七年级下册数学知识点总结大全直角三角形- 定义:有一个角为直角(90度)的三角形。

- 勾股定理:直角三角形斜边的平方等于两腿的平方和。

- 特殊直角三角形:45-45-90度三角形和30-60-90度三角形。

圆- 定义:平面上到一个固定点的距离等于定长的点的集合。

- 元素:圆心、半径、直径、弦、弧、扇形、切线等。

- 四大关系:- 半径和弦垂直- 弦长的一半与半径的乘积等于斜边的一半与半径的乘积- 外接角等于弧对应的圆心角- 弧度与角度之间的换算关系比例与相似- 定义:表示两个或多个有对应关系的数之间的比值关系。

- 比例定理:若a/b = c/d,则a、b、c、d成比例。

- 三线一比例:三角形内部的三条连线和三角形外部的三条平行线与三角形的腰成比例。

- 相似三角形:对应角相等,对应边成比例的三角形。

科学计数法- 定义:一种简便表示极大或极小数的方法。

- 标准形式:数字部分在1到9之间,指数为整数。

- 运算法则:运算时先计算系数的乘除,再计算指数的加减。

二次根式- 定义:含有根号并且被根号包围的代数式。

- 平方根:一个数的平方等于该数。

- 二次根式的运算:相加减后化简、乘除法则。

分式- 定义:由整数与整数或整数代数式的比例组成的式子。

- 分式的性质:分母不能等于0,分子分母互质,分子分母都是整数等。

- 分式的运算:加减乘除、化简、倒数。

线性方程- 定义:等式中含有未知数的方程。

- 解方程:找到使等式成立的未知数的值。

- 一次方程:未知数的次数为1。

- 解一元一次方程:转化为等价方程,通过逆向运算得到未知数的值。

平行线与直线的交角- 定义:两条平行线与直线的交角为对应角或同位角。

- 绳分线定理:直线与两平行线相交时,对应角相等,内错角之和等于180度。

随机事件与概率- 定义:随机试验的可能结果称为随机事件。

- 基本事件与必然事件:基本事件是随机试验的单个结果,必然事件是一定发生的事件。

- 概率的计算:概率等于有利事件数除以可能事件总数。

新人教版七年级数学知识点归纳(上下册)

新人教版七年级数学知识点归纳(上下册)

一:人教版七年级数学知识点归纳(上册)第一章 有理数1.1 正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 ⇔ a 是正数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a <0 ⇔ a 是负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a ;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a 、b 互为相反数⇔a+b=0 ;(即相反数之和为0)(11)a 、b 互为相反数⇔1-=b a 或1-=ab ;(即相反数之商为-1) (12)a 、b 互为相反数⇔|a|=|b|;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a (16)0a 1a a >⇔= ; 0a 1a a<⇔-=;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。

七下数学人教版知识点总结

七下数学人教版知识点总结

七下数学人教版知识点总结
七年级的数学学习是初中数学教育的一个重要阶段,同时也是中学数学知识的基础。

在七年级数学学习中,我们将从数的基本概念、整数、分数、代数、几何等方面进行学习。

下面,我将对七下数学人教版的知识点进行总结。

一、数的基本概念
1. 自然数、整数和有理数的概念及它们的互相转化。

2. 正数、零和负数的概念。

3. 分数的概念、分数的运算及其应用。

二、整数
1. 整数的加减法、乘法及其性质,以及用整数解决实际问题的方法。

2. 大于、小于、不大于、不小于、相等和不等的符号。

三、分数
1. 分数的加减、乘除及其性质。

2. 分数的化简、分数的比大小及分数的应用。

四、代数
1. 代数运算基本性质,如交换律、结合律和分配律。

2. 一元一次方程的解法及其应用。

五、几何
1. 角的概念及分类,如钝角、直角和锐角。

2. 线段、射线、直线和平面的概念。

3. 三角形、四边形和多边形的概念及分类。

4. 探究勾股定理的条件和应用。

六、统计与概率
1. 数据的分类、整理和统计。

2. 概率的基本概念及其计算方法。

以上为七下数学人教版的知识点总结,这些知识点是本学年数学教学的重点。

同时,这些知识点的学习还需要我们进行大量的练习,才能够真正掌握,从而更好地应用到实际生活中。

人教版初中数学七年级下-相交线和平行线知识点总结

人教版初中数学七年级下-相交线和平行线知识点总结

人教版初中数学七年级下 相交线和平行线知识点总结本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的特性,两条直线平行的长期共存条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案.。

