2013白蒲中学高一数学教案:集合与简易逻辑:19(苏教版)

合集下载

集合与简易逻辑教案jiaoan

集合与简易逻辑教案jiaoan

集合与简易逻辑教案一、教学目标1. 了解集合的概念,能够正确表示集合,并掌握集合的基本运算。

2. 学习简易逻辑的基本概念,能够运用简易逻辑解决问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容1. 集合的概念和表示方法集合的定义集合的表示方法(列举法、描述法)集合的基本运算(并集、交集、补集)2. 简易逻辑的概念和应用简易逻辑的定义简易逻辑的规则(矛盾律、排中律、同一律)简易逻辑在解决问题中的应用三、教学方法1. 采用问题驱动的教学方法,引导学生通过思考和讨论来理解和掌握集合和简易逻辑的概念。

2. 使用案例分析和练习题,让学生通过实际应用来加深对集合和简易逻辑的理解。

3. 鼓励学生进行小组讨论和合作,培养学生的团队合作能力和交流表达能力。

四、教学评估1. 课堂参与度:观察学生在课堂上的积极参与程度和提问回答情况,评估学生对集合和简易逻辑的理解程度。

2. 练习题完成情况:检查学生完成练习题的正确率和解题思路,评估学生对集合和简易逻辑的掌握程度。

3. 小组讨论报告:评估学生在小组讨论中的表现和合作能力,以及对集合和简易逻辑的理解和应用能力。

五、教学资源1. 教学PPT:提供集合和简易逻辑的概念、例题和练习题,方便学生理解和巩固知识点。

2. 练习题:提供相关的练习题,帮助学生巩固集合和简易逻辑的知识点。

3. 案例分析:提供相关的案例分析,让学生能够将集合和简易逻辑应用到实际问题中。

六、教学步骤1. 引入集合概念:通过现实生活中的实例,如班级学生、家庭成员等,引导学生理解集合的概念。

2. 表示集合:讲解列举法和描述法的区别和运用,让学生通过具体例子学会表示集合。

3. 集合运算:介绍并集、交集、补集的定义和运算方法,通过例题展示运算过程,让学生分组练习。

七、教学步骤(续)4. 简易逻辑概念:引入简易逻辑的概念,解释矛盾律、排中律、同一律的含义。

5. 逻辑推理:通过逻辑推理题目,让学生运用简易逻辑规则解决问题,增强逻辑思维能力。

2013届高中数学竞赛教案讲义(1)集合与简易逻辑

2013届高中数学竞赛教案讲义(1)集合与简易逻辑

第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。

例如,通常用N ,Z ,Q ,B ,Q +分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用∅来表示。

集合分有限集和无限集两种集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。

例如{有理数},}0{>x x 分别表示有理数集和正实数集。

定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为B A ⊆,例如Z N ⊆。

规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等。

如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。

定义3 交集,}.{B x A x x B A ∈∈=且定义4 并集,}.{B x A x x B A ∈∈=或定义5 补集,若},{,1A x I x x A C I A ∉∈=⊆且则称为A 在I 中的补集。

定义6 差集,},{\B x A x x B A ∉∈=且。

定义7 集合},,{b a R x b x a x <∈<<记作开区间),(b a ,集合},,{b a R x b x a x <∈≤≤记作闭区间],[b a ,R 记作).,(+∞-∞定理1 集合的性质:对任意集合A ,B ,C ,有:(1));()()(C A B A C B A = (2))()()(C A B A C B A =;(3));(111B A C B C A C = (4)).(111B A C B C A C =【证明】这里仅证(1)、(3),其余由读者自己完成。

2013白蒲中学高一数学教案:集合与简易逻辑:6(苏教版)

2013白蒲中学高一数学教案:集合与简易逻辑:6(苏教版)

第六教时教材:交集与并集(1)目的:通过实例及图形让学生理解交集与并集的概念及有关性质。

过程:一、复习:子集、补集与全集的概念及其表示方法提问(板演):U={x|0≤x<6,x Z} A={1,3,5}B={1,4}求:CuA= {0,2,4}.CuB= {0,2,3,5}.二、新授:1、实例:A={a,b,c,d}B={a,b,e,f}图c d a b e fc d a b e f公共部分A∩B 合并在一起A∪B2、定义:交集:A∩B ={x|x A且x B}符号、读法并集:A∪B ={x|x A或x B}见课本P10——11 定义(略)3、例题:课本P11例一至例五练习P12补充:例一、设A={2,-1,x2—x+1},B={2y,-4,x+4},C={-1,7} 且A∩B=C求x,y。

解:由A∩B=C知7 A ∴必然x2-x+1=7 得x 1=—2, x 2=3由x=—2 得 x+4=2C ∴x —2 ∴x=3 x+4=7C 此时 2y=—1 ∴y=-21 ∴x=3 , y=-21 例二、已知A={x|2x 2=sx-r }, B={x |6x 2+(s+2)x+r=0} 且 A ∩B={21}求A ∪B 。

解:∵21A 且 21B ∴⎪⎩⎪⎨⎧=+++-=0)2(21232121r s r s⇒⎩⎨⎧5212-=+=-s r s r解之得 s= 2 r= 23∴A={,2123} B={,2121}∴A ∪B={,2123,21}三、小结: 交集、并集的定义四、作业:课本 P13习题1、3 1—-5补充:设集合A = {x | 4≤x ≤2}, B = {x |1≤x ≤3}, C = {x |x ≤0或x ≥25},求A ∩B ∩C, A ∪B ∪C 。

