数控系统伺服驱动优化方法
如何提高伺服电机的响应速度和精度

如何提高伺服电机的响应速度和精度在现代工业自动化领域中,伺服电机扮演着至关重要的角色。
无论是在数控机床、机器人系统,还是在自动化生产线等各种应用场景中,其响应速度和精度都直接影响着整个系统的性能和产品质量。
因此,如何有效地提高伺服电机的响应速度和精度,成为了众多工程师和技术人员关注的焦点问题。
要提高伺服电机的响应速度和精度,首先需要从电机的选型入手。
不同类型和规格的伺服电机在性能上存在着较大的差异。
在选择时,需要充分考虑应用场景的具体需求,如负载特性、运动速度、精度要求等。
一般来说,具有高转速、大扭矩、低转动惯量的电机,往往能够提供更快的响应速度和更高的精度。
电机的驱动器对于其性能的发挥也起着关键作用。
优质的驱动器能够提供更精确的电流控制和更快速的信号处理,从而有效地提高电机的响应速度和精度。
在选择驱动器时,需要关注其控制算法的先进性、带宽、分辨率等参数。
先进的控制算法可以更好地应对复杂的负载变化和动态响应要求,高带宽和高分辨率则能够实现更精细的控制。
机械传动系统的设计和优化同样不可忽视。
不合理的传动结构会引入间隙、摩擦和弹性变形等问题,从而影响电机的响应速度和精度。
例如,采用高精度的滚珠丝杠、直线导轨等传动部件,可以减少传动误差,提高系统的刚性和稳定性。
同时,合理的减速比设计也能够在满足扭矩要求的前提下,提高电机的转速和响应速度。
控制系统的参数整定是提高伺服电机性能的重要环节。
通过调整位置环、速度环和电流环的增益参数,可以优化系统的动态响应特性。
一般来说,增加位置环增益可以提高位置精度,增加速度环增益可以加快速度响应,增加电流环增益可以增强电机的输出扭矩。
但需要注意的是,增益参数的调整需要在稳定性和响应速度之间进行平衡,过大的增益可能会导致系统振荡,反而降低性能。
传感器的精度和响应速度也会对伺服电机的性能产生影响。
高精度的编码器能够提供更准确的位置和速度反馈信息,使控制系统能够更精确地控制电机的运动。
伺服驱动器参数设置方法

伺服驱动器参数设置方法
伺服驱动器是现代自动化控制系统中的重要组成部分,其参数设置的合理与否直接影响到设备的运行效果和性能稳定性。
下面将介绍一种常见的伺服驱动器参数设置方法,希望对大家有所帮助。
首先,我们需要了解伺服驱动器的基本参数,包括电机型号、轴数、额定电流、额定转速等。
在进行参数设置之前,需要对这些基本参数有一个清晰的认识,这样才能更好地进行参数调整。
其次,根据实际的控制需求,对伺服驱动器的参数进行调整。
通常包括以下几个方面:
1. 速度环参数设置,包括速度环比例增益、速度环积分增益、速度环微分增益等。
这些参数的设置会直接影响到伺服电机的速度响应性能,需要根据实际情况进行合理调整。
2. 位置环参数设置,包括位置环比例增益、位置环积分增益、位置环微分增益等。
这些参数的设置会直接影响到伺服电机的位置精度和稳定性,需要根据实际控制要求进行调整。
3. 负载参数设置,包括负载惯量、负载摩擦力等。
这些参数的设置对于伺服电机的负载能力和动态性能有着重要影响,需要根据实际负载情况进行调整。
最后,进行参数调整后,需要进行系统的稳定性测试和性能验证。
通过对伺服驱动器进行负载试验、速度跟踪试验等,验证参数设置的效果是否符合实际控制要求,如果有需要,还可以进行进一步的参数微调。
总之,伺服驱动器参数设置是一个复杂而又关键的工作,需要结合实际情况进行合理调整,才能达到最佳的控制效果。
希望以上介绍对大家有所帮助,谢谢!
以上就是伺服驱动器参数设置方法的相关内容,希望对大家有所帮助。
数控转台调试与优化

数控转台调试与优化【摘要】随着工业技术的快速发展,数控机床产业已经成为我国国民经济发展的基础性产业,是国防军工发展的战略性产业,是高新技术产业发展的载体,更是国家竞争力的重要标志之一,已经成为我国机床制造业发展的总趋势,目前在国内,三菱、FANUC、SINUMERIK数控系统广泛应用于各类数控机床上。
对于机床制造商来说,数控系统的驱动伺服参数调整是非常有必要的,而且也是一个难题。
本文结合笔者在采用西门子S120型数字交流伺服驱动的数控转台上的调试经验,对一些具体的伺服参数调整和优化过程作出了分析说明。
【关键词】数控机床;转台;伺服调试;驱动器优化;增益1.转台的结构机床转台的结构采用端面闭式静压导轨+径向滚动轴承结构,采用闭式静压导轨,可以提高端面跳动精度,吸收震动,承受双向载荷和倾覆力矩,滚动轴承可以方便控制径向精度,确保工作台在负载情况下的高刚度和高运动精度,工作平稳无爬行,承载能力高等特点,转台的回转角度是通过伺服电机经精密减速机构进行驱动,并且采用圆光栅进行全闭环控制,达到角度的分度精度要求。
2.转台电机的配置该转台的伺服电机不是采用S120标准的带有Drive-cliq 接口的电机,因此首先需要经过SMC20进行编码器的接口转换,另外在系统的拓扑识别过程中,驱动器对该电机无法识别,需要手动进行电机数据的配置,配置方法有两种:一种是通过电机的型号,在样本查出电机的类型,电机的代码,以及编码器的代码,然后再系统上按[SHIFT]+[ALARM],进入系统画面,选择[机床数据]—[驱动器数据]—[Sinamics IBN]在显示的界面输入相应的电机代码、类型、以及编码器类型,然后点右侧垂直菜单的保存参数,最后一定要将P0010先设置成1,在将P3900修改为3,待到P3900自动变成0时将驱动器断电以确保电机数据生效。
也可以用自动识别的方法,即在刚刚输入参数的界面点击[编码器数据],然后再弹出来的窗口按[继续]—[识别]—[继续]—[保存],也能完成不带有Drive-cliq接口的电机配置。
伺服电机驱动器参数设置的方法与技巧

