大学物理练习题 静电场中的导体
大学物理学 大作业参考解答
![大学物理学 大作业参考解答](https://img.taocdn.com/s3/m/6eae785ac850ad02de80411a.png)
静电场中的导体和电介质
大作业参考解答
选择题1:当一个带电导体达到静电平衡时, (A)导体表面上电荷密度较大处电势较高; (B)导体表面曲率较大处电势较高; (C)导体内部的电势比导体表面的电势高; (D)导体内任一点与表面上任一点的电势差等于零。
NIZQ 第1页
大学物理学
静电场中的导体和电介质
d a
a
E dx
x
d a d ln ln 0 a 0 a
0 q 1 C U U A U B ln d a
NIZQ 第18页
大学物理学
静电场中的导体和电介质
计算题3:如图所示,在一不带电的金属球旁,有一点电荷 +q,金属球半径为R,点电荷+q与金属球球心的间距为d, 试求: (1)金属球上感应电荷在球心处产生的电场强度。 (2)若取无穷远处为电势零点,金属球的电势为多少?
-σ1 σ1 σ2 -σ2
d1 (A) d2 (C) 1
d2 (B) d1 d2 (D) 2 d1
2
d1
d2
1 2 d1 d2 0 0
NIZQ 第8页
大学物理学
静电场中的导体和电介质
填空题1:如图所示,两同心导体球壳,内球壳带 电量+q,外球壳带电量 -2q . 静电平衡时,外球壳 的内表面带电量为 ;外表面带电量 -q 为 。 -q
q CU r C 0U r q 0
U E E0 d
1 1 1q 2 W qU CU r E0 2 2 2C
NIZQ 第16页
2
计算题1:两块相互平行的导体板a和b ,板面积均为S,
大学物理学
静电场中的导体和电介质
大学物理第六章静电场中的导体习题课
![大学物理第六章静电场中的导体习题课](https://img.taocdn.com/s3/m/5d877359cc175527072208d1.png)
.
1
一、静电场中的导体
1.静电平衡条件: 导体内部场强为0。
2.静电平衡时导体为等势体,导体表面为 等势面。
3.静电平衡时导体内无净电荷,所有电荷分 布于导体表面。
4.孤立导体电荷面密度与导体表面的曲率 有关,曲率越大,面密度越大.
5.静电平衡时,场强方向与导体表面垂直。
.
2
本章小结与习题课
6.静电平衡时,导体表面的场强大小为
E 0
7. 空腔内无电荷:空腔内表面无电荷全部
电荷分布于外表面,空腔内场强 E = 0。空腔
导体具有静电屏蔽的作用。
8. 空腔原带有电荷 Q:将 q 电荷放入空腔
内,内表面带有 -q 电荷,外表面带有 Q + q
电荷。接地可屏蔽内部电场变化对外部电
场的影响。
.
S
.
x 14
5(08)、一平行板电容器,两板相距d,对它充电后断开,然 后把两板间距增大到2d,如果电容器内电场边缘效应忽略不计, 则 (A)电容器的电容增大一倍 (B)电容器所带的电量增大一倍 (C)电容器两极间的电场强度增大一倍 (D)储存在电容器中的电场能量增大一倍
we1 2E2或 we1 20E2
(1)球壳内外表面上的电荷 (2)球心O处,由球壳内表面上电荷产生的电势 (3)球心O处的总电势
qO a r
Q
b
.
11
解: (1)由静电感应,金属球壳内表面有感应电荷-q,外 表面上带电荷q+Q
(2)无论球壳内表面上的感应电荷-q是如何分布的,因
为任一电荷元离O点距离都是a,所以由这些电荷在O
点产生的电势为:
3
本章小结与习题课
二、电介质中的场强 1.介质中的场强 EE0E'
大学物理第7章静电场中的导体和电介质课后习题及答案
![大学物理第7章静电场中的导体和电介质课后习题及答案](https://img.taocdn.com/s3/m/011e5d35492fb4daa58da0116c175f0e7cd1190a.png)
1第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。
用细导线连接两球并使它带电,电荷面密度分别为1s 和2s 。
忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。
试证明:Rr =21s s。
证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为的导体球的电势为R R V 0211π4e p s =014e s R =半径为r 的导体球的电势为的导体球的电势为r r V 0222π4e p s =024e s r = 用细导线连接两球,有21V V =,所以,所以Rr=21s s 2. 证明:对于两个无限大的平行平面带电导体板来说,证明:对于两个无限大的平行平面带电导体板来说,(1)(1)(1)相向的两面上,电荷的面密度总是相向的两面上,电荷的面密度总是大小相等而符号相反;大小相等而符号相反;(2)(2)(2)相背的两面上,电荷的面密度总是大小相等而符号相同。
相背的两面上,电荷的面密度总是大小相等而符号相同。
相背的两面上,电荷的面密度总是大小相等而符号相同。
证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1s ,2s ,3s ,4s (1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得内部的闭合圆柱面为高斯面,由高斯定理得S S d E SD +==×ò)(10320s s e故+2s 03=s上式说明相向两面上电荷面密度大小相等、符号相反。
上式说明相向两面上电荷面密度大小相等、符号相反。
(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即电平面产生的场强叠加而成的,即0222204030201=---e s e s e s e s又+2s 03=s 故 1s 4s =3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。
大学物理习题答案 19 静电场中的导体(1)
![大学物理习题答案 19 静电场中的导体(1)](https://img.taocdn.com/s3/m/72ba89d19b6648d7c0c74625.png)
与球外点电荷 + q 的作用力: F1
=
1 4πε 0
− q′ ⋅ q (r − b)2
,
由于 1 (r − b)2
>
1 r2
⇒
F1
=
1 4πε 0
− q′⋅ q (r − b)2
<
1 4πε 0
− q′⋅q r2
;
左侧电荷 Q
+
q′ 与点电荷 +
q 的作用力: F2
=
1 4πε 0
(Q + q′)⋅ q (r + a)2
50
大学物理习题解答
σ′ =
Q+q 4π R22
= 1.274 ×10−5 C
m2
,金属球外表面场强大小: E
σ′ =
ε0
= 1.44 ×106 V
m.
6. 题目有误!
7. 点电荷 − Q 位于空腔导体内,静电平衡后,空腔导体内表面感应电荷的电量为 + Q ,空腔导体原来电中性,
不带电,则空腔导体外表面感应电荷的电量为 − Q ;所以空腔导体外表面的净余电荷总量是 − Q ,空腔导体内表
− VC
=
E2
⋅d
=
σ2 ε0
d2 ;
B
A
C
σ1 σ2
−σ1 −σ2
由于 B 和 C 板用导线相连,电势相等,即VB = VC ⇒ VA −VB = VA −VC
即
σ1 ε0
d1
=
σ2 ε0
d2
⇒ σ1 = d2 . σ 2 d1
(第 10 题图)
11. (1)金属平板静电平衡后,金属平板 A 和 B 相邻两表面电荷电量等量异号,设电荷面密度分别为 σ 和 − σ ;
大学物理标准答案第10章
![大学物理标准答案第10章](https://img.taocdn.com/s3/m/1d523172f7ec4afe04a1dfd0.png)
第十章 静电场中的导体与电介质10-1将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A )升高 (B )降低(C )不会发生变化 (D )无法确定分析与解不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ).10-2将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A )N 上的负电荷入地 (B )N 上的正电荷入地 (C )N 上的所有电荷入地(D )N 上所有的感应电荷入地题 10-2 图分析与解导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ).10-3如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0==(B )dεqV d εq E 020π4,π4== (C )0,0==V E (D )RεqV d εq E 020π4,π4==题 10-3 图分析与解达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ).10-4根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( )(A )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C )若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D )介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E )介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5对于各向同性的均匀电介质,下列概念正确的是( )(A )电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍(B )电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍(C )在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍(D )电介质中的电场强度一定等于没有介质时该点电场强度的εr倍分析与解电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有()∑⎰⎰=⋅=⋅+ii S S εχq 01d d 1S E S E 即E =E 0/εr,因而正确答案为(A ).10-6不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.题 10-6 图分析与解根据导体静电平衡时电荷分布的规律,空腔内点电荷的电场线终止于空腔内表面感应电荷;导体球A 外表面的感应电荷近似均匀分布,因而近似可看作均匀带电球对点电荷q d 的作用力.()20π4rεq q q F dc bd +=点电荷q d 与导体球A 外表面感应电荷在球形空腔内激发的电场为零,点电荷q b 、q c 处于球形空腔的中心,空腔内表面感应电荷均匀分布,点电荷q b 、q c 受到的作用力为零.10-7一真空二极管,其主要构件是一个半径R 1=5.0×10-4m 的圆柱形阴极和一个套在阴极外、半径R 2=4.5×10-3m 的同轴圆筒形阳极.阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L =2.5×10-2 m .假设电子从阴极射出时的速度为零.求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力.题 10-7 图分析 (1)由于半径R 1<<L ,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性.从阴极射出的电子在电场力作用下从静止开始加速,电子所获得的动能等于电场力所作的功,也即等于电子势能的减少.由此,可求得电子到达阳极时的动能和速率. (2)计算阳极表面附近的电场强度,由F =q E 求出电子在阴极表面所受的电场力. 解 (1)电子到达阳极时,势能的减少量为J 108.4Δ17ep -⨯-=-=eV E由于电子的初始速度为零,故J 108.4ΔΔ17ep ek ek -⨯-=-==E E E因此电子到达阳极的速率为1-7ek s m 1003.122⋅⨯===meVm E v (2)两极间的电场强度为r rελe E 0π2-= 两极间的电势差1200ln π2d π2d 2121R R r r V R R R R ελελ-=-=⋅=⎰⎰r E负号表示阳极电势高于阴极电势.阴极表面电场强度r r R R R V R ελe e E 12110ln π2=-=电子在阴极表面受力r e e E F N)1037.414-⨯=-=(这个力尽管很小,但作用在质量为9.11×10-31kg 的电子上,电子获得的加速度可达重力加速度的5×1015倍.10-8一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0.求此系统的电势和电场的分布. 分析若200π4R εQV =,内球电势等于外球壳的电势,则外球壳内必定为等势体,电场强度处处为零,内球不带电.若200π4R εQV ≠,内球电势不等于外球壳电势,则外球壳内电场强度不为零,内球带电.一般情况下,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示.依照电荷的这一分布,利用高斯定理可求得电场分布.并由⎰∞⋅=pp V l E d 或电势叠加求出电势的分布.最后将电场强度和电势用已知量V 0、Q 、R 1、R 2表示.题 10-8 图解根据静电平衡时电荷的分布,可知电场分布呈球对称.取同心球面为高斯面,由高斯定理()()∑⎰⋅=⋅=⋅02/π4d εq r E rr E S E ,根据不同半径的高斯面内的电荷分布,解得各区域内的电场分布为r <R 1时,()01=r E R 1<r <R 2时,()202π4rεqr E =r >R 2时,()202π4r εqQ r E +=由电场强度与电势的积分关系,可得各相应区域内的电势分布. r <R 1时,20103211π4π4d d d d 2211R Q R q V R R R R r r εε+=⋅+⋅+⋅=⋅=⎰⎰⎰⎰∞∞lE l E l E l ER 1<r <R 2时,200322π4π4d d d 22R Q r q V R R r r εε+=⋅+⋅=⋅=⎰⎰⎰∞∞lE l E l Er >R 2时,rqQ V r 03π4d ε+=⋅=⎰∞l E 3也可以从球面电势的叠加求电势的分布:在导体球内(r <R 1)20101π4π4R εQR εq V +=在导体球和球壳之间(R 1<r <R 2)2002π4π4R εQr εq V +=在球壳外(r >R 2)为rqQ V 03π4ε+=由题意102001π4π4R εQR εq V V +==得Q R R V R q 21010π4==ε 于是可求得各处的电场强度和电势的分布: r <R 1时,01=E ;01V V =R 1<r <R 2时,22012012π4r R εQR r V R E -=;rR Q R r r V R V 201012π4)(ε-+= r >R 2时,220122013π4)(r R Q R R r V R E ε-+=;rR QR R r V R V 2012013π4)(ε-+= 10-9地球和电离层可当作球形电容器,它们之间相距约为100 km ,试估算地球-电离层系统的电容.设地球与电离层之间为真空.解由于地球半径R 1=6.37×106m ;电离层半径R 2=1.00×105m +R 1=6.47×106m ,根据球形电容器的电容公式,可得F 1058.4π4212210-⨯=-=R R R R εC10-10两线输电线,其导线半径为3.26mm ,两线中心相距0.50m ,导线位于地面上空很高处,因而大地影响可以忽略.求输电线单位长度的电容.分析 假设两根导线带等量异号电荷,电荷在导线上均匀分布,则由长直带电线的电场叠加,可以求出两根带电导线间的电场分布,-++=E E E再由电势差的定义求出两根导线之间的电势差,就可根据电容器电容的定义,求出两线输电线单位长度的电容解建立如图坐标,带等量异号电荷的两根导线在P 点激发的电场强度方向如图,由上述分析可得P 点电场强度的大小为)11(π20xd x E --=ελ 电场强度的方向沿x 轴,电线自身为等势体,依照定义两导线之间的电势差为x xd x l E U lRd Rd )11(π2d 0--=⋅=⎰⎰-ελ 上式积分得RR d ελU -=ln π0 因此,输电线单位长度的电容Rd εR R d εU λC ln /πln /π00≈-==代入数据F 1052.512-⨯=C题 10-10 图10-11电容式计算机键盘的每一个键下面连接一小块金属片,金属片与底板上的另一块金属片间保持一定空气间隙,构成一小电容器(如图).当按下按键时电容发生变化,通过与之相连的电子线路向计算机发出该键相应的代码信号.假设金属片面积为50.0mm 2,两金属片之间的距离是0.600mm .如果电路能检测出的电容变化量是0.250pF ,试问按键需要按下多大的距离才能给出必要的信号?题 10-11 图分析按下按键时两金属片之间的距离变小,电容增大,由电容的变化量可以求得按键按下的最小距离:解按下按键时电容的变化量为⎥⎦⎤⎢⎣⎡-=0011Δd d S εC按键按下的最小距离为mm 152.0ΔΔΔ00200min =+=-=SC d Cd d d d ε10-12一片二氧化钛晶片,其面积为1.0cm 2,厚度为0.10mm .把平行平板电容器的两极板紧贴在晶片两侧.(1)求电容器的电容;(2)当在电容器的两极间加上12V 电压时,极板上的电荷为多少?此时自由电荷和极化电荷的面密度各为多少?(3)求电容器内的电场强度. 解 (1)查表可知二氧化钛的相对电容率εr =173,故充满此介质的平板电容器的电容F 1053.190-⨯==dSεεC r (2)电容器加上U =12V 的电压时,极板上的电荷C 1084.18-⨯==CU Q极板上自由电荷面密度为2-80m C 1084.1⋅⨯==-SQσ晶片表面极化电荷密度2-400m C 1083.111⋅⨯=⎥⎦⎤⎢⎣⎡-='-σεσr (3)晶片内的电场强度为1-5m V 102.1⋅⨯==dUE 10-13如图所示,半径R =0.10m 的导体球带有电荷Q =1.0×10-8C ,导体外有两层均匀介质,一层介质的εr =5.0,厚度d =0.10m ,另一层介质为空气,充满其余空间.求:(1)离球心为r =5cm 、15cm 、25cm 处的D 和E ;(2)离球心为r =5cm 、15cm 、25cm 处的V ;(3)极化电荷面密度σ′.题 10-13 图分析 带电球上的自由电荷均匀分布在导体球表面,电介质的极化电荷也均匀分布在介质的球形界面上,因而介质中的电场是球对称分布的.任取同心球面为高斯面,电位移矢量D 的通量与自由电荷分布有关,因此,在高斯面上D 呈均匀对称分布,由高斯定理⎰∑=⋅0d qS D 可得D (r ).再由r εε0/D E =可得E (r ).介质内电势的分布,可由电势和电场强度的积分关系⎰∞⋅=rV l E d 求得,或者由电势叠加原理求得.极化电荷分布在均匀介质的表面,其极化电荷面密度n P ='σ.解 (1)取半径为r 的同心球面为高斯面,由高斯定理得r <R 0π421=⋅r D01=D ;01=ER <r <R +d Q r D =⋅22π422π4r QD =;202π4r εεQ E r= r >R +d Q r D =⋅23π423π4r QD =;203π4r Q E ε= 将不同的r 值代入上述关系式,可得r =5cm 、15cm 和25cm 时的电位移和电场强度的大小,其方向均沿径向朝外.r 1=5cm ,该点在导体球内,则01=r D ;01=r Er 2=15cm ,该点在介质层内,εr=5.0,则2822m C 105.3π42--⋅⨯==r QD r 12220m V 100.8π42-⋅⨯==r εεQ E r r r 3=25cm ,该点在空气层内,空气中ε≈ε0,则2823m C 103.1π43--⋅⨯==r QD r ; 13220m V 104.1π43-⋅⨯==r Q E r ε (2)取无穷远处电势为零,由电势与电场强度的积分关系得 r 3=25cm ,V 360π4d 0r 331==⋅=⎰∞rεQV r E r 2=15cm ,()()V480π4π4π4d d 0020r3222=+++-=⋅+⋅=⎰⎰+∞+d R Qd R Q r Q V r r dR d R εεεεεrE r E r 1=5cm ,()()V540π4π4π4d d 000321=+++-=⋅+⋅=⎰⎰+∞+d R εQd R εεQ R εεQ V r r dR RdR rE r E(3)均匀介质的极化电荷分布在介质界面上,因空气的电容率ε=ε0,极化电荷可忽略.故在介质外表面;()()()20π411d R εQ εE εεP r r n r n +-=-=()()282m C 106.1π41--⋅⨯=+-==d R εQεP σr r n在介质内表面:()()20π411R εQ εE εεP r r n r n -=-=()282m C 104.6π41--⋅⨯-=-=-='R εQ εP σr r n介质球壳内、外表面的极化电荷面密度虽然不同,但是两表面极化电荷的总量还是等量异号. 10-14人体的某些细胞壁两侧带有等量的异号电荷.设某细胞壁厚为5.2×10-9m ,两表面所带面电荷密度为±5.2×10-3C /m 2,内表面为正电荷.如果细胞壁物质的相对电容率为6.0,求(1)细胞壁内的电场强度;(2)细胞壁两表面间的电势差. 解 (1)细胞壁内的电场强度V /m 108.960⨯==rεεσE ;方向指向细胞外. (2)细胞壁两表面间的电势差V 101.52-⨯==Ed U .10-15如图(a )所示,有两块相距为0.50的薄金属板A 、B 构成的空气平板电容器被屏蔽在一金属盒K内,金属盒上、下两壁与A 、B 分别相距0.25mm ,金属板面积为30mm ×40mm .求(1)被屏蔽后电容器的电容变为原来的几倍;(2)若电容器的一个引脚不慎与金属屏蔽盒相碰,问此时的电容又为原来的几倍?题 10-15 图分析薄金属板A 、B 与金属盒一起构成三个电容器,其等效电路图如图(b)所示,由于两导体间距离较小,电容器可视为平板电容器,通过分析等效电路图可以求得A 、B 间的电容. 