图形的平移和旋转培优题

合集下载

苏教版四年级数学下册第一单元 平移、旋转和轴对称专项试卷附答案

苏教版四年级数学下册第一单元 平移、旋转和轴对称专项试卷附答案

苏教版四年级数学下册单元培优测试卷第一单元平移、旋转和轴对称一、填空。

(每空1分,共32分)1.欣赏下面图形,它们分别是通过什么变换得到的?(填“平移”或“旋转”)( ) ( ) ( ) ( )2.钟面上的分针从3:30到3:45,按( )时针方向旋转了( )°。

3.正方形有( )条对称轴,长方形有( )条对称轴,圆有( )条对称轴。

4.寓意深远的汉字文化中也蕴含着数学的美,在“昌、日、比、台、正、全”这些汉字中,有( )个轴对称的字。

5.如图中,五角星向( )平移了( )格;六边形向( )平移了( )格;长方形向( )平移了( )格。

6.观察上图中①绕点O顺时针旋转90°到图形( )所在的位置,( )绕点O( )时针旋转90°到图形③所在的位置。

7.如果把上图中这串葡萄从托盘中取出来,指针会( )时针旋转( )°。

8.体育课上,当老师喊“立正,向左转”时,你的身体( )时针旋转( )°;当老师喊“立正,向右转”时,你的身体( )时针旋转( )°。

9.右图中:(1)图形B向下平移可以得到图形( )。

(2)与图形C可以组成轴对称图形的是图形( )、( )和( )。

(3)图形A绕点M顺时针旋转90°得到图形( )。

(4)图形E绕点M逆时针旋转90°得到图形( )。

(5)图形F绕点N逆时针旋转180°得到图形( )。

二、选择。

(将正确答案的字母填在括号里)(每小题2分,共12分)1.每年的12月2日是全国交通安全日。

下列交通标志中,是轴对称图形的有( )个。

禁止驶入禁止直行两侧变窄T形交叉直行注意行人A.2 B.3 C.4 D.5 2.这是一个电风扇开关,数字表示风速档。

现在风扇在“1”档运行,如果要关闭,可将旋钮( )。

A.按顺时针方向旋转90°B.按顺时针方向旋转120°C.按逆时针方向旋转90°D.按逆时针方向旋转120°3.把任意一个图形绕任意点顺时针旋转( ),又回到了原来的位置。

平移与旋转练习题

平移与旋转练习题

平移与旋转练习题一、选择题1. 平移变换不改变图形的:A. 形状B. 大小C. 颜色D. 位置2. 旋转变换不改变图形的:A. 形状B. 大小C. 方向D. 颜色3. 平移后的图形与原图形:A. 形状不同B. 大小不同C. 位置相同D. 位置不同4. 旋转后的图形与原图形:A. 方向相同B. 方向不同C. 形状相同D. 形状不同5. 一个图形进行平移后,下列说法正确的是:A. 图形的面积不变B. 图形的周长不变C. 图形的对称性改变D. 图形的旋转角度改变二、填空题6. 平移是将一个图形整体沿某一直线方向移动,图形的________不变。

7. 旋转是将一个图形绕一点按一定角度进行旋转,图形的________不变。

8. 平移后图形的位置发生变化,但图形的________和________都不变。

9. 旋转后图形的方向发生变化,但图形的________和________都不变。

10. 若一个图形绕原点顺时针旋转90°,则图形的________发生了变化。

三、判断题11. 平移和旋转都是图形变换的一种形式。

()12. 平移后的图形与原图形全等。

()13. 旋转后的图形与原图形相似。

()14. 平移和旋转都不改变图形的形状和大小。

()15. 旋转变换可以改变图形的位置。

()四、简答题16. 描述平移变换和旋转变换的区别。

17. 举例说明如何通过平移变换改变一个正方形的位置。

18. 举例说明如何通过旋转变换改变一个等边三角形的方向。

五、计算题19. 如图所示,一个长方形ABCD的长为5厘米,宽为3厘米,若将长方形沿x轴正方向平移2厘米,求平移后长方形A'B'C'D'的四个顶点坐标。

20. 如图所示,一个圆心在原点的圆,半径为4厘米,若将该圆绕原点顺时针旋转30°,求旋转后圆上任意一点P(x, y)的新坐标。

六、应用题21. 某工厂的机器需要进行位置调整,原位置为(2, 3),需要将其平移至新位置(5, 6),请计算平移的距离和方向。

培优专题5 平移与旋转 (含解答)-

培优专题5 平移与旋转 (含解答)-

培优专题5 平移与旋转平移是几何变换中最常用的变换之一,用它可以将一些不在同一三角形中要证的两条线段或两角,进行“搬家”,把它们搬到同一个三角形(或平行四边形)中,再利用图形的性质与题设条件,找到解(或比)的途径.平移法能把分散的条件集中起来,收到事半功倍的效果.旋转也是几何变换中较常用的变换之一,在解决问题中主要应用在以下两个方面:一是在题设条件和结论间联系不易沟通或条件不易集中利用的情形下,通过旋转起到铺路架桥作用;二是图形错综复杂,但图形中的量与量之间的关系多,这时也可以看能否使用旋转的办法,移动部分图形,使题目中隐蔽着的关系明朗起来,从而找到解题途径.平移、旋转两种变换在使用中,一定要善于观察变换前后哪些量变了,哪些量没变.只有这样,我们才能充分发挥两种变换的功能,达到有效解决相关问题的目的.例1如图,在△ABC中,D、E是BC边上两点,BD=CE,试说明AB+AC>AD+AE.分析利用平移变换,•将图中已知条件转化为梯形的对角线之和大于两腰之和.解:把△ABD作平移,使BD与EC重合,分别过点E作AB的平行线,过点A作BC•的平行线,两线交于点F,连结CF.再连结EF交AC于O.则AB=EF,∠ABD=∠FEC.∵BD=CE,∴△ABD≌△FEC.∴AD=CF.在梯形AECF中,AO+OE>AE,FO+OC>CF,∴AO+OE+FO+OC>AE+CF.即AC+EF>AE+CF.∴AB+AC>AD+AE.练习11.如图,梯形ABCD中,AD∥BC,已知AD+BC=3,AC=3,BD=6,求此梯形的面积.2.如图,长方形花园ABCD中,AB=a,AD=b,花园中建有一条长方形道路LMPQ•及一条平行四边形道路RSTK,若LM=RS=c,求花园中可绿化部分的面积.3.如图,△ABC中,E、F分别为AB、AC边上的点,且BE=CF,试说明EF<BC.例2 如图,△ABC中,∠ACB=90°,M是AB的中点,∠PMQ=90°,请说明PQ2=•AP2+BQ2.分析本题中PQ、AP、BQ不在同一个三角形中,•如果将它们平移,•使PQ、BQ分别转化为PD、AD,将三线段转化在同一三角形中,巧妙运用直角三角形中的勾股定理求解.解:将BQ平移到AD,连结PD、MD.∵BQ∥AD,∴∠BAD=∠ABC.∵MA=MB,BQ=AD,∴△AMD≌△BMQ,∴∠AMD=∠BMQ.而∠AMQ+∠BMQ=180°,∴∠AMQ+∠AMD=180°.∴D、M、Q三点共线.∴∠PMD=∠PMQ=90°,MD=MQ.∴PQ=PD.∵∠PAD=∠BAC+∠BAD=∠BAC+∠ABC=90°.∴△PAD为直角三角形,PD2=AP2+AD2.∴PQ2=AP2+BQ2.1.如图,EFGH是正方形ABCD的内接四边形,∠BEG与∠CFH都是锐角,•已知EG=3,FH=4,四边形EFGH的面积为5,求正方形ABCD的面积.2.如图,△ABC中,∠B=90°,M、N分别是AB、BC上的点,AN、CM•交于点P,•若BC=AM,BM=CN,求∠APM的度数.3.如图,六边形ABCDEF中,AB∥DE,BC∥EF,CD∥AF,且AB-ED=CD-AF=EF-BC>0,请问,六边形ABCDEF的六个角是否都相等.例3如图,在正方形ABCD的边BC和CD上分别取点M和点K,并且∠BAM=∠MAK.求证:BM+KD=KA.分析把Rt△BAM绕点A顺时针旋转90°到△ADM′,使BM与DN拼成一条线段的KM′,只要证明KM′=KA即可.证明:把Rt△ABM绕点A旋转90°,则点B变为点D,M变为M′,则Rt•△BAM•≌Rt•△ADM′,∴∠M′=∠BMA∴DM′=BM.∵∠BAM=∠MAK,∴∠KAM′=∠MAD.∴∠KAM′=∠M′.∴AK=KM′.∴BM+KD=AM.1.如图,在正方形ABCD中,N是DC的中点,M是AD上异于D•的点,•且∠NMB=∠MBC,求AMAB的值.2.如图,P是等边△ABC内一点,∠APB、∠BPC、∠CPA的大小之比为5:6:7,•求以PA、PB、PC之比为边的三角形三内角之比(从小到大).3.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,AH⊥BC,且AH=1,•求四边形ABCD的面积.例4如图,在等腰三角形ABC中,∠CAB=90°,P是△ABC内一点,且PA=1,PB=3,PC=7,求∠APC 的度数.分析本题将△BAP绕点A旋转90°,得到△CAQ,构造直角三角形,利用勾股定理求解解:将△BAP绕点A旋转90°,使AB与AC重合,得△CAQ,则△CAQ≌△BAP.∴AQ=AP=1,CQ=BP=3,∠CAQ=∠PAB,∴∠PAQ=∠PAC+∠CAQ=∠PAC+∠PAB=90°Rt△AQP中,PQ2=AQ2+AP2=2,∴PQ=2,∴∠APQ=45°.在△CPQ中,PQ=2,CQ=3CP=7,CQ2=CP2+PQ2.∴△CPQ是直角三角形,∠CPQ=90°.∴∠APC=∠CPQ+∠APQ=135°.练习41.等边三角形内一点到三个顶点距离分别为3、4、5,则此等边三角形边长的平方为________.2.如图,P是正方形内的点,若PA=1,PB=2,PC=3,求∠APB的度数.3.如图,正方形ABCD的边长为1,AB、AD各有一点P、Q,若△APQ的周长为2,•求∠PCQ.例5 如图,在△ABC中,AB=3,AC=2,以BC为边的三角形BPC是等边三角形,求AP的最大、最小值.分析通过旋转把AP转移到有两条边确定的三角形中,利用三角形的性质求最值.解:把△ABP绕B点顺时针旋转60°得△DBC,则△ABP≌△DBC.∴DC=AP,BD=BA,∠DBA=60°.∴△ABD是等边三角形,AD=AB=3.在△ACD中,有DC<AD+AC=5,当C在DA的延长线上时才有DC=AD+AC=5,说明DC≤5,•即AP≤5.……①在△ACD中,有DC>AD-AC=1时,当C在DA线段上时才有DC=AD-AC=1,说明DC≥1,•即AP≥1.……②由①②得AP最大值为5,最小值为1.练习51.如图,正方形ABCD中,有一个内接三角形AEF,若∠EAF=45°,AB=8,EF=7,•求△EFC的面积.2.如图,在△ABC中,AB=5,AC=13,过BC上的中线AD=6,求BC的长.3.如图,已知△ABC中,AB=AC,D为三角形内一点,∠ADB>∠ADC.试证明:•CD>BD.答案:练习11.解:将BD 平移到CE 交AD 延长线于点E , 则四边形BDEC 为平行四边形∴DE=BC ,CE=BD ,S △BCD =S △CDE ∵△ABC 与△DBC 同底等高, ∴S △ABC = S △BCD = S △CDE∵S 梯形ABCD = S △ABC + S △ACD = S △CDE + S △ACD = S △ACE . 又AE=AD+DE=3=2236AC CE +=+,∴△ACE 为直角三角形,∠ACE=90°. ∴S 梯形ABCD = S △ACE =12·AC·CE=322.2.解:把长方形和平行四边形道路平移,在移动过程中道路面积不变,如图,则四块空白可组成长(b-c ),宽(a-c )的空白长方形,其面积为(b-c )(a-c )=ab-bc-ac+c 2.3.解:将EF 平移为BG ,BF 平移为FG ,作∠CFG 的角平分线交BC 于D ,连结DG ,•则由平移知四边形BEFG 是平行四边形. ∴EF=BG ,BE=FG . ∵BE=CF ,∴FG=CF . ∵∠1=∠2,FD=FD . ∴△FGD ≌△FCD (SAS ). ∴DG=CD .在△BGD 中, ∵BG<BD+DG ,∴EF<BC .练习21.解:过E 、F 、G 、H 分别平移AD 、AB ,交点分别为P 、Q 、R 、T ,则四边形PQRT•为矩形.设正方形边长为a ,PQ=b ,PT=c ,由勾股定理得b= 223a -,c=224a -, ∵S △AEH =S △TEH ,S △BEF =S △PEF , S △CFG =S △QFG , S △DGH =S △RGH 则S 正方形ABCD +S 矩形PQRT =2S 四边形EFGH ∴a 2+b·c=10. 即a 2+223a -·224a -=10.∴5a2=44,a2=445.∴S正方形ABCD=445.2.解:把MC平移,使点M至A点,过A作MC的平行线,过点C作AB的平行线,•两线交于点D,则MC=AD.∠APM=∠NPC=∠NAD……①∵BM=NC,CD=AM=BC,∠DCN=∠CBM=90°,∴△DCN≌△CBM.从而DN=MC,∴DN=DA……②∴∠CMB=∠DNC.∵∠BCM+∠DMB=90°,∴∠BCM+∠DNC=90°.即MC∥AD.∴ND⊥AD.……③由①,②,③得∠APM=45°.3.解:六个角都相等且都等于120°.将AB沿着BC平移到QC,CD沿着DE平移到ER,EF沿着FA平移到AP,∵AB∥ED,BC∥EF,CD∥AF,∴AB=QC,BC=AQ,CD=ER,DE=CR,EF=AP,FA=PE.∵AB-ED=CD-AF=EF-BC,∴QC-CR=ER-PE=AP-AQ.即PQ=PR=QR.∴∠1=∠2=∠3=60°.由平行线性质知:∠A=∠B=∠C=∠D=∠E=∠F=120°.练习31.解:将△BAM绕B点旋转90°,A点变为C点,M点变为P点,连结MP,则△BAM≌△BCP.∴∠BPC=∠BMA=∠CBM=∠NMB.∵BM=BP,∴∠NMP=∠NPM.∴MN=NP=NC+CP=NC+AM.设AB=1,AM=x,在Rt△MND中,则有12+x=221()(1)2x+-.∴x=13.即AMAB=13.2.解:将△ABP绕B点顺时针旋转60°得△BCP′,连结PP′,则△ABP≌△CBP′.∴AP=P′C,BP=BP′,∠APB=∠CP′B.∵∠PBP′=60°,∴△BPP′是等边三角形.∴PP′=BP,∠BPP′=60°=∠BP′P.∵∠APB:∠BPC:∠CAP=5:6:7,又∠APB+∠BPC+∠CPA=360°,∴∠APB=100°,∠BPC=120°,∠CPA=140°,∴∠1=120°-60°=60°,∠2=100°-60°=40°,∠PCP′=180°-60°-40°=80°.由PA=P′C,PP′=PB,∴△PP′C是由PA、PB、PC组成的三角形.∴三内角之比为2:3:4.3.解:将△ABH绕A点旋转90°得△ADP,则△ABH≌△ADP.∴∠APD=∠AHB=90°,AH=AP.∵∠BAD=∠BCD=90°,∠HAP=90°.∴四边形AHCP是正方形.∵AH=1,∴S正方形AHCP=1=S四边形AHCD+S△ADP.S四边形ABCD=S四边形AHCD+S△ABH.又∵S△AOP =S△ABH.∴S四边形ABCD=S正方形AHCP=1.练习41.解:如图,以A为中心将△ACP绕A顺时针旋转60°,则C与B重合,P与P′重合,连结AP′,BP′,PP′则AP′=AP,BP′=CP,∠PAP′=60°.∴△APP′是等边三角形,PP′=3.△BPP′中,BP=4,PP′=3,BP′=CP=5.由32+42=52.∴△BPP′为直角三角形,∠BPP′=90°.∴∠BPA=150°.过B作BE⊥AP,交AP延长线于E.∵∠EPB=180°-150°=30°,在Rt△BEP中,BP=4,BE=2,EP=23,Rt△ABE中,BE=2,AE=23+3,AB2=22+(23+3)2=25+123.2.解:将△ABP绕B点旋转90°,得△CBP′,连结PP′,则△ABP≌△CBP′.∴PB=BP′=2,AP=P′C=1,∠APB=∠CP′B.在Rt△PBP′中,BP=BP′=2,∴PP′=22,∠BP′P=45°.在△PP′C中,PC=3,P′C=1,PP′=22.有PC2=P′C2+P′P2,∴△PP′C是直角三角形,∠PP′C=90°.∴∠APB=∠CP′B=∠BP′P+∠PP′C=135°.3.解:将△CDQ绕C点旋转90°,得△CBM,则△CDO≌△CBM,∠QCM=90°.∵∠D=90°,∠CBA=90°,∴P、B、M在一条直线上.∵QA+AP+QP=2,DQ+AQ+AP+BP=2,∴QP=DQ+BP.∵BM=DQ,PM=PB+BM,∴QP=PM.又CP=CP,CQ=CM.∴△CQP≌△CMP.∴∠QCP=∠PCM.又∠QCP+∠PCM=∠QCM=900∴∠PCQ=45°.练习51.解:把△ADF绕A点旋转到△ABD′的位置.∵∠D和∠ABC均为直角,∴D′、B、E三点在一条直线上,∵∠EAF=45°,∴∠D′AE=45°.在△AD′E和△AEF中,AD′=AF,AE=AE,∠D′AE=∠EAF,∴△AD′E≌△AFE.∴S△D`EF =2S△AD`E =S ABEFD=S正方形ABCD-S△EFC.∴S△EFC =S正方形ABCD-S ABEFD=S正方形ABCD-2S△AD`E =82-2×12×8×7=8.2.解:将△ADC绕D点旋转180°得△BDE.∵BD=CD.- 11 - ∴C 与B 重合,设A 落到E 处,显然A 、D 、E 共线.在△ABE 中,BE=AC=13,AB=5,AE=2AD=12. 则有132=122+52.∴△ABE 为直角三角形,∠BAE=90°. 在Rt △ABD 中,AB=5,AD=6,则有BD=2256 =61.∴BC=2BD=261.3.证明:将△ABD 绕A 点旋转∠BAC 的度数, 得△ACE ,连结DE .由于AB=AC . ∴B 与C 重合,则△ABD ≌△ACE . ∵AD=AE ,∴∠1=∠2.∵∠AEC=∠ADB>∠ADC .∴∠4>∠3,∴CE<DC .∵BD=CE ,∴CD>BD .。