随着各种技术的不断更新,我国的数控系统和伺服驱动器在最近几年也有了较大的发展,现在伺服驱动器在自动化生产设备中经常用到,掌握伺服驱动器参数设置的方法是现代化生产中必备的一个技能。
伺服电机是自动控制装置中被用作执行元件的微特电机,其功能是将电信号转换成转轴的角位移或角速度。
在自动化设备中,经常用到伺服电机,特别是位置控制,大部分品牌的伺服电机都有位置控制功能,通过控制器发出脉冲来控制伺服电机运行,脉冲数对应转的角度,脉冲频率对应速度(与电子齿轮设定有关),当一个新的系统,参数不能工作时,首先设定位置增益,确保电机无噪音情况下,尽量设大些,转动惯量比也非常重要,可通过自学习设定的数来参考,然后设定速度增益和速度积分时间,确保在低速运行时连续,位置精度受控即可。
伺服电机驱动器参数设置的方法与技巧以KNDSD200-20伺服电机驱动器为例,说明其基本参数的设置方法与技巧。
1.驱动器基本功能KNDSD200-20伺服电机驱动器采用国际上先进的数字信号处理器(DSP)、大规模可编程门阵列(FPGA)、新一代智能化功率模块(1PM)等组成。
集成度高,体积小。
具有超速、过流、过载、主电源过压欠压、编码器异常和位置超差等保护功能。
伺服电动机自带编码器,位置信号反馈至伺服驱动器,与开环位置控制器一起构成半闭环控制系统。
调速比宽1:5000;转矩恒定,1 r和2000r 的扭矩基本一样,从低速到高速都具有稳定的转矩特性和很快的响应特性。
采用全数字控制,控制简单灵活。
用户可以通过设定用户参数,对伺服的工作方式、运行特性作出适当的任意组态。
例如:可以组成位置控制系统、速度控制系统、转矩控制系统等。
2.驱动器基本参数伺服电机驱动器一般为用户提供了丰富的用户参数0~59个,报警参数1~32个,监视方式(电动机转速,位置偏差等)22个。
用户可以根据不同的现场情况调整参数,以达到最佳控制效果。
几种常用的参数的含义是:(1)“0”号参数为密码参数,出厂值315,用户改变伺服电机型号时必须将此密码改为385。
数控设备调试与维修6-实验五 SIMODRIVE 611U伺服驱动的配置

实验五 SIMODRIVE 611U伺服驱动的配置及优化一、实验目的1.让学生熟悉伺服驱动器调试软件2.让学生掌握伺服系统的调试及优化的方法和步骤二、实验设备1.RS-SY-802D数控机床综合实验系统2.计算机及RS232C通讯电缆三、实验必备知识Simocom_U伺服调试工具,是西门子公司开发的用于调试Simodrive 611U的一个软件工具。
其具有直观、快捷、易掌握的特点。
利用SimoCom U可设定驱动器的基本参数:设定与电机和功率模块匹配的基本参数。
利用SimoCom U可实现对驱动器参数的优化:根据伺服电机实际拖动的机械部件,对611UE速度控制器的参数进行自动优化利用SimoCom U可以监控驱动器的运行状态:电机实际电流和实际扭矩。
SimoCom U的主要画面说明:四、实验内容1.驱动器的调试2.驱动器的优化五、实验步骤1.驱动器的调试步骤一在断电的情况下(台式电脑要拔下电源插头!),用RS232电缆连接PC的COM口与611U 上的X471端口。
步骤二驱动器上电,在611UE的液晶窗口显示:“A1106”表示驱动器没有数据;R/F红灯亮;总线接口模块上的红灯亮步骤三从WINDOWS的“开始”中找到驱动器调试工具SimoCom U,并启动;步骤四选择连机方式步骤五进入连接画面后,自动进入参数设定画面:在软件的提示下进行参数的设定:1)定义驱动器的名称,通常可以用轴的名称来定义,如该驱动器用于X轴我们可以添入XK7124_X2)输入PROFIBUS总线地址:3)设定电机型号:4) 选择编码器,选择标准编码器( 2048 P sin/con信号,1Vpp) 如为其他编码器请选择Enter Data 并如实输入编码器数据。
5)选择运行模式6)直接测量系统的设定7)直接测量系统参数8)存储参数9)配置完成611UE的R/F红灯灭,液晶窗口显示“A0831”—表示总线数据通讯;总线接口模块上的红灯亮若PLC控制电源模块的端子48、63、64分别与端子9接通,电源模块的黄灯亮,表示电源模块已使能;坐标轴配置的不正确可导致驱动及电机出现故障,如数据未存储也会在伺服单元掉电后,在伺服驱动器上出现1106号报警。
数控车床DA98B伺服驱动器调试方法

备用 S 4 9是加拿大 G R6 E公 司为英 国 B U H公司生产 的 RS
数控车床 D 9 B伺服驱动器调试方法 A8
王彦平
摘要
良好 。
朱
奇
以数控 机床 轴插 补为例 , 绍调试 G K 8 T b数控 系统 D 9 B伺 服驱 动器 的主要 步骤 以及 注意 事项 , 介 S 90 D A8 调试效果
文件 , 与以前 留下的纸质定值清单仔细核对 , 修改完成后再保存 , 这样反复核对两到三遍 以后 , 确认无误 , 以将文件上传 。 可 () 4 保护定值文件 的上传 。 再次建立与解密后安装在C 2 3 M 0D 机上 S 4 9的连接 , R6 通信 成功后点 击“ 文件” 菜单 , 打开保存 在 硬盘 中的 C 2 3 .6 件 , 后点击 “ M 0 C4 9文 然 发送信 息到继 电器” 按 钮, 作相应应答后开始文件传送 , 传送过程大概需要几分钟 。上
定值也近乎相同。为此 , C 0 C机 的保护定值下载后进行稍 将 M2 3 微修改 , 然后再上传至 已解 密的 S 4 9 作为 C 2 3 R6, M 0 D电机的保 护即可 。拔下 R 2 2 S 3 数据线 , 连接到 C 0 C的 S 4 9上 , M2 3 R6 以同
样方式连接 , 将保护定值文件名保存为 C 2 3 . 9 保存好文件 M 0 C4 。 6
通信
B
故障处理
T 4 M3 1
目前 ,国内企业大型同步电机 的保 护装置多采用 S 4 9电 R6 机管理继 电器 ( 加拿大 G E公司生产 )S 4 9不仅具有 电机过 ,R 6
1台 闲置 、 低版本 号 的 S 4 9 19 较 R 6 ( 9 6年 出产 ) 替换 , S 4 9 该 R 6
数控系统伺服驱动器接线及参数设定