重点:垂线和它的性质,平行线的判定方法和它的性质,平移和它的性质,以及这些的组织运用.1、邻补角与对顶角图形 顶点 边的关系 大小关系 对顶角∠1与∠2 有公共顶点∠1的两边与∠2的两边互为反向延长线对顶角相等 即∠1=∠2邻补角∠3与∠4有公共顶点∠3与∠4有一条边公共,另一边互为反向延长线。

∠3+∠4=180°注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角 ⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。

⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。

1 2 4 32、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

符号语言记作:如图所示:AB ⊥CD ,垂足为O⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

简称:垂线段最短。

3、垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。

注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。

画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下 相交线和平行线知识点总结本章使生了解在平面不重合的直相交平行的位置系,究了直相交的形成的角的学内两条线与两种关研两条线时特征,直互相垂直所具有的特性,直平行的期共存件和所有的特征以及有形平移的两条线两条线长条它关图变换性,利用平移一些美的案质设计优图.。

重点:垂和的性线它质,平行的判定方法和的性,平移和的性,线它质它质以及些的用这组织运.5.1相交线1、邻补角与对顶角直相交所成的四角中存在几不同系的角,的念及性如下表:两线个种关它们概质形图点顶的系边关大小系关角对顶∠1∠与2有公共点顶∠1的两边与∠2的互两边为反向延长线角相等对顶即∠1=∠2角邻补 ∠3∠与4有公共点顶∠3∠与4有一公共,另一条边互反向延边为长。

线∠3+∠4=180°注意点:⑴角是成出的,角是具有特殊位置系的角;对顶对现对顶关两个⑵如果∠α∠与β是角,那一定有∠对顶么α=∠β;反之如果∠α=∠β,那∠么α∠与β不一定是角对顶⑶如果∠α∠与β互角,一定有∠为邻补则α+∠β=180°;反之如果∠α+∠β=180°,∠则α∠与β不一定是角邻补。

⑶直相交形成的四角中,每一角的角有,而角只有一。

两线个个邻补两个对顶个2、垂线⑴定,直相交所成的四角中,有一角是直角,就直互相垂直,其中的一直叫做义当两条线个个时说这两条线条线另一直的垂,的交点叫做垂足。

条线线它们符言作:号语记 第1页共7页1243A BCDO如所示:图AB⊥CD ,垂足为O⑵垂性线质1:一点有且只有一直已知直垂直 过条线与线(平行公理相比与较记)⑶垂性线质2:接直外一点直上各点的所有段中,垂段最短。