冀教版八年级上16.5 利用图形的平移、旋转和轴对称设计图案 能力培优训练(含答案)

冀教版八年级上16.5 利用图形的平移、旋转和轴对称设计图案 能力培优训练(含答案)

16.5 利用图形的平移、旋转和轴对称设计图案
专题利用图形变换设计图案
1.如图所示,学校有一块正方形空地,要在上面修建一个花园,校方现征集花园设计方案,其要求
是:整个图形可以看做由一个基本图案经过轴对称、平移、旋转得到的,而且是对称图形,既美观,又简练大方.
2.元旦前,市园林部门准备在文化广场摆设直径均为4米的八个圆形花坛,在坛内放置面积相同的
两种颜色的盆栽花草,要求各个花坛内两种花草的摆设不能相同,如图所示的(1)(2),请你再设计出至少四种方案.
状元笔记
【知识要点】
1.设计图案所能应用的变换类型有
平移变换、旋转变换、轴对称变换以及它们的组合.
2.图案设计的过程
(1)首先确定图案要表达的意图;(2)分析进行图案设计的基本图形;(3)对基本图形综合运用平移、旋转和轴对称变换;(4)对图案进行适当修饰.
【温馨提示】
分析图案形成的过程要找准“基本图案”,用平移或旋转或轴对称,叙述要准确,不能遗漏基本要素.
参考答案
1.解:如图所示:(答案不唯一)
2.解:如图所示:(答案不唯一)。

