第三章沉淀法3-2
重力沉降法
第三章重力沉降法1.沉淀有哪几种类型?各有何特点?说明各种类型的联系和区别以及适用范围。
2.水的沉淀法处理的基本原理是什么?影响沉淀的因素有哪些?3.沉砂池的作用是什么?曝气沉砂池的工作原理与平流式沉砂池有何区别?4.平流式、竖流式、辐流式沉淀池各有何优缺点?5.何为理想沉淀池?如何从理想沉淀池的理论分析得出斜板(管)沉淀池的原理?6.试推导下向流、横向流的斜板沉淀池设计计算方法。
7.水中油珠的密度ρs=800kg/m3,直径d=50μm,求它在20℃水中的上浮速度?8.现有一坐沉沙池能除去水中直径为0.15mm、比重为1.2的球形颗粒。
试计算在相同理想条件下,该沉沙池对直径为0.08mm,比重为1.5的球形颗粒的去除率是多少?9.某废水的静置沉降试验数据如下表,试验有效水深H=1.8m,污水悬浮物浓度C0=300mg/L,试求u0=2.0cm/min颗粒的总去除率。
时间/min 0 60 80 100 130 200 240 420 取样浓度/(mg/L-1) 300 189 180 168 156 111 78 2710.在有效高度为1.5m的沉降柱中点取样,得到高炉煤气洗涤水的沉降实验结果如下表。
试绘制该种废水的E-t、E-u和ET-t、Er-u沉降曲线,并比较用和H=H0-Δhi计算工作水深的结果。
沉降时间t(min) 0 5 10 30 60 90 120 累计水深下降高度Δh(m)0 0.025 0.045 0.065 0.085 0.112775 1586 1250 675 458 352 252 水样中的残留SS浓度(mg/L)2741 1532 1234 665 452 348 24811.悬浮物浓度为430mg/L的有机废水进行絮凝沉降试验,试验数据如下表,试求沉降时间为60min、深度为1.8m时的悬浮物总去除率。
12.由原始水深为1.5m的沉降柱中点,得到沉降实验的结果如上表。
沉淀分离技术.
蛋白质聚集沉淀
(1)破坏水化膜,分子间易碰撞聚集,将大量盐 加到蛋白质溶液中,高浓度的盐离子有很强的水化 力,于是蛋白质分子周围的水化膜层减弱乃至消失, 使蛋白质分子因热运动碰撞聚集。
(2)破坏水化膜,暴露出憎水区域,由于憎水区域间作用使蛋 白质聚集而沉淀,憎水区域越多,越易沉淀。
(3)中和电荷,减少静电斥力,中性盐加入蛋白质溶液后,蛋 白质表面电荷大量被中和,静电斥力降导致蛋白溶解度降低, 使蛋白质分子之间聚集而沉淀。
亲水胶体在水中的 稳定因素
水化膜
水化膜
+ + + + + + ++ +
带正电荷蛋白质 (亲水胶体) 脱水
碱 酸 等点电时的蛋白质 (亲水胶体) 脱水
碱 酸 带负电荷蛋白质 (亲水胶体) 脱水
+ + + + + + ++ +
带正电荷蛋白质 (疏水胶体)
阴离子 不稳定蛋白颗粒
阳离子
带负电荷蛋白质 (疏水胶体)
7.65 6.85
(1)忽略溶液体积的变化,若回收90%的BSA,需要加 入多少固体硫酸铵?(37.27Kg) (2)沉淀中BSA的纯度是多少?(95.34%)
KS分段盐析法
在一定pH、温度条件下,改变离子强度。 适用于早期粗提阶段的分步分离。
虽然这个理论所假定的条件并不完全适合于蛋白质分子,但该 理论对于理解破坏蛋白质溶液的稳定性仍有很大帮助,同时还 有助于针对具体蛋白质选择最合适的沉淀剂及技术。
DLVO理论
颗粒间的相互作用的位能取决于离子强度。 在低离子强度时,颗粒距离处在中间状态,双 电层斥力占优势,可看为一个凝聚的势垒;在 高离子强度时,吸引力超过排斥力,相互间的 总位能表现为吸引位能。 虽然这个理论所假定 的条件并不完全适合于蛋白质分子,但该理论 对于理解破坏蛋白质溶液的稳定性仍有很大帮 助,同时还有助于针对具体蛋白质选择最合适 的沉淀剂及技术。
第三章 植物化学成分的分离和纯化
30
第三节
一、理化检识
天然产物化学成分的检识方法
理化检识主要是利用物理方法或化学反应来鉴定天然产 物中是否含有某一种或某一类化学成分。常用化学反应来达 到检识的目的,其转属性强、灵敏度高、操作简单易行。根 据反应产生的结果分为以下两种: 1)沉淀反应 某些成分的溶液中加入某种试剂后,能产生难溶性的沉 淀,以沉淀的产生为阳性反应结果。 2)呈色反应 天然产物中许多成分能与某种试剂反应,产生特定颜色 或颜色变化,如羟基蒽醌类化合物加碱液购显红色或红紫色 等等。 31