:垂段最短。

连线与线线线简称线3、垂线的画法:⑴直上一点已知直的垂;⑵直外一点已知直的垂。

过线画线线过线画线线注意:①一段或射的垂,就是所在直的垂;②一点作段的垂,垂足可在段上,也画条线线线画它们线线过线线线可以在段的延上。

线长线法:⑴一靠:用三角尺一直角靠在已知直上,⑵二移:移三角尺使一点落在的另一直角上,⑶画条边线动它边边三:沿着直角,不要成人的印象是段的。

人教版初一七年级下册数学知识点汇总讲解

人教版初一七年级下册数学知识点汇总讲解

人教版初一七年级下册数学知识点汇总讲解
1. 相交线与平行线:了解对顶角、邻补角的概念,学习平行线的性质和判定方法。

2. 实数:认识无理数,掌握实数的分类、大小比较以及运算规则。

3. 平面直角坐标系:学习用坐标表示点的位置,以及坐标中四个象限的特征。

4. 二元一次方程组:了解二元一次方程组的概念,学会解二元一次方程组的方法,如代入消元法和加减消元法。

5. 不等式与不等式组:学习不等式的性质,会解一元一次不等式和不等式组,并能在数轴上表示解集。

6. 数据的收集、整理与描述:掌握数据收集的方法,学习用统计图(如条形图、扇形图、直方图等)来描述数据。

这些知识点是初一七年级下册数学的核心内容,理解和掌握它们对于后续的数学学习非常重要。

在学习过程中,可以通过做练习题、与同学讨论以及请教老师等方式来加深对知识点的理解。

人教版七年级数学下册知识点大全

人教版七年级数学下册知识点大全

人教版七年级数学下册知识点大全第五章相交线与平行线5.1.1相交线1、如果两条直线只有一个公共点,就说这两条直线相交,该公共点叫做两直线的交点。

2、如果两个角有一个公共边,并且它们的另一边互为反向延长线,那么这两个角互为邻补角。

性质:邻补角互补。

(两条直线相交有4对邻补角。

)3、如果两个角的顶点相同,并且两边互为反向延长线,那么这两个角互为对顶角。

性质:对顶角相等。

(两条直线相交,有2对对顶角。

)5.1.2垂线4、当两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。

其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

5、由直线外一点向直线引垂线,这点与垂足间的线段叫做垂线段。

(要找垂线段,先把点来看。

过点画垂线,点足垂线段。

)6、垂线段是垂线上的一部分,它是线段,一端是一个点,另一端是垂足。

7、垂线画法:①放:放直尺,直尺的一边要与已知直线重合;②靠:靠三角板,把三角板的一直角边靠在直尺上;③移:移动三角板到已知点;④画线:沿着三角板的另一直角边画出垂线.8、垂线性质1:过一点有且只有一条直线与已知直线垂直。

9、过一点画已知线段(或射线)的垂线,就是画这条线段(或射线)所在直线的垂线.10、连接直线外一点与直线上各点的所有线段中,垂线段最短。

(垂线段最短.)11、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

5.1.3同位角、同旁内角、内错角12、同位角:如果两个角都在被截的两条直线的同方向,并且都在截线的同侧,即它们的位置相同,这样的一对角叫做同位角。

形如字母“F”。

13、内错角:如果两个角分别在被截的两条直线之间(内),并且分别在截线的两侧(错),这样的一对角叫做内错角。

形如字母“Z”。

14、同旁内角:如果两个角都在被截直线之间(内),并且都在截线的同侧(同旁),这样的一对角叫做同旁内角。

形如字母“U”。

5.2.1平行线15、在同一平面内,不相交的两条直线叫做平行线,记作:a∥b。

初一人教版七年级下册数学完全平方公式

初一人教版七年级下册数学完全平方公式

初一人教版七年级下册数学完全平方公式知识点归纳总结一、完全平方公式的概念完全平方公式是数学中一种重要的恒等式,它描述了一个二次多项式如何表示为一个平方的形式。

具体地说,完全平方公式是形如a²±2ab+b²=(a±b)²的等式。

其中,a和b 是任意实数或代数式,它们可以是数字、字母、单项式或多项式。

二、完全平方公式的定义完全平方公式可以定义为:一个二次多项式,如果它可以表示为(a±b)²的形式,则称该二次多项式为完全平方公式。

其中,a和b可以是任意实数或代数式。

三、完全平方公式的性质唯一性:对于给定的a和b,完全平方公式(a±b)²是唯一的。

这意味着没有其他形式的二次多项式可以表示为完全平方。

展开性:完全平方公式可以展开为a²±2ab+b²的形式。

这是完全平方公式的一个重要性质,它允许我们将一个看似复杂的二次多项式简化为一个更简单的形式。

对称性:完全平方公式具有对称性,即(a+b)²=(b+a)²和(a-b)²=(b-a)²。

这意味着在完全平方公式中,a和b的位置可以互换而不影响公式的值。

四、完全平方公式的特点平方项:完全平方公式的第一项和最后一项都是平方项,即a²和b²。

这两项代表了公式中的主要部分,它们决定了公式的整体形状。

乘积项:完全平方公式的中间项是a和b的乘积的两倍,即±2ab。

这项是公式中的关键部分,它连接了平方项并使整个公式成为一个整体。

正负号:完全平方公式中的正负号取决于中间项是正是负。

如果中间项是正数,则公式为(a+b)²;如果中间项是负数,则公式为(a-b)²。

五、完全平方公式的规律二次项和一次项的关系:在完全平方公式中,二次项(a ²)和一次项(±2ab)之间存在密切的关系。

初一数学知识点归纳总结人教版(最全)