数控系统伺服驱动器接线及参数设定数控系统是一种实现数控机床运动控制的系统,它通过数控程序控制伺服驱动器驱动电机实现机床各轴的精确定位和运动控制。
正确的接线和参数设定对于数控系统的稳定运行和良好性能至关重要。
一、数控系统伺服驱动器接线1.电源线接线:将电源线的两根火线分别接入伺服驱动器的AC1和AC2端口,将零线接入伺服驱动器的COM端口。
2.电动机线接线:将电动机的三根相线分别接入伺服驱动器的U、V、W端口,注意保持相序正确。
3.编码器线接线:将编码器的信号线分别接入伺服驱动器的A相、B相和Z相端口,注意保持对应关系。
4.I/O信号线接线:将数控系统的输入信号线分别接入伺服驱动器的I/O端口,将数控系统的输出信号线分别接入伺服驱动器的O/I端口。
二、数控系统伺服驱动器参数设定伺服驱动器的参数设定包括基本参数设定和运动参数设定。
1.基本参数设定:包括电源参数设定、电机参数设定和编码器参数设定。
-电源参数设定:设置电源电压和频率等基本参数,确保电源供电稳定。
-电机参数设定:设置电机类型、额定电流、极数等参数,确保驱动器与电机匹配。
-编码器参数设定:设置编码器型号、分辨率等参数,确保编码器信号精确反馈。
2.运动参数设定:包括速度参数设定、加速度参数设定和位置参数设定。
-速度参数设定:设置速度环的比例增益、积分增益和速度限制等参数,确保速度控制精度。
-加速度参数设定:设置加速度环的比例增益、积分增益和加速度限制等参数,确保加速度控制平稳。
-位置参数设定:设置位置环的比例增益、积分增益和位置限制等参数,确保位置控制准确。
3.其他参数设定:包括滤波参数设定、限位参数设定和插补参数设定等。
-滤波参数设定:设置滤波器的截止频率和衰减系数等参数,确保驱动器与电机的振动减小。
-限位参数设定:设置限位开关的触发逻辑和触发动作等参数,确保机床在限位时及时停止。
-插补参数设定:设置插补周期、插补梯度和插补速度等参数,确保插补运动的平滑与快速。
伺服驱动器参数设置方法

伺服驱动器参数设置方法伺服驱动器是现代工业自动化控制系统中的重要组成部分,它能够精确控制电机的转速和位置,广泛应用于数控机床、印刷设备、包装设备、纺织设备等领域。
正确的参数设置对于伺服驱动器的性能和稳定性至关重要。
本文将介绍伺服驱动器参数设置的方法,帮助用户更好地使用伺服驱动器。
1. 确定电机参数。
在进行伺服驱动器参数设置之前,首先需要确定电机的参数,包括额定转速、额定电流、电机型号等。
这些参数将直接影响到伺服驱动器的参数设置,确保参数的准确性是非常重要的。
2. 设置速度环参数。
速度环参数是伺服驱动器中最基本的参数之一,它直接影响到伺服系统的速度响应和稳定性。
在设置速度环参数时,需要根据实际应用情况调整比例增益、积分时间和微分时间等参数,以达到最佳的速度控制效果。
3. 设置位置环参数。
除了速度环参数之外,位置环参数也是伺服驱动器中非常重要的参数。
位置环参数的设置将直接影响到伺服系统的位置精度和稳定性。
在设置位置环参数时,需要根据实际应用情况调整比例增益、积分时间和微分时间等参数,以达到最佳的位置控制效果。
4. 调整过流保护参数。
过流保护是伺服驱动器中非常重要的保护功能,它能够有效地保护电机和驱动器免受过载和短路的损坏。
在设置过流保护参数时,需要根据电机的额定电流和实际负载情况进行调整,确保过流保护参数的准确性和可靠性。
5. 调整过压保护参数。
过压保护也是伺服驱动器中非常重要的保护功能,它能够有效地保护电机和驱动器免受电源过压的损坏。
在设置过压保护参数时,需要根据电机的额定电压和实际电源情况进行调整,确保过压保护参数的准确性和可靠性。
6. 调整过速保护参数。
过速保护是伺服驱动器中非常重要的保护功能,它能够有效地保护电机和驱动器免受过速运行的损坏。
在设置过速保护参数时,需要根据电机的额定转速和实际运行情况进行调整,确保过速保护参数的准确性和可靠性。
总结。
通过正确的参数设置,可以使伺服驱动器在工业自动化控制系统中发挥更好的性能和稳定性。
数控机床伺服参数调整方法

数控机床伺服参数调整方法作者:李亚聪康亚彪来源:《科技创新导报》2020年第02期摘; ;要:现阶段,我国的工业发展较为迅速,产品的质量和数量都在不断提升,所以对数控机床提出了新的要求。
在数控机床的实际生产中,许多伺服参数的调整仍然不是十分完善,制约了机床的生产精度,对机床加工质量带来不利影响。
本文将从伺服系统的调整原则、顺序以及方法这三个方面进行阐述,旨在对我国数控机床伺服参数的调整提供借鉴。
关键词:数控机床; 伺服; 振荡; 参数调控中图分类号:TP659; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;文献标识码:A; ; ; ; ; ; ; ; ; ; ; ;文章编号:1674-098X(2020)01(b)-0066-021; 伺服系统参数调整原则伺服系统通常由三个反馈系组成,分别为位置环、速度环以及电流环,具体如图1所示。
1.1 位置环增益位置环增益是重要的参数,对机床的工作具有重要的作用。
位置环增益越大,那么当位置指令输入过后电机响应速度也会更快,进行位置跟踪会更加准确,运动部件定位会更加及时。
系统在执行指令的过程中,相应指令运转的部件会收到较大的冲力,所以也就对部件的刚性质量提出了更高的要求。
相对于高增益,位置环增益越小,伺服系统也会更加平稳,虽然如此,但是不能过分追求低增益,否则就会带来更高的使伺服系统跟踪误差,最终在工件加工时在加工轨迹上产生误差。
为了加强机床的刚性,减少跟随误差,尽可能加快定位速度,就要适当提高位置环设定值,但是应当保持在一定范围内,否则就会带来振动,降低工作质量。
1.2 速度环增益速度环增益一般用于调整速度环的反应速度。
如果增加一定量的速度环增益,那么机床的振动幅度也会更加剧烈,不利于实际工作。
所以,要确定机械部件的振动上限,在这个上限值以下来调整速度环增益,以提升反应速度。
在速度环增益设定的过程中,若缺乏合理的数据支持,就会带来偏差,导致静态误差的产生。
KND伺服参数优化实用说明书