7
(三)沉淀法
是在提取液中加入某种试剂使产生沉淀,以获得有 效成分或除去杂质的方法。依据加入试剂或溶剂的不 同,可分为以下四种方法:
1、溶剂沉淀法:指在溶液中加入另一种溶剂以改变 混合溶剂的极性,使一部分物质沉淀析出,从而实现 分离。 水提醇沉法:可使多糖、蛋白质沉淀 醇提水沉法:可沉淀亲脂性成分
3、吸附原理: 1)吸附性:大孔吸附树脂本身具有吸附性,是由范德华 力或氢键吸附的结果。
2)筛性原理:是由大孔吸附树脂本身的多孔性所决定的。
4、影响大孔吸附树脂分离效果的因素: 1)化合物极性的大小:极性大的化合物适于在极性的大孔 树脂上分离;而极性小的化合物则适于在非极性的大孔树脂 上分离。 2)化合物体积的大小:在一定条件下,化合物体积越大, 吸附力越强。 27
聚酰胺 吸附剂 适用于极性吸附剂, 而非极性吸附剂则相反
22
离子交换色谱法 离子交换色谱法是利用各种离子性成分与离子交换树脂进 行离子交换反应时,因交换平衡的差异而达到分离的方法。 主要适合分离离子型化合物,如:生物碱、有机酸、氨基酸、 肽类和黄酮类。 1、离子交换树脂的类型:
强酸型 阳离子交换树脂 弱酸型 阴离子交换树脂 弱碱型 强碱型
第三章_沉淀技术
17
3)、盐析分类
lgS =β-ksI
1. ks盐析:固定蛋白质的pH 、T( β ),变动离子 强度I达到沉淀的目的。
2. β盐析:在一定的离子强度下( I ) ,改变溶液 的pH、T ,达到沉淀的目。
15
讨论 1)、KsI项
Ks与溶液的pH、温度无关,仅取决于蛋白质的性 质和盐的种类。 盐浓度↑→离子强度I↑→S↓→析出。 lgS =β-ksI
16
2)、β值的特性及对盐析的影响 •表示不外加盐时的理想溶解度S,与盐的种类无关, 但与温度、pH有关; •pH的影响:pI时蛋白质溶解度最低,β在pI时最小( 调节pH可以导致蛋白质净电荷数变化)
相互作用,此时生物分子很容易相互聚集,在溶
液中的溶解度降得很低,从而形成沉淀从溶液中
析出。
13
• 盐析机理归纳
1).盐离子与蛋白质分子争夺水分子,破坏了蛋 白质表面的水化膜; 2).盐离子电荷的中和作用; 3).盐离子引起了原本在蛋白质分子周围有序排 列的水分子的极化,使水活度降低。 注: 水活度:水分含量的活性部分或自由水。
43
(2)脱水作用
由于使用的有机溶剂与水互溶,它们在溶解于水的同
11
盐析
(1)、继续增大中性盐离子强度时→大量的盐夺取了 自由水,使水分子在盐离子表面聚集→蛋白质胶体 外层的水化膜因盐的夺取而遭到破坏→蛋白质胶体 表面的疏水区域暴露出来,彼此相互聚集,沉淀;
12
(2)、加入高浓度中性盐后,盐离子与生物分子表
面的带相反电荷的离子基团结合,中和了生物分
3第三章-重力沉降法解析
其他辐流式沉淀池
辐流式沉淀池设计要点
• 沉淀池面积按过流率计算 A=Q/u • 池深按停留时间计算 H=ut • 污泥斗坡度0.05~0.10
旋流沉砂池 利用机械力掌握水流流态与流速、加速砂粒沉淀并
使有机物随水流走
1.電機 2.主軸 3.車葉 4.固定支架 5.排水孔 6.注氣管 7.注水管
高斯美 DP系列旋流沉砂池
沉淀池
• 沉淀池分为平流式、竖流式、辐流式。 • 依据运行方式:分为间歇式、连续式 • 间歇式:进水、静置、排水 • 连续式:连续不断流入和排出 • 通常通常辐流式适合于大规模,竖流式适合于小规模,
取最大流量时水在池内的水平流速为0.1m/s, 则水流断面积A= Q/u=1/ 0.1=10〔m2〕
设计有效水深取2.5m,则池宽B=10/2.5=4〔m) 池长L =V/A=180/10=18〔m〕 取每立方污水所需曝气量为0.1m3空气,所需每小时总曝气量: q=0.1(m3 air/m3 ww) × 1(m3 ww/s)× 3600 (s/hr)=360m3
u0
Q A
q
q: 沉淀池的外表负荷或过 流率—单位时间内通过沉 淀池单位外表积的流量。
对于絮凝沉降: 颗粒间并聚变大或 ρ s增大, u也随之增大。其运动轨迹发生变化:
us L gd2 18
进
出
口
流
区
区
絮凝沉降颗粒运动轨迹
污泥区
但是,为保守起见,沉降效率依然按照:
(1x0)
x0 0
u u0
dx
沉砂池
• 去除污水中泥沙、煤渣等相对密度较大的无机颗粒 • 一般位于泵站之前或初沉池之前 • 使水泵、管道免受磨损和堵塞 • 减轻沉淀池的无机负荷 • 改善污泥的流淌性,以便于排放、输运。 • 工作原理:重力分别/离心力分别 • 设计原则与主要参数:传统设计针比照重为2.65、粒径为
第3章沉淀法-水质处理方法
在静水中悬浮颗粒开始沉淀时,
F2 浮 力
因受重力作用而产生加速运动,同
Hale Waihona Puke F3 阻 力时水的阻力也逐渐增大。
经一很短时间后,当阻力F3增大
到与颗粒的“重力F1和浮力F2之差”
相等时,颗粒作等速下沉运动。
F1 重 力
等速沉淀的速度常称沉淀末速度,
简称沉速。
第3章沉淀法-水质处理方法
(3)颗粒沉淀速度
在等速沉淀情况下,F1-F2=F3,即:
1 6d3Sg1 6d3gA u 2 2
水流状态:
层流状态:Re<1时, 24
——Stokes 式
Re
过渡状态:1<Re<103
时,24 Re
—— 3 0.34
Re
Fair式
紊流状态:103<Re<105时,λ=0.44 ——Newton式
层流状态下: 24
1 d 2
Re
4
1d3
6
第3章沉淀法-水质处理方法
/长度(L)
高H
理想平流式沉淀池示意图 ◆ 在沉淀区的每个颗粒一面下沉,一面随水流水平运动, 其轨迹是向下倾斜的直线。 ◆ 沉速大于u0的颗粒可全部除去;沉速<u0的颗粒因处 于水面以下,也可以除去一部分。例如:沉速为u的颗粒 被除去率为h/H或u第/3u章0沉。淀法-水质处理方法
第3章沉淀法-水质处理方法
第三节 絮凝沉淀
由于原水中含絮凝性悬浮物(如投加混凝剂后形 成的矾花、生活污水中的有机悬浮物、活性污泥等), 在沉淀过程中大颗粒将会赶上小颗粒,互相碰撞 凝聚,形成更大的絮凝体,因此沉速将随深度而 增加。
悬浮物浓度越高,碰撞机率越大,絮凝的可能 性就越大。
第三章第三节 工业废水处理方法
3.1 中和法
第三章 水污染及其防治
三、 药剂中和法
酸性废水的药剂中和法
药剂中和法投药量计算:
G Q C a K (kg / h)
式中: Q ——废水流量(m3/h) C ——废水中酸(碱)浓度(kg/m3) ——换算(比重1) a ——药剂单位理论耗量(kg/kg) α——药剂纯度或浓度(0.6-0.98) K ——反应不均匀系数(1.1-2.0)
3.1 中和法 二、 酸碱废水中和法
中和能力的计算
第三章 水污染及其防治
1)根据当量定律计算: Q1C1=Q2C2
Q-废水流量(m3/h),C-废水中酸/碱浓度(kg/m3)
2)等当点:在滴定分析中,用标准溶液对被测溶液进行滴定,当反 应达到完全时,两者以相等当量化合,这一点称为等当点。
3)等当点的pH
酸碱废水的危害: 1)破坏水体水质,影响水生动植物生存 2)排水管道、设施腐蚀破坏 3)影响污水处理效果(混凝,生物)
3.1 中和法
第三章 水污染及其防治
一、 概述
中和方法的分类
酸性废水的中和方法主要有:与碱性废水互相中和,药剂 中和,过滤中和。
碱性废水的中和方法主要有:与酸性废水互相中和以及药 剂中和。
3.1 中和法 三、 药剂中和法
碱性废水的药剂中和法
第三章 水污染及其防治
原理:向碱性废水投加酸性药剂,使废水的pH值降低的方法。
常采用的中和剂有硫酸、盐酸、硝酸以及锅炉烟道气(CO2、SO2) 等,还应尽可能使用一些工业废酸(工业硫酸)。
3.1 中和法
第三章 水污染及其防治
三、 药剂中和法
碱性废水的药剂中和法
第三章 水污染及其防治
3.3.3 臭氧氧化法
第三章 胶体的制备与纯化
1、验证基本理论 2、理想的标准材料 3、新材料 4、催化剂 5、精细陶瓷
老化时体系的表面能降低是自发过程,我们不能完全 阻止溶胶的老化,但可以延缓老化过程的进行。
溶胶的另一特性是多分散性,即由大小不等的胶粒组 成,颗粒大小有一定的分散规律,通常所称谓的尺寸是一 个平均值。
固体的溶解度与颗粒大小有关,对ivem公式
RT M
ln
