第二十章-数据的分析教案全章(精品)
人教版八年级上册数学教学设计(教案):第二十章 数据的分析
八年级数学·下新课标[人]第二十章数据的分析1.进一步理解平均数、中位数和众数等统计量的统计意义.2.会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势.3.会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况.1.探索并掌握平均数、方差的计算公式,会找一组数据的中位数、众数、极差,用样本估计总体,并解决生产、生活中的有关问题.2.从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度.1.能用计算器的统计功能进行统计计算,进一步体会计算器的优越性.2.会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想.3.通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质.本章属于“统计与概率”领域.对于“统计与概率”领域的内容,共有三章.这三章内容采用统计和概率分开编排的方式,前两章是统计,最后一章是概率.统计部分的两章内容按照数据处理的基本过程来安排.我们在7年级下册学习了“第10章数据的收集、整理与描述”,本章“数据的分析”主要学习分析数据的集中趋势和离散程度的常用方法.在前一章中,我们学习了收集、整理和描述数据的常用方法,将收集到的数据进行分组、列表、绘图等处理工作后,数据分布的一些面貌和特征可以通过统计图表等反映出来.为了进一步了解数据分布的特征和规律,还需要计算出一些代表数据一般水平(典型水平)或分布状况的特征量.对于统计数据的分布的特征,可以从三个方面来分析:一是分析数据分布的集中趋势,反映数据向其中心值(平均数)靠拢或聚集的程度;二是分析数据分布的离散程度,反映数据远离其中心值(平均数)的趋势;三是分析数据分布的偏态和峰度,反映数据分布的形状.这三个方面分别反映了数据分布特征的不同侧面.根据《标准》的要求,本章就从前两个方面研究数据的分布特征.【重点】平均数、众数、中位数、方差的定义及其应用.【难点】应用所学的统计知识解决实际问题.1.注意与前两个学段相关内容的衔接.本章在教学时,注意与前两个学段的衔接,将三个学段的相关内容,在分析数据的这个大背景下统一起来,在对学生已有的相关知识进行整理的基础上学习新的知识.例如,对于平均数、中位数、众数,本章就是在研究数据集中趋势的大背景下,在整理学生已有的关于这三种统计量的认识的基础上,学习加权平均数,研究如何根据统计量的特征选择适当的统计量描述数据的集中趋势等.这样的一种编写方式,将三个学段的学习连成一个相互联系、螺旋上升的整体.因此,教学中要注意对已有知识的复习,在复习的基础上学习新内容,使学生对于分析数据的知识和方法形成整体认识.2.准确把握教学要求.本章要求通过较多实例,从不同的方面进一步感受抽样的必要性,并初步感受样本的代表性,体会不同的抽样可能得到不同的结果,能够用样本的平均数、方差估计总体的平均数、方差等.因此,在本章教学时,要注意把握教学要求.3.合理使用计算器.信息技术的发展给统计学的研究带来很大变化,为统计工作的高效、准确提供了便捷的工具.对于计算器等现代信息技术对统计的作用,本章中,编写了使用计算器求一组数据的平均数和方差的内容作为必学内容,还编写了利用计算机求平均数、中位数、众数和方差等集中统计量的内容作为选学内容等.教学中要注意发挥计算器在处理数据中的作用,也要注意合理地使用计算器.20.1 数据的集中趋势4课时20.1.1平均数(2课时)20.1.2中位数和众数(2课时)20.2 数据的波动程度1课时20.3 课题学习体质健康测试中的数据分析1课时单元概括整合1课时20.1数据的集中趋势1.进一步掌握算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.2.理解中位数和众数的定义和意义,会求一组数据的中位数和众数,能结合具体问题解释中位数和众数的实际意义.3.能分清平均数、中位数、众数三者的区别,根据实际问题情境选择适当的统计量表示数据的特征.经历应用加权平均数对数据处理和探索中位数、众数的过程,体验对统计基本思想的理解过程.能运用数据信息的分析解决一些简单的实际问题.通过加权平均数、中位数和众数的学习,初步认识数学与人类生活的密切联系,感受数学结论的确定性,激发学生学好数学的热情,感受统计在生活中的应用,增强统计意识,培养统计能力.【重点】算术平均数、加权平均数的概念及计算,会求一组数据的中位数和众数,能结合实际情境理解其实际意义.【难点】理解平均数、中位数和众数这三个统计量之间的联系与区别,能根据具体问题选择适当的统计量分析数据信息并作出决策.20.1.1平均数1.