《课课练》 P 6-—7 “基础训练题"及“ 例题推荐”w 。

w —w*k &s%5¥u 高考资源网w 。

w —w *k&s %5¥u。

江苏省白蒲中学2012-2013学年高一数学教案第一章《集合与简易逻辑》7(苏教版)

江苏省白蒲中学2012-2013学年高一数学教案第一章《集合与简易逻辑》7(苏教版)

第七教时教材:交集与并集(2)目的:通过复习及对交集与并集性质的剖析,使学生对概念有更深刻的理解 过程:一、复习:交集、并集的定义、符号提问(板演):(P 13 例8 )设全集 U = {1,2,3,4,5,6,7,8},A = {3,4,5} B = {4,7,8}求:(C U A )∩(C U B), (C U A)∪(C U B), C U (A ∪B), C U (A ∩B)解:C U A = {1,2,6,7,8} C U B = {1,2,3,5,6}(C U A)∩(C U B) = {1,2,6}(C U A)∪(C U B) = {1,2,3,5,6,7,8}Θ A ∪B = {3,4,5,7,8} A ∩B = {4}∴ C U (A ∪B) = {1,2,6}C U (A ∩B) = {1,2,3,5,6,7,8,}结合图 说明:我们有一个公式:(C U A)∩ ( C U B) = C U (A ∪B)(C U A)∪( C U B) = C U (A ∩B)二、另外几个性质:A ∩A = A, A ∩φ= φ, A ∩B = B ∩A,A ∪A = A, A ∪φ= A , A ∪B = B ∪A.(注意与实数性质类比)例6 ( P 12 ) 略进而讨论 (x,y) 可以看作直线上的点的坐标A ∩B 是两直线交点或二元一次方程组的解同样设A = {x | x 2-x -6 = 0} B = {x | x 2+x -12 = 0}则 (x 2-x -6)(x 2+x -12) = 0 的解相当于 A ∪B即: A = {3,-2} B = {-4,3} 则 A ∪B = {-4,-2,3}三、关于奇数集、偶数集的概念略见P12例7 (P12 )略练习P13四、关于集合中元素的个数规定:集合A 的元素个数记作:card (A)观察、分析得:作图card (A∪B) = card (A) +card (B) -card (A∩B)五、(机动):《课课练》P8 课时5 “基础训练”、“例题推荐”六、作业:课本P14 6、7、8《课课练》P8—9 课时5中选部分。

2013白蒲中学高一数学教案:集合与简易逻辑:25(苏教版)

2013白蒲中学高一数学教案:集合与简易逻辑:25(苏教版)

第二十五教时
教材:简易逻辑、四种命题、反证法、充要条件;《教学与测试》11、12、13课
目的:复习上述教学内容,要求学生对有关知识的掌握更加牢固,理解更加深刻。

过程:
一、复习:
1、简易逻辑:(1) 命题的概念—能判断真假
(2) 逻辑联结词及复合命题:“或”、“且”、“非”
(3) 复合命题的真假—真值表,简单复合命题的否定
2、四种命题:(1) 四种命题—原命题、逆命题、否命题、逆否命题
(2) 四种命题的关系:互逆、互否、互为逆否及其真假
3、反证法:步骤及如何导出“矛盾”
4、充要条件:(1) 有关意义:充分条件,必要条件,充要条件—强调利用
推断符号
(2) 充要条件与四种命题的关系
二、处理《教学与测试》第11课P21-22 口答为主
例一:主要强调“命题”的意义
例二:首先要写出三种简单复合形式,然后判断其真假。

例三:注意训练将常用的命题“改写”成三种不同形式以利解题
三、处理《教学与测试》第12课P23-24
例一:注意命题的否定形式,尤其是简单复合命题的否定形式。

例二:强调由原命题写出其他三种命题。

例三:突出反证法的步骤及注意事项。

四、处理《教学与测试》第13课P25-26
例一:要能利用推断符号判断充分条件,必要条件和充要条件。

例二:突出三个(或以上)命题的充要条件的判断方法。

例三:体现充要条件的应用。

五、作业:上述三课中余下部分(其中相当的部分可做在书上)
1。

高一数学集合与简易逻辑教案11苏教版

高一数学集合与简易逻辑教案11苏教版

高一数学集合与简易逻辑教案11苏教版第一篇:高一数学集合与简易逻辑教案11 苏教版江苏省白蒲中学2013高一数学集合与简易逻辑教案11 苏教版教材:含绝对值不等式的解法目的:从绝对值的意义出发,掌握形如 | x | = a的方程和形如 | x | > a, | x | < a(a>0)不等式的解法,并了解数形结合、分类讨论的思想。

过程:一、实例导入,提出课题实例:课本 P14(略)得出两种表示方法:1.不等式组表示:⎨⎧x-500≤52.绝对值不等式表示::| x - 500 | ≤5 500-x≤5⎩课题:含绝对值不等式解法二、形如| x | = a(a≥0)的方程解法(a>0)⎧a⎪(a=0)复习绝对值意义:| a | = ⎨0⎪-a(a<0)⎩几何意义:数轴上表示 a 的点到原点的距离.例:| x | = 2.三、形如| x | > a与 | x | < a例| x | > 2与 | x | < 21︒从数轴上,绝对值的几何意义出发分析、作图。