Fe(OH)3、Al(OH)3,实际上是胶体质点的聚集体,由于 缺少稳定剂,聚集在一起而形成沉淀,有时沉淀是因电 解质过多,因此利用渗析、洗涤可使沉淀转变为溶胶。
二、凝聚法
先制备分子和离子的过饱和溶液,再控制条件使不 溶物形成胶体大小的质点析出,形成溶胶。 1、更换溶剂法
将松香的酒精溶液滴入水中,由于松香在水中的溶度 很小,溶质以胶粒大小析出。 2、化学反应法
反能生成不溶物的复分解反应,水解和氧化还原反应 都可用来制备溶胶。
水解:FeCl3+3H2O 煮 沸 Fe(OH)3(溶胶)+3HCl 复分解:2H3AsO3+3H2S→As2s3(溶胶)+6H2O 氧化还原:2HAuCl4+3HCHO(少量)+11KOH
→2Au(溶胶)+3HCOOK+8KCl+H2O
S1 S2
2
1 a2
1 a1
S1、S2分别为 a1和 a2颗粒的溶解度,σ为颗粒和饱
和溶液间的界面张力,ρ为颗粒密度,M为颗粒的mole质量
。
若有两个颗粒放在一起,较小颗粒的饱和浓度为C1, 较大颗粒的浓度为C2,由上式可知C1>C2。较大颗粒的饱 和浓度C2,由于C1>C2,所以溶质会由小颗粒附近自动扩 散到大颗粒周围,而对于大颗粒而言,C2是饱和浓度,扩 散过来的溶质必然会在大颗粒上长大,这种过程不断进行
沉淀分离法1
§3-1 概 述
三、沉淀的类型
1. 晶形沉淀
d > 0.1 m
颗粒大, 结构紧密,体积小, 杂质少, 易过滤洗涤。 如BaSO4、草酸钙等。 2.无定形沉淀
d < 0.02 m
3.凝乳状沉淀
d: 0.02 ~ 0.1 m
含水多, 结构疏松,体积大, 杂质多, 难过滤洗涤。 如 Fe2O3•xH2O等
也能生长。将一颗小 的现成的硫酸铜晶体 悬着浸入其饱和溶液 中,晶体会缓慢地 “生长”。如果在烧 杯中继续倒入饱和硫 酸铜溶液,则结晶体 的增长会持续几周甚 至几个月。你将会得 到一颗美丽的大晶体。
§3-1 概 述
无论是晶形沉淀还是非晶形沉淀,当粒子非常细 小时(1~100μm)就变成胶体,胶体溶液很难过 滤。 为使胶体溶液较易过滤,可在溶胶中加入一定的 电解质,夺取胶体粒子周围的水分可促进凝结。
如:亚砷酸水溶液中,通入H2S生成的As2S3 ,很 难过滤,加入HCl或NaCl等电解质,过滤就容易 多了。
§3-1 概 述
六、沉淀分离法的类型:
无机沉淀剂分离法、有机沉淀剂分离分含量极微时,多采用共沉淀分离法
沉淀的纯度
分类
沉 淀 分 离 法
溶解度 S ( mol· L-1 或 g /100g水)
溶度积
BaSO 4 (s)
溶解 沉淀
Ba (aq) SO (aq)
2 2 4
2
2 4
Ksp (BaSO 4 ) c(Ba ) c(SO )
Ksp — 溶度积常数,简称溶度积
An Bm (s) nA (aq) mB (aq)
2 3
S 3
K sp 4
例:K sp (Ag2 CrO4 ) 1.1 10 S 3
第3章_沉淀
• 脱盐: 透析:透析袋(半透膜)
超滤
钟青萍讲授
24
4
第二节 有机溶剂沉淀
Organic solvent precipitation
• 概念:在含有溶质的水溶液中加入一定量亲水的 有机溶剂,降低溶质的溶解度,使其沉淀析出。
23
蛋白质的盐析沉淀纯化应用举例
目标蛋白
人干扰素 白细胞介素 2 单克隆抗体
来源
细胞培养液 细胞培养液 细胞培养液
硫酸铵饱和度
一次沉淀 二次沉淀
30(上清) 35(上清) 50(沉淀)
80(沉淀) 85(沉淀)
收率
99 73.5 100
纯化倍数
1.7 7.0 >8
• 盐析沉淀后,需进行脱盐处理,再进行后续操 作(Because of many salts being remained in the
钟青萍讲授
10
盐析原理
低盐溶度下,发生盐溶,是因为: • 无机盐离子在蛋白质表面上吸附,使颗粒
带相同电荷而互相排斥。 • 无机盐离子增加了蛋白质的亲水性,改善
了与水膜的结合,增加了蛋白质分子与水 分子的相互作用力,使溶解度增大。
钟青萍讲授
11
盐溶
钟青萍讲授
12
2
盐析过程
盐析
• 随着中性盐的加入,蛋白质分散体系出现盐析 现象
proteins precipitate out.