进一步掌握算术平均数、加权平均数的概念.2.会求一组数据的算术平均数和加权平均数.经历应用加权平均数对数据处理的过程,体验对统计基本思想的理解过程.能运用数据信息的分析解决一些简单的实际问题.通过加权平均数的学习,初步认识数学与人类生活的密切联系,感受数学结论的确定性,激发学生学好数学的热情.【重点】1.算术平均数、加权平均数的概念及计算.2.掌握加权平均数的实际应用.【难点】1.体会平均数在不同情境中的应用.2.应用加权平均数对数据做出合理判断.第课时1.使学生理解数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.1.通过加权平均数的学习,经历运用数据描述信息,作出推断的过程,形成和发展统计观念.2.通过加权平均数的学习,进一步认识数据的作用,体会统计的思想方法.渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显、寓纷繁于严谨的辩证统一的数学美.【重点】会求加权平均数.【难点】对“权”的正确理解.【教师准备】教学中出示的课件和例题.【学生准备】预习课本内容.导入一:刘木头开了一家小工厂,生产儿童玩具.工厂的管理人员由刘木头、他的弟弟及其他6个亲戚组成.工作人员由5个领工和10个工人组成.现在需要一个新工人,刘木头正在与一个叫小王的青年人谈招聘问题.刘木头说:“我们这里报酬不错,平均每个人的薪金是每周300元,但在学徒期间每周是75元,不过很快就可以加工资.”小王上了几天班以后,要求和厂长谈谈.小王说:“你骗我,我已经和其他工人核对过了,没有一个人的工资超过每周100元.每人平均工资怎么可能是一周300元呢?”刘木头皮笑肉不笑地回答:“小王,不要激动嘛!每人平均工资确实是300元,不信你自己算一算.”刘木头拿出一张表,说道:“这是我每周付出的薪金.我得2400元,我弟弟得1000元,我的6个亲戚每人得250元,5个领工每人得200元,10个工人每人得100元.总共是每周6900元,付给23个人,平均每人得300元,对吗?”“对,对,你是对的,每人的平均工资是每周300元.可你还是骗了我.”小王生气地说.刘木头拍着小王的肩膀说:“这我可不同意,你自己算的结果也表明我没骗你呀!小兄弟,你根本不懂得平均数的含义,怪不得别人哟!”同学们,你能当个小法官来判一下谁说的对吗?[设计意图]让学生明确数学问题来源于生活实践,同时数学又指导生活实践,从而达到激发学生思考问题、探究新知的强烈欲望及引入新课的目的.导入二:农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种各用10块试验田进行试验,得到各试验田每公顷的产量(见下表),根据这些数据,应为农科院选择甜玉米种子提出怎样的建议呢?品种各试验田每公顷产量(单位:吨)甲7.65 7.50 7.62 7.59 7.657.64 7.50 7.40 7.41 7.41乙7.55 7.56 7.53 7.44 7.497.52 7.58 7.46 7.53 7.49提问:如何考察一种玉米的产量和产量的稳定性?学生随意说出自己的一些想法后,教师说明本章学习的知识内容:(1)平均数、中位数、众数和方差等概念;(2)用样本的平均数和方差估计总体的平均数和方差;(3)课题学习,解决实际问题.[设计意图]问题的提出,学生难以用已学到的平均数的公式解决这个问题,需要研究新的方法,学习新的知识,让学生了解本章研究的基本知识内容,培养学生用样本估计总体的基本思想.思路一问题:某市三个郊县的人数及人均耕地面积如下表:郊县人数/万人均耕地面积/公顷A15 0.15B7 0.21C10 0.18这个市郊县的人均耕地面积是多少?(精确到0.01公顷)问题1小明求得这个市郊县的人均耕地面积为:= =0.18(公顷).你认为小明的做法有道理吗?为什么?组织学生讨论,教师参与,并适时指导:(1)对“平均数”和“人均耕地面积”的准确理解;(2)三个郊县人数的多少对人均耕地面积有无影响,分析小明同学的计算错误.问题2这个市郊县的总耕地面积是多少?总人口是多少?你能算出这个市郊县的人均耕地面积是多少吗?引导学生列出正确算式,即这个市郊县的人均耕地面积为:≈0.17(公顷).问题3三个郊县的人数(单位:万)15,7,10在计算人均耕地面积时有何作用?教师指出:上面的平均数0.17称为三个数0.15,0.21,0.18的加权平均数.三个郊县的人数(单位:万)15,7,10分别为三个数据的权.追问:你能正确理解数据的权和三个数的加权平均数吗?在活动中教师应重点关注学生对数据的权及加权平均数的理解.问题4若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则这n个数的加权平均数是多少?