解之、见P15略结论:不等式| x | > a的解集是{ x | -a< x < a}| x | < a的解集是{ x | x > a 或 x < -a}2︒从另一个角度出发:用讨论法打开绝对值号| x | < 2⇒⎨⎧x≥0⎧x<0或⎨⇒0 ≤ x < 2或-2 < x < 0 ⎩x<2⎩-x<2 ⎧x≥0⎧x<0或⎨⇒ { x | x > 2或 x < -2} x>2-x>2⎩⎩合并为 { x | -2 < x < 2}同理 | x | < 2⇒⎨3︒例题P15例一、例二略4︒《课课练》P12“例题推荐”四、小结:含绝对值不等式的两种解法。

五、作业:P16练习及习题1.4第二篇:高一数学集合与简易逻辑3教案第三教时证明:设 x 是 A 的任一元素,则x∈A教材:子集目的:让学生初步了解子集的概念及其表示法,同时了解等集与真子集的有关概念.过程:一提出问题:现在开始研究集合与集合之间的关系.存在着两种关系:“包含”与“相等”两种关系.二“包含”关系—子集1.实例: A={1,2,3}B={1,2,3,4,5}引导观察.结论: 对于两个集合A和B,如果集合A的任何一个元素都是集合B的元素,则说:集合A包含于集合B,或集合B包含集合A,记作A⊆B(或B⊇A)也说: 集合A是集合B的子集.2.反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊄B(或B⊄A)注意: ⊆也可写成⊂;⊇也可写成⊃;也可写成。

高一数学教案-第一章“集合与简易逻辑”教材分析

高一数学教案-第一章“集合与简易逻辑”教材分析

第一章“集合与简易逻辑”教材分析本章安排的是“集合与简易逻辑”,这一章主要讲述集合的初步知识与简易逻辑知识两部分内容.集合的初步知识是现行高中数学教科书中原来就有的内容,这部分主要包括集合的有关概念、集合的表示及集合同集合之间的关系.简易逻辑知识则是新增加的内容,这部分主要介绍逻辑联结词“或”、“且”、“非”、四种命题及其相互关系、充要条件等有关知识集合概念及其基本理论,称为集合论,是近代数学的一个重要的基础.一方面,许多重要的学科,如数学中的数理逻辑、近世代数、实变函数、泛函分析、概率统计、拓扑等,都建立在集合理论的基础上.另一方面,集合论及其所反映的数学思想,在越来越广泛的领域中得到应用.逻辑是研究思维形式及其规律的一门基础学科.学习数学,需要全面地理解概念,正确地进行表述、推理和判断,这就离不开对逻辑知识的掌握和运用.更广泛地说,在日常生活、学习、工作中,基本的逻辑知识也是认识问题、研究问题不可缺少的工具,是人们文化素质的组成部分.在高中数学中,集合的初步知识与简易逻辑知识,与其他内容有着密切联系,它是学习、掌握和使用数学语言的基础,这就是把它们安排在高中数学起始章的出发点.本章共编排了8小节,教学时间约需22课时:1 1 集合约2课时1 2 子集、全集、补集约2课时1 3 交集、并集约2课时1 4 绝对值不等式的解法约2课时1 5 一元二次不等式的解法约4课时1 6 逻辑联结词约2课时1 7 四种命题约2课时1 8 充分条件与必要条件约2课时小结与复习约4课时说明:本章是高中数学的起始章,课时安排得相对宽松一些,像小结与复习部分安排4课时,其中考虑到了对初中内容进行适当复习、巩固的因素.一内容与要求大体上按照集合与逻辑这两个基本内容,第一章编排成两大节.第一大节是“集合”.学生在小学和初中数学中,已经接触过集合,对于诸如数集(整数的集合、有理数的集合)、点集(圆)等,都有了一定的感性认识.在此基础上,这一大节首先结合实例引出集合与集合的元素的概念,并介绍了集合的表示方法.然后,从讨论集合与集合之间的包含与相等的关系入手,给出子集的概念,此外,还给出了与子集相联系的全集与补集的概念.接着,又讲述了属于集合运算的交集、并集的初步知识.鉴于不等式的内容目前初中数学只讲述一元一次不等式与一元一次不等式组,考虑到集合知识的运用与巩固,又考虑到下一章讨论函数的定义域与值域的需要,第一大节最后安排的是绝对值不等式与一元二次不等式的解法.此外,在这一大节之后,还附了一篇关于有限集合元素个数的阅读材料.这一大节的重点是有关集合的基本概念.学习集合的初步知识,可以使学生更好地理解数学中出现的集合语言,可以使学生更好地使用集合语言表述数学问题,并且可以使学生运用集合的观点研究、处理数学问题,这里,起重要作用的就是有关集合的基本概念.这一大节的难点是有关集合的各个概念的含义以及这些概念相互之间的区别与联系.学生是从本章才正式开始学习集合知识的,这部分包含了比较多的新概念,还有相应的新符号,有些概念、符号还容易混淆,这些因素都可能造成学生学习的障碍.。

高一数学教案:集合与简易逻辑

高一数学教案:集合与简易逻辑

高一数学教案:集合与简易逻辑【】欢迎来到查字典数学网高一数学教案栏目,教案逻辑思路明晰,符合认识规律,培养学生自主学习习惯和才能。

因此小编在此为您编辑了此文:高一数学教案:集合与简易逻辑希望能为您的提供到帮助。

本文题目:高一数学教案:集合与简易逻辑教材:逻辑联结词(1)目的:要求学生理解复合命题的意义,并能指出一个复合命题是有哪些简单命题与逻辑联结词,并能由简单命题构成含有逻辑联结词的复合命题。