钟青萍讲授
8
盐析原理
• 首先需要了解生物大分子在水溶液中的 存在状态:
重量分析沉淀重量法 计算方法
Your company slogan
LOGO
14、下列条件中违反了非晶形沉淀条件的 ( )。 A、沉淀在较稀的热溶液中进行 B、沉淀析出后宜加入大量的热水进行稀释 C、不断搅拌下迅速加入沉淀剂 D、沉淀完毕应放置过夜使之熟化 E、沉淀完毕应加适量电解质溶液,防止胶 体溶液形成
Your company slogan
和(
)。
Your company slogan
LOGO
6、AgCl沉淀为( )沉淀,洗涤时常使用加入少
量硝酸的洗涤液洗涤,为的是(
),而硝酸
可在( )时除去。
7、引起共沉淀的原因有( )、( )和( )。
二、选择题
1、按照中华人民共和国药典规定的标准,恒重是指
二次称量之差不超过( )。
A、±0.1mg B、±0.2mg C、±0.3mg
Your company slogan
第五节 应 用
药物含量测定 中药芒硝Na2SO4测定
药物纯度检查 干燥失重测定、灰分测定
LOGO
Your company slogan
重量分析常用仪器
LOGO
Your company slogan
小结
LOGO
沉淀法过程:
同 离 子 效 应
沉淀的过滤、洗涤、干燥或灼烧 将沉淀形式转化成称量形式
沉淀法中的计算
mA
aM dM
水处理I-第三章:水的化学处理
连续流中和池
水质水量变化不大,pH要求高时; 间歇式中和池 水质水量变化较大,无法保证出水pH要求;
§3 2.3 投药中和法;
I. 酸性废水的药剂中和处理
(1)酸性废水中和剂:石灰、石灰石、大理石、白云
石、碳酸钠、苛性钠、氧化镁等。常用者为石灰。
(2)中和反应 H2SO4+Ca(OH)2=CaSO4+2H2O
2HNO3+Ca(OH)2=Ca(NO3)2+2H2O
2HCl+Ca(OH)2=CaCl2+2+2H2O 2H3PO4+3Ca(OH)2=Ca3(PO4)2+6H2O 2CH2COOH+Ca(OH)2=Ca(CH2COO)2+2 H2O FeCl2+Ca(OH)2=Fe(OH)2+CaCl2
PbCl2+Ca(OH)2=Pb(OH)2+CaCl2
病毒(10nm-300nm)蛋白质(1nm-50nm)
腐殖酸
§3 1.1 混凝原理
(1)胶体结构(双电层结构)
A、电位离子层:胶核表面,吸附了一层带同号电
荷的离子; B、反离子层 :电位离子层外吸附了电量与电位离 子层总电量相同,而电性相反的离子; 吸附层 扩散层
C、滑动面: 吸附层与扩散层的交界面; D、胶体的电动电位 : 指胶粒与扩散层之间的电位差;
阳离子聚丙烯酰胺(CPAM)(Cationic Polyacrylamide)
+
-
阴离子聚丙烯酰胺(APAM)(Anionic Polyacrylamide)
-+
淀粉类 ——土豆、玉米、小麦具有高含量淀粉
——直链淀粉的絮凝性能高于支链淀粉
2020-2021学年人教版新教材选择性必修一 第三章第四节 沉淀的溶解平衡(第2课时) 学案
第四节沉淀的溶解平衡第2课时沉淀溶解平衡的应用学习目标核心素养1.通过实验探究,了解沉淀的生成、溶解与转化。
2.能够根据化学平衡原理分析沉淀的生成、溶解与转化。
3.能举例说明沉淀溶解平衡在生产、生活中的应用。
能运用沉淀溶解平衡原理,分析和解决生产、生活中有关的实际问题。
1.运用化学平衡移动原理分析、理解沉淀的生成、溶解及转化,培养变化观念与平衡思想。
2.通过沉淀的生成、溶解与转化在生产、生活和科学研究中的应用,培养科学态度与社会责任。
3.设计简单的实验方案验证沉淀的生成、溶解与转化,培养科学探究与创新意识。
新课情境呈现生活中沉淀溶解平衡的应用医疗上用BaSO4作“钡餐”而不用BaCO3的原因:碳酸钡和硫酸钡的沉淀溶解平衡分别为:BaCO3(s)Ba2+(aq)+CO2-3(aq),K sp=5.1×10-9BaSO4(s)Ba2+(aq)+SO2-4(aq),K sp=1.1×10-10由于胃酸的酸性很强(pH为0.9~1.5),如果服下碳酸钡,胃酸可与CO2-3反应生成二氧化碳和水,使CO2-3的浓度降低,Q c<K sp,从而使碳酸钡的沉淀溶解平衡向右移动,使Ba2+浓度增大而引起人体中毒。
所以,不能用碳酸钡作“钡餐”。
而硫酸是强酸,胃液中高浓度的H+对硫酸钡的沉淀溶解平衡基本没有影响,Ba2+浓度可以保持在安全浓度标准以下,因此硫酸钡可用作“钡餐”。
课前素能奠基新知预习一、沉淀生成1.生成沉淀方法:(1)调节pH法。
加入氨水调节溶液的pH至7~8,可除去氯化铵中的杂质氯化铁。
反应离子方程式:__Fe3++3NH3·H2O===Fe(OH)3↓+3NH+4__。
(2)加沉淀剂法。