教师引导学生从三个数据的加权平均数的计算方法中,归纳得出n个数的加权平均数的计算公式.学生思考、总结归纳:若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则叫做这n个数的加权平均数.[设计意图]通过讨论、分析、思考认识到用已学过的平均数的计算方法来计算这个市郊县的人均耕地面积是根本行不通的,使学生意识到需要学习新知识、新方法,激发学生去探究.通过大胆猜想,培养学生的探究意识,通过教师的有效引导,让学生体会数学的归纳思想方法,理解n个数的加权平均数的计算公式及其结构特征,认识数据的权的作用.思路二问题1一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者听说读写甲85 83 78 75乙73 80 85 82提问:如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?录用依据是什么?学生提出评判依据,若学生提出以总分作为依据,教师要引导学生思考:已学过的哪个统计量可反映数据的集中趋势?学生计算平均数,解决问题.追问:这家公司在招聘英文翻译的过程中,对甲、乙两名应试者进行了哪几个方面的英语水平测试?成绩分别为多少?学生同桌讨论,计算后提出自己的意见.问题2如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?引导学生讨论:招聘口语能力或笔译能力较强的翻译时,听、说、读、写四项成绩的重要程度是否相同,公司侧重哪两个方面的成绩?从给出的比值是否体现这两方面更加“重要”?根据算术平均数的计算公式,让学生依据题目要求,分别计算出甲、乙两名应试者的成绩,教师引导写出解答过程.问题3在问题2中,各个数据的重要程度不同(权不同),这种计算平均数的方法能否推广到一般?追问:若n个数据x1,x2,…,x n的权分别为w1,w2,…,w n,这n个数据的平均数该如何计算?教师引导学生思考归纳得出n个数的加权平均数的计算公式:若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则叫做这n个数的加权平均数.问题4如果这家公司想招一名口语能力较强的翻译,应该侧重哪些分项成绩?如果听、说、读、写成绩按照3∶3∶2∶2的比确定两人的测试成绩,那么谁将被录取?与问题2相比较,你能体会到权的作用吗?学生独立完成计算过程,体会权的改变对加权平均数的影响.追问:你认为问题1中各数据的权有什么关系?通过上述问题的解决,说说你对权的认识.师生活动:引导学生分析加权平均数公式,发现问题1中各数可看作是权相同的,教师指出两种平均数之间的联系.[设计意图]回顾学过的平均数的意义,为引入加权平均数作铺垫.通过讨论,让学生充分发表自己的见解,同时接纳和吸引别人的正确意见,相互交流、相互探讨,培养学生的合作意识.通过改变同一个问题背景中数据的权,得到不同的结果,从而进一步体会权的意义与作用.[知识拓展](1)当所给的数据在一常数a上下波动时,一般选用='+a.一组数据x1,x2,…,x n的各个数据比较大的时候,我们可以把各个数据同时减去一个适当的常数a,得x'1=x1-a,x'2=x2-a,…,x'n=x n-a.于是x1=x'1+a,x2=x'2+a,…,x n=x'n+a.因此=(x1+x2+…+x n)=(x1'+x2'+…+x n')+·na='+a;(2)平均数的大小与每个数据都有关系,它反映一组数据的集中趋势,是一组数据的“重心”,也是度量一组数据波动大小的基准;(3)加权平均数是算术平均数的特例.加权平均数的实质就是考虑不同权重的平均数,当加权平均数的各项权相等时,就变成了算术平均数.2.例题讲解一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各个成绩均按百分制,再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制),进入决赛的前两名选手的单项成绩如下表所示:(单位:分)选手演讲内容演讲能力演讲效果A85 95 95B95 85 95请确定两人的名次.教师出示例题并指导学生阅读分析:这个问题可以看成是求两名选手三项成绩的加权平均数,50%,40%,10%说明演讲内容、演讲能力、演讲效果三项成绩在总成绩中的重要程度,是三项成绩的权.学生在阅读过程中明确下列问题:(1)演讲内容、演讲能力、演讲效果三项成绩在总成绩中的重要程度用什么数据说明?(2)要想决出两人的名次,必须求两人的总成绩,实质上是求这两名选手三项成绩的加权平均数.学生根据加权平均数的计算公式先分别计算出两名选手的总成绩,教师进一步引导写出解答过程.解:选手A的最后得分是=90,选手B的最后得分是=91.由上可知选手B获得第一名,选手A获得第二名.[设计意图]让学生掌握自学的方法,提高学生独立分析问题、解决问题的能力.