KND伺服参数优化实用说明书为了机床厂方便调试,快速出机,KND数控公司配套的系统与驱动器相关默认配置参数,适合于大多数中等要求的加工场合,当遇到要求较高的情况,建议采用如下措施进一步优化伺服参数,使加工效果显著提升。
由于机床厂家对我公司系统伺服参数优化不是特别的熟悉,编写系统伺服相关参数优化步骤书面说明,以供机床厂相关调机人员作为调试参考。
首先给出一个伺服参数在优化前与优化后的系统图形诊断结果直观对比,之后详细介绍优化步骤。
在优化前驱动增益过低,响应时间长,单轴低速运行F60mm/min,转矩波动大,反馈转速不稳定,导致实际运行误差过大,对直面加工有一定影响。
优化后提高驱动增益,响应时间变短,反馈转速及转矩基本稳定,运行误差大幅减小。
优化前系统指令位置与反馈位置偏差过大,导致在斜面加工时,表面纹路不整齐,跳纹较多。
优化后指令位置与反馈位置基本重合,斜面加工表面纹路效果大幅提升。
优化前系统指令位置与反馈位置偏差过大,导致在圆弧加工时表面纹路不好,过象限处尖角过大,真圆度变差。
优化后指令位置与反馈位置基本重合,圆弧尖角明显收短,表面纹路提升,真圆度变好。
、锥面加工纹路效果提升驱动参数优化调试步骤目的:在工件表面纹路要求较高的场合,尽量提高伺服的响应性,选择合适的刀具,切削转速、进给量、精车余量来保证,就如何优化伺服参数参考以下步骤:第一步:确认电机型号是否正常匹配。
第二步:确认驱动增益参数与摩擦补偿系数参数为默认状态(重要的步骤看3遍)。
第三步:XZ轴运行到中间合适位置,各轴分别做惯量自学习(TU1)。
操作步骤【录入方式】→按【参数】两次进入伺服参数页面→选择需要学习的伺服→按【操作】键→按【学习惯量】软键→按【确定】软键,自动学习完成。
第四步:进行振动频率检出:(1)【录入方式】→按【诊断】键,进入诊断页面如下:(2)按【图形诊断】软键,进入如下页面:(3)按【振动检测】软键,进入振动频率检测页面:(4)按【参数设定】软键,输入需要检测的轴名,按【完成】即可。
基于菲仕伺服驱动器优化调试的研究 (2)

数控机床通常包含了数控系统、伺服驱动器、伺服电机以及机械部件等。
在前期方案设计时,为了使数控机床的加工精度及效率达到最优,需要选择适合运动规划需求的数控系统和满足机械特性需求的电机。
伺服电机虽然是直接执行部件,但和数控系统一样,自身无法直接驱动机械部件运动,均需要通过伺服驱动器来实现最终的运动控制需求。
然而,不同的运动规划和加工工艺,对于驱动器参数的调试影响很大;不同的机械结构和加工误差,对驱动器的滤波处理等参数有不一样的需求。
所以,为了最终能同时实现更好的加工精度和更快的加工效率,在设备调试过程中,尤其是在对批量机床的参数统一化过程中,对伺服驱动器的优化便显得尤其重要。
菲仕伺服驱动器的介绍及特征全新的AxN系列通用伺服驱动系统(图1)是菲仕自主创新的最新成果。
它是菲仕中国吸收了意大利菲仕15年运动控制经验后,结合8年中国市场实践,自主研发,为中国制造业转型升级而专门打造的全新一代高性能伺服驱动器。
其电流输出能力覆盖15A到150A,可使用CANopen、EtherCAT和Modbus等多种现场总线,支持海德汉ENDAT 2.2编码器、西克Hiperface编码器、正余弦编码器、数字增量式编码器和霍尔传感器多种主流编码器。
图1 AxN系列通用伺服驱动系统AxN全数字交流伺服驱动器主要特性:⑴更紧凑的外形。
对比上一代产品,体积缩小16%~20%,重量减轻25%~35%。
⑵更灵活的安装。
支持柜内安装、穿墙安装和冷却板安装,穿墙安装时散热器外置,无需在电气柜内安装空调等降温设备,更节约成本;冷却板安装时支持外置水冷,帮助驱动器发挥优异性能。
⑶更智能的运行。
驱动器内置PLC,编程符合IEC61131-3标准,可在多种应用场合脱离上位机直接运行,实现电子凸轮、电机参数自适应等多种功能,节约成本。
⑷更稳定的品质。
出厂前经过振动、短路、高低温、过载等9大严格测试,确保AxN系列驱动器能在多种恶劣环境下稳定运行。
SIMODRIVE 611U/Ue系列伺服驱动的配置及优化

( 选 择驱 动 器 与 计算 机 的联机 方 式 , 常 选 择查 找 4) 通
在线 驱 动器 ( Sac ro ̄ ed vs ” 。 “ erhf n n r e… ) o i
( )进 入联 机方 式 后 ,计算 机进 入参 数设 定 画 面 , 5 自 动识 别 功率 模 块 和 控制 模 块 的 型号 ,在 软件 的提 示 下进
行 以下参 数设 定 :
① 定义 驱 动器 的名 称 。通 常可 以用轴 的 名称 来 定义 ,
如 该 驱动 器用 于 X轴 我 们可 以添 入 X 。 ② 根 据模 块 的类 型与 安 装位 置 , 输入 P O IU R FB S总线 地 址 , 同位 置 的总线 地址 见 表 I所示 。 不
摘 要 :I SMODRIE 1U/ . 6 1 Ue系 列 伺 服 驱 动 的 配 置 、 化 方 法 以及 Smo n U 伺 服 调 试 软 件 的 使 用 。 V 优 i Co' L 关 键 词 : 1U/ 6 1 Ue伺 服 驱 动 配 置 优 化
1 引 言
( 接 通 驱 动 器 电源 , 动 器 上 电 , 时 6 I E 的状 2) 驱 此 1U
2 1UU 6 1 / e数 字 式 交 流 伺 服 驱 动 器 的 配 置
6 /e驱动器 的调试 ,分首次调试 和批 量调试两 种方 1UU I 式。如果驱动器还没有匹配参数则必须进行首次调试 , 如果匹 配参 数已调试完毕 , 则可以用 Sm C m U软件 , ioo 通过显示和操
编码 器请 选 择 E t a ne D t r a并正 确输 入 编码 器数 据 。 ⑤ 选 择正 确 的运 行模 式 ( S edt q esto t ) “ pe/ ru e i ” 。 o pn ⑥ 根 据需 要设 定 直接 位置 测 量系 统 ( 没有 可 以不 设 如
三菱数控伺服驱动参数设定与调整