加入的沉淀剂与Cu2+反应的离子方程式与Hg2+反应的离子方程式Na2S __Cu2++S2-===CuS↓__ __Hg2++S2-===HgS↓__H2S __Cu2++H2S===CuS↓+2H+__ __Hg2++H2S===HgS↓+2H+__ 2.化学沉淀法废水处理工艺流程:二、沉淀的溶解1.原理:对于在水中难溶的电解质,如果不断__移去__平衡体系中的相应离子,使平衡向__沉淀溶解__的方向进行,从而使沉淀溶解。
第三章 酶的提取与分离纯化
第三章酶的提取与分离纯化第三章酶的提取与分离纯化第三章酶的提取与分离纯化◆酶的提取与分离纯化是指将酶从细胞或其它含酶原料中提取出来,再与杂质分开,而获得所要求的酶制品的过程。
◆主要内容包括细胞破碎,酶的提取,离心分离,过滤与膜分离,沉淀分离,层析分离,电泳分离,萃取分离,浓缩,干燥、结晶等。
1.细胞破碎细胞破碎方法可以分为机械破碎法,物理破碎法,化学破碎法和酶促破碎法等,如表3-1所示。
表1细胞破碎方法及其原理1.1 机械破碎法通过机械运动所产生的剪切力的作用,使细胞破碎的方法称为机械破碎法。
常用的破碎机械有组织捣碎机,细胞研磨器,匀浆器等。
机械破碎法分为3种:捣碎法,研磨法和匀浆法。
1.2物理破碎法通过温度、压力、声波等各种物理因素的作用,使组织细胞破碎的方法,称为物理破碎法。
物理破碎法多用于微生物细胞的破碎。
常用的物理破碎法方法有温度差破碎法、压力差破碎法、超声波破碎法等,现简介如下:(1)温度差破碎法:利用温度的突然变化,由于热胀冷缩的作用而使细胞破碎的方法称为温度差破碎法。
(2)压力差破碎法:通过压力的突然变化,使细胞破碎的方法称为压力差破碎法。
常用的有高压冲击法、突然降压法、及渗透压变化法等。
(3)超声波破碎法:利用超声波发生器所发出的声波或超声波的作用,使细胞膜产生空穴作用( cavitation)而使细胞破碎的方法称为超声波破碎法。
1.3化学破碎法通过各种化学试剂对细胞膜的作用,而使细胞破碎的方法称为化学破碎法。
常用的化学试剂有甲苯、丙酮、丁醇、氯仿等有机溶剂,和特里顿(Triton)、吐温(Tween)等表面活性剂。
有机溶剂可以使细胞膜的磷脂结构破坏,从而改变细胞膜的透过性,使胞内酶等细胞内物质释放到细胞外。
表面活性剂可以和细胞膜中的磷脂以及脂蛋白相互作用,使细胞膜结构破坏,从而增加细胞膜的透过性。
1.4酶促破碎法通过细胞本身的酶系或外加酶制剂的催化作用,使细胞外层结构受到破坏,而达到细胞破碎的方法称为酶促破碎法,或称为酶学破碎法。
第三章 沉淀溶解平衡
38
进一步问,已经溶解掉的这 1.89 g BaCO3 固体,是否可以 认为完全转化成了 BaCrO4 ?
39
计算溶液中现存的 [ Ba2+ ]
2+ ] [ CO 2- ] Ksp BaCO = [ Ba ( 3) 3
= 2.6 10-9
[ Ba2+ ] =
Ksp (BaCO3 ) [ CO32- ]
19
例
拟使溶液中的 CrO42- 沉
淀完全,需使溶液中 [ Ag+ ] 为多少?
解:沉淀完全有具体的要求。
一般认为溶液中某离子被沉淀剂消 耗至 1.0 10-5 mol•dm-3 时,即认为 被沉淀完全。
20
Ag2CrO4 t平
2 Ag+ + CrO42- [ Ag+ ] 1.0 10-5
AgCl AgI
34
AgI先沉淀
5. 沉淀的转化
例 浓度为0.10 mol•dm-3 的Na2CrO4 溶液 0.10 dm3,可以使多少克 BaCO3 固体转化成 BaCrO4? 分析:将过程 BaCO3 + CrO42- = BaCrO4 + CO32- 理解为向 Na2CrO4 溶液中加入 BaCO3,直到不再溶解为止。
在沉淀剂慢慢加入的条件下,不同沉 淀分步先后生成的现象称为分步沉淀。 利用分步沉淀的方法可以对溶液中的 混合离子进行分离。
30
例 某溶液中 [ Fe3+ ] 和 [ Mg 2+ ] 均为0.01 mol•dm-3,向该溶液中滴加碱液。求: (1)Fe(OH)3 沉淀开始生成时的 pH 和 Fe3+ 沉淀完全时的 pH; (2)Mg(OH)2 沉淀开始生成时的 pH和 Mg2+ 沉淀完全时的 pH; (3) 拟用沉淀法将 Fe3+ 和 Mg2+分离, pH 应控制的范围。已知 -39 Fe OH 的 K = 2.8 10 ( ) 3 sp
生物化学技术2沉淀法
(五)选择性沉淀
利用目的Pro与杂Pro在不同物理化学环境下的稳定性 不同(如温度、酸碱度、有机溶剂等),用选择性沉淀法, 使杂Pro变性沉淀,而目的Pro存在于溶液中或发生可逆性 沉淀,从而使目的Pro得到纯化
例:①酵母干粉抽提液升温至55℃,20min后迅速冷却, 离心除去热变性的Pro,上清液中为对热稳定的醇脱氢酶
➢ 固体法 在大体积的粗提液中逐渐加入固体(NH4)2SO4,边 加边搅拌,缓缓加入。在此过程中,溶液(NH4) 2SO4的浓度不断升高,水分子不断与(NH4)2SO4结合, 当加入的(NH4)2SO4达到盐析点时,蛋白质就会沉 淀出来
例:在尿素酶抽提液中加入(NH4)2SO4,当饱和度达为35%时,尿素 酶基本留在溶液中;但当饱和度达到55%时,尿素酶几乎全部沉淀