解 (1)由等效电路图可知13232123C C C C C C C C ++⋅=+=由于电容器可以视作平板电容器,且32122d d d ==,故1322C C C ==,因此A 、B 间的总电容12C C =(2)若电容器的一个引脚不慎与金属屏蔽盒相碰,相当于2C (或者3C )极板短接,其电容为零,则总电容13C C =10-16在A 点和B 点之间有5个电容器,其连接如图所示.(1)求A 、B 两点之间的等效电容;(2)若A 、B 之间的电势差为12V ,求U A C 、U CD 和U D B .题 10-16 图解 (1)由电容器的串、并联,有μF 1221=+=C C C ACμF 843=+=C C C CD51111C C C C CD AC AB ++= 求得等效电容C AB =4μF .(2)由于AB DB CD AC Q Q Q Q ===,得V 4==AB ACABAC U C C U V 6==AB CDABCD U C C U V 2==AB DBABDB U C C U 10-17如图,有一个空气平板电容器,极板面积为S ,间距为d .现将该电容器接在端电压为U 的电源上充电,当(1)充足电后;(2)然后平行插入一块面积相同、厚度为δ(δ<d )、相对电容率为εr的电介质板;(3)将上述电介质换为同样大小的导体板.分别求电容器的电容C ,极板上的电荷Q 和极板间的电场强度E .题 10-17 图分析电源对电容器充电,电容器极板间的电势差等于电源端电压U .插入电介质后,由于介质界面出现极化电荷,极化电荷在介质中激发的电场与原电容器极板上自由电荷激发的电场方向相反,介质内的电场减弱.由于极板间的距离d 不变,因而与电源相接的导体极板将会从电源获得电荷,以维持电势差不变,并有()δSεεQ δd S εQU r 00+-=相类似的原因,在平板电容器极板之间,若平行地插入一块导体板,由于极板上的自由电荷和插入导体板上的感应电荷在导体板内激发的电场相互抵消,与电源相接的导体极板将会从电源获得电荷,使间隙中的电场E 增强,以维持两极板间的电势差不变,并有()δd SεQU -=0 综上所述,接上电源的平板电容器,插入介质或导体后,极板上的自由电荷 均会增加,而电势差保持不变. 解 (1)空气平板电容器的电容dSεC 00=充电后,极板上的电荷和极板间的电场强度为U dS εQ 00=d U E /0=(2)插入电介质后,电容器的电容C 1为()()δd εδS εεδS εεQ δd SεQ Q C r r r -+=⎥⎦⎤⎢⎣⎡+-=0001/ 故有()δd εδSUεεU C C r r -+==011介质内电场强度()δd εδUS εεQ E r r -+=='011 空气中电场强度()δd εδU εS εQ E r r -+==011 (3)插入导体达到静电平衡后,导体为等势体,其电容和极板上的电荷分别为δd SεC -=02 U δd S εQ -=02导体中电场强度02='E 空气中电场强度δd UE -=2无论是插入介质还是插入导体,由于电容器的导体极板与电源相连,在维持电势差不变的同时都从电源获得了电荷,自由电荷分布的变化同样使得介质内的电场强度不再等于E 0/εr.10-18为了实时检测纺织品、纸张等材料的厚度(待测材料可视作相对电容率为εr的电介质),通常在生产流水线上设置如图所示的传感装置,其中A ,B 为平板电容器的导体极板,d 0为两极板间的距离.试说明检测原理,并推出直接测量量电容C 与间接测量量厚度d 之间的函数关系.如果要检测钢板等金属材料的厚度,结果又将如何?题 10-18 图分析导体极板A 、B 和待测物体构成一有介质的平板电容器,关于电容C 与材料的厚度的关系,可参见题10-17的分析. 解由分析可知,该装置的电容为()d d d SC r r -+=00εεε则介质的厚度为()()C εSεεd εεC εS εεC d εd r r r r r r r 1110000---=--=如果待测材料是金属导体,其等效电容为dd SεC -=00导体材料的厚度CSεd d 00=-= 实时地测量A 、B 间的电容量C ,根据上述关系式就可以间接地测出材料的厚度.通常智能化的仪表可以实时地显示出待测材料的厚度.10-19有一电容为0.50μF 的平行平板电容器,两极板间被厚度为0.01mm 的聚四氟乙烯薄膜所隔开,(1)求该电容器的额定电压;(2)求电容器存贮的最大能量.分析通过查表可知聚四氟乙烯的击穿电场强度E b =1.9×107V /m ,电容器中的电场强度E ≤E b ,由此可以求得电容器的最大电势差和电容器存贮的最大能量. 解 (1)电容器两极板间的电势差V 190b max ==d E U(2)电容器存贮的最大能量J 1003.92132max e -⨯=CU W10-20半径为0.10cm 的长直导线,外面套有内半径为1.0cm 的共轴导体圆筒,导线与圆筒间为空气.略去边缘效应,求:(1)导线表面最大电荷面密度;(2)沿轴线单位长度的最大电场能量.分析如果设长直导线上单位长度所带电荷为λ,导线表面附近的电场强度0π2εσR ελE ==查表可以得知空气的击穿电场强度E b =3.0×106(V /m ),只有当空气中的电场强度E ≤E b 空气才不会被击穿,由于在导线表面附近电场强度最大,因而可以求出σ的极限值.再求得电场能量密度,并通过同轴圆柱形体元内电场能量的积分求得单位长度的最大电场强度.解 (1)导线表面最大电荷面密度250max m C 1066.2--⋅⨯==b E εσ显然导线表面最大电荷面密度与导线半径无关.(2)由上述分析得b E R ελ10max π2=,此时导线与圆筒之间各点的电场强度为()1210m π2R r R rR r E <<==ελ0=E (其他)222102m 0m 2121rE R E w b εε==沿轴线单位长度的最大电场能量r rER r r w W R Rb d 1πd π2212210m ⎰⎰⎰⎰Ω=⋅=ε14122210m m J 1076.5lnπ--⋅⨯==R R E R W b ε 10-21一空气平板电容器,空气层厚1.5cm ,两极间电压为40k V ,该电容器会被击穿吗?现将一厚度为0.30cm 的玻璃板插入此电容器,并与两极平行,若该玻璃的相对电容率为7.0,击穿电场强度为10MV· m -1.则此时电容器会被击穿吗?分析在未插入玻璃板时,不难求出空气中的电场强度小于空气的击穿电场强度,电容器不会被击穿.插入玻璃后,由习题10-17可知,若电容器与电源相连,则极板间的电势差维持不变,电容器将会从电源获取电荷.此时空气间隙中的电场强度将会增大.若它大于空气的击穿电场强度,则电容器的空气层将首先被击穿.此时40k V 电压全部加在玻璃板两侧,玻璃内的电场强度如也大于玻璃击穿电场强度的值,则玻璃也将被击穿.整个电容器被击穿. 解未插入玻璃时,电容器内的电场强度为16m V 107.2/-⋅⨯==d U E因空气的击穿电场强度16m V 100.3-⋅⨯=b E ,b E E <,故电容器不会被击穿.插入玻璃后,由习题6-26可知,空气间隙中的电场强度()16m V 102.3-⋅⨯=+-=δδd εVεE r r此时,因b E E >,空气层被击穿,击穿后40k V 电压全部加在玻璃板两侧,此时玻璃板内的电场强度17m V 103.1/-⋅⨯==δV E由于玻璃的击穿电场强度1bm MV 10-⋅='E ,b E E '>,故玻璃也将相继被击穿,电容器完全被击穿.10-22某介质的相对电容率 2.8r ε=,击穿电场强度为611810V m -⨯⋅,如果用它来作平板电容器的电介质,要制作电容为0.047 μF ,而耐压为4.0 k V 的电容器,它的极板面积至少要多大.解介质内电场强度16m V 1018-⋅⨯=≤b E E电容耐压U m =4.0k V ,因而电容器极板间最小距离m 1022.2/4-⨯==b m E U d要制作电容为0.047μF 的平板电容器,其极板面积210m 42.0==εεCdS 显然,这么大的面积平铺开来所占据的空间太大了,通常将平板电容器卷叠成筒状后再封装. 10-23一平行板空气电容器,极板面积为S ,极板间距为d ,充电至带电Q 后与电源断开,然后用外力缓缓地把两极板间距拉开到2d .求:(1)电容器能量的改变;(2)此过程中外力所作的功,并讨论此过程中的功能转换关系.分析在将电容器两极板拉开的过程中,由于导体极板上的电荷保持不变,极板间的电场强度亦不变,但电场所占有的空间增大,系统总的电场能量增加了.根据功能原理,所增加的能量应该等于拉开过程中外力克服两极板间的静电引力所作的功. 解 (1)极板间的电场为均匀场,且电场强度保持不变,因此,电场的能量密度为20220221S εQ E εw e == 在外力作用下极板间距从d 被拉开到2d ,电场占有空间的体积,也由V 增加到2V ,此时电场能量增加SεdQ V w W e e 022ΔΔ== (2)两导体极板带等量异号电荷,外力F 将其缓缓拉开时,应有F =-F e ,则外力所作的功为SεdQ QEd 02e 2ΔA ==⋅-=r F 外力克服静电引力所作的功等于静电场能量的增加.。
大学物理练习题 静电场中的导体(续)
![大学物理练习题 静电场中的导体(续)](https://img.taocdn.com/s3/m/3366270090c69ec3d5bb75e4.png)
一、选择题
1. 一“无限大”均匀带电平面 A,其附近放一与它平行的有一定厚度 的“无限大”平面导体板 B,如图所示。已知 A 上的电荷面密度为σ, 则在导体板 B 的两个表面 1 和 2 上的感应电荷面密度为: (A) σ1 = −σ,σ2 = +σ。 (B) σ1 = −σ/2,σ2 = +σ/2。 (C) σ1 = −σ,σ2 = 0。 (D) σ1 = −σ/2,σ2 = −σ/2。
(C) q 。 4πε 0R
(D)
q 4πε 0
⎜⎛ ⎝
1 d
−
1 R
⎟⎞ 。 ⎠
10. 一正电荷 M,靠近一不带电的导体 N,N 的左端感应出负电荷,右端感应出正电荷,若 将 N 的左端接地,如图所示,则 (A) N 上的负电荷入地。 (B) N 上的正电荷入地。 (C) N 上的电荷不动。 (D) N 上的所有电荷都入地。
电场分布不因带电平板的引入而改变,则板的附近左、右两侧的电荷
面密度为:σ左=
;σ右=
。
σ
v E0
2. 如左下图所示,A、B 为两块平行放置的导体大平板,面积均为 S,A 板带+Q1,B 板带
+Q2。将 B 板接地,则 AB 间电场强度的大小 E =
。
AB
ABCD
Q1
Q1
+Q1 +Q2
3. 如右上图所示,两块很大的导体平板平行放置,面积都是 S,有一定厚度,带电量分别为
3. 如图所示,一厚度为 d 的“无限大”均匀带电导体板,电荷面密度
d
为σ,则板的两侧离板面距离均为 h 的两点 a、b 之间的电势差为: (A) 零。 (B) σ/2ε 0。 (C) σ h/ε 0。
大学物理2期末复习
![大学物理2期末复习](https://img.taocdn.com/s3/m/4e00e985bcd126fff6050b33.png)
(2)假若线圈能以某一条水平边为轴自由摆动,当线圈平衡时,线圈平面与竖直面夹角为多少.