通过问题的解决,让学生进一步体会数据的权的作用,体验参与数学活动的乐趣.(1)加权平均数的意义:在一组数据中,由于每个数据的权不同,所以计算平均数时,用加权平均数,才符合实际.(2)数据的权的意义:数据的权能够反映数据的相对“重要程度”.(3)加权平均数公式:=.1.晨光中学规定学生的学期体育成绩满分为100分,其中平时体育活动评估成绩占20%,期中成绩占30%,期末成绩占50%.则平时体育活动评估成绩、期中成绩、期末成绩的权分别为、和.解析:根据权的概念解决即可.答案:20%30%50%2.学校把学生学科的期中、期末两次成绩分别按40%,60%的比例计入学期学科总成绩.小明期中数学成绩是85分,期末数学成绩是90分,那么他的学期数学总成绩是()A.85分B.87.5分C.88分D.90分解析:根据学期数学成绩=期中数学成绩×所占的百分比+期末数学成绩×所占的百分比即可求得学期总成绩.故选C.3.一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩的20%,面试占30%,实习成绩占50%,各项成绩如下表所示:(单位:分)应聘者笔试面试实习甲85 83 90乙80 85 92试判断谁会被公司录用,为什么?解:甲的平均成绩为=86.9,乙的平均成绩为=87.5.因此,乙会被公司录用.4.某单位欲招聘一名技术部门负责人,对甲、乙、丙三位候选人进行了三项能力测试,且各项测试成绩满分均为100分,根据结果择优录取,三位候选人的各项测试成绩如下表所示:(单位:分)测试项目测试成绩甲乙丙沟通能力85 73 73科研能力70 71 65组织能力64 72 84(1)如果根据三项测试的平均成绩,谁将被录用?说明理由.(2)根据实际需要,该单位将沟通能力、科研能力和组织能力三项测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用?说明理由.解:(1)甲的平均成绩为(85+70+64)÷3=73,乙的平均成绩为(73+71+72)÷3=72,丙的平均成绩为(73+65+84)÷3=74,因此,丙的平均成绩最高,丙将被录用.(2)甲的成绩为=76.3,乙的成绩为=72.2,丙的成绩为=72.8.因此,甲的成绩最高,甲将被录用.第1课时1.加权平均数2.例题讲解例题一、教材作业【必做题】教材第113页练习第1,2题;教材第121页习题20.1第1题.【选做题】教材第122页习题20.1第5题.二、课后作业【基础巩固】1.在中国好声音选秀节目中,四位参赛选手的各项得分如下表,如果将专业、形象、人气这三项得分按3∶2∶1的比例确定最终得分,最终得分最高的进入下一轮比赛,则进入下一轮比赛的是()(每项按10分制)测试内容测试成绩小赵小王小李小黄专业素质 6 7 8 8形象表现8 7 6 9人气指数8 10 9 6A.小赵B.小王C.小李D.小黄2.学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下:采访写作计算机创意设计小明70分60分86分小亮90分75分51分小丽60分84分72分现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权重比由3∶5∶2变成5∶3∶2,成绩变化情况是()A.小明增加最多B.小亮增加最多C.小丽增加最多D.三人的成绩都增加3.希望中学一个学期的数学总平均分是按下图进行计算的.该校李飞同学这个学期的数学成绩如下:(单位:分)李飞平时作业期中考试期末考试90 85 88则李飞这个学期数学总平均分为.4.某商场用加权平均数来确定什锦糖的单价,由单价为15元/千克的甲种糖果10千克,单价为12元/千克的乙种糖果20千克,单价为10元/千克的丙种糖果30千克混合成的什锦糖果的单价应定为. 【能力提升】5.学生的学科期末成绩由期考分数、作业分数、课堂参与分数三部分组成,按各占30%,30%,40%的比例确定.已知晓明的数学期考80分,作业90分,课堂参与85分,则他的数学期末成绩为分.6.小丽家上个月吃饭费用为500元,教育费用为200元,其他费用为500元.本月小丽家这三项费用分别增长了10%,30%和5%.小丽家本月的总费用比上个月增长的百分数是多少?7.小李同学七年级第二学期的数学成绩如下表所示:测验类别平时期中考试期末考试测验1测验2测验3测验4成绩(分)88 92 94 90 92 89如果学期的总评成绩是根据如图所示的权重计算,那么小李同学该学期的总评成绩为多少分?(四舍五入精确到1分)8.老师在计算学期总平均分的时候按如下标准:作业占10%,测验占20%,期中考试占35%,期末考试占35%,小关和小兵的成绩如下表:学生作业测验期中考试期末考试小关80 75 71 88小兵76 80 68 90分别算出小关和小兵的总平均分.