图形的平移与旋转提高题

图形的平移与旋转提高题

图形的平移与旋转提高题一.选择题(共17小题)1.如图,将∠BAC沿DE向∠BAC内折叠,使AD与A′D重合,A′E与AE重合,若∠A=30°,则∠1+∠2=()A.50°B.60°C.45°D.以上都不对2.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,DE∥BC,则图中等腰三角形的个数()A.1个B.3个 C.4个 D.5个3.如图,已知等边△ABC的面积为4,P、Q、R分别为边AB、BC、AC上的动点,则PR+QR的最小值是()A.3 B.2 C. D.44.在正五边形ABCDE所在的平面内能找到点P,使得△PCD与△BCD的面积相等,并且△ABP为等腰三角形,这样的不同的点P的个数为()A.2 B.3 C.4 D.55.在△ABC中,∠B=30°,点D在BC边上,点E在AC边上,AD=BD,DE=CE,若△ADE为等腰三角形,则∠C的度数为()A.20°B.20°或30°C.30°或40°D.20°或40°6.如图,▱ABCD中,点E、F分别在AD、AB上,依次连接EB、EC、FC、FD,图中阴影部分的面积分别为S1、S2、S3、S4,已知S1=2、S2=12、S3=3,则S4的值是()A.4 B.5 C.6 D.77.若平行四边形的一边长为7,则它的两条对角线长可以是()A.12和2 B.3和4 C.14和16 D.4和88.如图,在▱ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F,则下列结论不一定成立的是()A.∠E=∠CDF B.EF=DF C.AD=2BF D.BE=2CF 9.如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A.1 B.3﹣C.﹣1 D.4﹣210.如图,平行四边形ABCD中,AE⊥BC,AF⊥DC,AB:AD=2:3,∠BAD=2∠ABC,则CF:FD的结果为()A.1:2 B.1:3 C.2:3 D.3:411.如图,O是▱ABCD的对角线交点,E为AB中点,DE交AC于点F,若S▱ABCD=16.则S△DOE的值为()A.1 B.C.2 D.12.如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD的面积是()A.30 B.36 C.54 D.7213.某学校共有3125名学生,一次活动中全体学生被排成一个n排的等腰梯形阵,且这n排学生数按每排都比前一排多一人的规律排列,则当n取到最大值时,排在这等腰梯形阵最外面的一周的学生总人数是()A.296 B.221 C.225 D.64114.如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S=S△CDE;△ABE=S△CEF.其中正确的是()⑤S△ABEA.①②③B.①②④C.①②⑤D.①③④15.已知:如图,梯形ABCD是等腰梯形,AB∥CD,AD=BC,AC⊥BC,BE⊥AB 交AC的延长线于E,EF⊥AD交AD的延长线于F,下列结论:①BD∥EF;②∠AEF=2∠BAC;③AD=DF;④AC=CE+EF.其中正确的结论有()A.1个B.2个 C.3个 D.4个16.如图,▱ABCD中,∠AEB=36°,BE平分∠ABC,则∠C等于()A.36°B.72°C.108° D.144°17.如图,在▱ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.A.只有①②B.只有①②③C.只有③④D.①②③④二.选择题(共16小题)18.如图,E、F是▱ABCD的边AD上的两点,△EOF的面积为4,△BOC的面积为9,四边形ABOE的面积为7,则图中阴影部分的面积为.19.如图,在平行四边形ABCD中,AD=2AB,AH⊥CD于H,M为AD的中点,MN∥AB,连接NH,如果∠D=68°,则∠CHN=.20.如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交=15cm2,S△BQC=25cm2,则阴影部分的面于点P,BF与CE相交于点Q,若S△APD积为cm2.21.如图,M是▭ABCD的AB的中点,CM交BD于E,则图中阴影部分的面积与▱ABCD的面积之比为.22.如图,等腰梯形ABCD中,AB∥DC,∠A=60°,AD=DC=10,点E,F分别在AD,BC上,且AE=4,BF=x,设四边形DEFC的面积为y,则y关于x的函数关系式是(不必写自变量的取值范围).23.如图,▱ABCD中,AC⊥AB,AB=3cm,BC=5cm,点E为AB上一点,且AE=AB.点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止.则当运动时间为秒时,△BEP为等腰三角形.24.如图,在等腰梯形ABCD中,AD∥BC,AB=AD,BC=()AD,以AD 为边作等边三角形ADE,则∠BEC=.25.如图,在▱ABCD中,E、F分别是AD、BC的中点,AC分别交BE、DF于G、H,以下结论:①BE=DF;②AG=GH=HC;③EG=BG;④S△ABE=3S△AGE.其中,正确的有.26.等腰梯形的周长为60 cm,底角为60°,当梯形腰x=cm时,梯形面积最大,等于cm2.27.已知:如图点O是平行四边形ABCD的对角线的交点,AC=38,BD=24,AD=14,那么△OBC的周长=.28.如图,在▱ABCD中,对角线AC=21cm,BE⊥AC,垂足为E,且BE=5cm,AD=7cm,则AD和BC之间的距离为cm.29.如图,平行四边形中,∠ABC=75°.AF⊥BC于F,AF交BD于E,若DE=2AB,则∠AED=°.30.在平行四边形ABCD中,点A1,A2,A3,A4和C1,C2,C3,C4分别是AB和CD的五等分点,点B1,B2和D1,D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为1cm2,则平行四边形ABCD的面积为cm2.31.在▱ABCD中,若∠A:∠B=2:1,AD=20cm,AB=16cm,则AD与BC两边间的距离是cm,▱ABCD的面积是cm2.32.在▱ABCD中,AC与BD相交于点O,∠AOB=45°,BD=2,将△ABC沿直线AC翻折后,点B落在点B′处,那么DB′的长为.33.如图,对面积为1的平行四边形ABCD逐次进行以下操作:第一次操作,分别延长AB,BC,CD,DA至点A1,B1,C1,D1,使得A1B=2AB,B1C=2BC,C1D=2CD,D1A=2AD,顺次连接A1,B1,C1,D1,得到平行四边形A1B1C1D1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1D1、D1A1至点A2,B2,C2,D2,使得A2B1=2A1B1,B2C1=2B1C1,C2D1=2C1D1,D2A1=2A1D1,顺次连接A2,B2,C2,D2记其面积为S2;…;按此规律继续下去,可得到平行四边形A5B5C5D5,则其面积S5=.三.解答题(共7小题)34.如图,在▱ABCD中,M、N分别是AD,BC的中点,∠AND=90°,连接CM 交DN于点O.(1)求证:△ABN≌△CDM;(2)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求AN的长.35.理论探究:已知平行四边形ABCD的面积为100,M是AB所在直线上一=;(2)如图2,当点M 点.(1)如图1:当点M与B重合时,S△DCM=;(3)如图3,当点M在AB(或BA)的与B与A均不重合时,S△DCM=;延长线上时,S△DCM拓展推广:如图4,平行四边形ABCD的面积为a,E、F分别为DC、BC延长线上两点,连接DF、AF、AE、BE,求出图中阴影部分的面积,并说明理由.实践应用:如图5是我市某广场的一平行四边形绿地ABCD,PQ、MN分别平行=300m2,S四边形MBQO=400m2,S四边于DC、AD,它们相交于点O,其中S四边形AMOP=700m2,现进行绿地改造,在绿地内部作一个三角形区域MQD(连接DM、形NCQOQD、QM,图中阴影部分)种植不同的花草,求出三角形区域的面积.36.如图,在▱ABCD中,BD为对角线,EF垂直平分BD分别交AD、BC的于点E、F,交BD于点O.(1)试说明:BF=DE;(2)试说明:△ABE≌△CDF;(3)如果在▱ABCD中,AB=5,AD=10,有两动点P、Q分别从B、D两点同时出发,沿△BAE和△DFC各边运动一周,即点P自B→A→E→B停止,点Q自D→F→C→D停止,点P运动的路程是m,点Q运动的路程是n,当四边形BPDQ 是平行四边形时,求m与n满足的数量关系.(画出示意图)37.如图,已知▱ABCD,AE平分∠BAD,交DC于E,DF⊥BC于F,交AE于G,且DF=AD.(1)试说明DE=BC;(2)试问AB与DG+FC之间有何数量关系?写出你的结论,并说明理由.38.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从A点开始沿AD边向D以3cm/s的速度运动,动点Q从点C开始沿CB 边向点以1cm/s的速度运动,点P、Q分别从A、C同时出发,设运动时间为t (s).(1)当其中一点到达端点时,另一点也随之停止运动.①当t为何值时,以CD、PQ为两边,以梯形的底(AD或BC)的一部分(或全部)为第三边能构成一个三角形?②当t为何值时,四边形PQCD为等腰梯形?(2)若点P从点A开始沿射线AD运动,当点Q到达点B时,点P也随之停止运动.当t为何值时,以P、Q、C、D为顶点的四边形是平行四边形?39.如图,点E,F是▱ABCD的对角线AC上的两点,且CE=AF.(1)写出图中每一对全等的三角形(不再添加辅助线)(2)请你猜想:线段BE与线段DF有怎样的关系?并对你的猜想加以证明.40.如图所示,在平行四边形ABCD中,∠ABC的角平分线分别交AC,AD于E,F点,EG⊥BC,若BA=6,AC=8,AD=10.(1)求FD的长;(2)求△BEC的面积.2017年11月20日135****3978的初中数学组卷参考答案一.选择题(共17小题)1.B;2.D;3.B;4.D;5.D;6.D;7.C;8.D;9.D;10.B;11.C;12.D;13.B;14.C;15.D;16.C;17.B;二.选择题(共16小题)18.10;19.56°;20.40;21.1:3;22.;23.,2,,;24.75°或165°;25.①、②、③、④;26.15;;27.45;28.15;29.65;30.;31.8;160;32.;33.135;三.解答题(共7小题)34.;35.50;50;50;36.;37.;38.;39.;40.;。

人教版 九年级数学 23.1 图形的旋转 培优训练(含答案)

人教版 九年级数学 23.1 图形的旋转 培优训练(含答案)

人教版九年级数学23.1 图形的旋转培优训练一、选择题(本大题共8道小题)1. 在平面直角坐标系中,点P(-4,2)向右平移7个单位长度得到点P1,点P1绕原点逆时针旋转90°得到点P2,则点P2的坐标是()A.(-2,3) B.(-3,2)C.(2,-3) D.(3,-2)2. 观察图,其中可以看成是由“基本图案”通过旋转形成的共有()A.1个B.2个C.3个D.4个3. 如图,△A′B′C′是由△ABC经过平移得到的,△A′B′C′还可以看作是△ABC经过怎样的图形变换得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④4. 如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB 边的中点是坐标原点O,将正方形绕点C按逆时针方向旋转90°后,点B的对应点B′的坐标是()A.(-1,2) B.(1,4)C.(3,2) D.(-1,0)5. 如图,将线段AB先向右平移5个单位长度,再将所得线段绕原点顺时针旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(-4,1) B.(-1,2)C.(4,-1) D.(1,-2)6. 如图,Rt△OCB的斜边在y轴上,OC=3,含30°角的顶点与原点重合,直角顶点C在第二象限,将Rt△OCB绕原点顺时针旋转120°后得到△OC′B′,则点B的对应点B′的坐标是()A.(3,-1) B.(1,-3)C.(2,0) D.(3,0)7. 在平面直角坐标系中,点A的坐标为(1,3),以原点为中心,将点A顺时针旋转30°得到点A′,则点A′的坐标为()A.(3,1) B.(3,-1) C.(2,1) D.(0,2)8. 如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°-αB.αC.180°-αD.2α二、填空题(本大题共8道小题)9. 如图,在平面直角坐标系中,Rt△ABC的直角顶点C的坐标为(1,0),点A 在x轴正半轴上,且AC=2.将△ABC先绕点C逆时针旋转90°,再向左平移3个单位长度,则变化后点A的对应点的坐标为________.10. 如图所示,△ABC的顶点都在网格线的交点(格点)上,如果将△ABC绕点C 逆时针旋转90°,那么点B的对应点B′的坐标是________.11. 如图,在△ABC中,∠BAC=90°,AB=AC=10 cm,D为△ABC内一点,∠BAD=15°,AD=6 cm,连接BD,将△ABD绕点A逆时针旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为________ cm.12. 如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连接EF,若AB=3,AC=2,且α+β=∠B,则EF=________.13. 如图,两块完全相同的含30°角的三角尺ABC和A′B′C′重合在一起,将三角尺A′B′C′绕其顶点C′逆时针旋转角α(0°<α≤90°),有以下三个结论:①当α=30°时,A′C与AB的交点恰好为AB的中点;②当α=60°时,A′B′恰好经过点B;③在旋转过程中,始终存在AA′⊥BB′.其中正确结论的序号是__________.14. 如图,将△ABC 绕点A 逆时针旋转150°,得到△ADE ,这时点B ,C ,D 恰好在同一直线上,则∠B 的度数为________.15. 2018·陕西如图,点O 是平行四边形ABCD 的对称中心,AD >AB ,E ,F是AB 边上的点,且EF =12AB ;G ,H 是BC 边上的点,且GH =13BC.若S 1,S 2分别表示△EOF 和△GOH 的面积,则S 1与S 2之间的等量关系是S 1S 2=________.16. 如图,AB ⊥y轴,将△ABO 绕点A 逆时针旋转到△AB 1O 1的位置,使点B的对应点B 1落在直线y =-33x 上,再将△AB 1O 1绕点B 1逆时针旋转到△A 1B 1O 2的位置,使点O 1的对应点O 2落在直线y =-33x 上,依次进行下去……若点B 的坐标是(0,1),则点O 12的纵坐标为________.三、解答题(本大题共4道小题)17. 如图,在等腰直角三角形ABC 中,∠ACB =90°,点D ,E 在边AB 上,且∠DCE =45°,BE =2,AD =3.将△BCE 绕点C 逆时针旋转90°,画出旋转后的图形,并求DE 的长.18. 将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图①,当点E在BD上时,求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.19. (1)如图(a),在△ABC中,D是BC边的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.①求证:BE+CF>EF;②若∠A=90°,探索线段BE,CF,EF之间的数量关系,并加以证明.(2)如图(b),在四边形ABDC中,∠B+∠C=180°,BD=CD,∠BDC=120°,以D为顶点作一个60°的角,角的两边分别交AB,AC于E,F两点,连接EF,探索线段BE,CF,EF之间的数量关系,并加以证明.20. 如图,在等边三角形ABC内有一点P,且PA=2,PB=3,PC=1.求∠BPC 的度数和等边三角形ABC的边长.人教版九年级数学23.1 图形的旋转培优训练-答案一、选择题(本大题共8道小题)1. 【答案】A[解析] 点P(-4,2)向右平移7个单位长度得到点P1(3,2),点P1绕原点逆时针旋转90°得到点P2(-2,3).故选A.2. 【答案】D3. 【答案】D[解析] 先将△ABC绕着B′C的中点旋转180°,再将所得的三角形绕着B′C′的中点旋转180°,即可得到△A′B′C′;先将△ABC沿着B′C的垂直平分线翻折,再将所得的三角形沿着B′C′的垂直平分线翻折,即可得到△A′B′C′.故选D.4. 【答案】C5. 【答案】D6. 【答案】A7. 【答案】A[解析] 如图,过点A作AE⊥y轴于点E,过点A′作A′F⊥x轴于点F,∴∠AEO=∠A′FO=90°.∵点A的坐标为(1,3),∴AE=1,OE=3,∴OA=2,∠AOE=30°,由旋转可知∠AOA′=30°,OA′=OA=2,∴∠A′OF=90°-30°-30°=30°,∴A′F=12OA′=1,OF=3,∴A′(3,1).故选A.8. 【答案】C[解析] 由题意可得∠CBD=α,∠C=∠EDB.∵∠EDB+∠ADB=180°,∴∠C+∠ADB=180°.由四边形的内角和定理,得∠CAD+∠CBD=180°.∴∠CAD=180°-∠CBD=180°-α.故选C.二、填空题(本大题共8道小题)9. 【答案】(-2,2)[解析] △ABC绕点C逆时针旋转90°后,点A的对应点的坐标为(1,2),再向左平移3个单位长度,点A的对应点的坐标为(-2,2).10. 【答案】(1,0)11. 【答案】(10-2 6)[解析] 如图,过点A作AG⊥DE于点G.由旋转知,AD =AE,∠DAE=90°,∠CAE=∠BAD=15°,∴∠AED=∠ADG=45°,∴∠AFD=∠AED+∠CAE=60°.在Rt△ADG中,AG=DG=AD2=3 2(cm).在Rt△AFG中,GF=AG3=6(cm),AF=2FG=2 6(cm),∴CF=AC-AF=(10-2 6)cm.12. 【答案】13[解析] ∵α+β=∠B,∴∠EAF=∠BAC+∠B=90°,∴△AEF 是直角三角形,且AE=AB=3,AF=AC=2,∴EF=AE2+AF2=13.13. 【答案】①②③14. 【答案】15°[解析] 由旋转的性质可知AB=AD,∠BAD =150°,∴∠B =∠ADB =12×(180°-150°)=15°.15. 【答案】32 [解析] ∵S 1S △AOB =EF AB =12,S 2S △BOC =GH BC =13, ∴S 1=12S △AOB ,S 2=13S △BOC . ∵点O 是▱ABCD 的对称中心,∴S △AOB =S △BOC =14S 平行四边形ABCD ,∴S 1S 2=32.16. 【答案】9+33 [解析] 将y =1代入y =-33x ,解得x =- 3.∴AB =3,OA =2,且直线y =-33x 与x 轴所夹的锐角是30°.由图可知,在旋转过程中每3次一循环,其中OO 2=O 2O 4=O 4O 6=O 6O 8=O 8O 10=O 10O 12=2+3+1=3+ 3. ∴OO 12=6×(3+3)=18+6 3. ∴点O 12的纵坐标=12OO 12=9+3 3.三、解答题(本大题共4道小题)17. 【答案】解:如图,将△BCE 绕点C 逆时针旋转90°,得到△ACF ,连接DF.由旋转的性质,得CE =CF ,AF =BE =2,∠ACF =∠BCE ,∠CAF =∠B =45°.∵∠ACB =90°,∠DCE =45°,∴∠DCF =∠ACD +∠ACF =∠ACD +∠BCE =∠ACB -∠DCE =90°-45°=45°,∴∠DCE =∠DCF.在△CDE 和△CDF 中,⎩⎨⎧CE =CF ,∠DCE =∠DCF ,CD =CD ,∴△CDE ≌△CDF(SAS),∴DE =DF.∵∠DAF=∠BAC+∠CAF=45°+45°=90°,∴△ADF是直角三角形,∴DF2=AD2+AF2,∴DE2=AD2+BE2=32+22=13,∴DE=13.18. 【答案】解:(1)证明:连接EG,AF,则EG=AF.由旋转的性质可得EG=BD,∴AF=BD.又∵AD=BC,∴Rt△ADF≌Rt△BCD.∴FD=CD.(2)分两种情况:①若点G位于BC的垂直平分线上,且在BC的右边,如图(a).∵GC=GB,∴∠GCB=∠GBC,∴∠GCD=∠GBA.又CD=BA,∴△GCD≌△GBA,∴DG=AG.又∵AG=AD,∴△ADG是等边三角形,∴∠DAG=60°,∴α=60°.②若点G位于BC的垂直平分线上,且在BC的左边,如图(b).同理,△ADG是等边三角形,∴∠DAG=60°.此时α=300°.综上所述,当α为60°或300°时,GC=GB.19. 【答案】解:(1)①证明:如图(a),将△DBE绕点D旋转180°得到△DCG,连接FG,则△DCG≌△DBE.∴DG=DE,CG=BE.又∵DE⊥DF,∴DF 垂直平分线段EG ,∴FG =EF. ∵在△CFG 中,CG +CF >FG , ∴BE +CF >EF. ②BE 2+CF 2=EF 2.证明:∵∠A =90°,∴∠B +∠ACD =90°.由①得,∠FCG =∠FCD +∠DCG =∠FCD +∠B =90°,∴在Rt △CFG 中,由勾股定理,得CG 2+CF 2=FG 2,∴BE 2+CF 2=EF 2.(2)EF =BE +CF.证明:如图(b).∵CD =BD ,∠BDC =120°, ∴将△CDF 绕点D 逆时针旋转120°得到△BDM , ∴△BDM ≌△CDF ,∴DM =DF ,BM =CF ,∠BDM =∠CDF ,∠DBM =∠C. ∵∠ABD +∠C =180°, ∴∠ABD +∠DBM =180°, ∴点A ,B ,M 共线,∴∠EDM =∠EDB +∠BDM =∠EDB +∠CDF =∠BDC -∠EDF =120°-60°=60°=∠EDF.在△DEM 和△DEF 中,⎩⎨⎧DE =DE ,∠EDM =∠EDF ,DM =DF ,∴△DEM ≌△DEF ,∴EF =EM =BE +BM =BE +CF.20. 【答案】解:将△BPC 绕点B 逆时针旋转60°得到△BP′A(如图).连接PP′,由旋转的性质知△BPP′为等边三角形,AP′=PC =1,∴PP′=PB=3,∠BPP′=∠BP′P=60°.在△APP′中,∵AP′2+PP′2=12+(3)2=22=PA2,∴△APP′是直角三角形,且∠AP′P=90°,∴∠BP′A=∠BP′P+∠AP′P=60°+90°=150°,∴∠BPC=∠BP′A=150°.在Rt△APP′中,∵PA=2,AP′=1,∴∠APP′=30°.又∵∠BPP′=60°,∴∠APB=90°,∴在Rt△ABP中,AB=PA2+PB2=22+(3)2=7,即等边三角形ABC的边长为7.。