解:1.(1)Pm=IS=Ia2
方向垂直线圈平面.
线圈平面保持竖直,即Pm与B垂直.有
Mm=Pm×B
Mm=PmBsin(/2)=Ia2B
=9.4×10-4mN
(2)平衡即磁力矩与重力矩等值反向
在平面②的上方向左,在平面②的下方向右.
(1)两无限大电流流在平面之间产生的磁感强度方向都向左,故有B=B1+B2=0J
(2)两无限大电流流在平面之外产生的磁感强度方向相反,故有B=B1B2=0
练习九安培力
三、计算题
1.一边长a=10cm的正方形铜导线线圈(铜导线横截面积S=2.00mm2,铜的密度=8.90g/cm3),放在均匀外磁场中.B竖直向上,且B=9.40103T,线圈中电流为I=10A .线圈在重力场中求:
解:1.取窄条面元dS=bdr,
面元上磁场的大小为
B=0I/(2r),面元法线与磁场方向相反.有
1=
2=
1/2=1
2.半径为R的薄圆盘均匀带电,总电量为Q.令此盘绕通过盘心且垂直盘面的轴线作匀速转动,角速度为,求轴线上距盘心x处的磁感强度的大小和旋转圆盘的磁矩.
解;2.在圆盘上取细圆环电荷元dQ=2rdr,
解得1=4=(Q1+Q2)/(2S)=2.66108C/m2
2=3=(Q1Q2)/(2S)=0.89108C/m2
两板间的场强E=2/0=(Q1Q2)/(20S)
V=UA-UB
=Ed=(Q1Q2)d/(20S)=1000V
四、证明题
1.如图6.7所示,置于静电场中的一个导体,在静电平衡后,导体表面出现正、负感应电荷.试用静电场的环路定理证明,图中从导体上的正感应电荷出发,终止于同一导体上的负感应电荷的电场线不能存在.
《大学物理aⅰ》静电场中的导体和电介质习题、答案及解法(.6.4)
![《大学物理aⅰ》静电场中的导体和电介质习题、答案及解法(.6.4)](https://img.taocdn.com/s3/m/ddd150c7aef8941ea66e0510.png)
静电场中的导体和电解质习题、答案及解法一.选择题1.一个不带电的空腔导体球壳,内半径为R 。
在腔内离球心的距离为a 处放一点电荷q +,如图1所示。
用导线把球壳接地后,再把地线撤去。
选无穷远处为电势零点,则球心O 处的电势为 [ D ] (A )aq 02πε; (B )0 ;(C )Rq 04πε-; (D )⎪⎭⎫ ⎝⎛-R a q 1140πε。
参考答案:)11(4)11(440020Ra q a R q dl Rq Edl V RaRa-=--===⎰⎰πεπεπε 2.三块互相平行的导体板之间的距离21d d 和比板面积线度小得多,如果122d d =外面二板用导线连接,中间板上带电。
设左右两面上电荷面密度分别为21σσ和,如图2所示,则21σσ为(A )1 ; (B )2 ; (C )3 ;(D )4 。
[ B ]解:相连的两个导体板电势相等2211d E d E =,所以202101d d εσεσ= 1221d d =σσ 3.一均匀带电球体如图所示,总电荷为Q +,其外部同心地罩一内、外半径分别为1r ,2r 的金属球壳。
设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势分别为[ B ] (A )204r q πε,0 ; (B )0,204r q πε ;(C )0,rq 04πε ; (D )0,0 。
1r 2r OPQ+q+aOR 1d 2σ2d 1σ参考答案:⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-∞-==∙+∙=∙=⎰⎰⎰⎰∞∞∞2020201411441222r Q rQdr r Q ld E l d E ld E U r r r rpp πεπεπε4.带电导体达到静电平衡时,其正确结论是 [ D ] (A ) 导体表面上曲率半径小处电荷密度较小; (B ) 表面曲率较小处电势较高; (C ) 导体内部任一点电势都为零;(D ) 导体内任一点与其表面上任一点的电势差等于零。
《大学物理学》习题解答静电场中的导体和电介质
![《大学物理学》习题解答静电场中的导体和电介质](https://img.taocdn.com/s3/m/403e26436bd97f192279e995.png)
根据球形电容器的电容公式,得:
C
4 0
R1R2 R2 R1
4.58102 F
【12.7】半径分别为 a 和 b 的两个金属球,球心间距为 r(r>>a,r>>b),今用一根电容可忽略的细导线将 两球相连,试求:(1)该系统的电容;(2)当两球所带的总电荷是 Q 时,每一球上的电荷是多少?
【12.7 解】由于 r a , r b ,可也认为两金属球互相无影响。
以相对电容率 r ≈1 的气体。当电离粒子通过气体时,能使其电离,若两极间有电势差时,极间有电流,
从而可测出电离粒子的数量。若以 E1 表示半径为 R1 的长直导体附近的电场强度。(1)求两极间电势差的
关系式;(2)若 E1 2.0 106 V m1 , R1 0.30 mm , R2 20.00 mm , 两极间的电势差为多少?
, (R2
r) ;
外球面的电势 内外球面电势差
VR2
R2
E3 dr
Q1 Q2 4 0 R2
U
VR2
VR1
R2 R1
E2
dr
Q1 4 0
(1 R1
1) R2
可得:
Q1 6 109 C , Q2 4 109 C
【12.4】如图所示,三块平行导体平板 A,B,C 的面积均为 S,其中 A 板带电 Q,B,C 板不带电,A 和 B 间相距为 d1,A 和 C 之间相距为 d2,求(1)各导体板上的电荷分布和导体板间的电势差;(2)将 B,C 导体 板分别接地,再求导体板上的电荷分布和导体板间的电势差。
第 12 章 静电场中的导体和电介质
【12.1】半径为 R1 的金属球 A 位于同心的金属球壳内,球壳的内、外半径分别为 R2、R3 ( R2 R3 )。
《大学物理学》第二版下册习题解答
![《大学物理学》第二版下册习题解答](https://img.taocdn.com/s3/m/85d368492e3f5727a5e962ef.png)
第九章 静电场中的导体9.1 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A) 302rU R . (B) R U 0. (C) 20rRU . (D) r U 0. [ C ] 9.2如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为:(A) 0. (B)2εσ. (C) 0εσh . (D) 02εσh. [ A ]9.3 一个未带电的空腔导体球壳,内半径为R .在腔内离球心的距离为d 处( d < R ),固定一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去.选无穷远处为电势零点,则球心O 处的电势为 (A) 0 . (B)dq04επ.(C)R q 04επ-. (D) )11(4Rd q -πε. [ D ]9.4 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: (A) 球壳内、外场强分布均无变化. (B) 球壳内场强分布改变,球壳外不变. (C) 球壳外场强分布改变,球壳内不变.(D) 球壳内、外场强分布均改变. [ B ]9.5在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是:(A) 内表面均匀,外表面也均匀. (B) 内表面不均匀,外表面均匀. (C) 内表面均匀,外表面不均匀.(D) 内表面不均匀,外表面也不均匀. [ B ]9.6当一个带电导体达到静电平衡时: (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高. (C) 导体内部的电势比导体表面的电势高.(D) 导体内任一点与其表面上任一点的电势差等于零. [ D ]9.7如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求: (1) 球壳内外表面上的电荷. (2) 球心O 点处,由球壳内表面上电荷产生的电势. (3) 球心O 点处的总电势.解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q .(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为adqU q 04επ=⎰-aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和q Q q q O U U U U +-++=r q 04επ=a q 04επ-b q Q 04επ++ )111(40b a r q +-π=εbQ04επ+9.8有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷.如图所示,试求: (1) 导体板面上各点的感生电荷面密度分布.(2) 面上感生电荷的总电荷.解:(1) 选点电荷所在点到平面的垂足O 为原点,取平面上任意点P ,P 点距离原点为r ,设P 点的感生电荷面密度为σ.在P 点左边邻近处(导体内)场强为零,其法向分量也是零,按场强叠加原理,()024cos 0220=++=⊥εσεθb r q E P π 2分 ∴ ()2/3222/b r qb +-=πσ 1分(2) 以O 点为圆心,r 为半径,d r 为宽度取一小圆环面,其上电荷为 ()2/322/d d b r qbrdr S Q +-==σ总电荷为 ()q brrdrqb dS Q S-=+-==⎰⎰∞2/322σ 2分O9.9 如图所示,中性金属球A ,半径为R ,它离地球很远.在与球心O 相距分别为a 与b 的B 、C 两点,分别放上电荷为q A 和q B 的点电荷,达到静电平衡后,问: (1) 金属球A 内及其表面有电荷分布吗?(2) 金属球A 中的P 点处电势为多大?