过程:一、提出课题:简单逻辑、逻辑联结词二、命题的概念:例:125 ① 3是12的约数② 0.5是整数③定义:可以判断真假的语句叫命题。

正确的叫真命题,错误的叫假命题。

如:①②是真命题,③是假命题反例:3是12的约数吗? x5 都不是命题不涉及真假(问题) 无法判断真假上述①②③是简单命题。

这种含有变量的语句叫开语句(条件命题)。

三、复合命题:1.定义:由简单命题再加上一些逻辑联结词构成的命题叫复合命题。

2.例:(1)10可以被2或5整除④ 10可以被2整除或10可以被5整除(2)菱形的对角线互相菱形的对角线互相垂直且菱形的垂直且平分⑤ 对角线互相平分(3)0.5非整数⑥非0.5是整数观察:形成概念:简单命题在加上或且非这些逻辑联结词成复合命题。

3.其实,有些概念前面已遇到过如:或:不等式 x2x60的解集 { x | x2或x3 }且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 } 四、复合命题的构成形式假设用 p, q, r, s表示命题,那么复合命题的形式接触过的有以下三种:即: p或q (如④) 记作 pqp且q (如⑤) 记作 pq非p (命题的否认) (如⑥) 记作 p小结:1.命题 2.复合命题 3.复合命题的构成形式【总结】2022年查字典数学网为小编在此为您搜集了此文章高一数学教案:集合与简易逻辑,今后还会发布更多更好的文章希望对大家有所帮助,祝您在查字典数学网学习愉快!。

第一章集合与简易逻辑教案

第一章集合与简易逻辑教案

高中数学第一册(上)第一章集合与简易逻辑◇教材分析【知识结构】本章知识主要分为集合、简单不等式的解法(可瞧做集合的化简)、简易逻辑三部分:【知识点与学习目标】【高考评析】集合知识作为整个数学知识的基础,在高考中重点考察的就是集合的化简,以及利用集合与简易逻辑的知识来指导我们思维,寻求解决其她问题的方法.◇学习指导【学法指导】本章的基本概念较多,要力求在理解的基础上进行记忆.【数学思想】1.等价转化的数学思想; 2.求补集的思想;3.分类思想;4.数形结合思想.【解题规律】1. 如何解决与集合的运算有关的问题?1) 对所给的集合进行尽可能的化简;2) 有意识应用维恩图来寻找各集合之间的关系;3) 有意识运用数轴或其它方法来直观显示各集合的元素.2. 如何解决与简易逻辑有关的问题?1) 力求寻找构成此复合命题的简单命题;2) 利用子集与推出关系的联系将问题转化为集合问题.引言通过一个实际问题,目的就是为了引出本章的内容。

1、分析这个问题,要用数学语言描述它,就就是把它数学化,这就需要集合与逻辑的知识;2、要解决问题,也需要集合与逻辑的知识.在教学时,主要就是把这个问题本身讲清楚,点出为什么“回答有20名同学参赛”不一定对.而要进一步认识、讨论这个问题,就需要运用本章所学的有关集合与逻辑的知识了.§1、1集合〖教学目的〗通过本小节的学习,使学生达到以下要求:(1)初步理解集合的概念,知道常用数集及其记法; (2)初步了解“属于”关系的意义;(3)初步了解有限集、无限集、空集的意义.〖教学重点与难点〗本小节的重点就是集合的基本概念与表示方法;难点就是运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合.〖教学过程〗☆本小节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明.然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子.1、集合的概念:在初中代数里学习数的分类时,就用到“正数的集合”,“负数的集合”等此外,对于一元一次不等式2x一1>3,所有大于2的实数都就是它的解.我们也可以说,这些数组成这个不等式的解的集合,简称为这个不等式的解集.在初中几何里学习圆时,说圆就是到定点的距离等于定长的点的集合.几何图形都可以瞧成点的集合.一般地,某些指定的对象集在一起就成为一个集合,也简称集.这句话,只就是对集合概念的描述性说明.集合则就是集合论中原始的、不定义的概念.在开始接触集合的概念时,主要还就是通过实例,对概念有一个初步认识. 例如, “我校篮球队的队员”组成一个集合; “太平洋、大西洋、印度洋、北冰洋”也组成一个集合.我们一般用大括号表示集合,上面的两个集合就可以分别表示成4我校篮球队的队员)与4太平洋。

【高中数学】高一数学《集合与简易逻辑》教案

【高中数学】高一数学《集合与简易逻辑》教案

【高中数学】高一数学《集合与简易逻辑》教案教材:逻辑联结词(1)目的:理解复合命题的含义,指出复合命题具有哪些简单命题和逻辑连接词,并从简单命题中形成包含逻辑连接词的复合命题。

过程:一、主题:简单逻辑,逻辑连接词二、命题的概念:例:12>5①3是12的约数②0.5是整数③定义:能够判断真假的陈述称为命题。

正确的命题称为真命题,错误的命题称为假命题。

如:①②是真命题,③是假命题反例:3是12的除数吗?x> 5.不是命题不涉及真假(问题)无法判断真假以上① ② ③ 这些都是简单的命题。

这种包含变量的语句称为开放语句(条件命题)。

三、复合命题:1.定义:一个由简单命题和一些逻辑连接词组成的命题称为复合命题。

2.例:(1)10可以被2或5整除④10可以被2整除或10可以被5整除(2)钻石的对角线相互垂直,呈菱形垂直且平分⑤对角线互相平分(3)0高二⑥ 不是整数0.5观察:形成概念:简单命题在加上“或”“且”“非”这些逻辑联结词成复合命题。