初一数学知识点归纳总结人教版(最全)

初一数学知识点归纳总结人教版(最全)七年级数学知识点总结1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b 的相反数是-a-b;4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:绝对值的问题经常分类讨论;(3)a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|,5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.初中数学的学习方法一、抓住课堂理科学习重在平日功夫,不适于突击复习。

平日学习最重要的是课堂45分钟,听讲要聚精会神,思维紧跟老师。

同时要说明一点,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于某道题目的解答。

二、高质量完成作业所谓高质量是指高正确率和高速度。

写作业时,有时同一类型的题重复练习,这时就要有意识的考查速度和准确率,并且在每做完一次时能够对此类题目有更深层的思考,诸如它考查的内容,运用的数学思想方法,解题的规律、技巧等。

人教版七年级下册数学课本知识点归纳完整版(最新最全)

人教版七年级下册数学课本知识点归纳完整版(最新最全)

人教版七年级下册数学课本知识点归纳第五章相交线与平行线一、相交线两条直线相交,形成4个角。

1.邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。

具有这种关系的两个角,互为邻补角。

如:∠1、∠2。

2.对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。

如:∠1、∠3。

3.对顶角相等。

二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。

2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

3.垂足:两条垂线的交点叫垂足。

4.垂线特点:过一点有且只有一条直线与已知直线垂直。

5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。

连接直线外一点与直线上各点的所有线段中,垂线段最短。

三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。

1.同位角:在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。

如:∠1和∠5。

2.内错角:在在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。

如:∠3和∠5。

3.同旁内角:在在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。

如:∠3和∠6。

四、平行线(一) 平行线1.平行:两条直线不相交。

互相平行的两条直线,互为平行线。

a∥b(在同一平面内,不相交的两条直线叫做平行线。

)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

3.平行公理推论:①平行于同一直线的两条直线互相平行。

②在同一平面内,垂直于同一直线的两条直线互相平行。

(二)平行线的判定:1.同位角相等,两直线平行。

2.内错角相等,两直线平行。

3.同旁内角互补,两直线平行。

(三)平行线的性质1.两条平行线被第三条直线所截,同位角相等。

2.两条平行线被第三条直线所截,内错角相等。

3.两条平行线被第三条直线所截,同旁内角互补。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章相交线与平行线一、相交线相交线:如果两条直线只有一个公共点,就说这两条直线相交,该公共点叫做两直线的交点。

如直线AB、CD相交于点O。

A DC O B对顶角:两条直线相交出现对顶角。

顶点相同,角的两边互为反向延长线、,满足这种关系的角,互为对顶角,对顶角相等。

对顶角就是成对出现的。

邻补角:有一条公共边,角的另一边互为反向延长线、满足这种关系的两个角,互为领补角。

邻补角与补角的区别与联系❖1、邻补角与补角都就是针对两个角而言的,而且数量关系都就是两角之与为180°❖2、互为邻补角的两个角一定互补,但就是互为补角的两个角不一定就是邻补角即:互补的两个角只注重数量关系而不谈位置,而互为邻补角的两个角既要满足数量关系又要满足位置关系。

领补角与对顶角的比较二、垂线垂直:当两条直线相交所成的四个角中,有一个角就是直角时,这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足。

从垂直的定义可知,判断两条直线互相垂直的关键:要找到两条直线相交时四个交角中一个角就是直角。

垂直的表示:用“⊥”与直线字母表示垂直例如:如图,a、b互相垂直,O叫垂足、a叫b的垂线,b也叫a的垂线。

则记为:a⊥b或b⊥a;若要强调垂足,则记为:a⊥b, 垂足为O、垂直的书写形式:如图,当直线AB与CD相交于O点,∠为O。

b aO书写形式:∵∠AOD=90°(已知)∴AB ⊥CD(垂直的定义)反之,若直线AB 与CD 垂直,垂足为O,那么,∠AOD=90°。

书写形式: ∵ AB ⊥CD (已知) ∴ ∠AOD=90° (垂直的定义)应用垂直的定义:∠AOC=∠BOC=∠BOD=90° 垂线的画法:如图,已知直线 l 与l 上的一点A ,作l 的垂线、 则所画直线AB 就是过点A 的直线l 的垂线、工具:直尺、三角板1放:放直尺,直尺的一边要与已知直线重合;2靠:靠三角板,把三角板的一直角边靠在直尺上;3移:移动三角板到已知点; 4画线:沿着三角板的另一直角边画出垂线、垂线的性质:1、同一平面内,过一点有且只有一条直线与已知直线垂直、2、连接直线外一点与直线上各点的所有线段中,垂线段最短,或说成垂线段最短。