(选无穷远处为电势零点)B解:(1) 静电平衡后,金属球A 内无电荷,其表面有正、负电荷分布,净带电荷为零. (2) 金属球为等势体,设金属球表面电荷面密度为σ. ()()0004///4/d εεσπ++π⋅==⎰⎰a q a q R S U U B A S P A∵0d =⋅⎰⎰AS S σ∴ ()()04///επ+=a q a q U B A P9.10三个电容器如图联接,其中C 1 = 10×10-6 F ,C 2 = 5×10-6 F ,C 3 = 4×10-6 F ,当A 、B 间电压U =100 V 时,试求:(1) A 、B 之间的电容;(2) 当C 3被击穿时,在电容C 1上的电荷和电压各变为多少?解:(1) =+++=321321)(C C C C C C C 3.16×10-6 F(2) C 1上电压升到U = 100 V ,电荷增加到==U C Q 111×10-3 C第十章 静电场中的电介质10.1 关于D的高斯定理,下列说法中哪一个是正确的? (A) 高斯面内不包围自由电荷,则面上各点电位移矢量D为零.(B) 高斯面上处处D为零,则面内必不存在自由电荷.(C) 高斯面的D通量仅与面内自由电荷有关.(D) 以上说法都不正确. [ C ]10.2一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为(A) ε 0 E . (B) ε 0 ε r E .(C) ε r E . (D) (ε 0 ε r - ε 0)E . [ B ]10.3 一平行板电容器中充满相对介电常量为εr 的各向同性均匀电介质.已知介质表面极化电荷面密度为±σ′,则极化电荷在电容器中产生的电场强度的大小为:(A) 0εσ'. (B) r εεσ0'. (C) 02εσ'. (D)rεσ'. [ A ]10.4一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E ,电位移为0D,而当两极板间充满相对介电常量为εr 的各向同性均匀电介质时,电场强度为E ,电位移为D,则(A) r E E ε/0 =,0D D =. (B) 0E E =,0D D rε=.(C) r E E ε/0 =,r D D ε/0 =. (D) 0E E =,0D D=. [ B ]10.5如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将 (A) 增大. (B) 减小.(C) 不变. (D) 如何变化无法确定. [ B ]q10.6将一空气平行板电容器接到电源上充电到一定电压后,断开电源.再将一块与极板面积相同的各向同性均匀电介质板平行地插入两极板之间,如图所示. 则由于介质板的插入及其所放位置的不同,对电容器储能的影响为:(A) 储能减少,但与介质板相对极板的位置无关. (B) 储能减少,且与介质板相对极板的位置有关. (C) 储能增加,但与介质板相对极板的位置无关.(D) 储能增加,且与介质板相对极板的位置有关. [ A ]介质板10.7静电场中,关系式 P E D+=0ε(A) 只适用于各向同性线性电介质. (B) 只适用于均匀电介质. (C) 适用于线性电介质.(D) 适用于任何电介质. [ D ]10.8一半径为R 的带电介质球体,相对介电常量为εr ,电荷体密度分布ρ = k / r 。
东华理工大学 物理练习试卷答案 静电场中的导体与电介质
![东华理工大学 物理练习试卷答案 静电场中的导体与电介质](https://img.taocdn.com/s3/m/b5d6d63f5a8102d276a22fb9.png)
qB 2 S 110 7 C
U A EAC d AC
1 d AC 2.3 103V 0
12 在半径为R1的金属球之外包有一层外半径为R2的均匀电介质球 壳,介质相对介电常数为εr,金属球带电Q.试求: (1)电介质内、外的场强; (2)电介质层内、外的电势;
解: 利用有介质时的高斯定理
(1)介质内R1<r<R2场强 介质外r>R2场强 (2)介质外r<R2电势
Qr Qr D 3 , E内 4πr 4π 0 r r 3
Qr Qr D , E外 3 4πr 4π 0 r 3
D dS q
E0
r>R3的区域
1 Q Q2 1 2 2 W2 0 ( ) 4πr dr 2 R3 2 8π 0 R3 4π 0 r
Qr 4π 0 r 3 r>R3时 E2 E1
在R1<r<1 W W1 W2 ( ) 8π 0 R1 R2 R3
静电场中的导体与电介质
一、选择题
1.有一接地金属球,有一弹簧吊起,金属球原来 不 带 电,若在它的下方放置一电量为q的点电荷则 【C 】 (A)只有当q>0时,金属球才会下移 (B)只有当q<0时,金属球才下移 (C)无论q是正是负金属球都下移 ; (D)无论q是正是负金属球都不动
q
2.A、B为两导体板,面积均为S,平行放置, A板带电荷+Q1 , B板电荷 +Q2,如果使 B板接地,则AB间电场强度的大小E为 【C】
E 则两圆筒的电势差为 2 0 r r R2 R2 dr R2 U E d r ln 2 0 r r 2 0 r R1 R1 R1
大学物理习题静电场中的导体和电介质习题课
![大学物理习题静电场中的导体和电介质习题课](https://img.taocdn.com/s3/m/4a001e5325c52cc58bd6bebd.png)
解:因保持与电源连接,两极间电势保持不变,而
电容值为 C 0S / d C' 0S /(nd ) C / n
电容器储存的电场能量由 We CU 2 / 2
We' C'U 2 / 2 CU 2 / 2n
We
We'We
U
2
/ 2(C
/n
C)
CU 2
21
n n
当电介质被裁成两段后撤去电场,极化的电介质又恢 复原状,仍各保持中性。
选择题:
1.“无限大”均匀带电平面 A 附近平行放 置有一定厚度的“无限大”平面导体板 B, 如图所示,已知 A 上的电荷面密度为 + , 则在导体板 B 的两个表面 1 和 2 上的感
应电荷面密度为
(A) 1=–, 2=0 (B) 1= –, 2=+, (C) 1= – /2 , 2=+ /2 (D) 1= – /2 , 2= – /2
电量还是原来的分布吗?
C
后
+Q -Q
C
+2Q -2Q
设
C
+-qq11
C
+-qq22
C +-qq11
C
由(2)得 由(1)得
C +1.5Q C -1.5Q
+-qq22
求 q1,q2:
q1 q2 3Q
q1 q2 CC
q1 q1
q2 q2
3 2
Q
(1) (2)
+1.5Q -1.5Q
[C]
1 2
AB
2.在一个带电量为 +q 的外表面为球形的 空腔导体 A 内,放有一带电量为 +Q 的带 电导体 B ,则比较空腔导体 A 的电势 UA, 和导体 B 的电势 UB 时,可得以下结论:
大学物理静电场中的导体和电介质习题答案
![大学物理静电场中的导体和电介质习题答案](https://img.taocdn.com/s3/m/bb602413cc7931b765ce151e.png)
第13章 静电场中的导体和电介质P70.13.1 一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置,如图所示,则图中P 点的电场强度如何?若用导线将A 和B 连接起来,则A 球的电势为多少?(设无穷远处电势为零)[解答]过P 点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出异种,但是高斯面内只有电荷q .根据高斯定理可得 E 4πr 2 = q /ε0, 可得P 点的电场强度为204q E rπε=.当金属球壳内侧会感应出异种电荷-q 时,外侧将出现同种电荷q .用导线将A 和B 连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为04cq U r πε=.13.2 同轴电缆是由半径为R 1的导体圆柱和半径为R 2的同轴薄圆筒构成的,其间充满了相对介电常数为εr 的均匀电介质,设沿轴线单位长度上导线的圆筒的带电量分别为+λ和-λ,则通过介质内长为l ,半径为r 的同轴封闭圆柱面的电位移通量为多少?圆柱面上任一点的场强为多少?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,根据介质中的高斯定理,通过圆柱面的电位移通过等于该面包含的自由电荷,即 Φd = q = λl .设高斯面的侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d SΦ=⋅⎰D S12d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,可得电位移为 D = λ/2πr , 其方向垂直中心轴向外.电场强度为 E = D/ε0εr = λ/2πε0εr r , 方向也垂直中心轴向外.13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少?[解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离球为b .球心的电势是所有电荷产生的电势叠加,大小为000111444o q q Q qU r a bπεπεπε-+=++13.4 三块平行金属板A 、B 和C ,面积都是S = 100cm 2,A 、B 相距d 1 = 2mm ,A 、C 相距d 2 = 4mm ,B 、C 接地,A 板带有正电荷q = 3×10-8C ,忽略边缘效应.求(1)B 、C 板上的电荷为多少?图14.3图14.4(2)A板电势为多少?[解答](1)设A的左右两面的电荷面密度分别为σ1和σ2,所带电量分别为q1 = σ1S和q2 = σ2S,在B、C板上分别感应异号电荷-q1和-q2,由电荷守恒得方程q = q1 + q2 = σ1S + σ2S.①A、B间的场强为E1 = σ1/ε0,A、C间的场强为E2 = σ2/ε0.设A板与B板的电势差和A板与C板的的电势差相等,设为ΔU,则ΔU = E1d1 = E2d2,②即σ1d1 = σ2d2.