3.事实上,以前也遇到过一些概念如:或:不等式x2x6>0的解集{xx<2或x>3}和:不等式x2x6<0的解集{x2<x<3},即{XX>2和x<3}四、复合命题的构成形式如果P,Q,R,s。

用于表示一个命题,复合命题有三种形式:即:p或q(如④)记作pqP和Q(例如。

⑤) 记录为PQ非p(命题的否定)(如⑥)记作p总结:1。

提议2。

复合命题3。

复合命题的构成形式。

2013年江苏省白蒲中学2013高一数学(苏教版)必修4《集合与简易逻辑》教案3

2013年江苏省白蒲中学2013高一数学(苏教版)必修4《集合与简易逻辑》教案3

江苏省白蒲中学2013高一数学集合与简易逻辑教案3苏教版教材: 子集目的: 让学生初步了解子集的概念及其表示法,同时了解等集与真子集的有关概念.过程:一提出问题:现在开始研究集合与集合之间的关系.存在着两种关系:“包含”与“相等”两种关系.二“包含”关系—子集1. 实例: A={1,2,3} B={1,2,3,4,5} 引导观察.结论: 对于两个集合A和B,如果集合A的任何一个元素都是集合B的元素,则说:集合A包含于集合B,或集合B包含集合A,记作A⊆B (或B⊇A)也说: 集合A是集合B的子集.2. 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊄B (或B⊄A)⊂;⊇也可写成⊃。

注意: ⊆也可写成⊂;⊇也可写成⊃;⊆也可写成3. 规定: 空集是任何集合的子集 . φ⊆A三“相等”关系1.实例:设 A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即: A=B2.①任何一个集合是它本身的子集。

A⊆A⊂≠②真子集:如果A⊆B ,且A≠ B那就说集合A是集合B的真子集,记作A B③空集是任何非空集合的真子集。

④如果 A⊆B, B⊆C ,那么 A⊆C证明:设x是A的任一元素,则 x∈AA⊆B,∴x∈B 又 B⊆C ∴x∈C 从而 A⊆C同样;如果 A⊆B, B⊆C ,那么 A⊆C⑤如果A⊆B 同时 B⊆A 那么A=B四例题: P8 例一,例二(略)练习 P9 补充例题《课课练》课时2 P3五小结:子集、真子集的概念,等集的概念及其符号几个性质: A⊆AA⊆B, B⊆C ⇒A⊆CA⊆B B⊆A⇒ A=B作业:P10 习题1.2 1,2,3 《课课练》课时中选择。

江苏省白蒲中学高一数学 集合与简易逻辑教案9~10 苏教版

江苏省白蒲中学高一数学 集合与简易逻辑教案9~10 苏教版

江苏省白蒲中学2013高一数学 集合与简易逻辑教案9~10 苏教版(可以考虑分两个教时授完)教材: 单元小结,综合练习目的: 小结、复习整单元的内容,使学生对有关的知识有全面系统的理解。

过程:一、复习:1.基本概念:集合的定义、元素、集合的分类、表示法、常见数集2.含同类元素的集合间的包含关系:子集、等集、真子集3.集合与集合间的运算关系:全集与补集、交集、并集二、苏大《教学与测试》第6课 习题课(1)其中“基础训练”、例题三、补充:(以下选部分作例题,部分作课外作业)1、用适当的符号(∈,∉, , ,=,⊆)填空: 0 ∉ Φ; 0 ∈ N ; Φ {0}; 2 ∈ {x|x -2=0};{x|x 2-5x+6=0} = {2,3}; (0,1) ∈ {(x,y)|y=x+1};{x|x=4k,k ∈Z} {y|y=2n,n ∈Z}; {x|x=3k,k ∈Z} ⊆ {x|x=2k,k ∈Z};{x|x=a 2-4a,a ∈R} {y|y=b 2+2b,b ∈R} 2、用适当的方法表示下列集合,然后说出其是有限集还是无限集。

① 由所有非负奇数组成的集合; {x=|x=2n+1,n ∈N} 无限集② 由所有小于20的奇质数组成的集合; {3,5,7,11,13,17,19} 有限集③ 平面直角坐标系内第二象限的点组成的集合; {(x,y)|x<0,y>0} 无限集 ④ 方程x 2-x+1=0的实根组成的集合; Φ 有限集⑤ 所有周长等于10cm 的三角形组成的集合;{x|x 为周长等于10cm 的三角形} 无限集3、已知集合A={x,x 2,y 2-1}, B={0,|x|,y} 且 A=B 求x,y 。

解:由A=B 且0∈B 知 0∈A若x 2=0则x=0且|x|=0 不合元素互异性,应舍去若x=0 则x 2=0且|x|=0 也不合∴必有y 2-1=0 得y=1或y=-1若y=1 则必然有1∈A, 若x=1则x 2=1 |x|=1同样不合,应舍去若y=-1则-1∈A 只能 x=-1这时 x 2=1,|x|=1 A={-1,1,0} B={0,1,-1}即 A=B综上所述: x=-1, y=-14、求满足{1} A ⊆{1,2,3,4,5}的所有集合A 。