用 滤 波 器 参 数 抑 制 机 械 振 动 .尽 可 能 提 高 速 度 环 增 益 1
(1)滤 波 器 设 定 方 法
设 定 值 ,是伺 服 调 整 之 关 键 所 在 。
11设 定 参 数 #2233、#2283选 择 滤 波 器 1、2、4、5,设 定
速 度 环 超 前 补 偿 参 数 #2208主 要 决 定 速 度 环 的低 频 为 振 动 频 率 ;
位 置 指 令
速 度 设 定 值 电 流设 定 值
数 控 机 床 伺 服 驱 动 参 数 调 整 的好 坏 ,直 接 影 响 到 机
床 的 加 工 精 度 和 性 能 。很 多 数 控 机 床 在 出 厂 前 ,都 进 行 过
伺 服 驱 动 参 数 基 本 设 定 ,能 满 足 一 般 精 度 的 加 工 要 求 。但
值 较 大 (接 近 标 准 值 ),或 使 用 与 增 加 VGN1等 效 的 干 扰 动 ,#2206与 #2229配 合 使 用 。
标 准 值 。 2.2 速 度环
速 度 环 的 作 用 是 抑 制 速 度 波 动 ,增 强 系 统 抗 负 载 扰 动 的能 力 。速 度 环 控 制 参 数 主要 有 :速 度 回路增 益 1 (#2205,简 称 :VGN1)、速 度 回路 增 益 2 (#2206,简 称 :
作者 简介 :陈泽 南(1975一),男,主要从 事 电气设计 、维修 方 面的工 作。 E—mail:cym1368@sina.com
VGN2)、速度 回路延 迟补偿 (#2207,简称 :VIL)、速度 回路 进 给补偿 (#2 定 伺 服 控 制 响 应 性 的 重 要 参 高 .但 机 械 容 易 诱 发 振 动 。所 以抑 制 振 动 的调 整 原 则 是 使
数控机床的伺服驱动系统

数控机床的伺服驱动系统
伺服系统是指以机械位置或角度作为控制对象的自动控制系统,而在数控机床中,伺服系
2
统主要指各坐标轴进给驱动的位置控制系统,它由执行组件(如步进电机、交直流电动机
等)和相应的控制电路组成,包括主驱动和进给驱动。伺服系统接收来自CNC装置的进给
脉冲,经变换和放大,再驱动各加工坐标轴按指令脉冲运动。这些轴有的带动工作台,有
(4)步进电动机的主要特点
步进电动机受脉冲信号的 控制,每输入一个脉冲, 就变换一次绕组的通电状 态,电动机就相应转动一 步。因此角位移与输入脉 冲个数成严格的比例关系。
一旦停止送入控制脉冲, 只要维持控制绕组电流不 变,电动机可以保持在其 固定的位置上,不需要机 械制动装置。
输出转角精度高,虽有相 邻齿距误差;但无积累误 差。
4.3.2.2 直流伺服电动机
直流伺服电动机是数控机床伺服系统中应用最早的,也是使用最广泛的 执行组件。直流伺服电动机有永磁式和电磁式两种结构类型。随着磁性 材料的发展,用稀土材料制作的永磁式直流伺服电动机的性能超过了电 磁式直流伺服电动机,目前广泛应用于机床进给驱动。直流伺服电动机 的工作原理与普通直流电动机完全相同,但工作状态和性能差别很大。 机床进给伺服系统中使用的多为大功率直流伺服电动机,如低惯量电动 机和宽调速电动机等。
θb =
从上面的分析可以看 出,步进电动机转动 的角度取决于定子绕 组的相数、转子齿数 及供电的逻辑状态。 若以θb表示步距角, 则有
(4-12)
360
mzK 式中 m—步进电动机相数;z—转子齿数;K—由 步进电动机控制方式确定的拍数和相数的比例系 数,如三相三拍时,K=1;而三相六拍制时,K =2。 为了提高加工精度,一般要求步距角很小,数控 机床中常用的步进电动机步距角为0.36o~3o
FANUC数字伺服系统的调整

FANUC数字伺服系统的调整通常情况下,数字伺服的调整应通过数控系统进行,数字伺服的调整可分为初始化与动态性能调整两部分。
1.FANUC数字伺服的初始化当数控系统的伺服驱动更换,或因为更换电池等原因,使伺服参数出现错误时,必须对伺服系统进行初始化处理与重新调整。
数字伺服的初始化步骤如下。
(1)初始化的准备在初始化数字伺服前,应首先确认以下基本数据,以便进行初始化工作。
1)数控系统的型号。
2)伺服电动机的型号、规格、电动机代码。
3)电动机内装的脉冲编码器的型号、规格。
4)伺服系统是否使用外部位置检测器件,如使用,需要确认其规格型号。
5)电动机每转对应的工作台移动距离。
6)机床的检测单位。
7)数控系统的指令单位。
(2)初始化的步骤数字伺服的初始化按以下步骤进行:1)使数控系统处在“紧停”状态。
2)设定系统的参数写入为“允许”状态。
3)操作系统,显示伺服参数画面。
对于不同的系统,其操作方法有所区别,具体如下:对于FANUC 0C系统,操作步骤为:①将机床参数PRM389 bit0设定为“1”,使伺服参数页面可以在CRT上显示。
②关机,使PRM389 bit0的设定生效。
③通过按系统操作面板上的“PARAM”(参数显示)键(按键可能需要数次,或直接通过系统显示的“软功能键”进行选择),直到出现图5-18所示的页面显示。
对于FANUC l5系列系统:按“SERVICE”键数次,直到出现图5-18所示的页面显示;对于FANUC l6/18/20/21系列系统,操作步骤为:①将机床参数PRM3111 bit0设定为“1”,使伺服参数页面可以在CRT上显示。
②关机,使PRM3111 bit0的设定生效。
③按“SYSTEM”键,选择“系统”显示页面。
④按次序依次操作“软功能键”〖SYSTEM〗→〖>〗→〖SV-PRM〗,使图5-18所示的页面显示。
图5-18 数字伺服初始化页面4)根据系统的要求设定伺服系统的指令单位(INITIAL SET BITS的bit0);设定初始化参数(INITIAL SET BITS的bitl)为初始化方式(见表5-17)。
伺服驱动器参数设置方法