③解联立方程①和③得σ1 = qd2/S(d1 + d2),所以q1 = σ1S = qd2/(d1+d2) = 2×10-8(C);q2 = q - q1 = 1×10-8(C).B、C板上的电荷分别为q B= -q1 = -2×10-8(C);q C= -q2 = -1×10-8(C).(2)两板电势差为ΔU = E1d1 = σ1d1/ε0 = qd1d2/ε0S(d1+d2),由于k = 9×109 = 1/4πε0,所以ε0 = 10-9/36π,因此ΔU = 144π= 452.4(V).由于B板和C板的电势为零,所以U A = ΔU = 452.4(V).13.5 一无限大均匀带电平面A,带电量为q,在它的附近放一块与A平行的金属导体板B,板B有一定的厚度,如图所示.则在板B的两个表面1和2上的感应电荷分别为多少?[解答]由于板B原来不带电,两边感应出电荷后,由电荷守恒得q1 + q2 = 0.①虽然两板是无限大的,为了计算的方便,不妨设它们的面积为S,则面电荷密度分别为σ1 = q1/S、σ2 = q2/S、σ = q/S,它们产生的场强大小分别为E1 = σ1/ε0、E2 = σ2/ε0、E = σ/ε0.在B板内部任取一点P,其场强为零,其中1面产生的场强向右,2面和A板产生的场强向左,取向右的方向为正,可得E1 - E2–E = 0,即σ1 - σ2–σ= 0,或者说q1 - q2 + q = 0.②解得电量分别为q2 = q/2,q1 = -q2 = -q/2.13.6 两平行金属板带有等异号电荷,若两板的电势差为120V,两板间相距为1.2mm,忽略边缘效应,求每一个金属板表面的电荷密度各为多少?[解答]由于左板接地,所以σ1 = 0.由于两板之间的电荷相互吸引,右板右面的电荷会全部吸引到右板左面,所以σ4 = 0.由于两板带等量异号的电荷,所以σ2 = -σ3.两板之间的场强为E = σ3/ε0,而 E = U/d,所以面电荷密度分别为σ3 = ε0E = ε0U/d = 8.84×10-7(C·m-2),σ2 = -σ3 = -8.84×10-7(C·m-2).13.7 一球形电容器,内外球壳半径分别为R1和R2,球壳与地面及其他物体相距很远.将内球用细导线接地.试证:球面间电容可用公式202214RCR Rπε=-表示.(提示:可看作两个球电容器的并联,且地球半径R>>R2)[证明]方法一:并联电容法.在外球外面再接一个半径为R3大外球壳,外壳也接地.内球壳和外球壳之间是一个电容器,电容为P2图14.5图14.61210012211441/1/R R C R R R R πεπε==--外球壳和大外球壳之间也是一个电容器,电容为2023141/1/C R R πε=-.外球壳是一极,由于内球壳和大外球壳都接地,共用一极,所以两个电容并联.当R 3趋于无穷大时,C 2 = 4πε0R 2.并联电容为12120022144R R C C C R R R πεπε=+=+-202214R R R πε=-. 方法二:电容定义法.假设外壳带正电为q ,则内壳将感应电荷q`.内球的电势是两个电荷产生的叠加的结果.由于内球接地,所以其电势为零;由于内球是一个等势体,其球心的电势为0201`044q q R R πεπε+=,因此感应电荷为12`R q q R =-. 根据高斯定理可得两球壳之间的场强为122002`44R q q E r R rπεπε==-, 负号表示场强方向由外球壳指向内球壳.取外球壳指向内球壳的一条电力线,两球壳之间的电势差为1122d d R R R R U E r =⋅=⎰⎰E l121202()d 4R R R qr R rπε=-⎰ 1212021202()11()44R q R R q R R R R πεπε-=-= 球面间的电容为202214R q C U R R πε==-.13.8 球形电容器的内、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少?[解答]球形电容器的电容为120012211441/1/R R C R R R R πεπε==--.对于半球来说,由于相对面积减少了一半,所以电容也减少一半:0121212R R C R R πε=-.当电容器中充满介质时,电容为:0122212r R R C R R πεε=-.由于内球是一极,外球是一极,所以两个电容器并联:01212212(1)r R R C C C R R πεε+=+=-.13.9 设板面积为S 的平板电容器析板间有两层介质,介电常量分别为ε1和ε2,厚度分别为d 1和d 2,求电容器的电容.[解答]假设在两介质的介面插入一薄导体,可知两个电容器串联,电容分别为C 1 = ε1S/d 1和C 2 = ε2S/d 2. 总电容的倒数为122112*********d d d d C C C S S Sεεεεεε+=+=+=, 总电容为 122112SC d d εεεε=+.13.10 圆柱形电容器是由半径为R 1的导线和与它同轴的内半径为R 2的导体圆筒构成的,其长为l ,其间充满了介电常量为ε的介质.设沿轴线单位长度导线上的电荷为λ,圆筒的电荷为-λ,略去边缘效应.求:(1)两极的电势差U ;(2)介质中的电场强度E 、电位移D ; (3)电容C ,它是真空时电容的多少倍?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d SΦ=⋅⎰D S12d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,高斯面包围的自由电荷为 q = λl , 根据介质中的高斯定理 Φd = q , 可得电位为 D = λ/2πr , 方向垂直中心轴向外.电场强度为 E = D/ε = λ/2πεr , 方向也垂直中心轴向外.取一条电力线为积分路径,电势差为21d d d 2R LLR U E r r r λπε=⋅==⎰⎰⎰E l 21ln 2R R λπε=. 电容为 212ln(/)q lC U R R πε==. 在真空时的电容为00212ln(/)l q C U R R πε==, 所以倍数为C/C 0 = ε/ε0.13.11 在半径为R 1的金属球外还有一层半径为R 2的均匀介质,相对介电常量为εr .设金属球带电Q 0,求:(1)介质层内、外D 、E 、P 的分布; (2)介质层内、外表面的极化电荷面密度.[解答](1)在介质内,电场强度和电位移以及极化强度是球对称分布的.在内外半径之间作一个半径为r 的球形高斯面,通过高斯面的电位移通量为2d d 4d SSD S r D Φπ=⋅==⎰⎰D S高斯面包围的自由电荷为q = Q 0, 根据介质中的高斯定理 Φd = q , 可得电位为 D = Q 0/4πr 2, 方向沿着径向.用矢量表示为D = Q 0r /4πr 3.电场强度为E = D /ε0εr = Q 0r /4πε0εr r 3, 方向沿着径向.由于 D = ε0E + P , 所以 P = D - ε0E = 031(1)4rQ rεπ-r. 在介质之外是真空,真空可当作介电常量εr = 1的介质处理,所以D = Q 0r /4πr 3,E = Q 0r /4πε0r 3,P = 0. (2)在介质层内靠近金属球处,自由电荷Q 0产生的场为E 0 = Q 0r /4πε0r 3;极化电荷q 1`产生的场强为E` = q 1`r /4πε0r 3;总场强为 E = Q 0r /4πε0εr r 3. 由于 E = E 0 + E `,解得极化电荷为 `101(1)rq Q ε=-,介质层内表面的极化电荷面密度为``01122111(1)44r Q q R R σπεπ==-. 在介质层外表面,极化电荷为``21q q =-,面密度为``02222221(1)44r Q q R R σπεπ==-.13.12 两个电容器电容之比C 1:C 2 = 1:2,把它们串联后接电源上充电,它们的静电能量之比为多少?如果把它们并联后接到电源上充电,它们的静电能之比又是多少?[解答]两个电容器串联后充电,每个电容器带电量是相同的,根据静电能量公式W = Q 2/2C ,得静电能之比为W 1:W 2 = C 2:C 1 = 2:1. 两个电容器并联后充电,每个电容器两端的电压是相同的,根据静电能量公式W = CU 2/2,得静电能之比为W 1:W 2 = C 1:C 2 = 1:2. 13.13 一平行板电容器板面积为S ,板间距离为d ,接在电源上维持其电压为U .将一块厚度为d 相对介电常量为εr 的均匀介电质板插入电容器的一半空间内,求电容器的静电能为多少?[解答]平行板电容器的电容为C = ε0S/d ,当面积减少一半时,电容为C 1 = ε0S /2d ; 另一半插入电介质时,电容为C 2 = ε0εr S /2d .两个电容器并联,总电容为C = C 1 + C 2 = (1 + εr )ε0S /2d ,静电能为W = CU 2/2 = (1 + εr )ε0SU 2/4d . 13.14 一平行板电容器板面积为S ,板间距离为d ,两板竖直放着.若电容器两板充电到电压为U 时,断开电源,使电容器的一半浸在相对介电常量为εr 的液体中.求:(1)电容器的电容C ;(2)浸入液体后电容器的静电能; (3)极板上的自由电荷面密度.[解答](1)如前所述,两电容器并联的电容为C = (1 + εr )ε0S /2d . (2)电容器充电前的电容为C 0 = ε0S/d , 充电后所带电量为 Q = C 0U . 当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为W = Q 2/2C = C 02U 2/2C = ε0SU 2/(1 + εr )d . (3)电容器的一半浸入介质后,真空的一半的电容为 C 1 = ε0S /2d ;介质中的一半的电容为 C 2 = ε0εr S /2d . 设两半的所带自由电荷分别为Q 1和Q 2,则Q 1 + Q 2 = Q . ① 由于C = Q/U ,所以U = Q 1/C 1 = Q 2/C 2. ② 解联立方程得01112211/C U C QQ C C C C ==++, 真空中一半电容器的自由电荷面密度为00112122/2(1/)(1)r C U U Q S C C S dεσε===++. 