江苏省白蒲中学高一数学 直线、平面、简单几何体教案13 苏教版

江苏省白蒲中学高一数学 直线、平面、简单几何体教案13 苏教版

一、素质教育目标(一)知识教学点1.三垂线定理及其逆定理的形成和论证.2.三垂线定理及其逆定理的简单应用.(二)能力训练点1.猜想和论证能力的训练.2.由线面垂直证明线线垂直的方法(线面垂直法);3.训练学生分清三垂线定理及其逆定理中各条直线之间的关系;4.善于在复杂图形中分离出适用的直线用于解题.(三)德育渗透点通过定理的论证和练习的训练渗透化繁为简的思想和转化的思想.二、教学重点、难点、疑点及解决方法1.教学重点(1)掌握三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.(2)掌握三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直.2.教学难点:两个定理的证明及应用.3.教学疑点及解决方法(1)三垂线定理及其逆定理,揭示了平面内的直线与平面的垂线、斜线及斜线在平面内的射影这三条直线的垂直关系,其实质是平面内的一条直线与平面的一条斜线(或斜线在平面内的射影)垂直的判定定理.(2)本节课的两个定理,涉及的直线较多,学生在认识和理解上都会存在困难,为了加深印象并说明复杂的直线位置关系,可以采用一些教具,或者让学生准备三根竹签,按照教师的要求摆放.在学生感性认识的基础上,进行理性的证明和记忆,有助于定理的掌握.(3)三垂线定理是先有直线a垂直于射影AO的条件,然后得到a垂直于斜线PO的结论;而其逆定理则是已知直线a垂直于斜线PO,再推出a垂直于射影AO.在引用时容易引起混淆,解决的办法是,构造一个同时使用这两个定理的问题,引导学生分清.(4)教学核心是定理的形成教学,教学的指导思想是:遵循由具体探究抽象、由简单到复杂的认识规律,启发学生反复思考,不断内化成为自己的认知结构.三、课时安排本课题共安排2课时,本节课为第一课时.四、学生活动设计三垂线定理及其逆定理的条件和结论都比较简单,但应用却很广泛,为了培养学生的能力,应让学生探索定理的命题形式,充分利用好手中的三根竹签.设计学生活动符合建构主义的教学思想,也符合教师为主导、学生为主体的教学思想;教师根据教学要求,提出问题,创设情景,引导学生观察、猜想,主动发现,主动发展,从而调动了学生学习的积极性.五、教学步骤(一)温故知新,引入课题师:我们已经学习了直线和平面的垂直关系,学新课之前,让我们作个简单的回顾:1.直线和平面垂直的定义?2.直线和平面垂直的判定定理.3.什么叫做平面的斜线、斜线在平面上的射影?4.已知平面α和斜线l,如何作出l在平面α上的射影?(板书)l∩α=A,作出l在平面α上的射影(二)猜想推测,激发兴趣师:根据直线与平面垂直的定义我们知道,平面内的任意一条直线都和平面的垂线垂直,那么,平面内的任意一条直线是否也都和平面的一条斜线垂直呢?(教师演示教具,用一个三角板的一条直角边当平面的斜线,一根包有色纸的竹竿摆放在桌面的不同位置当作平面内的不同直线,学生容易看出它们不一定互相垂直.)师:是否平面内的任意一条直线都不和这条平面的斜线垂直呢?(教师将三角板的另一条直角边平放在桌面上,并提示学生注意这条直角边与平面的关系——在平面上,与斜线的关系——垂直.)师:在平面上有几条直线和这条斜线垂直?(学生可能会回答一条,也可能回答无数条,教师应调整桌面上的竹竿位置,使其平行于三角板的直角边,然后平行移动,并向学生说明,这些直线都与斜线垂直.)师:平面内一条直线具备什么条件,才能和平面的一条斜线垂直?(学生的直觉判断是要与那条和桌面接触的直角边平行,这是正确的,但无多大用途;这时教师提醒学生注意斜线在平面内的射影,并调整教具,将三角板的斜边当作平面的斜线,构成垂线、斜线和射影的立体模型;要求学生与同桌配合,摆放课前准备的竹签成教师示范的模型;然后在教师的引导之下观察、猜想,与同桌的探讨中发现了只要与斜线的射影垂直就和斜线垂直.)(三)层层推进,证明定理师:猜测和实验的结论不一定正确,那么你想怎样证明这个猜想呢?(若用幻灯或投影仪,可以节省板书时间.)已知:PA、PO分别是平面α的垂线、斜线,AO是PO在平面α求证:a⊥PO.师:这是证明两条直线互相垂直的问题,你准备怎么证明?分析:从直线和平面垂直的定义可知,要证两条直线互相垂直,只要证明其中一条直线垂直于另一条直线所在的平面即可.师:这个平面你找到了吗?生:是平面PAO.师:怎样证明a⊥平面PAO呢?生:只要证明a垂直于平面PAO内的两条相交直线.证明:说明:1.定理的证明,体现了“由线面垂直证明线线垂直”的方法;2.上述命题反映了平面内的直线、平面的斜线和斜线在平面内的射影这三条直线之间的垂直关系,这就是著名的三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.3.改变定理的题设和结论,得到逆命题:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直.可以用同样的方法证明,这就是三垂线定理的逆定理(请学生简要说明其证明方法和步骤).4.定理中包含了三个垂直关系:PA⊥α,AO⊥a,PO⊥a,看出三垂线定理名称的来由.5.从定理的条件看,关键的是直线和平面的相对位置关系,而与平面本身是否水平放置无关;在平面内的直线a与斜线或斜线的射影的位置关系关键在于垂直;这样直线a的如下四种位置关系,都是三垂线定理及其逆定理常见的情形.6.从定理的结论看,三垂线定理及其逆定理是判断直线垂直的重要命题.(四)初步运用,提高能力1.(见课后练习题1.)已知:点O是△ABC的垂心,OP⊥平面ABC.求证:PA⊥BC.(学生先思考,教师作如下点拨)(1)什么叫做三角形垂心?(2)点O是△ABC的垂心可以得到什么结论?(3)可以考虑使用三垂线定理证明:你能找出本题中,应用三垂线定理必须涉及到的几个重要元素?生:首先先确定一个平面——平面ABC,斜线是PA,PA在平面ABC上的射影是AD,∵AD 垂直于BC,∴PA⊥BC.师:他的回答是否有缺漏?生:应该交代BC是平面ABC上的一条直线.师:对,这个交代是必需的!(视学生程度作适当补充,用教具演示,还可以举反例说明.)证明:连接AO并延长交BC与D.师:三垂线定理是证明空间两条直线互相垂直的重要方法,上面的示例反映了应用三垂线定理解题的一般步骤,即确定一个平面、平面的垂线、斜线和斜线在平面上的射影.同时要注意的是平面内的一条直线和射影垂直,有这条直线和斜线垂直(定理);平面内的一条直线和斜线垂直,有这条直线和射影垂直(逆定理),同学们必须理解掌握.2.(见课本例1)如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上.⊥AC,PO⊥α,垂足分别是E、F、O,PE=PF.求证:∠BAO=∠CAO.(学生思考,教师作适当的点拨.)(1)在平面几何中,证明点在角的平分线上的常规方法是什么?(2)PE=PF给我们提供了什么结论?(3)所缺的垂直关系可以用三垂线定理或逆定理证明,你能列出证明所需的条件吗?证明:3.(课堂练习,师生共同完成.)如图1-91,点P为平面ABC外一点,PA⊥BC,PC⊥AB,求证:PB⊥AC.分析:证明直线与直线垂直的问题,可以考虑三垂线定理及其逆定理,图形中缺少的平面的垂线需要添加上去.证明:过P作平面ABC的垂线,垂足为O,连结AO、BO、CO.∵ PA⊥BC,∴AO⊥BC(三垂线逆定理).同理可证 CO⊥AB,∴O是△ABC的垂心.∵OB⊥AC,∴PB⊥AC(三垂线定理).(五)归纳小结,强化思想师:这节课,我们学习了三垂线定理及其逆定理,定理的证明方法是证明空间两条直线互相垂直的基本方法,我们称之为线面垂直法;还通过三个练习的训练加深了定理的理解,同时得到立体几何问题解决的一般思路.六、布置作业作为一般要求,完成习题四11、12、13.提高要求,完成以下两个补充练习:1.如图1-92,PA⊥△ABC所在平面,AB=AC=13,BC=10,PA=5,求点P到直线BC的距离.参考答案:设BC的中点为D,连结PD.∵AB=AC=13,BC=10,∴AD⊥BC.且AD=12.又∵PA⊥平面ABC,∴PD⊥BC.即 PD的长度就是P到直线BC的距离.而 PD=13.2.(课后练习题2略作改变)如图1-93,l是平面α的斜线,斜足是O,A是l上任意一点,AB是平面α的垂线,B是垂足,设OD是平面α内与OB不同的一条直线,AC垂直于OD于C,若直线l与平面α所成的角θ=45°,∠BOC=45°,求∠AOC的大小.参考答案:连结BC.中,有∠AOC=60°.讲评作业时说明:求角大小的问题,往往先确定(或构造)一个包含这个角的三角形,然后解三角形.由此,我们还验证了∠AOC>θ.。