伺服驱动器参数设置方法伺服驱动器作为现代工业控制系统中的重要组成部分,其参数设置对于系统的稳定性和性能起着至关重要的作用。
正确的参数设置可以确保系统的精准控制和高效运行,而错误的参数设置则可能导致系统不稳定甚至损坏。
因此,掌握伺服驱动器参数设置方法是每一位工程师必备的技能之一。
首先,我们需要了解伺服驱动器的基本参数,包括电流环参数、速度环参数和位置环参数。
电流环参数包括比例增益、积分时间和死区时间等;速度环参数包括速度比例增益、速度积分时间和速度死区时间等;位置环参数包括位置比例增益、位置积分时间和位置死区时间等。
这些参数的设置直接影响着伺服系统的动态响应和稳定性。
其次,根据具体的应用需求和系统特性,我们需要对这些参数进行调整。
在调整参数时,我们可以采用试错法,即先设定一个初始值,然后通过实际运行情况来不断调整,直至达到最佳效果。
在调整过程中,需要注意参数之间的相互影响,避免出现相互矛盾的设置,以免导致系统性能下降。
另外,还需要考虑伺服驱动器的保护参数设置。
保护参数包括过流保护、过压保护、过速保护和过载保护等。
这些保护参数的设置可以有效保护伺服系统不受外界干扰和意外情况的影响,延长系统的使用寿命。
最后,为了确保参数设置的准确性和系统的稳定性,我们需要进行参数调试和性能测试。
通过对系统的闭环响应、阶跃响应和跟踪性能等进行全面测试,可以验证参数设置的有效性,发现问题并及时进行调整。
综上所述,伺服驱动器参数设置是一个复杂而又关键的工作。
正确的参数设置可以提高系统的稳定性和性能,而错误的参数设置则可能导致严重的后果。
因此,我们需要认真对待伺服驱动器参数设置这一工作,不断学习和积累经验,以提高自己的技术水平,为工业控制系统的稳定运行贡献自己的力量。
西门子828D伺服电机优化策略

·71·中国高新科技 2018年第11期西门子828D伺服电机优化策略1 引言工业4.0对制造业提出了“制造+互联网”的融合趋势,网路交互信息共享在数控系统中开始有所表现。
作为汽车零配件加工龙头企业的渤海活塞一直走在前列,目前公司自制设备和引进设备高端数控系统占据大部分江山,主流是西门子和FANUC高端数控系统,数控系统不仅满足工件加工的优异性能,同时适应数控系统互联互通的可扩展性,西门子SINUMERRIK 802DSL 828D 840DSL诸多系统操作界面一脉相承。
其中,性价比较高的西门子SINUMERRIK 828D更是提供了多种用户互联体验功能:设备连线使用driveCLIQ总线、上位机连接采用网线接口、网路设置可以连通S7通信的相关设备(通过S7通信协议实现s7-1200/1500以及触摸屏的连通使用)、网络驱动器使得电脑与CNC系统之间“点对点”远程诊断共享(RCS Host实现远程诊断功能)等,机械制造系统中加入的互联技术使得设备实时监控共享和外部信号采集处理更具操作性和实用性。
烦琐的调试工作完全可以通过友好的界面完成,即使使用传统的上位机调试,界面也保持了高度一致和兼容,通常的伺服电机优化工作变得更加方便简洁。
2 通过H M I 优化S I N U M E RRIK 828D步骤详解SINUMERIK 828D作为新一代强大的紧凑型数控系统,目前电机优化可以使用上位机操作,操作步骤与840D 基本一致,使用Startup tool软件通过上位机进行优化处理,网线连接上位机和828D的X127接口,上位机侧设置P G /P C ,在应用程序访问中选择“Sinumerik_cp”选择电脑网卡连接,对于安装了840D调试软件的上位机来说,点击桌面“NC Connect Wizard”图标就会显示Startup tool 设置通信接口界面,可以选择驱动器的硬件信息完成设置,运行桌面的“Startup tool”标签,即可进入调试界面。
数控机床的主轴速度调节方法

数控机床的主轴速度调节方法数控机床是现代制造业中常用的一种高精度加工设备,而主轴是数控机床的核心部件之一。
主轴驱动系统的速度调节方法对于数控机床的加工质量、效率和稳定性具有重要影响。
本文将探讨数控机床主轴速度调节的几种常见方法。
首先,传统的主轴速度调节方法是通过变频器进行调节。
变频器是一种用于改变交流电源频率的装置,可以实现主轴电机的转速调节。
通过改变变频器的输出频率,可以改变主轴电机的转速。
变频器调节主轴速度的优点是调节范围广,可实现连续无级调节,并且具有较高的转速控制精度。
然而,传统变频器调节系统对于主轴负载变化响应较慢,且需要较长的响应时间,不能满足高速、高精度加工的要求。
为了解决传统变频器调节系统的局限性,近年来发展了一种新型的主轴速度调节方法,即磁滞无刷直流电机调速。
这种调速方法通过使用具有磁滞特性的无刷直流电机,实现对主轴速度的快速调节。
磁滞无刷直流电机调速系统具有快速响应、高精度、高效率等优点。
通过调节电机驱动器的激励电流,可以实现对主轴速度的精确控制。
磁滞无刷直流电机调速系统对于高速加工和精密加工具有较好的适应性,广泛应用于现代数控机床中。
除了传统的变频器调节和磁滞无刷直流电机调速方法,还有一种常用的主轴速度调节方法是采用伺服电机驱动系统。
伺服电机驱动系统是一种能够根据控制信号精确控制电机转速和位置的控制系统。
伺服电机通过反馈装置(如编码器)实时监测主轴转速,并与控制系统进行闭环控制,实现主轴速度的精确调节。
伺服电机驱动系统具有转速控制精度高、响应速度快、稳定性好等优点。
在要求高精度、高速度加工的数控机床中,伺服电机驱动系统被广泛应用。
此外,还有一些其他的主轴速度调节方法,如PID调节、开环控制等。
PID调节是一种基于比例、积分、微分三个控制参数的调速方法,通过调整这些参数来实现对主轴速度的控制。
开环控制是指在不考虑系统反馈的情况下对主轴速度进行调节,较少应用于数控机床中。
综上所述,数控机床主轴速度的调节方法多种多样,根据具体的应用场景和要求选择合适的调节方法对于保证数控机床的加工质量和效率至关重要。
FANUC数控系统伺服驱动优化在数控机床上的应用