同理,介质中一半电容器的自由电荷面密度为0021222(/1)(1)r r C U UC C S dεεσε==++.13.15 平行板电容器极板面积为200cm 2,板间距离为1.0mm ,电容器内有一块1.0mm 厚的玻璃板(εr = 5).将电容器与300V 的电源相连.求:(1)维持两极板电压不变抽出玻璃板,电容器的能量变化为多少?(2)断开电源维持板上电量不变,抽出玻璃板,电容器能量变化为多少?[解答]平行板电容器的电容为C 0 = ε0εr S/d ,静电能为 W 0 = C 0U 2/2. 玻璃板抽出之后的电容为C = ε0S/d .(1)保持电压不变抽出玻璃板,静电能为 W = CU 2/2, 电能器能量变化为ΔW = W - W 0 = (C - C 0)U 2/2 = (1 - εr )ε0SU 2/2d = -3.18×10-5(J). (2)充电后所带电量为 Q = C 0U , 保持电量不变抽出玻璃板,静电能为W = Q 2/2C ,电能器能量变化为2000(1)2C C U W W W C ∆=-=- 20(1)2r r SU dεεε=-= 1.59×10-4(J).13.16 设圆柱形电容器的内、外圆筒半径分别为a 、b .试证明电容器能量的一半储存在半径R =[解答]设圆柱形电容器电荷线密度为λ,场强为 E = λ/2πε0r , 能量密度为 w = ε0E 2/2, 体积元为 d V = 2πrl d r , 能量元为 d W = w d V .在半径a 到R 的圆柱体储存的能量为20d d 2VVW w V E V ε==⎰⎰2200d ln 44Ral l R r r a λλπεπε==⎰.当R = b 时,能量为210ln 4l b W aλπε=;当R =22200ln48l l b W aλλπεπε==,所以W 2 = W 1/2,即电容器能量的一半储存在半径R =13.17 两个同轴的圆柱面,长度均为l ,半径分别为a 、b ,柱面之间充满介电常量为ε的电介质(忽略边缘效应).当这两个导体带有等量异号电荷(±Q )时,求:(1)在半径为r (a < r < b )、厚度为d r 、长度为l 的圆柱薄壳中任一点处,电场能量体密度是多少?整个薄壳层中总能量是多少?(2)电介质中总能量是多少(由积分算出)?(3)由电容器能量公式推算出圆柱形电容器的电容公式?[解答](1)圆柱形内柱面的电荷线密度为 λ = Q/l ,根据介质是高斯定理,可知电位移为D = λ/2πr = Q /2πrl ,场强为 E = D/ε = Q /2πεrl , 能量密度为w = D ·E /2 = DE /2 = Q 2/8π2εr 2l 2.薄壳的体积为d V = 2πrl d r , 能量为 d W = w d V = Q 2d r /4πεlr .(2)电介质中总能量为22d d ln 44bV aQ Q bW W r lr l a πεπε===⎰⎰.(3)由公式W = Q 2/2C 得电容为222ln(/)Q lC W b a πε==.13.18 两个电容器,分别标明为200PF/500V 和300PF/900V .把它们串联起来,等效电容多大?如果两端加上1000V 电压,是否会被击穿?[解答]当两个电容串联时,由公式211212111C C C C C C C +=+=, 得 1212120PF C C C C C ==+.加上U = 1000V 的电压后,带电量为Q = CU ,第一个电容器两端的电压为U1 = Q/C1 = CU/C1 = 600(V);第二个电容器两端的电压为U2 = Q/C2 = CU/C2 = 400(V).由此可知:第一个电容器上的电压超过它的耐压值,因此会被击穿;当第一个电容器被击穿后,两极连在一起,全部电压就加在第二个电容器上,因此第二个电容器也接着被击穿.。
第十章静电场中的导体与电介质2014版答案
![第十章静电场中的导体与电介质2014版答案](https://img.taocdn.com/s3/m/69cae2007cd184254b3535ee.png)
第十章 静电场中的导体和电介质一.选择题[B ]1、(基训2) 一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为+σ ,则在导体板B 的两个表面1和2上的感生电荷面密度为: (A) σ 1 = - σ, σ 2 = + σ. (B) σ 1 = σ21-, σ 2 =σ21+. (C) σ 1 = σ21-, σ 1 = σ21-. (D) σ 1 = - σ, σ 2 = 0. 【解析】 由静电平衡平面导体板B 内部的场强为零,同时根据原平面导体板B 电量为零可以列出σ 1S+σ 2S=0022202010=-+εσεσεσ[ C ]2、(基训3)在一个原来不带电的外表面为球形的空腔导体A 内,放有一带电量为+Q 的带电导体B ,如图10-5所示,则比较空腔导体A 的电势U A 和导体B 的电势U B 时,可得以下结论:(A) U A = U B . (B) U A > U B . (C) U A < U B . (D) 因空腔形状不是球形,两者无法比较.【解析】由静电感应现象,空腔导体A 内表面带等量负电荷,A 、B 间电场线如图所示,而电场线总是指向电势降低的方向),因此U B >U A 。
[C ]3、(基训6)半径为R 的金属球与地连接。
在与球心O 相距d =2R 处有一电荷为q 的点电荷。
如图16所示,设地的电势为零,则球上的感生电荷q '为:(A) 0. (B) 2q . (C) -2q. (D) -q .【解析】利用金属球是等势体,球体上处电势为零。
球心电势也为零。
0442q o o dq qR R πεπε''+=⎰ R qR q d o q oo 244πεπε-='⎰'RqR q 2-=' 2qq -='∴[C ]4、(基训8)两只电容器,C 1 = 8 μF ,C 2 = 2 μF ,分别把它们充电到 1000 V ,然后将它们反接(如图10-8所示),此时两极板间的电势差为: (A) 0 V . (B) 200 V . (C) 600 V . (D) 1000 V AB+σσ1σ2OR dqC 1C2【解析】 C U C U C Q Q Q 32121106-⨯=-=-=V FC C C Q C Q U 600101106''5321=⨯⨯=+==-- [B ]5、(自测4)一导体球外充满相对介电常量为r ε的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度0σ为(A) E 0ε. (B) E r εε0 . (C) E r ε. (D) E r )(00εεε- 【解析】导体表面附近场强ro o E εεσεσ0==,E r o εεσ0=. [ B ]6、(自测7)一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电荷为+q 的质点,在极板间的空气区域中处于平衡.此后,若把电介质抽去 ,则该质点(A) 保持不动. (B) 向上运动. (C) 向下运动. (D) 是否运动不能确定.【解析】在抽出介质前,相当于左右两半两个“电容器”并联,由于这两个“电容器”电压相等,而右半边的电容又小于左半边的,因此由q=CU 公式可知,右半边极板的带电量小于左半边的。
静电场中的导体和电介质(大学物理作业,考研真题)
![静电场中的导体和电介质(大学物理作业,考研真题)](https://img.taocdn.com/s3/m/62c1236ab90d6c85ed3ac629.png)
物理(下)作业专业班级:姓名:学号:第十一章静电场中的导体和电介质(1)一、选择题1、两个同心薄金属球壳,半径分别为1R 和2R (1R <2R ),若分别带上电量1q 和2q 的电荷,则两者的电势分别为1U 和2U (选无穷远处为电势零点)。
现用导线将两球壳连接,则它们的电势为(A )、1U ;(B )、2U ;(C )、21U U ;(D )、)(2121U U 。
[]2、两导体板A 和B 相距为d ,并分别带有等量异号电荷。
现将另一不带电的,且厚度为t (t ﹤d )的导体板C 插入A 、B 之间(不与它们接触),则导体板A 和B 之间的电势差U AB 的变化为:(A )、不变;(B )、增大;(C )、减小;(D )、不一定。
[]3、(2018年暨南大学)将一带电量为Q 的金属小球靠近一个不带电的金属导体时,则有:(A )金属导体因静电感应带电,总电量为-Q ;(B )金属导体因感应带电,靠近小球的一端带-Q ,远端带+Q ;(C )金属导体两端带等量异号电荷,且电量q<Q ;(D )当金属小球与金属导体相接触后再分离,金属导体所带电量大于金属小球所带电量。
二、填空题1、导体在达到静电平衡时,其导体内部的场强应为______;整个导体(包括导体表面)的电势应是______;导体表面的场强方向应是______。
2、当空腔导体达到静电平衡时,若腔内无电荷,则给该空腔导体所带的电荷应分布在;若腔内有电荷,则空腔导体上的电荷应分布在。
3、如图所示,两同心导体球壳,内球壳带电量+q ,外球壳带电量-2q 。
静电平衡时,外球壳的内表面带电量为______;外表面带电量为_______。
三、计算题1、同轴传输线是由两个很长且彼此绝缘的同轴金属直圆柱体构成,如图所示。
设内圆柱体的半径为R 1,外圆柱体的内半径为R 2。
并假定内外圆柱导体分别带等量异号电荷,其线电荷密度大小为λ,求内外圆柱导体之间的电场强度分布以及它们之间的电势差。
大学物理下 静电场中的导体和电介质习题解答
![大学物理下 静电场中的导体和电介质习题解答](https://img.taocdn.com/s3/m/37d196ea6edb6f1afe001fde.png)
q
q q
2.如图所示,一带负电荷的金属球,外面同 心地罩一不带电的金属球壳,则在球壳中一点 P处的场强大小与电势(设无穷远处为电势零 点)分别为:
(A) E = 0,U > 0. (B) E = 0,U < 0. B
(C) E = 0,U = 0. (D) E > 0,U < 0.
