初中数学几何图形初步知识点总复习

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学几何图形初步知识点总复习

一、选择题

1.已知:在Rt△ABC中,∠C=90°,BC=1,AC=3,点D是斜边AB的中点,点E是边AC 上一点,则DE+BE的最小值为()

A.2

B.31

C.3

D.23

【答案】C

【解析】

【分析】

作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=3,所以最小值为3.

【详解】

解:作B关于AC的对称点B',连接B′D,

∵∠ACB=90°,∠BAC=30°,

∴∠ABC=60°,

∵AB=AB',

∴△ABB'为等边三角形,

∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,

∴最小值为B'到AB的距离3

故选C.

【点睛】

本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此

题的关键.

2.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()

A.20°B.30°C.35°D.50°

【答案】C

【解析】

【分析】

由垂线的性质可得∠ABC=90°,所以∠3=180°﹣90°﹣∠1=35°,再由平行线的性质可得到∠2的度数.

【详解】

解:

由垂线的性质可得∠ABC=90°,

所以∠3=180°﹣90°﹣∠1=35°,

又∵a∥b,

所以∠2=∠3=35°.

故选C.

【点睛】

本题主要考查了平行线的性质.

3.下列立体图形中,侧面展开图是扇形的是()

A.B.

C.

D.

【答案】B

【解析】

根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选B.

4.某包装盒如下图所示,则在下列四种款式的纸片中,可以是该包装盒的展开图的是()

A.B.

C.D.

【答案】A

【解析】

【分析】

将展开图折叠还原成包装盒,即可判断正确选项.

解:A、展开图折叠后如下图,与本题中包装盒相同,故本选项正确;

B、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;

C、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;

D、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;

故选:A.

本题主要考查了含图案的正方体的展开图,学生要经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.

5.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()

A.B.C.D.

【答案】C

【解析】

【分析】

分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.【详解】

解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:

将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:

将直角三角形绕斜边所在直线旋转一周后形成的几何体为:

故选C.

【点睛】

本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.

6.下列语句正确的是()

A.近似数0.010精确到百分位

B.|x-y|=|y-x|

C.如果两个角互补,那么一个是锐角,一个是钝角

D.若线段AP=BP,则P一定是AB中点

【答案】B

【解析】

【分析】

A中,近似数精确位数是看小数点后最后一位;B中,相反数的绝对值相等;C中,互补性质的考查;D中,点P若不在直线AB上则不成立

【详解】

A中,小数点最后一位是千分位,故精确到千分位,错误;

B中,x-y与y-x互为相反数,相反数的绝对值相等,正确;

C中,若两个角都是直角,也互补,错误;

D中,若点P不在AB这条直线上,则不成立,错误

故选:B

【点睛】

概念的考查,此类题型,若能够举出反例来,则这个选项是错误的

7.如图,是一个正方体的表面展开图,将其折成正方体后,则“扫”的对面是()

A.黑B.除C.恶D.☆

【答案】B

【解析】

【分析】

正方体的空间图形,从相对面入手,分析及解答问题.

【详解】

解:将其折成正方体后,则“扫”的对面是除.

故选B.

【点睛】

本题考查了正方体的相对面的问题.能够根据正方体及其表面展开图的特点,找到相对的

面是解题的关键.

8.如图是某个几何体的展开图,该几何体是( )

A .三棱柱

B .圆锥

C .四棱柱

D .圆柱

【答案】A

【解析】

【分析】 侧面为三个长方形,底边为三角形,故原几何体为三棱柱.

【详解】

解:观察图形可知,这个几何体是三棱柱.

故选A .

【点睛】

本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..

9.一副直角三角板如图放置,其中∠C =∠DFE =90°,∠A =45°,∠E =60°,点F 在CB 的延长线上.若DE ∥CF ,则∠BDF 等于( )

A .30°

B .25°

C .18°

D .15° 【答案】D

【解析】

【分析】

根据三角形内角和定理可得45ABC ∠=︒和30EDF ∠=︒,再根据平行线的性质可得45EDB ABC ==︒∠∠,再根据BDF EDB EDF =-∠∠∠,即可求出BDF ∠的度数.

【详解】

∵∠C =90°,∠A =45°

∴18045ABC A C =︒--=︒∠∠∠

∵//DE CF

∴45EDB ABC ==︒∠∠

∵∠DFE =90°,∠E =60°

∴18030EDF E DFE =︒--=︒∠∠∠

∴15BDF EDB EDF =-=︒∠∠∠

相关文档
最新文档