高一数学 集合与简易逻辑教案22 苏教版 教案

高一数学 集合与简易逻辑教案22 苏教版 教案

江苏省白蒲中学2013高一数学 集合与简易逻辑教案22 苏教版教材:反证法目的:要求学生初步学会反证法的步骤,并能用以证明一些命题。

过程:一、提出问题:初中平几中有一个命题:“过在同一直线上的三点A 、B 、C 不能作圆”。

二、如何证明:1,(教师给出如下方法)证:先假设可以作一个⊙O 过A 、B 、C 三点,则O 在AB 的中垂线l 上,O 又在B C 的中垂线m 上, 即O 是l 与m 的交点。

但∵A 、B 、C 共线,∴l ∥m (矛盾)∴过在同一直线上的三点A 、B 、C 不能作图。

2.指出这种证明方法是“反证法”。

定义:从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫反证法。

即:欲证p 则q ,证:p 且非q (反证法)3,反证法的步骤:1)假设命题的结论不成立,即假设结论的反面成立。

2)从这个假设出发,通过推理论证,得出矛盾。

3)由矛盾判定假设不正确,从而肯定命题的结论正确。

4,反证法:1)反设(即假设) p 则q (原命题) 反设p 且非q 。

2)可能出现三种情况:①导出非p 为真——与题设矛盾。

②导出q 为真——与反设中“非q “矛盾。

③导出一个恒假命题——与公理、定理矛盾。

三、例一(P 32例3) 用反证法证明:如果a >b >0,那么b a >。

证一(直接证法)()()b a ba b a -+=-,∵a >b >0,∴a - b >0即()()0>-+b a ba ,∴0>-b a∴b a >证二(反证法)假设a 不大于b ,则b a b a =<或∵a >0,b >0,∴b a a a b a ⋅<⋅⇒<① 或 b b b a ⋅<⋅ ②由①、②(传递性)知:b b a a ⋅<⋅ 即 a < b (与题设矛盾) 同样,若b a b a =⇒=(与题设矛盾) ∴b a >.例二、(P 32--33例4)用反证法证明圆的两条不是直径的相交弦不能互相平分。