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

三、同位角、内错角、同旁内角(出现在一条直线与两条直线分别相交的情形) 同位角:一边都在截线上而且同向,另一边在截线同侧的两个角。

如∠1与∠5,∠4与∠8。

内错角:一边都在截线上而且反向, 另一边在截线两侧的两个角。

(两个角在两条截线内) 如∠3与∠5,∠4与∠6。

同旁内角:一边都在截线上而且反向, 另一边在截线同旁的两个角。

(两个角在两条截线内) 如∠3与∠6,∠4与∠5。

同位角、内错角、同旁内角的比较 A O C B A l 1 2 4 3 5 7 6 C B DA 8E F四、平行线平行线:在同一平面内,不相交的两条直线叫做平行线。

平行线的表示: 我们通常用符号“//”表示平行。

任意两条直线,有两种位置关系,一种就是相交,另一种就是平行。

平行线的画法:已知直线a 与直线外的一个已知点P,经过点P 画一条直线与已知直线a 平行。

一、帖(线)二、靠(尺) a三、移(点)四、画(线)● P平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

∵ b ∥a b ∥ c ∴ a ∥c ab平行线具有传递性。

c 五、平行线的判定 判定方法1: 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

简单说成:同位角相等, 两直线平行判定方法2:两条直线被第三条直线所截,如果 内错角相等,那么这两条直线平行、 简单说成:内错角相等,两直线平行、 判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行、简单说成:同旁内角互补,两直线平行 在同一平面内,垂直于同一条直线的两条直线互相平行、六、平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等、简单地说:两直线平行,同位角相等、性质2:两条平行线被第三条直线所截,内错角相等、简单地说:两直线平行,内错角相等、性质3:两条平行线被第三条直线所截,同旁内角互补、简单地说:两直线平行,同旁内角互补、七、命题、定理、证明命题:判断一件事情的语句,叫做命题。

命题由题设与结论两部分组成。

题设就是已知事项,结论就是由已知事项推出的事项。

数学中的命题常可以写成“如果……那么……”的形式,“如果”后的部分就是题设,“那么”后的部分就是结论。

如果题设成立,那么结论一定成立,这样的命题称真命题。

命题成立,而结论不1 2a b c 3 2 a b c34 a b c一定成立,这样的命题称假命题。

定理:有些真命题就是基本事实,它们的正确性就是经过推理证实的,无需再次进行证明的,这样的真命题叫定理。

证明:很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理的过程叫做证明。

九、平移平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

平移的性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。

平移作图:将线段AB 平移,使点A 与点D 对应。

1、连结AD2、过点B 作AD 的平行线3、在平行线上作线段BC,使BC=AD4、连结CD第六章 实数一、平方根算术平方根:如果一个正数x 的平方等于a,即x 2=a,那么这个正数x 叫做a 的算术平方根。

a 的算术平方根记为a ,读作“根号a ”,a 叫做被开方数。

0的算术平方根就是0。

平方根:如果一个数x 的平方等于a,即x 2=a (x 可能为正数,也可能为负数),那么x 就叫做a 的平方根(二次方根)、开平方:求一个数a 的平方根的运算,叫做开平方、 平方与开平方互为逆运算。

平方根的表示方法:如果x 2=a (a ≥0), 那么x = a ±,a ±读作“正负根号a ”。

a +表示a 的正的平方根。

a -表示 a 的负的平方根。

规定:正数a 的正的平方根 a 叫做a 的算数平方根;0的算数平方根就是0、 归纳:1、正数有两个平方根,它们互为相反数;2、0的平方根就是0;3、负数没有平方根。

例题1:0225812=-x方法: 1、把x 2当作一个整体,求出x 2=a;2、再根据平方根的定义求x 、例题2: (1) 81的平方根就是 ________ 。