根据蛋白质和核酸在组成、结构及性质等方面的明显 差异,所以从生物材料中提取制备这两类物质,一般选用 的试剂和操作方法也不完全相同
二、制备蛋白质
(一)盐析法
1.原理 蛋白质在稀盐溶液中,溶解度随盐浓度的增高而上升 (盐溶);但当盐浓度增加到一定数值时,其溶解度 有随盐浓度逐渐下降,直至蛋白质析出(盐析)
(2)制作盐析曲线
用盐析法沉淀分离pro样品是,(NH4)2SO4的“盐析”浓度很关键,所需的 浓度范围要通过具体试验确定:
取一定体积已测含量的pro或酶的待分离溶液,调pH至稳定范围 分6~10次加入不同量的(NH4)2SO4至出现浑浊时,分离上清;如此反复 6~10次,分别收集每次的沉淀 根据每次沉淀的pro或酶的量和相应的(NH4)2SO4浓度之间作图,即得盐析曲 线(如图2-1) 参照表2-3的分级试验方法,再根据所用生物材料来源的难易程度,以及对有 效成分纯度和得率的要求,先找出有利于提高纯化倍数或得率的大致框架,然后 经过反复试验就能确定最佳盐析范围(即(NH4)2SO4 的浓度范围)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
均匀沉淀的扩散式生长
团聚形成的单分散体系
不定向团聚
均相沉淀法Sm掺杂的氧化铈(SDC)
Sm(NO3)3
Ce(NO3)3
尿 素
85oC恒温
沉淀
粉体
焙烧
干燥
洗涤
过滤
SDC粉体的TEM照片
250nm
250nm
1500C烧结的样品的SEM照片
不同制备方法下CeO2粉体的形貌
b
a共沉淀 法 b均相共 沉淀法 c水热合 成法
I无晶核生成 II成核阶段 III生长阶段
生成沉淀的途径主要有
1)沉淀剂缓慢的化学反应,导致H+(OH-)离子变化,溶
液pH值变化,使产物溶解度逐渐下降而析出沉淀 H2NCONH2 + 3H2O CO2 + 2NH4+ + 2OH- (90C) 2) 沉淀剂缓慢的化学反应,释放出沉淀离子,达到沉淀离 子的沉淀浓度而析出沉淀 NH2HSO3 + H2O SO42- + NH4+ + H+ 3)协同作用 H2NCONH2 + H2O CO2 + 2NH3 (90oC) NH3 + HC2O4C2O42- + NH4+
粉体制备流程
尿 素 Sm(NO3)3 Ce(NO3)3 300~800W微波 加热8~15min 沉淀
粉体
焙烧
干燥
洗涤
过滤
粉体形貌(TEM)
100nm
100nm
200nm
200nm
试剂浓度与粒子尺寸
[M4+] [urea]
晶粒尺寸(nm)
(谢乐公式计算)
粒子尺寸(nm)
b c d e f g
0.4M 0.2M 0.1M 0.05M 0.01M 0.005M
700
750
800
Temperature( C)
为了避免共沉淀法本质上存在的分别沉淀倾向,可 以采用提高沉淀剂的浓度的逆加法,激烈的搅拌等。 这些操作只能在某种程度上能防止分别沉淀。 在利用共沉淀法添加微量成分时,由于所得到的沉 淀物粒径无论是主成分还是微量成分,几乎都是相 同的,所以,并没有实现微观程度上的组成均匀性。 即共沉淀法在本质上还是分别沉淀,其沉淀物是一 种混合物。
4.0M 2.0M 1.0M 2.0M 1.0M 1.0M
8.6 9.2 11 9.6 12 8.6
(TEM) ~10 ~10 40~50 ~60 ~50
~50
由沉淀法可以合成的陶瓷粉体如下:
氧化物和复合氧化物:
ZrO2、CuO、ZnO、CeO2、BaTiO3、SrTiO3、 Ba(Ti1 x Zrx )O3、Sr(Ti1 x Zrx )O3、 1 x Srx )TiO3、 ( Ba ( Ba1 x Srx )ZrO3、Zn2CeO4、ZnFe2O4 YSZ、CSZ、MSZ、SDC
碳酸氢氨
草酸
尿素
2.2PH值对粉体形貌的影响
PH:7
PH:10
实例3、草酸盐共沉淀法制备掺杂
氧化铈(DCO)
3.1灼烧温度的影响
750oC
1000oC
实例4、共沉淀法制备SOFC复合阳极
Ni/SDC(NiO-Ce0.8Sm0.2O2)
以硝酸镍和硝酸铈(钐)为原料,碳酸氨 为沉淀剂,以逆加的滴液方式,共沉淀法 制备初级粉体: Ni(OH)2/(SC)(OH)3 沉淀物经水洗、醇洗、干燥和焙烧即得到 所需的粉体。
NiO/SDC 粉体的XRD衍射花样
# * 800 # * # # #
# SDC * NiO
* #
Intensity
700
600
10
20
30
40
50
60
70
2
NiO/SDC 粉体的TEM照片。
灼烧温度分别为 (a)600C, (b)700C, (c)800C
(a)
200nm
(b)
(c) 200nm
尿素在高温条件下的水解
水中的电离: (NH2)2CO = NH4+ +NCO –