2013年江苏省白蒲中学2013高一数学(苏教版)教案19

2013年江苏省白蒲中学2013高一数学(苏教版)教案19

江苏省白蒲中学2013高一数学 平面向量教案19 苏教版教材:正弦定理和余弦定理的复习《教学与测试》76、77课目的:通过复习、小结要求学生对两个定理的掌握更加牢固,应用更自如。

过程:一、复习正弦定理、余弦定理及解斜三角形二、例一 证明在△ABC 中A a sin =B b sin =Cc sin =2R ,其中R 是三角形外接圆半径 证略 见P159注意:1.这是正弦定理的又一种证法(现在共用三种方法证明)2.正弦定理的三种表示方法(P159)例二 在任一△ABC 中求证:0)sin (sin )sin (sin )sin (sin =-+-+-B A c A C b C B a 证:左边=)sin (sin sin 2)sin (sin sin 2)sin (sin sin 2B A C R A C B R C B A R -+-+-=]sin sin sin sin sin sin sin sin sin sin sin [sin 2B C A C A B C B C A B A R -+-+-=0=右边例三 在△ABC 中,已知3=a ,2=b ,B=45︒ 求A 、C 及c 解一:由正弦定理得:23245sin 3sin sin === b B a A ∵B=45︒<90︒ 即b <a ∴A=60︒或120︒当A=60︒时C=75︒ 22645sin 75sin 2sin sin +=== B C b c 当A=120︒时C=15︒ 22645sin 15sin 2sin sin -=== B C b c 解二:设c =x 由余弦定理 B ac c a b cos 2222-+= 将已知条件代入,整理:0162=+-x x 解之:226±=x 当226+=c 时2)13(231226223)226(22cos 22221=++=+⋅⋅-++=-+=bc a c b A从而A=60︒ C=75︒ 当226-=c 时同理可求得:A=120︒ C=15︒ 例四 试用坐标法证明余弦定理证略见P161例五 在△ABC 中,BC=a , AC=b , a, b 是方程02322=+-x x 的两个根,且2cos(A+B)=1 求 1︒角C 的度数 2︒AB 的长度 3︒△ABC 的面积解:1︒cosC=cos[π-(A+B)]=-cos(A+B)=-21 ∴C=120︒ 2︒由题设:⎩⎨⎧=-=+232b a b a ∴AB 2=AC 2+BC 2-2AC •BC •osC 120cos 222ab b a -+= ab b a ++=22102)32()(22=-=-+=ab b a 即AB=103︒S △ABC =2323221120sin 21sin 21=⋅⋅== ab C ab 例六 如图,在四边形ABCD 中,已知AD ⊥CD, AD=10, AB=14, ∠BDA=60︒, ∠BCD=135︒ 求BC的长 解:在△ABD 中,设BD=x则BDA AD BD AD BD BA ∠⋅⋅-+=cos 2222即 60cos 1021014222⋅⋅-+=x x整理得:096102=--x x解之:161=x 62-=x (舍去)由余弦定理:BCD BD CDB BC ∠=∠sin sin ∴2830sin 135sin 16=⋅= BC 例七 (备用)△ABC 中,若已知三边为连续正整数,最大角为钝角,1︒求最大角 2︒求以此最大角为内角,夹此角两边之和为4的平行四边形的最大面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十九教时
教材:逻辑联结词(2)
目的:通过实例,要求学生理解逻辑联结词,“或”“且”“非”的含义,并能利用真值表,判断含有复合命题的真假。

过程:
一、复习:“命题”“复合命题”的概念
本堂课研究的问题是:概括简单命题的真假,讨论含有“或“且”“非”
的复合命题的真假。

二、先介绍“真值”:命题分“真”“假”两种判断结论。

也可用1表示“真”;
0表示“假”。

这里1与0表示真值,所以真值只能是1
或0。

生活中常有“中间情况”从而诞生了“模糊逻辑”。

三、真值表:
1.非p形式:
例:命题P:5是10的约数(真)命题p:5是8的约数(假)
则命题非p:5不是10的约数(假)非p:5不是8的约数(真)结论:为真非为假、为假非为真
p 非p
真假
假真
记忆:“真假相反”
2.p且q形式
例:命题p:5是10的约数(真)q:5是15的约数(真)
s:5是12的约数(假)r:5是8的约数(假)
则命题p且q:5是10的约数且是15的约数(真)
p且q:5是10的约数且是8的约数(假)
p且q:5是12的约数且是8的约数(假)
p q p且q p q p或q
真真真真真真
真假假真假真
假真假假真真
假假假假假假记忆:“同真为真”(其余为假)“同假为假”(其余为真)3.p或q形式仍看上例
则命题p或q:5是10的约数或5是15的约数(真)
p或r:5是10的约数或5是8的约数(真)
s或r:5是12的约数或5是8的约数(假)
四、几个注意问题:
1.逻辑中的“或”与日常生活中的“或”是有区别的
例:“苹果是长在树上或长在地里”生活中这句话不妥,但在逻辑中却是真命题。

2.逻辑联结词中“或”与“且”的意义:
举出一些生活例子,见P28 洗衣机例子开门的事
电路:
或门电路(或)与门电路(且)3.学生讨论:举例
五、例题:P25例二
练习(提问)P28
六、有时间则处理“教学与测试”第11课
七、作业:P29 习题1.6 3、4。

相关文档
最新文档