FANUC数控系统伺服驱动优化在数控机床上的应用FANUC数控系统是世界领先的数控系统供应商之一,其伺服驱动器在数控机床上的应用具有广泛的优化空间。
数控机床作为现代制造业的重要设备,对于提高生产效率、降低人工成本具有重要意义。
优化FANUC数控系统的伺服驱动器可以有效提高机床的精度、速度和稳定性,从而提升整体加工质量和效率。
首先,FANUC数控系统采用的伺服驱动器技术先进,具有高精度、高可靠性和高稳定性的特点。
通过优化伺服驱动器的参数设置和控制策略,可以更好地适应各种加工工艺和零件加工要求,提高机床的动态响应能力和控制精度。
在高速、高精度加工场景下,采用FANUC伺服驱动器可以更好地满足对零件尺寸、表面质量的要求,提高加工精度和一致性。
其次,FANUC数控系统伺服驱动器具有优秀的即时响应能力和反馈控制性能,在加工过程中可以更快地调节参数和优化控制策略,实现更加高效的加工过程。
通过优化伺服驱动器的反馈控制算法和响应速度,可以降低机床加工过程中的振动和误差,提高加工精度和表面质量。
同时,FANUC数控系统的伺服驱动器还支持多轴同步运动控制,可以实现多道工序的同步加工,提高加工效率和生产能力。
另外,FANUC数控系统伺服驱动器具有开放式的通信接口和灵活的编程功能,可以更方便地与其他设备或系统进行集成和通信。
通过优化伺服驱动器的通信接口和数据传输速度,可以实现数控机床与工作站、MES系统、ERP系统等的无缝对接,实现信息共享和智能化制造。
此外,FANUC 数控系统伺服驱动器还支持远程监控和故障诊断功能,可以及时发现和解决机床运行中的问题,减少生产中断和损失。
综上所述,FANUC数控系统伺服驱动器在数控机床上的优化应用具有重要意义和广泛应用前景。
通过优化伺服驱动器的参数设置、控制策略、反馈控制算法和通信接口,可以提高机床的加工精度、速度和稳定性,实现智能化、高效化生产,推动制造业的发展和升级。
同时,FANUC数控系统伺服驱动器还可以与其他先进制造技术和工业互联网技术结合,实现更加智能、柔性、绿色的制造模式,推动制造业向高质量、高效率的方向发展。
如何提高数控机床的加工效率