图形的平移和旋转经典试题

图形的平移和旋转经典试题

和 ,只改变图形的图形的平移和旋转经典试题1.平移是由_________________________________________所决定。

所决定。

2. 平移不改变图形的 。

3.钟表的分针匀速旋转一周需要60分,它的分,它的旋转中心旋转中心是___________,经过20分,分针旋转___________度。

度。

4.如图,直角.如图,直角梯形梯形ABCD 中,中,AD AD AD∥∥BC BC,,AB AB⊥⊥BC BC,,AD = 2,将腰CD 以D 为中心逆时针旋转90°至DE DE,连接,连接AE AE、、CE CE,,△ADE 的面积为3,则BC 的长为的长为 ..5、如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90°后,得到△AFB ,连接EF ,下列结论,其中正确的是_____ ①△AED ≌△AEF ; ②BE DC DE += ③S △ABE +S △ACD >S △AED ; ④222BE DC DE += 1、如图所示:正方形ABCD 中E 为BC 的中点,将面ABE 旋转后得到△CBF.旋转后得到△CBF.(1)指出旋转中心及旋转)指出旋转中心及旋转角度角度.(.(22)判断AE 与CF 的位置关系.的位置关系.(3)如果正方形的面积为18cm 2,△BCF 的面积为4cm 2,问四边形AECD 的面积是多少?的面积是多少?2、如图,E 、F 分别是正方形ABCD 的边BC 、CD 上一点,且BE +DF =EF ,求∠EAF (第8题图)A B C D E F A B C D E 3、如图,已知、如图,已知正方形正方形ABCD 的对角线AC 、BD 相交于O ,E 是AC 上一点,过点A 作AG ⊥EB ,垂足为G ,AG 交BD 于点F ,求证:OE=OF 。

苏教版数学四年级下册第一单元《平移、 旋转和轴对称》培优卷(含答案)

苏教版数学四年级下册第一单元《平移、 旋转和轴对称》培优卷(含答案)

周测培优卷1图形的平移、旋转、轴对称的认识及其应用一、填空。

(每空2分,共42分)1. 从9:00到12:00,时针旋转了()°。

从3时到3时15分,分针旋转了()°。

2. 与时针旋转方向相同的是()旋转,相反的是()旋转。

3. 体育课上,老师的口令是“立正,向左转” 时,你的身体()旋转了()°,口令是“立正,向后转” 时,你的身体()旋转了()°。

4.(1)图形1绕点O 顺时针旋转90°到图形()所在的位置。

(2)图形4绕点O()时针旋转90°到图形3所在的位置。

(3)图形3绕点O逆时针旋转()°到图形1所在的位置。

5.图①先向()移动()格到图②的位置,再向()移动()格可以与图③重合,或者先向()移动()格,再向()移动()格也可以与图③重合。

6. 下图中左边的风车绕点O按()时针方向旋转了()得到右边的风车。

二、判断。

(对的在括号里打“√”,错的打“×”。

每题2分,共8分)1. 正方形是轴对称图形,它有4条对称轴。

()2. 圆不是轴对称图形。

()3. 利用平移、轴对称可以设计许多美丽的图案。

()4. 芳芳晚上10点睡觉,早晨闹钟6点准时响起,则时针在这段时间旋转了60°。

()三、选择。

(将正确答案的字母填在括号里。

每题2分,共10分)1. 把长方形绕O点顺时针旋转90°后,得到的图形是()。

2. 下图中左上方的小旗可以通过()与右下方的小旗重合。

A. 旋转B. 平移C. 对称3. 把一个图形顺时针旋转(),就可以回到原来的位置。

A. 90°B. 180°C. 360°4. 下面说法正确的是()。

A. 旋转改变图形的形状和大小B. 平移改变图形的形状和大小C. 平移和旋转都不改变图形的形状和大小5. 如图,将一张圆形纸对折两次后,在中间打一个正方形孔,并剪去一个小角,展开后的图形是()。

图形的旋转与平移试题答案

图形的旋转与平移试题答案

图形的旋转与平移试题答案一、填空题1. 图形旋转时,每个点绕旋转中心移动的角度是________。

答案:相同2. 若一个正方形顺时针旋转90°,其上下边将分别成为原来的________和________。

答案:左右边,对角线3. 平移变换不改变图形的________,而旋转变换不改变图形的________。

答案:位置和形状;大小和形状4. 一个等腰三角形绕其底边中点旋转180°后,将与原图形关于________对称。

答案:中心点5. 若一个图形绕某点旋转θ度后与自身重合,该图形被称为________对称图形。

答案:θ度二、选择题1. 下列哪个选项描述了图形的旋转不变性?A. 旋转后图形的大小发生变化B. 旋转后图形的形状发生变化C. 旋转后图形的位置发生变化D. 旋转后图形的面积不变答案:D2. 若一个图形连续旋转三次,每次旋转45°,最终图形相对于原始位置平移了多少度?A. 45°B. 90°C. 135°D. 360°答案:D3. 在坐标系中,点(3,4)绕原点逆时针旋转90°后,新位置的坐标为:A. (-4,3)B. (4,-3)C. (-3,-4)D. (3,-4)答案:A4. 图形平移的特点是:A. 改变图形的大小B. 改变图形的形状C. 不改变图形的大小和形状D. 改变图形的对称性答案:C三、解答题1. 请解释图形旋转的三要素,并给出一个具体的例子。

答:图形旋转的三要素包括旋转中心、旋转方向和旋转角度。

旋转中心是图形绕其转动的固定点;旋转方向可以是顺时针或逆时针;旋转角度是图形旋转的度数。

例如,一个圆绕其中心点顺时针旋转90°,每个点都会绕中心点移动90°,形成一个直角的扇形。

2. 描述一个图形绕某点平移的过程,并说明平移前后图形的关系。

答:图形平移是指将整个图形按照某个方向移动一定的距离,而不改变图形的形状和大小。

图形的平移与旋转专项练习(含答案)

图形的平移与旋转专项练习(含答案)