(2) 81的平方根就是 ________ 。

二、立方根立方根:若一个数的立方(三次方)等于a,那么这个数叫做 a 的立方根(三次方根)若x 就是 a 的立方根,则说明x 3 = a 。

a 的立方根记为: ,读作“三次根号a ”。

根指数开立方:我们把求立方根的运算称之为开立方,它与立方运算就是互逆的。

(1) 8 的立方根:283= (2)- 64 的立方根:4-64-3=归纳:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根就是零。

平方根与立方根的异同点三、实数无理数:无限不循环小数称为无理数。

(开方开不尽的数;含有π的数;有规律但不循环的数。

) 如2,3等实数:有理数与无理数统称实数。

3a3a被开方数实数与数轴:每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一点都表示一个实数。

即实数与数轴上的点就是一一对应的。

归纳:1、a就是一个实数,它的相反数为-a2、一个正实数的绝对值就是它本身;一个负实数的绝对值就是它的相反数;0的绝对值就是0。

(在实数范围内,相反数、绝对值的意义与有理数范围内的相反数、绝对值的意义完全一样。

)第七章平面直角坐标系一、有序数对有序数对:把有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)。

利用有序数对,能准确表示一个位置,这里两个数的顺序不能改变。

二、平面直角坐标系平面直角坐标系:平面内两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平方向的数轴称为x轴或横轴,习惯取向右的方向为正方向;竖直方向上的数轴称为y轴或纵轴,习惯取向上的方向为正方向;两坐标轴的交点就是平面直角坐标系的原点、①条数轴②互相垂直③公共原点满足这三个条件才叫平面直角坐标系注意:坐标轴上的点不属于任何象限。

平面直角坐标系中两条数轴特征:(1)互相垂直(2)原点重合(3)通常取向上、向右为正方向(4)单位长度一般取相同的平面上点的表示:平面内任意一点P,过P点分别向x、y轴作垂线,垂足在x轴、y 轴上对应的数a、b分别叫做点p的横坐标、纵坐标,则有序数对(a,b)叫做点P的坐标,记为P(a,b)注意:横坐标写在前,纵坐标写在后,中间用逗号隔开、直角坐标系中点的坐标的特点:三、用坐标表示平移平移:把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移。

平移后图形的位置改变,形状、大小不变。

我们先试一试:在坐标中描出点A(-2,-3)并进行如下平移:(1)将点A向右平移5个单位长度得到点A1,则点A1的坐标就是________(2)将点A向左平移3个单位长度得到点A2,则点A2的坐标就是________(3)将点A向右平移a(a>o)个单位长度得到点An,则点An的坐标就是________(4)将点A向左平移a(a>o)个单位长度得到点An´,则点An 的坐标就是_______ 总结规律1:图形平移与点的坐标变化的关系(1)左、右平移:原图形上的点(x,y) ,向右平移a个单位,(x+a,y)原图形上的点(x,y) ,向左平移a个单位,(x-a,y)(2)上、下平移:原图形上的点(x,y) ,向上平移b个单位,(x,y+b)原图形上的点(x,y) ,向下平移b个单位,(x,y-b)总结规律2:图形上点的坐标变化与图形平移间的关系(1)横坐标变化,纵坐标不变:原图形上的点(x,y) ,如果要得到(x+a,y),要向右平移a个单位。

原图形上的点(x,y) ,如果要得到(x-a,y),要向左平移a个单位。

(2)横坐标不变,纵坐标变化:原图形上的点(x,y) ,如果要得到(x,y+b),要向上平移b个单位。

原图形上的点(x,y) ,如果要得到(x,y-b),要向下平移b个单位。

(3)横坐标、纵坐标都变化:原图形上的点(x,y) ,如果要得到(x+a,y+b),要向右平移a个单位,向上平移b个单位; 原图形上的点(x,y) ,如果要得到(x+a,y-b),要向右平移a个单位,向下平移b个单位; 原图形上的点(x,y) ,如果要得到(x-a,y+b),要向左平移a个单位,向上平移b个单位; 原图形上的点(x,y) ,如果要得到(x-a,y-b),要向左平移a个单位,向下平移b个单位;第八章二元一次方程组一、二元一次方程组二元一次方程:含有两个未知数,并且未知数的指数都就是1的方程叫做二元一次方程。

相关文档
最新文档