P
球壳内表面带正电荷,外表面带负电荷 金属球壳是一个等势体
ε1 ε2
5. 一导体球外充满相对介电常量为εr的均匀电介质,若测得导 体表面附近场强为 E ,则导体球面上的自由电荷面密度ε0 εr E 。
D ds Dds ds D
s
D
0
r
E
6. 一电荷为q的点电荷,处在半径为R、介电常量为ε1的各向同性、
均匀电介质球体的中心处,球外空间充满介电常量为ε2的各向同
性、均匀电介质,则在距离点电荷r (r<R) 处的场强为
,
电势 (选U∞=0)为
。
D ds qi
s
i
4r 2 Dr q
Er Dr
U
E
4Rrq1rR2
Er d r , U
q 4π1
1 r
1 R
q 4 2 R
2 1 qr R
7. 两金属球的半径之比为1:4,带等量的同号电荷。当两者的距 离远大于两球半径时,系统具有电势能W04 r
q 4 r
0
0
球心O点处总电势为分布在球壳内、外表面上的电荷和点电荷
q在O点产生的电势的代数和,
U 0
Uq
Uq
UQq
q 4 r
0
q 40R1
q Q 4 R
02
大学物理第十二章习题解答
![大学物理第十二章习题解答](https://img.taocdn.com/s3/m/31e54abc6bec0975f465e2d4.png)
4π 0 r r R2 4π 0 R2
(3)金属球的电势
Q
1 (
r
1 )
4π 0 r r R2
U
R2 R1
E内
dr
R2 E外 dr
R2
Qdr
Qdr
R 4π 0 r r 2 R2 4π 0 r 2
Q
1 (
r
1 )
∴
D Q
2πrl
(1)电场能量密度
D2
Q2
w
2 8π 2r 2l 2
薄壳中 dW wd Q2 2π rdrl Q2dr
8π 2r 2l 2
4π rl
(2)电介质中总电场能量
9
(3)电容:∵ ∴
Qr
Qr
D 4πr 3 , E外 4π 0r 3
(2)介质外 (r R2 ) 电势
Q
U r E外 dr 4π 0r
介质内 (R1 r R2 ) 电势
U r E内 dr r E外 dr
q 11
Q
( )
12-2 如附图所示,一导体球半径为 R1,外罩一半径为 R2 的同心薄球壳,外球壳所带总电荷 为 Q,而内球的电势为 U0,求此系统的电势和电场分布。
解:根据静电平衡时电荷的分布,可知电场分布呈球对称.设内球壳带电量为q 取同心球
面为高斯面,由高斯定理 E dS Er 4πr2 Er q / ε0 ,根据不同半径的高斯面内的电
R2 R1
E2
dl
q
Q
R2 E3 dl 4π 0 R1 4π 0 R2
静电场中的导体和电介质(含答案,大学物理作业,考研真题)
![静电场中的导体和电介质(含答案,大学物理作业,考研真题)](https://img.taocdn.com/s3/m/bb263a7d26fff705cc170ab5.png)
1、一片二氧化钛晶片,其面积为 1.0cm2, 厚度为 0.10mm 。把平行板电容器的两极板紧
贴在晶片两侧。此时电容器的电容为_____________. ;当在电容器的两板上加上 12V 电压时,
极板上的电荷为_____________. ;电容器内的电场强度为_____________ .。(二氧化钛的相
[
]
3、(2018 年暨南大学)将一带电量为 Q 的金属小球靠近一个不带电的金属导体时,则有:
(A)金属导体因静电感应带电,总电量为-Q;
(B)金属导体因感应带电,靠近小球的一端带-Q,远端带+Q;
(C)金属导体两端带等量异号电荷,且电量 q<Q;
(D)当金属小球与金属导体相接触后再分离,金属导体所带电量大于金属小球所带电量。
二、 填空题
1、导体在达到静电平衡时,其导体内部的场强应为______;整个导体(包括导体表面)
的电势应是______;导体表面的场强方向应是______。
2、当空腔导体达到静电平衡时,若腔内无电荷,则给该空腔导体所带的电荷应分布
在
;若腔内有电荷,则空腔导体上的电荷应分布
在
。
3、如图所示,两同心导体球壳,内球壳带电量+q,外球壳带电量-2q。
(C)、使电容增大,但与介质板的位置无关;(D)、使电容增大,但与介质板的位置有关。
[
]
3、(2011 年太原科技大学)两个半径相同的金属球,一为空心,一为实心,把两者各自
孤立时的电容值加以比较,则:
(A)空心球电容值大;
(B)实心球电容值大;
(C)两球电容值相等;
(D)大小关系无法确定
[
]
二、 填空题
(1)若两极上分别带有电荷+Q 和—Q,求各区域的电位移 D,电场强度 E,及电势 U;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习六 静电场中的导体
一、选择题
1. 以下说法中正确的是
(A ) 电场强度相等的地方电势一定相等。
(B ) 电势梯度绝对值大的地方场强的绝对值也一定大。
(C ) 带正电的导体上电势一定为正。
(D ) 电势为零的导体一定不带电。
2. 以下说法中正确的是
(A ) 场强大的地方电位一定高。
(B ) 带负电的物体电位一定为负。
(C ) 场强相等处电势梯度不一定相等。
(D ) 场强为零处电位不一定为零。
3. 如图所示,真空中有一点电荷Q 及空心金属球壳A ,A 处于静电平衡,球内有一点M ,球壳中有一点N ,以下说法正确的是
•Q
q (A ) E M ≠ 0,E N = 0,Q 在M 处产生电场,而在N 处不产生电场。
(B ) E M = 0,E N ≠ 0,Q 在M 处不产生电场,而在N 处产生电场。
(C ) E M = E N = 0,Q 在M 、N 处都不产生电场。
(D ) E M ≠ 0,E N ≠ 0,Q 在M 、N 处都产生电场。
(E ) E M = E N = 0,Q 在M 、N 处都产生电场。
4. 如图所示,原先不带电的金属球壳的球心处放一点电荷q 1,球
外放一点电荷q 2,设q 2、金属内表面的电荷、外表面的电荷对q 1的
作用力分别为1F v 、2F v
、3F v ,q 1受的总电场力为F v ,则
(A ) F 1 = F 2 = F 3 = F =0。
(B ) F 1 = q 1q 2/(4πε0d 2),F 2 = 0,F 3 = 0,F = F 1。
(C ) F 1 = q 1q 2/(4πε0d 2),F 2 = 0,F 3 = − q 1 q 2 /(4πε0d 2)(即与1F v
反向),F = 0。
(D ) F 1 = q 1q 2/(4πε0d 2),与 2F v 3F v 的合力与1F v
等值反向,F = 0。
(E ) F 1= q 1q 2 /(4πε0d 2),F 2 = − q 1q 2/(4πε0d 2)(即与1F v
反向),F 3 = 0,F = 0。
5. 如图所示,一导体球壳A ,同心地罩在一接地导体B 上,今给A 球带负电−Q ,则B 球
Q
(A ) 带正电。
(B ) 带负电。
(C ) 不带电。
(D ) 上面带正电,下面带负电。
6. A 、B 是两块不带电的导体,放在一带正电导体的电场中,如图所示。
设无限远处为电势零点,A 的电势为
U A ,B
的电势为U B ,则: (A ) U B > U A ≠ 0。
(B ) U B < U A = 0。
(C ) U B = U A 。
(D ) U B < U A 。
7. 半径分别为R 和r 的两个金属球,相距很远。
用一根长导线将两球连接,并使它们带电。
在忽略导线影响的情况下,两球表面的电荷面密度之比σR /σr 为: (A ) R /r 。
(B ) R 2/r 2。
(C ) r 2/R 2。
(D ) r /R 。
8. 欲测带正电荷大导体附近P 点处的电场强度,将一带电量为q 0(q 0 > 0)的点电荷放在P 点,如图所示。
测得它所受的电场力为F 。
若电量不是足够小,则
• P q 0
(A ) F /q 0比P 点处场强的数值小。
(B ) F /q 0比P 点处场强的数值大。
(C ) F /q 0与P 点处场强的数值相等。
(D ) F /q 0与P 点处场强的数值关系无法确定。
9. 如图所示,一封闭的导体壳A 内有两个导体B 和C 。
A 、C 不带电,B 带正电,则A 、B 、C 三导体的电势ϕA 、ϕB 、ϕC 的大小关系是 A C B
(A ) ϕB = ϕA = ϕC 。
(B ) ϕB >ϕA = ϕC 。
(C ) ϕB > ϕC > ϕA 。
(D ) ϕB > ϕA > ϕC 。
二、填空题
1. 地球表面附近的电场强度约为100N /C ,方向垂直地面向下,假设地球上的电荷都均匀分布在地球表面上,则地面的电荷面密度σ = C /m 2,是 号电荷。
()
212120m N C 1085.8−−−⋅⋅×=ε2. 空气的击穿电场强度为 2×1061m V −⋅,直径为0.10 m 的导体球在空气中时最多能带的电荷为 。
(真空介电常量)
212120m N C 1085.8−−−⋅⋅×=ε3. 将一负电荷从无穷远处移到一个不带电的导体附近,则导体内的电场强度 ,导体的电势 。
(填增大、不变、减小)
4. 一孤立带电导体球,其表面处场强的方向 表面;当把另一带电体放在这个导体球附近时,该导体球表面处场强的方向 表面。
5. 任意带电体在导体体内(不是空腔导体的腔内) (填会、不会)产生电场,处于静电平衡下的导体,空间所有电荷(含感应电荷)在导体体内产生电场的 (填矢量、标量)叠加为零。
6. 处于静电平衡下的导体 (填是、不是)等势体,导体表面 (填是、不是)等势面,导体表面附近的电场线与导体表面相互 ,导体体内的电势 (填大于、等于、小于)导体表面的电势。
7. 如图所示,在金属球内有两个空腔,此金属球原来不带电,在两空腔内各放一点电荷q 1和q 2,则金属球外表面上的电荷分布为 。
在金属球外远处放一点电荷q (r >> R ),则q 1受力 F 1 = ;q 2 受力 F 2 = ;q 受力 F = 。
8. 将一负电荷从无限远处移到一个不带电的导体附近,则导体内的场强_______,导体的电势_______。
练习六答案
一、
1. B ,
2. D ,
3. E ,
4. C ,
5. A ,
6. D ,
7. D ,
8. A ,
9. C 。
二、
1. ;负,
101085.8−×2. ,
C 106.57−×3. 不变;减小, 4. 垂直于;仍垂直于,
5. 会;矢量,
6. 是;是;垂直;等于
7. q 1 + q 2;0;0;q (q 1 + q 2)/(4πε0r 2)。
8. 不变;减小。