图形的平移与旋转专项练习(含答案)一、选择题(本大题共34小题,共102.0分)1.如图,在正方形网格中有△ABC,△ABC绕点O逆时针旋转90°后的图案应该是()A. B. C. D.2.以下四个图案中,既是轴对称图形又是中心对称图形的有()A. 4个B. 3个C. 2个D. 1个3.将一图形绕着点O顺时针方向旋转60°,再绕着点O逆时针方向旋转170°,这时如果使图形回到原来的位置,需要将图形绕着点O()A. 顺时针旋转230°B. 逆时针旋转110°C. 顺时针旋转110°D. 逆时针旋转230°4.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A. 30°B. 60°C. 90°D. 120°5.在平面直角坐标系中,将点A(−1,2)先向左平移2个单位长度,再向下平移3个单位长度后,得到的点的坐标为()A. (1,−1)B. (−1,5)C. (−3,−1)D. (−3,5)6.如图,在平面直角坐标系中,等边三角形OAB的边长为4,点A在第二象限内,将△OAB沿射线AO的方向平移后得到△O′A′B′,平移后点A′的横坐标为6√3,则点B′的坐标为()A. (8√3,−4√3)B. (8,−4√3)C. (8√3,−4)D. (8,−4)7.四根火柴棒摆成如图所示的象形“口”字,平移此象形字火柴棒后,变成的象形文字是()A.B.C.D.8.如图,将△ABC绕点A逆时针旋转90∘得到△ADE,点B,C的对应点分别为点D,E,AB=1,则BD的长为()A. 1B. √2C. 2D. 2√29.下列四个图形中,可以由下图通过平移得到的是()A. B. C. D.10.下列宣传图案中,既是中心对称图形又是轴对称图形的是()A. B. C. D.11.如图,在一块长为12m,宽为6m的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m),则空白部分表示的草地面积是()A. 70m2B. 60m2C. 48m2D. 18m212.如图,在两个重叠的直角三角形中,将其中的一个直角三角形沿着BC方向平移BE距离得到此图形,其中AB=6,BE=5,DH=3,则四边形DHCF的面积为()A. 35B. 652C. 452D. 3113.如图,由△ABC平移得到的三角形有()A. 15个B. 5个C. 10个D. 8个14.将点A(1,−1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A. (−2,1)B. (−2,−1)C. (2,1)D. (2,−1)15.如图的四个图形中,由基础图形通过平移、旋转或轴对称这三种变换都能得到的是()A. B.C. D.16.如图,点A,B的坐标分别是(−3,1),(−1,−2),若将线段AB平移至A1B1的位置,则线段AB在平移过程中扫过的图形面积为()A. 18B. 20C. 36D. 无法确定17.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(−2,1).则点B的对应点的坐标为()A. (5,3)B. (−1,−2)C. (−1,−1)D. (0,−1)18.如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90∘,得到△A′B′C′,则点A的对应点A′的坐标是()A. (0,4)B. (2,−2)C. (3,−2)D. (−1,4)19.将△ABC各顶点的纵坐标加“−3”,连接这三点所成的三角形是由△ABC()A. 向上平移3个单位长度得到的B. 向下平移3个单位长度得到的C. 向左平移3个单位长度得到的D. 向右平移3个单位长度得到的20.如图,将△OAB绕点O逆时针旋转70°,得到△OCD,若∠A=2∠D=100°,则α的度数是()A. 50°B. 60°C. 40°D. 30°21.如图,将直径为2cm的半圆水平向左平移2cm,则半圆所扫过的面积(阴影部分)为()A. πcm2B. 4cm2)cm2C. (π−π2)cm2D. (π+π222.下列剪纸图形中,既是轴对称图形又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个23.如图,在△ABC中,AB=12,将△ABC绕点A按逆时针方向旋转30∘后得到△AB1C1,则阴影部分的面积为()A. 24B. 48C. 36D. 7224.如图,P是正方形ABCD内一点,将△ABP绕着B沿顺时针方向旋转到与△CBP′重合,若PB=3,则PP′的长为()A. 2√2B. 3√2C. 3D. 无法确定25.如图,等边三角形ABC的边长是2,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60∘得到BN,连接MN,则在点M运动过程中,线段MN长度的最小值是()A. 12B. 1 C. √3 D. √3226.如图,在Rt△ABC中,AB=2,∠C=30°,将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,在B′C′上取点D,使B′D=2,那么点D到BC的距离等于()A. 2(√33+1)B. √33+1C. √3−1D. √3+127.如图,△ABC绕点A旋转至△ADE,则旋转角是()A. ∠BADB. ∠BACC. ∠BAED. ∠CAD28.如图,△ABC经过平移后得到△DEF,则下列说法中正确的有()①AB//DE,AB=DE;②AD//BE//CF,AD=BE=CF;③AC//DF,AC=DF;④BC//EF,BC=EF.A. 1个B. 2个C. 3个D. 4个29.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.30.如图,∠A=80∘,O是AB上一点,直线OD与AB所夹的∠AOD=82∘,要使OD//AC,直线OD绕点O按逆时针方向至少旋转()A. 8∘B. 10∘C. 12∘D. 18∘31.下列说法中,不正确的是()A. 图形平移是由移动的方向和距离所决定的B. 图形旋转是由旋转中心和旋转角度所决定的C. 任意两条相等的线段都成中心对称D. 任意两点都成中心对称32.在平面直角坐标系中,若将三角形上各点的横坐标都加上5,纵坐标保持不变,则所得图形在原图形的基础上()A. 向左平移了5个单位长度B. 向下平移了5个单位长度C. 向上平移了5个单位长度D. 向右平移了5个单位长度33.如图,△DEC是由△ABC经过了如下的几何变换而得到的:①以AC所在直线为对称轴作轴对称图形,再以C为旋转中心,顺时针旋转90°;②以C为旋转中心,顺时针旋转90°得△A′B′C′,再以A′C′所在直线为对称轴作轴对称图形;③将△ABC向下、向左各平移1个单位长度,再以AC的中点为中心作中心对称图形,其中正确的变换有()A. ①②B. ①③C. ②③D. ①②③34.在如图所示的4组图形中,左边图形与右边图形成中心对称的有()A. 1组B. 2组C. 3组D. 4组二、填空题(本大题共25小题,共75.0分)35.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45∘,将△ADC绕点A顺时针旋转90∘后,得到△AFB,连接EF,下列结论: ①△AED≌△AEF; ②BE+DC=DE; ③BE2+DC2=DE2,其中正确的是.(填序号)36.如图,在平面直角坐标系中,已知点A(−3,−1),点B(−2,1),平移线段AB,使点A落在A1(0,−1),点B落在点B1,则点B1的坐标为37.如图,在△ABC中,∠C=90°,AC=8,BC=6,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B,D两点间的距离为.38.在平面直角坐标系中,将点A(−1,2)向上平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是39.如图,将周长为8的△ABC沿BC边向右平移2个单位长度,得到△DEF,则四边形ABFD的周长为.40.如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2√3、√2、4,则正方形ABCD的面积为.41.已知平面直角坐标内的点A(−2,5),如果将平面直角坐标系先向右平移3个单位长度,再向上平移4个单位长度,则点A在平移后的坐标系中的坐标是.42.根据平移的知识可得图中的封闭图形的周长(图中所有的角都是直角)为______.43.若将点P(m+2,2m+1)向右平移1个单位长度后,点P的对应点正好落在y轴上,则m=.44.有下列图形:①线段;②三角形;③平行四边形;④正方形;⑤圆.其中不是中心对称图形的是(填序号).45.如图,在4×4的正方形网格中,△MNP绕某点旋转一定角度得到△M1N1P1,则其旋转中心是.46.△ABC和△DCE是等边三角形,则在此图中,△ACE绕着__点_______旋转__度可得到△____.47.已知点A(1,−2),B(−1,2),E(2,a),F(b,3),若将线段AB平移至EF,点A,E为对应点,则a+b的值为________.48.钟表上的时针走1小时旋转了度.49.如图所示,在正方形网格中,图①经过平移变换可以得到图②;图③是由图②经过旋转变换得到的,其旋转中心是点(填“A”“B”或“C”).50.如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,√3),(4,0).把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,√3),则点E的坐标为.51.如图,将△ABC绕点A旋转一定角度后得到△ADE.若∠CAE=60∘,∠E=65∘,且AD⊥BC,则∠BAC=°.52.图甲所示的四张牌,若只将其中一张牌旋转180°后得到图乙,则旋转的牌是.53.如图,四边形ABCD与四边形FGHE关于某一点成中心对称,则这个点是.54.如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是.55.如图,将△ABC绕点C顺时针旋转至△DEC,使点D落在BC的延长线上,已知∠A=27°,∠B=40°,则∠ACE=________°.56.点P(−4,y)先向左平移2个单位长度,再向下平移3个单位长度后得到点Q(x,−1),则x=,y=.57.如图,△ABC是等边三角形,点D是BC边上的中点,△ABD经过旋转后到达△ACE的位置,那么:(1)旋转中心是点;(2)点B,D的对应点分别是点;(3)线段AB,BD,DA的对应线段分别是;(4)∠B的对应角是;(5)旋转的角度为.58.如图,△ABC绕点A逆时针旋转30°至△ADE,AB=5cm,BC=8cm,∠BAC=130°,则AD==cm,DE==cm,∠EAC=∠=,∠DAC=.59.如图,在△ABC中,∠ACB=90∘,AC=4,BC=3,将△ABC绕点A顺时针旋转得到△ADE(其中点B恰好落在AC延长线上点D处,点C落在点E处),连接BD,则四边形AEDB的面积为.三、解答题(本大题共23小题,共184.0分)60.如图,在正方形网格中,以点A为旋转中心,将△ABC按逆时针方向旋转90°,画出旋转后的△AB1C1.61.如图,已知BC与CD重合,∠B=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法),并直接写出旋转角度是.62.如图,在4×3的网格中,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在下列网格中分别设计出符合要求的图案(注:①不得与原图案相同;②黑、白方块的个数要相同).(1)是轴对称图形,但不是中心对称图形;(2)是中心对称图形,但不是轴对称图形;(3)既是轴对称图形,又是中心对称图形.63.如图,P是正三角形ABC内的一点,且PA=5,PB=12,PC=13,若将△PAC绕点A逆时针旋转后,得到△P′AB,求点P与点P′之间的距离及∠APB的度数.64.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和格点O.(1)平移△ABC,使得点A与点O重合,画出平移后的△A′B′C′;(2)画出△ABC关于点O成中心对称的△DEF;(3)判断△A′B′C′与△DEF是否成中心对称.65.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(−3,5),B(−2,1),C(−1,3).(1)若点C1的坐标为(4,0),画出△ABC经过平移后得到的△A1B1C1,并写出点B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称,画出△A2B2C2,并写出点B2的坐标;(3)若△ABC绕着坐标原点O按逆时针方向旋转90°得到△A3B3C3,画出△A3B3C3,并写出点B3的坐标.66.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45∘,将△ADF绕点A顺时针旋转90∘后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.67.如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)请你探究∠CEF与∠ADC的数量关系,并证明你的结论;(2)若EF//CD,求∠BDC的度数.68.如图,已知△ABC三个顶点的坐标分别是A(1,3),B(4,1),C(4,4).(1)请按要求画图: ①画出△ABC向左平移5个单位长度后得到的△A1B1C1; ②画出△ABC绕着原点O顺时针旋转90∘后得到的△A2B2C2;(2)请写出直线B1C1与直线B2C2的交点坐标.69.如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转到△ABF的位置.(1)旋转中心是点,旋转角是度;(2)连接EF,则△AEF是三角形;(3)若四边形AECF的面积为25,DE=2,求AE的长.70.如图,已知Rt△ABC和三角形外一点P,按要求完成图形.(1)将△ABC绕顶点C顺时针方向旋转90°,得△A′B′C′;(2)将△ABC绕点P逆时针方向旋转60°,得△A″B″C″.71.如图,△ABC各顶点的坐标分别为A(−2,6),B(−3,2),C(0,3),将△ABC先向右平移4个单位长度,再向上平移3个单位长度,得到△DEF.(1)画出△DEF,并分别写出△DEF各顶点的坐标;(2)在(1)中,若△ABC内有一点M(a,b),则其在△DEF中的对应点M′的坐标为______________;(3)如果将△DEF看成是由△ABC经过一次平移得到的,请指出这一平移的平移方向和平移距离.72.如图 ①,在△ABC中,∠A=90∘,AB=AC=√2+1,点D,E分别在边AB,AC上,且AD=AE=1,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α(0∘<α<360∘),如图 ②,连接CE,BD,CD.(1)当0∘<α<180∘时,求证:CE=BD;(2)如图 ③,当α=90∘时,延长CE交BD于点F,求证:CF垂直平分BD;(3)在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.73.如图,△ABC中,AB=AC=2,∠ACB=30∘,将△ABC沿边AC所在的直线折叠,点B落在点E处,再将△ACE沿射线CA的方向平移,得到△A′C′E′,连接A′B,若A′B=2√3.求:(1)BC的长;(2)平移的距离.74.如图,在正方形网格中,△ABC的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图①中,作△ABC关于点O对称的△A′B′C′;(2)在图②中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.75.操作与探究如图,在平面直角坐标系中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为点A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.76.在平面直角坐标系中,将点向右平移2个单位长度,再向上平移1个单位长度记为一次“跳跃”.点A(−6,−2)经过第一次“跳跃”后的位置记为A1,点A1再经过一次“跳跃”后的位置记为A2,…,以此类推.(1)写出点A3的坐标:A3______________;(2)写出点A n的坐标:____________________________(用含n的代数式表示).77.在如图所示的平面直角坐标系中,四边形ABCD的四个顶点的坐标分别是A(1,2),B(3,−2),C(5,1),D(4,4),画出将四边形ABCD向左平移3个单位长度后得到的四边形A1B1C1D1,并写出平移后四边形各个顶点的坐标.78.如图,△ABC的边BC在直线m上,AC⊥BC,且AC=BC,△DEF的边FE也在直线m上,边DF与边AC重合,且DF=EF.(1)在图 ①中,请你通过观察、思考,猜想并写出AB与AE所满足的数量关系和位置关系(不要求证明);(2)当△DEF沿直线m向左平移到图 ②所示的位置时,DE交AC于点G,连接AE,BG.