如何提高数控机床的加工效率提高数控机床的加工效率是一个涉及多个方面的任务,下面是一些实用的建议和技巧:1.优化加工工艺:根据不同的材料和零件类型,选择合适的加工工艺,可以大大提高加工效率。
例如,对于薄壁零件,采用粗加工和精加工分离的方式可以减少加工时间,提高加工效率。
2.合理选择刀具:选择合适的刀具能够显著提高切削效率和精度。
要考虑刀具的耐用度、刚性、切削速度和精度等因素,同时还要考虑刀具的安装和调整时间,以最大限度地减少刀具更换次数和时间。
3.提高编程技巧:优化数控编程可以提高加工效率和精度。
例如,合理安排加工顺序、优化切削参数、减少空程时间等都可以提高加工效率。
同时,采用自动编程技术也可以大大减少编程时间。
4.设备维护和保养:定期对数控机床进行维护和保养可以保证设备的稳定性和精度,从而减少故障时间和停机时间,提高加工效率。
5.利用现有技术:例如采用高速切削技术、干切削技术等新型加工技术,可以提高加工效率和精度。
6.人员培训和管理:对操作人员进行定期培训,提高其技能水平和操作熟练度,可以减少操作失误和停机时间,提高加工效率。
同时,采用科学的管理方法,合理安排生产计划和调度,也可以提高加工效率。
7.设备升级和改造:对于老旧的数控机床,可以考虑进行升级和改造。
例如采用新型的数控系统、伺服驱动系统等,可以显著提高设备的性能和效率。
8.采用智能化技术:例如采用人工智能技术进行设备故障预测和维护,采用智能调度系统进行生产计划调度等,可以提高设备的运行效率和生产线的整体效率。
综上所述,提高数控机床的加工效率需要从多个方面入手,包括工艺优化、刀具选择、编程技巧、设备维护保养、利用现有技术、人员培训管理、设备升级改造和智能化技术等。
通过不断改进和优化这些方面,可以显著提高数控机床的加工效率和精度,从而提高生产效益和市场竞争力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控系统伺服驱动优化方法
白斌
内容摘要:目前数控机床配置的数控系统主要有日本FANUC和德国SIEMENS系统,如何提高伺服驱动系统的动态特性,这也是维修及调试人员必须要做的一项很重要的工作。
机床各轴的驱动、电机数据如速度环、位置环增益直接影响轴的动态运行特性。
如果这些参数设置不当,就会导致机床运行过程中的振动,伺服电机啸叫,使加工无法进行,甚至会导致丝杆和导轨损坏。
为了达到良好的零件加工精度,对驱动参数进行优化是一项必不可少的工作。
关键词:速度环位置环优化
伺服驱动优化的目的就是让机电系统的匹配达到最佳,以获得最优的稳定性和动态性能。
在数控机床中,机电系统的不匹配通常会引起机床震动、加工零件表面过切、表面质量不良等问题。
尤其在磨具加工中,对伺服驱动的优化是必须的。
数控系统伺服驱动包括3个反馈回路,即位置回路、速度回路以及电流回路,其组成的框图如图1-1所示。
最内环回路反应速度最快,中间环节反应速度必须高于最外环,如果没有遵守此原则,将会造成震动或反应不良。
图1-1 伺服系统控制回路
伺服优化的一般原则是位置控制回路不能高于速度控制回路的反应,因此,若要增加位置回路增益,必须先增加速度回路的增益。
如果仅仅增加位置回路增益,机床很容易产生振动,造成速度指令及定位时间增加,而非减少。
在做伺服优化时必须知道机床的机械性能,因为系统优化是建立在机械装配性能之上的,即不仅要确保伺服驱动的反应,而且也必须确保机械系统具备高刚性。
以日本FANUC 0iC系统为例,详细讲解伺服驱动优化过程。
主要过程在伺服调整画面进行优化调整,画面如图1-2所示。
图1-2 FANUC伺服调整画面
1)首先将功能位参数P2003的位3 设定1,回路增益参数P1825设定为3000,,速度增益参数P2021从200增加,每加100后,用JOG移动坐标,看是否震动,或看伺服波形(TCMD)是否平滑。
注:速度增益=[负载惯量比(参数P2021)+256]/256 *100。
负载惯量比表示电机的惯量和负载的惯量比,直接和具体
的机床相关,一定要调整。
2)伺服波形显示:把参数P3112#0改为1(调整完后,一定要还原为0),关机再开机。
如下图1-3所示:采样时间设定5000,如果调整X轴,设定数据为51,检查实际速度。
图1-3伺服波形设置画面
如果在起动时,波形不光滑(如图1-4所示),则表示伺服增益不够,需要再提高。
如果在中间的直线上有波动,则可能由于高增益引起的震动,这可通过设定参数2066=-10(增加伺服电流环250um)来改变。
图1-4 伺服波形显示画面
3)N脉冲抑制:当在调整时,由于提高了速度增益,而引起了机床在停止时也出现了小范围的震荡(低频),从伺服调整画面的位置误差可看到,在没有给指令(停止时),误差在0左右变化。
使用单脉冲抑制功能可以将此震荡消除,按以下步骤调整:
a) 参数2003#4=1,如果震荡在0-1范围变化,设定此参数即可。
b) 参数2099设置为400
4)有关250um加速反馈的说明:
电机与机床弹性连接,负载惯量比电机的惯量要大,在调整负载惯量比时候(大于512),会产生50-150HZ的振动,此时,不要减小
负载惯量比的值,可设定此参数进行改善。
此功能把加速度反馈增益乘以电机速度反馈信号的微分值,通过补偿转矩指令Tcmd,来达到抑制速度环的震荡。
5)速度回路和位置回路的高增益,可以改善伺服系统的响应和刚性。
因此可以减小机床的加工形状误差,提高定位速度。
由于这一效果,使得伺服调整简化。
HRV2控制可以改善整个系统的伺服性能。
伺服用HRV2调整后,可以用HRV3改善高速电流控制,因此可进行高精度的机械加工。
表1-1是标准HRV2高精度伺服设定控制设定参数。
表1-1 HRV2高精度伺服控制设定参数
SIEMENS810/840D 系统具有自动优化功能,由驱动系统在负载状态下自动测试和分析调节器的频率特性,确保调节器的比例增益和积分时间常数。
如果自动优化的结果不够理想,达不到机床最佳控制效果,在此基础上需要进行手工优化。
首先就SIEMENS810/840D 自动优化的具体步骤做一详细介绍。
在优化之前要使机床在JOG 方式下,在如图1-5画面可以选Without PLC ,这样在优化过程中PLC 不生效。
Date:31.03.2011File:06 S tart-up_axes.27l rights reserved.SIT RAIN Auto mation 图1-5 840D 自动优化画面 SIEMENS840D 中PCU50轴优化具体步骤:
1. 菜单→启动→驱动/伺服轴→扩展→自动控制设置
2.在自动控制设置窗口:设置好不带PLC,上限、下限。
3.按右侧垂直菜单的启动键,此时显示“开始机械系统测量部分1”
→确认
4.按“程序启动键”,电机正转。
然后显示“开始机械系统测量部分
2”→“确认”
5.再次按“程序启动键”,电机反转。
然后显示“启动当前控制的测
量”→“确认”
6.再次按“程序启动键”。
然后显示“控制器数据开始计算”→“确
认”
7.窗口显示:
8.按右侧垂直菜单的“保存”键,然后显示“开始测量速度控制回
路”→“确认”
9.再次按“程序启动键”。
手动适当修改驱动参数1407。
自动优化的结果并不一定是一个理想的结果,大部分情况下进行手工优化。
手工优化一般是先利用自动优化的结果,在原调节器比例增益和积分时间常数的基础上,更好地确定调节器比例增益和积分时间常数。
最后还要根据测量的结果设定各种滤波器控制数据,以消除驱动系统的共振点。
1.速度控制环手动优化
速度控制环优化比例增益和积分时间常数两个数据,先确定它的比例增益,再优化积分时间常数。
如果把速度调节器的积分时间常数MD1409调整到500ms,积分环节实际上处于无效状态,这时PI速度调节器转化为P调节器。
为了确定比例增益的初值,可从一个较小的值开始,逐渐增加比例增益,直到机床发生共振,可听到伺服电机发出的啸叫声,将这时的比例增益乘以0.5,作为首次测量的初值。
参考频率响应是Kp(MD1407)和Tn(MD1409)优化的最重要的方法。
优化后显示的幅值(db)和相位图1-6中,表示的是速度实际值是如何跟随设定值的;0db表示实际速度和设定速度值是相同的幅值;0相位表明实际速度跟随设定值具有最小的延时。
手动优化就是大量的、反复多次调整Kp(MD1407)和Tn(MD1409)数值,目的就是使频率特性的幅值在0db处保持尽可能宽的范围,
而不出现不稳定的振荡情况,必要时也需要不断调整滤波器参数进行优化。
图1-6 参考频率响应图
2.位置控制环的优化
位置环优化主要是位置调节器的优化。
影响位置调节器的主要控制数据是它的伺服增益因子,因为系统的跟随误差与它有密切关系。
调整位置调节器伺服增益因子的前提条件是速度调节器有较高的比例增益,因此速度调节器的优化是位置调节器特性调整的基础。
调整伺服增益因子的目标,应使系统的跟随误差达到最小。
增加伺服增益因子可以减少系统的跟随误差,但是伺服增益因子不能调整得太大,否则会导致系统的超调,甚至出现振荡现象。
一般情况下,为了获得较高的轮廓加工精度,应尽可能增大伺服增益因子。
伺服增益因子在机床参数MD3220中设置。
优化位置调节器最简单的方法是观察它的跟随特性,当伺服
增益系数改变时,在操作面板可以看到Following error(跟随误差)的变化,从中判断伺服增益因子是否达到最佳。
如图1-7所示。
图1-7轴服务画面
通过对FANUC和SIEMENS系统速度环、位置环的调试,发现对机床参数的调整是一件复杂而繁琐的工作,由于参数之间是相互影响的,需要反复的调试确定。
参数优化的好坏,决定加工效果。