在酸性条件下: NCO – + 2H+ + H2O = NH4+ + CO2 中性或碱性溶液中: NCO – + 2H2O = NH4+ + CO3-2 NCO – + OH- + H2O = NH4+ + CO3-2 NCO – 的水解实际上受 NH4+ 离子离解平衡的 控制 NH4+ NH3 + H+ lgk = - 9.25
二、均匀沉淀法
在溶液中加入某种试剂,使其在适宜的条 件下从溶液中均匀地逐渐生成沉淀剂, 从 而控制沉淀速度和形貌。
本质上是利用某一化学反应,使溶液中构成产物 的阴离子(或阳离子)在溶液中缓慢地、均匀地 产生出来,从而形成沉淀的方法
沉淀过程动力学模型(Lamer model)
为了从液相中析出 大小均一的固相颗粒,必 须使成核和生长这两个过 程分开。 为使成核与生长尽 可能分开,必须使成核速 率尽可能高而生长速率适 当的慢,应尽可能压缩阶 段II。在阶段III必须使浓度 低于最低过饱和浓度,以 免生成新核。
共沉淀法
利用同一沉淀剂,使溶液中含有的两种或两种以 上的阳离子一起沉淀下来,生成沉淀混合物或固 溶体前驱体,过滤、洗涤、热分解,得到复合氧 化物的方法。
BaCl2+TiCl4+2H2C2O4+5H2O=BaTiO(C2O4)2· 2 4H O ↓ +6HCl
BaTiO(C2O4)2· 2O=BaTiO3+CO2+CO+4H2O 4H
沉淀法制备超细粉体
沉淀反应法制备微粉是传统的湿化学制粉工艺之一.它 2是利用各种盐类的水溶液与沉淀剂(OH、CO3,SO4、 22C2O2 等)反应,生成不溶于水的氢氧化物、碳酸盐、 硫酸盐、草酸盐等,再将沉淀加热分解得到所需的化 合物。 ●溶液中溶质由于达过饱和而析出 反应剂(沉淀剂) 金属离子溶液 沉淀↓ +3 + 6OH-1 = 2Al(OH) ↓ 2Al Al2O3 + 3H2O 3
共沉淀法的优点
1. 原子(离子)、分子水平上的混合, 混合均匀 2. 操作简便 3. 成本低 4. 共沉淀法中的沉淀生成情况,能够利用溶度积 通过化学平衡理论来定量讨论 5. 产品转化率高
共沉淀法制备粉体的缺点
共沉淀条件苛刻:金属离子性能差异
(热力学、动力学) 、共沉淀剂
★注意选择尽可能使溶度积差别不大的
200nm
Ni/SDC 陶瓷的扫描电镜照片
(a)
6.0m
(b)
6.0m
(c)
6.0m
(a) 600C,
(b) 700C
(c) 800C
Ni/SDC 电导率与制备方式的关系
600
• 共沉淀法
500
■
机械混合法
400
(s cm )
-1
300
200
100 500 550 600 650
oቤተ መጻሕፍቲ ባይዱ
物理法:将溶解度高的盐的水溶液雾化成小液滴, 使其中的盐类呈球状迅速析出 。 喷雾干燥,冷冻干燥,溶剂干燥,喷雾 热分解 化学法:使溶液通过加水分解或离子反应生成沉淀。 沉淀法,醇盐水解法,溶胶凝胶法、水 热合成法、非水液相合成法
液相合成技术特点
可以精确控制化学组成; 易添加微量有效成份,制备多成份均一 微粉; 粉体表面活性好; 颗粒形状和粒径易控; 工业化成本较低;
普通沉淀典型反应
ZrOCl 2 +2NH 4OH ZrO(OH) 2 2NH 4Cl ZrO(OH) 2 ZrO 2 H 2O
Heating
AlCl3 +3NH 4OH AlO(OH) 3NH 4Cl AlO(OH) Al 2O3 H 2O
Heating
优点:避免沉淀剂局部过浓的不均匀现象,使过饱和 度控制在适当的范围内,从而控制沉淀粒子的生长速 度,能获得粒度均匀、纯度高的超细粒子。
常用沉淀剂:尿素(NH2)2CO(碳酸二酰胺) 常温下,该溶液体系无明显变化,当加热至70C以上时, 尿素就发生如下水解反应: (NH2)2CO+3H2O====2NH4OH+CO2 这样在溶液内部生成沉淀剂NH4OH。若溶液中存在金属离 子将NH4OH消耗掉,不致产生局部过浓现象。当NH4OH 被消耗后, (NH2)2CO继续水解,产生NH4OH。 因为尿素的水解是由温度控制的,故只要控制好升温速度, 就能控制尿素的水解速度,这样可以均匀地产生沉淀剂, 从而使沉淀在整个溶液中均匀析出。
3.3 粉体的制备方法
液相法:沉淀法,醇盐分解法,溶胶-凝胶法,氨酸 法,柠檬酸盐法,喷雾热解法,水热法等 气相法:蒸发法,(磁控,激光)溅射法,等离子 体喷涂法,化学气相淀积(CVD)法,气溶胶法, 化 学喷雾热解法 固相法:固相反应法,热分解法
序:液相合成技术分类
目前工业及实验室中最常用的超细颗粒合成方法
Y2O3、La 2O3、Nd 2O3、Sm 2O3、En 2O3、Td 4O7、Cd 2O3、 Al2O3、MgO、BaSnO3、SrSnO3、MgSnO3、CaSnO3、 PbSnO3、BaCeO3、SrCeO3、PbGeO3
MgTiO3、CaTiO3
小
结
粉体的形貌与粉体的制备工艺密切相关,以 沉淀法制备超微粉体时,应注意: 1、沉淀剂的选择 2、反应前驱物及沉淀剂的起始浓度、操作温 度,反应时间,PH值和搅拌加入方式 3、粉体的形貌直接影响了粉体的性能。
掺杂CeO2粉体的SEM照片 ---碳酸盐共沉淀法