猜想△BCG与△ACE能否通过旋转重合.请证明你的猜想.79.如图,△ABC绕点O旋转后,顶点A的对应点为A′,试确定旋转后的三角形.80.如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.81.如图,在Rt△ABC中,∠C=90°,BC=AC=4,现将△ABC沿CB方向平移到△A′B′C′的位置.(1)若平移距离为3,求△ABC与△A′B′C′重叠部分的面积;(2)若平移距离为x(0≤x≤4),用含x的代数式表示△ABC与△A′B′C′重叠部分的面积.82.△ABC在平面直角坐标系中的位置如图所示,A、B、C三点在格点上.(1)作出△ABC向下平移2个单位长度后得到的△A1B1C1,并写出点A1,B1,C1的坐标;(2)作出△A1B1C1向左平移3个单位长度后得到的△A2B2C2,并写出点C2的坐标.答案和解析1.【答案】A【解析】【分析】本题考查了旋转的性质,知道想要确定旋转后的图形①要确定旋转的方向②要确定旋转的大小是解题的关键.根据△ABC绕着点O逆时针旋转90°,得出各对应点的位置判断即可.【解答】解:根据旋转的性质和旋转的方向得:△ABC绕O点按逆时针旋转90°后的图案是A,故选A.2.【答案】B【解析】【分析】本题考查了轴对称图形和中心对称图形,掌握好中心对称图形与轴对称图形的概念是解题的关键.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.根据轴对称图形与中心对称图形的概念求解.【解答】解:图1是轴对称图形不是中心对称图形;图2、3、4既是轴对称图形,又是中心对称图形.故选B.3.【答案】C【解析】【分析】本题考查了图形的旋转,解题时注意旋转三要素:①旋转中心;②旋转方向;③旋转角度.将一图形绕着点O顺时针方向旋转60°,再绕着点O逆时针方向旋转170°,则相当于将图形逆时针旋转110°,据此即可解答.解:将一图形绕着点O顺时针方向旋转60°,再绕着点O逆时针方向旋转170°,则相当于将图形逆时针旋转110°,这时如果使图形回到原来的位置,需要将图形绕着点O顺时针旋转110°.故选:C.4.【答案】C【解析】解:如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′∠AOA′即为旋转角,∴旋转角为90°故选:C.如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′,∠AOA′即为旋转角.考查了旋转的性质,解题的关键是能够根据题意确定旋转中心的知识,难度不大.5.【答案】C【解析】将点(−1,2)先向左平移2个单位长度,再向下平移3个单位长度,则平移后得到的点是(−1−2,2−3),即(−3,−1),故选C.6.【答案】C【解析】∵等边三角形OAB的边长为4,点A在第二象限内,∴易得点A的坐标为(−2√3,2),B(0,4),∵平移后点A′的横坐标为6√3,∠AOB=60∘,∴平移规律为向右平移8√3个单位,向下平移8个单位,∴点B′的坐标为(8√3,−4),7.【答案】C【解析】原图形平移后,水平的火柴头应在左边,竖直的火柴头应是一上一下.只有C 符合.故选C.8.【答案】B【解析】解:由旋转的性质可知AD=AB=1,∠BAD=90∘,∴BD=√AB2+AD2=√12+12=√2,故选B.9.【答案】D【解析】略10.【答案】C【解析】解:A.是轴对称图形,不是中心对称图形;B、D不是轴对称图形,也不是中心对称图形;只有C选项符合题意,故选C.11.【答案】B【解析】略12.【答案】C【解析】略13.【答案】B14.【答案】A【解析】【分析】本题考查了坐标与图形变化−平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.让A点的横坐标减3,纵坐标加2即为点B的坐标.【解答】解:由题中平移规律可知:点B的横坐标为1−3=−2;纵坐标为−1+2=1,∴点B的坐标是(−2,1).故选:A.15.【答案】B【解析】略16.【答案】A【解析】略17.【答案】C【解析】解:∵A(1,3)的对应点的坐标为(−2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(−1,−1).故选:C.根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B的对应点的坐标即可.本题考查了坐标与图形变化−平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.18.【答案】D【解析】解:由题图可知点A的坐标为(4,2),向上平移一个单位后对应点的坐标为(4,3),再绕点P按逆时针方向旋转90∘后对应点的坐标为(−1,4),如图所示.19.【答案】B【解析】略20.【答案】C【解析】【分析】本题主要考查了旋转的性质及三角形的内角和定理,熟知图形旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角是解决本题的关键.根据旋转的性质得知∠A=∠C,∠AOC为旋转角等于70°,则可以利用三角形内角和定理列出等式进行求解.【解答】解:∵将△OAB绕点O逆时针旋转70°,∴∠A=∠C,∠AOC=70°,∴∠DOC=70°−α,∵∠A=2∠D=100°,∴∠D=50°,∵∠C+∠D+∠DOC=180°,∴100°+50°+70°−α=180°,解得α=40°,故选:C.21.【答案】B【解析】略22.【答案】B【解析】略23.【答案】C【解析】解:∵△ABC绕点A按逆时针方向旋转30∘后得到△AB1C1,∴S△ABC=S△AB1C1,AB=AB1=12,∠BAB1=30∘,∴S阴影=S△ABB1+SΔAB1C1−S△ABC=SΔABB1,作BD⊥AB1于D,在Rt△ABD中,∵∠BAB1=30∘,∴BD=12AB=6,∴SΔABB1=12AB1⋅BD=12×12×6=36.故选C.24.【答案】B【解析】【分析】本题考查了旋转的性质,利用了旋转的性质:对应点到旋转中心的距离相等,旋转角相等,又利用了勾股定理,根据旋转的性质,可得BP′的长,∠PBP′的度数,根据勾股定理,可得答案.【解答】解:由旋转的性质,得BP′=BP=3,∠PBP′=∠ABC=90°.在Rt△PBP′中,由勾股定理,得PP′=√BP2+P′B2=√32+32=3√2.故选B.25.【答案】B【解析】由旋转的性质可知BM=BN,又∵∠MBN=60∘,∴△BMN为等边三角形,∴MN=BM,∵点M是高CH所在直线上的一个动点,∴当BM⊥CH时,BM的长取得最小值,即MN 的长取得最小值,此时点M与点H重合.又∵等边三角形ABC的边长是2,∴AB=BC=CA=2,AB=1.∵CH⊥AB,∴BH=12∴线段MN长度的最小值是1.故选B.26.【答案】D【解析】略27.【答案】A【解析】解:∵△ABC绕点A旋转至△ADE,∴旋转角为∠BAD或∠CAE,故选A.28.【答案】D【解析】略29.【答案】B【解析】解:A中的图形既不是轴对称图形也不是中心对称图形;C中的图形为轴对称图形,但不是中心对称图形;D中的图形为中心对称图形,但不是轴对称图形,故选B.30.【答案】D【解析】如图,当OD绕点O旋转至OD′时,OD′//AC,则∠A+∠AOD′=180∘,∴∠AOD′= 180∘−∠A=100∘,∴∠DOD′=∠AOD′−∠AOD=100∘−82∘=18∘,故选D.31.【答案】C【解析】略32.【答案】D【解析】略33.【答案】A【解析】略34.【答案】C【解析】略35.【答案】 ① ③【解析】如图,由已知得,∠BAC=90∘,又∠DAE=45∘,∴∠1+∠2=45∘,由旋转的性质得,∠2=∠3,AD=AF,∴∠FAE=∠1+∠3=45∘=∠DAE,又∵AE=AE,∴△AED≌△AEF,故 ①正确.∵AB=AC,∠BAC=90∘,∴∠ABC+∠C=90∘,由旋转的性质知∠4=∠C,∴∠EBF=∠4+∠ABC=90∘,在Rt△EBF中,BE2+BF2=EF2,由△AED≌△AEF,得EF=ED,由旋转的性质得BF=DC,∴BE2+DC2=DE2,故 ③正确, ②不正确.综上, ① ③正确.36.【答案】(1,1)【解析】【分析】本题考查了坐标与图形变化−平移,熟练掌握网格结构准确找出点的位置是解题的关键.根据网格结构找出点A1、B1的位置,然后根据平面直角坐标系写出点B1的坐标即可.【解答】解:通过平移线段AB,点A(−3,−1)落在(0,−1),即线段AB沿x轴向右移动了3格.如图,点B1的坐标为(1,1).故答案为(1,1).37.【答案】2√10【解析】【分析】本题主要考查旋转的性质,掌握旋转前后对应线段相等、对应角相等是解题的关键.由旋转的性质可求得AE、DE,由勾股定理可求得AB,则可求得BE,连接BD,在Rt△BDE 中可求得BD的长.【解答】解:如图所示:在△ABC中,∠C=90°,AC=8,BC=6,∴AB=10,∵△ABC绕点A逆时针旋转得到△AED,∴∠DEA=∠C=90°,AE=AC=8,DE=BC=6,∴BE=AB−AE=10−8=2,连接BD,在Rt△BDE中,由勾股定理可得BD=√DE2+BE2=√62+22=2√10,即B、D两点间的距离为2√10,故答案为2√10.38.【答案】(−1,−5)【解析】略39.【答案】12【解析】略40.【答案】14+4√3【解析】解:如图,将△ABP绕点B顺时针旋转90∘得到△CBM,连接PM,过点B作BH⊥PM于H.∵BP=BM=√2,∠PBM=90∘,∴PM=√2PB=2,∵PC=4,PA=CM=2√3,∴PC2=CM2+PM2,∴∠PMC=90∘,∵∠BPM=∠BMP=45∘,∴∠CMB=∠APB=135∘,∴∠APB+∠BPM=180∘,∴A,P,M三点共线,∵BH⊥PM,∴PH=HM,∴BH=PH=HM=1,∴AH=2√3+1,∴AB2=AH2+BH2=(2√3+1)2+12=14+4√3,∴正方形ABCD的面积为14+4√3.故答案为14+4√3.41.【答案】(−5,1)【解析】略42.【答案】16【解析】【分析】本题考查了平移变换的性质,通过平移,把不规则图形的周长转化为规则图形矩形的周长进行求解是解题的关键.根据平移的性质,不规则图形的周长正好等于长为5,宽为3的矩形的周长,再根据矩形的周长公式进行计算即可.【解答】解:如图所示,封闭图形的周长是:2×(5+3)=2×8=16.故答案为:16.43.【答案】−344.【答案】②【解析】略45.【答案】点B【解析】略46.【答案】C;逆时针方向;60;BCD【解析】【分析】本题考查了旋转的定义,等边三角形的性质和三角形全等的判定定理,难度适中.先根据等边三角形的性质,运用SAS证明△ACE≌△BCD,再由旋转的定义即可求解.【解答】解:∵△ABC和△DCE是等边三角形,∴CA=CB,CE=CD,∠DCE=∠ACB=60°,∴∠ACE=∠BCD=60°+∠ACD.∵在△ACE与△BCD中,{CA=CB∠ACE=∠BCDCE=CD,∴△ACE≌△BCD(SAS),∴△ACE绕点C逆时针方向旋转60度可得到△BCD.故答案为C;逆时针方向;60;BCD.47.【答案】−1【解析】【分析】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.解决本题的关键是通过点的坐标之间的关系确定线段平移的方向和距离.利用A点与E点的横坐标,B点与F点的纵坐标坐标可判定线段AB先向右平移1个单位,再向上平移1个单位得到EF,然后根据此平移规律得到−2+1=a,−1+1=b,则可求出a和b的值,从而得到a+b的值.解:∵线段AB平移至EF,即点A平移到E,点B平移到点F,而A(1,−2),B(−1,2),E(2,a),F(b,3),∴点A向右平移一个单位到E,点B向上平移1个单位到F,∴线段AB先向右平移1个单位,再向上平移1个单位得到EF,∴−2+1=a,−1+1=b,∴a=−1,b=0,∴a+b=−1+0=−1.故答案为−1.48.【答案】30【解析】略49.【答案】平移;A【解析】【分析】本题考查平移、旋转的性质.平移前后,对应边平行,故由①到②属于平移;旋转中心的确定方法是,两组对应点连线的垂直平分线的交点,即为旋转中心.【解答】解:根据题意:观察可得:图①与图②对应点位置不变,通过平移可以得到;根据旋转中心的确定方法,两组对应点连线的垂直平分线的交点,可确定图②经过旋转变换得到图③的旋转中心是A.故答案为平移,A.50.【答案】(7,0)【解析】解:∵点A(3,√3)的对应点D的坐标为(6,√3),∴平移的距离为6−3=3,∴BE=3,∵B(4,0),∴E(7,0).51.【答案】 85【解析】由旋转的性质可知,∠BAD=∠CAE=60∘,∠C=∠E=65∘,∵AD⊥BC,∴∠CAD=90∘−65∘=25∘,∴∠BAC=∠BAD+∠CAD=85∘,故答案为85.52.【答案】方块5【解析】略53.【答案】O1【解析】略54.【答案】2√2【解析】略55.【答案】46【解析】【分析】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.先根据三角形外角的性质求出∠ACD=67°,再由△ABC绕点C按顺时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.【解答】解:∵∠A=27°,∠B=40°,∴∠ACD=∠A+∠B=27°+40°=67°,∵△ABC绕点C按顺时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=67°,∴∠ACE=180°−∠ACD−∠BCE=180°−67°−67°=46°.故答案为:46.56.【答案】−6 2【解析】略57.【答案】AC,E线段AC,CE,EA∠ACE60°【解析】略58.【答案】AB5 BC 8 BAD30°100°【解析】略59.【答案】272【解析】在△ABC中,∠ACB=90∘,AC=4,BC=3,∴AB=5.∵将△ABC绕点A顺时针旋转,使点B落在AC延长线上点D处,∴AD=AB=5,∴CD=AD−AC=1,∴S四边形AEDB =2×12×4×3+12×1×3=272.60.【答案】解:图略【解析】略61.【答案】解:如图示,旋转角为:90°.【解析】【分析】此题主要考查了旋转变换,得出旋转中心的位置是解题关键.分别作出AC,CE的垂直平分线进而得出其交点O,进而得出答案.【解答】解:如图所示:旋转中心即为对应点连线的垂直平分线的交点,旋转角度是90°.故答案为90°.62.【答案】解:图略(答案不唯一).【解析】略63.【答案】解:如图,连接P′P,∵△ABC是正三角形,∴∠BAC=60∘,由旋转的性质得P′A=PA=5,P′B=PC=13,∠P′AP=∠CAB=60∘,∴△PAP′为等边三角形,∴PP′=PA=5,即点P与点P′之间的距离为5.在△PP′B中,PP′=5,PB=12,P′B=13,∴PP′2+PB2=P′B2,∴△BPP′为直角三角形,且∠P′PB=90∘,又∵∠P′PA=60∘,∴∠APB=∠P′PB+∠P′PA=90∘+60∘=150∘.【解析】略64.【答案】解:(1)如图,△A′B′C′即为所求作.(2)如图,△DEF即为所求作.(3)△A′B′C′与△DEF成中心对称,对称中心是线段A′D与线段FC′的交点.【解析】略65.【答案】解:(1)如图,△A1B1C1即为所求作的图形.B1(3,−2).(2)如图,△A2B2C2即为所求作的图形.B2(2,−1).(3)如图,△A3B3C3即为所求作的图形.B3(−1,−2).【解析】略66.【答案】(1)∵将△ADF绕点A顺时针旋转90∘后,得到△ABQ,∴QB=DF,AQ=AF,∠BAQ=∠DAF.∵∠EAF=45∘,∴∠DAF+∠BAE=∠BAQ+∠BAE=45∘,∴∠QAE=45∘,∴∠QAE=∠FAE.在△AQE和△AFE中,{AQ=AF,∠QAE=∠FAE, AE=AE,∴△AQE≌△AFE(SAS),∴∠AEQ=∠AEF,∴EA是∠QED的平分线.(2)由(1)得△AQE≌△AFE,∴QE=EF,由旋转知∠ADF=∠ABQ,又∠ABD+∠ADF=90∘,∴∠ABD+∠ABQ=90∘,即∠QBE=90∘.在Rt△QBE中,QE2=BE2+QB2,则EF2=BE2+DF2.【解析】略67.【答案】解:(1)∠CEF+∠ADC=180°.证明:∵线段CD绕点C按顺时针方向旋转90°后得CE,∴CE=CD,∠DCE=90°,∵∠ACB=90°,∴∠ECF=∠BCD,在△BCD和△FCE中,{CB=CF∠BCD=∠FCE CD=CE,∴△BCD≌△FCE,∴∠CDB=∠CEF,而∠CDB+∠ADC=180°,∴∠CEF+∠ADC=180°;(2)∵EF//CD,∴∠CEF+∠DCE=180°,而∠DCE=90°,∴∠CEF=90°,∴∠BDC=90°.【解析】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.(1)根据旋转的性质得CE=CD,∠DCE=90°,则利用等角的余角相等可得∠ECF=∠BCD,于是可根据“SAS”判断△BCD≌△FCE,则∠CDB=∠CEF,然后利用邻补角的定义可得到∠CDB+∠ADC=180°,所以∠CEF+∠ADC=180°;(2)根据平行线的性质得∠CEF+∠DCE=180°,又∠DCE=90°,所以∠CEF=90°,于是得到∠BDC=90°.68.【答案】(1) ①如图所示,△A1B1C1即为所求作. ②如图所示,△A2B2C2即为所求作.。

图形的平移与旋转练习题及答案全套

图形的平移与旋转练习题及答案全套

情景再现:你对以上图片熟悉吗?请你答复以下几个问题:〔1〕汽车中的乘客在乘车过程中,身高、体重改变了吗?乘客所处的地理位置改变了吗?〔2〕传送带上的物品,比方带有图标的长方体纸箱,向前移动了20米,它上面的图标移动了多少米?〔3〕以上都是我们常见的平移问题,认真想一想,你还能举一些平移的例子吗?1.如图1,面积为5平方厘米的梯形A′B′C′D′是梯形ABCD经过平移得到的且∠ABC=90°.那么梯形ABCD的面积为________,∠A′B′C =________.图12.在下面的六幅图中,〔2〕〔3〕〔4〕〔5〕〔6〕中的图案_________可以通过平移图案〔1〕得到的.图2“小鱼〞向左平移5格.图34.请欣赏下面的图形4,它是由假设干个体积相等的正方体拼成的.你能用平移分析这个图形是如何形成的吗?§图形的平移与旋转一、填空:1、如下左图,△ABC经过平移到△A′B′C′的位置,那么平移的方向是______,平移的距离是______,约厘米______.2、如下中图,线段AB是线段CD经过平移得到的,那么线段AC与BC的关系为〔〕3、如下右图,△ABC经过平移得到△DEF,请写出图中相等的线段______,互相平行的线段______,相等的角______.〔在两个三角形的内角中找〕4、如下左图,四边形ABCD平移后得到四边形EFGH,那么:①画出平移方向,平移距离是_______;〔准确到0.1cm〕②HE=_________,∠A=_______,∠A=_______.③DH=_________=_______A=_______.5、如下右图,△ABC平移后得到了△DEF,〔1〕假设∠A=28º,∠E=72º,BC=2,那么∠1=____º,∠F=____º,EF=____º;〔2〕在图中A、B、C、D、E、F六点中,选取点_______和点_______,使连结两点的线段与AE平行.6、如图,请画出△ABC向左平移4格后的△A1B1C1,然后再画出△A1B1C1向上平移3格后的△A2B2C2,假设把△A2B2C2看成是△ABC经过一次平移而得到的,那么平移的方向是______,距离是____的长度.二、选择题:7、如下左图,△ABC经过平移到△DEF的位置,那么以下说法:①AB∥DE,AD=CF=BE;②∠ACB=∠DEF;③平移的方向是点C到点E的方向;④平移距离为线段BE的长.其中说法正确的有〔〕8、如下右图,在等边△ABC中,D、E、F分别是边BC、AC、AB的中点,那么△AFE经过平移可以得到〔〕A.△DEFB.△FBDC.△EDCD.△FBD和△EDC三、探究升级:1、如图,△ABC上的点A平移到点A1,请画出平移后的图形△A1B1C1.3、△ABC经过平移后得到△DEF,这时,我们可以说△ABC与△DEF是两个全等三角形,请你说出全等三角形的一些特征,并与同伴交流.4、如以下图中,有一块长32米,宽24米的草坪,其中有两条宽2米的直道把草坪分为四块,那么草坪的面积是______.5、利用如图的图形,通过平移设计图案,并用一句诙谐、幽默的词语概括你所画的图形.§图形的平移与旋转一、填空、选择题:1、图形的旋转是由____和____决定的,在旋转过程中位置保持不动的点叫做____,任意一对对应点与旋转中心连线所成的角叫做_____.2、如以下图,如果线段MO绕点O旋转90°得到线段NO,在这个旋转过程中,旋转中心是_______,旋转角是_______,它时______°.3、如图,在以下四张图中不能看成由一个平面图形旋转而产生的是〔〕4、请你先观察图,然后确定第四张图为( )4、如下左图,△ABC绕着点O旋转后得到△DEF,那么点A的对应点是_______,线段AB 的对应线段是_____,_____的对应角是∠F. 6、如下中图,△ABC与△BDE都是等腰三角形,假设△ABC经旋转后能与△BDE重合,那么旋转中心是________,旋转了______°.7、如下右图,C是AB上一点,△ACD和△BCE 都是等边三角形,如果△ACE经过旋转后能与△DCB重合,那么旋转中心是_______,旋转了______°,点A的对应点是_______.二、解答题:8、如图11.4.7,△ABC绕顶点C旋转某一个角度后得到△A′B′C,问:〔1〕旋转中心是哪一点?〔2〕旋转角是什么?〔3〕如果点M是BC的中点,那么经过上述旋转后,点M转到了什么位置?9、观察以下图形,它可以看作是什么“根本图形〞通过怎样的旋转而得到的?三、探究升级10、如图,△ACE、△ABF都是等腰三角形,∠BAF=∠CAE=90°,那么△AFC是哪一点为旋转中心,旋转多少度之后能与另一个三角形重合?点F的对应点是什么?§图形的平移与旋转一、选择题1.平面图形的旋转一般情况下改变图形的〔 〕° ° ° °ABCD 旋转到平行四边形A ′B ′C ′D ′的位置,以下结论错误的选项是〔 〕A.AB =A ′B ′B.AB ∥A ′B ′C.∠A =∠A ′D.△ABC ≌△A ′B ′C ′ 二、填空题4.钟表上的指针随时间的变化而移动,这可以看作是数学上的_______.ABCD 绕点O 沿逆时针方向旋转到四边形D C B A '''',那么四边形D C B A ''''是________. 6.△ABC 绕一点旋转到△A ′B ′C ′,那么△ABC 和△A ′B ′C ′的关系是_______.7.钟表的时针经过20分钟,旋转了_______度. 8.图形的旋转只改变图形的_______,而不改变图形的_______. 三、解答题9.以下图中的两个正方形的边长相等,请你指出可以通过绕点O 旋转而相互得到的图形并说明旋转的角度.10.在图中,将大写字母H 绕它右上侧的顶点按逆时针方向旋转90°,请作出旋转后的图案.11.如图,菱形A ′B ′C ′D ′是菱形ABCD 绕点O 顺时针旋转90°后得到的,你能作出旋转前的图形吗?△ABC ,绕它的锐角顶点A 分别逆时针旋转90°、180°和顺时针旋转90°,〔1〕试作出Rt △ABC 旋转后的三角形; 〔2〕将所得的所有三角形看成一个图形,你将得到怎样的图形?13.如图,将右面的扇形绕点O 按顺时针方向旋转,分别作出旋转以下角度后的图形: 〔1〕90°;〔2〕180°;〔3〕270°.你能发现将扇形旋转多少度后能与原图形重合吗?14.如图,分析图中的旋转现象,并仿照此图案设计一个图案.§图形的平移与旋转看一看:以下三幅图案分别是由什么“根本图形〞经过平移或旋转而得到的?1.2.3.试一试:怎样将以下图中的甲图变成乙图?做一做:1、如图①,在正方形ABCD 中,E 是AD 的中点,F 是BA 延长线上的一点,AF =21AB , 〔1〕△ABE ≌△ADF .吗?说明理由。

单元培优易错题第一单元:平移、旋转和轴对称-四年级下册数学培优卷(苏教版)

单元培优易错题第一单元:平移、旋转和轴对称-四年级下册数学培优卷(苏教版)

单元培优易错题第一单元:平移、旋转和轴对称四年级下册数学培优卷(苏教版)学校:___________姓名:___________班级:___________一、选择题1.下面图形中,对称轴最多的图形是()。

A.正六边形B.正方形C.圆2.下图是由小正方形组成的组合图形,在图中添一个小正方形,使它成为轴对称图形,一共有()添法。

A.2种B.3种C.4种D.5种3.如图的图形沿虚线对折后,会变成哪个图形?()A.B.C.D.4.下面的图形中,可以通过旋转得到的是()。

A.B.C.D.5.上体育课时,当你听到口令“立正,向左转”时,你应该()。

A.逆时针旋转90°B.顺时针旋转90°C.逆时针旋转180°6.下面图形,()不是轴对称图形。

A.B.C.7.下轴四个对称图形中,对称轴条数最少的是()。

A.B.C.D.8.下面现象中,属于旋转的是()。

A.用拖把拖地B.拉出抽屉C.升降国旗D.风扇的转动二、填空题9.钟面上从1:00到1:25,分针按( )(填“顺时针”或“逆时针”)方向旋转了( )°。

10.把图形乙绕点( ),( )时针旋转( )度后可以和图形甲拼成长方形。

拼成的长方形的长是( )厘米。

11.从凌晨3时到上午9时,钟面上的时针按( )时针方向旋转了( )°;从下午1时到下午2时,钟面上的时针按( )时针方向旋转了( )°。

12.从3:00到6:00,时针按( )方向旋转了( )°。

13.在如图所示的图形中,再涂一个格子。

使涂色部分成为一个轴对称图形,有( )种不同的涂法。

14.观察下面物体的运动,在下面的括号里填“平移”或“旋转”。

( )( )( )( )15.指针从指向C逆时针旋转90°,就指向( )。

指针从指向D顺时针旋转90°,就指向( )。

16.如图钟面,指针从“12”开始,绕中心点顺时针旋转90度,这时指针指向数字( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的平移和旋转一:知识点1 •平移的定义与规律关键:平移不改变图形的形状和大小,也不会改变图形的方向.(1) 平移的规律:经过平移,对应线段、对应角分别相等,?对应点所连的线段平行且相等 (或共线且相等)• (2) 简单作图平移的作图主要关注要点:1 •方向,2•距离•整个平移的作图,就象把整个图案的每个特征点放在一套平 行的轨道上滑动一样,每个特征点滑过的距离是一样的. 2 •旋转的定义与规律(1)定义:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,?这样的图形运动称为旋转. 关键:旋转不改变图形的大小和形状,但改变图形的方向. (2) 旋转的规律经过旋转,图形上的每一点,都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连 线所成的角都是旋转角,对应点到旋转中心的距离相等.(3)简单的旋转作图: 旋转作图关键有两点: ①旋转方向,②旋转角度.主要分四步:边、转、截、连.旋 转就象把每个特征点与旋转中心用线连住的风筝,每个点转的角度是相同的,每个点与旋转中心的距离是不会改 变的,即对应点与旋转中心距离相等.二:小试牛刀1 •平移是由 ______________________________________________ 所决定。

2. 平移不改变图形的 ____________和 __________ ,只改变图形的. 3.钟表的分针匀速旋转一周需要 _____ 60分,它的旋转中心是O,经过20分,分针旋度。

90 °①厶 AED N AEF ;② BE DC DE③S ^ ABE + S ^ ACD >SA AED④ BE 2 DC 2DE 2:例题讲解,将△O连接EF ,下列结论,其中正确的是 ADC 绕点A 顺时针旋转90后,得到△ AFB ,1、如图所示:正方形ABCD中E为BC的中点,将面ABE旋转后得到△ CBF.(1)指出旋转中心及旋转角度•(2)判断AE与CF的位置关系.2 2 . .(3)如果正方形的面积为18cm, △ BC啲面积为4cm,问四边形AECD的面积是多少?2、如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE + DF = EF,求/ EAF3、如图,已知正方形图li-4 ABCD的对角线AC、BD相交于O, E是AC上一点,过点A作AG丄EB,垂足为G, AG 交BD于点F,求证:OE=OF。

4.如图,已知正方形ABCD,点E、F分别在BC、CD上,且AE=BE+FD,请说出AF平分/ DAE的理由。

5、如图,有边长为1的等边三角形 ABC 和顶角为120°的等腰△ DBC ?以D 为顶点作/ MDN=60角,两边分别交 AB AC 于 M N 的三角形,连结 MN ( 1)、求证 MN=BM+CN( 2)、试说明△ AMN 的周长为2. ( 3)、若 M,N 分别在 AB,CA 的延长线上,则(1)中结论还成立吗?如果不成立,MN,BM,CNZ 满足什么关系?6、如图,正方形纸片 ABCD 和正方形EFDH 边长都是1,点E 是正方形 ABCD 的中心,在正方形 EFGH 绕着点 E 旋转过程中,(1) 观察两个正方形的重叠部分的面积是否保持不变? (2)如果保持不变,求出它的值;否则,请简要说明理由。

7、操作:在厶ABC 中,AC = BC = 2,Z C = 90°,将一块等腰三角形板的直角顶点放在斜边 AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线 AC 、CB 于D 、E 两点•图①、②、③是旋转三角板得到的图形中的3种情况•研究:(1) 三角板绕点P 旋转,观察线段 PD 和PE 之间有什么数量关系?并结合图②加以证明. (2)三角板绕点 P 旋转,△ PBE 能否为等腰三角形?若能,指出所有情况(即写出厶 PBE 为等腰三角 形时CE 的长);若不能,请说明理由.8、如图,在六边形 ABCDEF 中,已知 AB//DE,AF//CD,BC//FE,AB=DE,AF=CD,BC=FE BD=18cm 你能求出六边形 ABCDE 的面积吗?,对角线 FD 丄 BD,FD=24cm9、恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世,著名的大峡谷A和世界级风景保护区星斗山B位于笔直的沪渝高速公路X同侧,AB=50km,A,B到直线X的距离分别为10km, 40km,要在沪渝高速公路旁修建一服务区P,向A,B两景区运送游客。

小民设计了两种方案,方案一:如图一,AP于直线X垂直,垂足为P,P到A,B的距离之和为S i=PA+PB方案二:如图二,点A关于直线X的对称点是D,连接BD交直线X于P,P到A,B距离之和为S=PA+PB.(1)求S,9,并比较大小(2)请说明S2=PA+PB的值最小。

(3)如图三,拟建的恩施到张家界高速公路Y与沪渝高速公路垂直,建立图形的直角坐标系,B至煩线Y的距离为30km,请你在X旁和Y旁各建一服务区P,Q,使P,A,B,Q组成的四边形的周长最小,并求最小值。

10、如图(1),已知△ ABC是边长为2的等边三角形,D,E,F分别为AB,AC,BC边上的中点,连接DE,DF,EF.将△ ADE 向下平移,使得A点与C点重合,将△ BDF向右平移,使得B点与C点重合,(如图2)。

(1)设厶ADE, △ BDF, △ EFC的面积分别为S1,S2,S3则,S1+S2+S3 _____ 3 .(用>,=,< 填空)(2)如图3,已知/ AOB= / COD= / EOF=60 ,AD=CF=BE=2,设厶ABO, △ CDO, △ EFO的面积分别为S1,S2,S3问:上述结论是否成立?若成立,请给出证明,若不成立,说明理由。

巩固练习〔、△ ABC 平移到△ DEF 的位置,(即点A 与点D,点B 与点E ,点C与点F ,是对应点)有下列说法:①AB=DE ②AD=BE ③BE=CF ④BC=EF 其中说法正确个数有……()2、(2003,河南)把正方形ABCD 沿着对角线 AC 的方向移动到正方形 图1中的阴影部分)的面积是正方形ABCD 面积的一半,?若AC= 2,则正方形移动的距离是 AA'是3. ( 2004,南宁)如图2是两张全等的图案,它们完全重合在叠放在一起按住下面的图案不动,将上面图案绕点 0顺时针旋转,至少旋转 ________ 度角后,?两张图案构成的图形是中心对称图形. 4、 如图,两个全等的正六边形 ABCDEF 、PQRSTU ,其中点P 位于正六边形 ABCDEF 的中心,如果它们的面积均为1,则阴影部分的面积是 ____________ o5、 如图11-2所示,Rt A A ' B ' C '是△ ABC 向右平移3cm 所得,已知/ B = 60°,11、已知,如图△ AB 中,/ ACB=90 ,AC=BC , P 是厶ABC 内一点,且 PA=3 , PB=1 , PC=2,求/ BPCoA.1 个B.2 个C.3个 D.4个A B ' C' D?'的位置,它们的重叠部分 (如B 'C = 5cm ,则/ C '= __________________ , B' C '= __________________ c m .6. 如图所示,直角△ AO 師时针旋转后与△ COD !合,若/ A0= 127 °,则旋转角度是 _________7. _______________________________________________________________________________________________ 如图,把一个长方形纸片沿 EF 折叠后,点D C 分别在D'、C 位置,若/ EFB=65° ,则/ AED = ______________________ &四边形ABCD 为长方形,△ ABC 旋转后能与△ AEF 重合,旋转中心是点 _______________的对应点分别为 C 、D ,则旋转角为 _______________ ,图中除厶ABC 夕卜,还有等边三形是 ______________ 12. 如图11-6, Rt A ABC 中,P 是斜边BC 上一点,以P 为中心,把这个三角形按逆时针 方向旋转90°得到△ DEF ,图中通过旋转得到的三角形还有 _________________ . 13、(青岛市)如图,P 是正三角形 ABC 内的一点,且 PA = 6, PB = 8, PC = 10.若 将厶PAC 绕点A 逆时针旋转后,得到△ P'AB ,则点P 与点P'之间的距离为多少,/ APB ?E 是AD 的中点,F 是BA 延长线上的一点,AF =2A B ,(1)求证:△ ABE ^A ADF 。

(2)阅读下列材料:如图②,把△ ABC 沿直线平移线段BC 的长度,可以变到△ ECD 的位置;如图③,以BC 为轴把△ ABC 翻折180°,可以变到厶DBC 的位置;如图④,以点 A 为中心,把△ ABC 旋转180°,可以变到厶AED 的位置,像这样其中一 个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状 大小的图形变换,叫做三角形的全等变换。

图①图② 團③ 图④9.0是等边△ ABC 内一点,将△ AOB 绕B 点逆时钎旋转,使得 B 、0两点 13、如图①,在正方形 ABCD 中, 旋转了多少度图 11-5, 三角A请回答下列问题:ABE变到△ ADF的位置?<1>在图①中,可以通过平移、翻折、旋转中的哪一种方法,使△<2>指出图①中线段BE与DF之间的关系.。

相关文档
最新文档