【拓展探究】9.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试成绩(单位:分)测试项目甲乙丙笔试75 80 90面试93 70 68根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4∶3∶3的比例确定个人成绩,那么谁将被录用?【答案与解析】1.D(解析:将四个人的测试成绩按比例求出最终成绩,找出成绩最高的即可.)2.B(解析:根据加权平均数的概念分别计算出3人的各自成绩.先求出采访写作、计算机和创意设计这三项的权重比是3∶5∶2各自的成绩,再求出这三项的权重比是5∶3∶2各自的成绩,进行比较.)3.87.5(解析:先从统计图得到相应数据的权重,再利用加权平均数的计算方法求解.)4.11.5元/千克(解析:将三种糖果的总价算出,再除以60即可.)5.85(解析:根据加权平均数的计算公式计算即可.)6.解:500×10%+200×30%+500×5%=135(元),135÷(500+200+500)×100%=11.25%.7.解:平时平均成绩为=91(分),总评成绩为=90.1≈90(分).8.解:小关的学期总平均分为=80×10%+75×20%+71×35%+88×35%=78.65(分),小兵的学期总平均分为'=76×10%+80×20%+68×35%+90×35%=78.9(分).9.解:(1)甲、乙、丙三人的民主评议得分分别为:200×25%=50(分),200×40%=80(分),200×35%=70(分).(2)甲的平均成绩为≈72.67(分),乙的平均成绩为≈76.67(分),丙的平均成绩为=76.00(分).由于76.67>76>72.67,所以候选人乙将被录用.(3)甲的个人成绩为=72.9(分);乙的个人成绩为=77(分);丙的个人成绩为=77.4(分).由于丙的个人成绩最高,所以候选人丙将被录用.本节课把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.平均数是统计中的一个重要概念,新教材注重了学生在经历统计活动的过程中体会平均数的本质内涵,理解平均数的意义,发展学生的统计观念.基于以上认识,我在设计中突出了让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决实际问题,了解它的价值,努力做到由传统的数学课堂向实验课堂转变.在教学过程中,高估了学生理解加权平均数的能力,主要困难在于一些学生不能对权的含义理解透彻.适当增加学生熟知的一些实例,通过计算平均数,深刻理解权的含义及对平均数的影响.练习(教材第113页)1.解:(1)甲:=88(分),乙:=87.5(分),故甲将被录取.(2)甲:=87.6(分),乙:=88.4(分),故乙将被录取.2.解:=88.5(分).故小桐这学期的体育成绩是88.5分.学生在第二学段已学过平均数,初步了解了平均数的实际意义,这个课时将在此基础上,在研究数据集中趋势的大背景下,学习加权平均数,体会权的意义、作用,并进一步体会平均数是刻画一组数据集中趋势的重要的统计量,是一组数据的“重心”.教材设计了以招聘英文翻译为背景的实际问题,根据不同的招聘要求,各项成绩的“重要程度”不同,从而平均成绩不同,由此引入加权平均数的概念.权的重要性在于它能够反映数据的相对“重要程度”.为了更好地说明这一点,教科书设计了“思考”栏目和例1,从不同方面体现权的作用,使学生更好地理解加权平均数,体会权的意义和作用.加权平均数不同于简单的算术平均数,简单的算术平均数只与数据的大小有关,而加权平均数则还与该组数据的权相关,学生对权的意义和作用的理解会有困难,往往造成数据与权混淆不清,只会利用公式,而不知加权平均数的统计意义.本节课的教学重点是对权及加权平均数统计意义的理解;教学难点是对权的意义的理解,用加权平均数分析一组数据的集中趋势.(2014·张家界中考)已知一组数据4,13,24的权数分别是,,则这组数据的加权平均数是.〔解析〕由加权平均数计算公式得=4×+13×+24×=17.故填17.。
第20章数据的分析(教案)
一、教学内容
第20章数据的分析
1.数据的收集与整理
-教材第20.1节:认识数据,了解数据的来源,学会用表格和图表整理数据。
-教材第20.2节:运用不同的调查方法收集数据,掌握简单随机抽样和分层抽样。
2.数据的描述
-教材第20.3节:学习使用平均数、中位数、众数描述数据集的集中趋势。
-与教材关联:教材鼓励学生在学习过程中进行合作交流,培养学生的团队合作精神。
三、教学难点与重点
1.教学重点
-数据的收集与整理:重点在于让学生掌握数据的来源、整理方法以及调查收集数据的基本技巧。例如,如何设计调查问卷、如何运用随机抽样和分层抽样等。
-与教材关联:教材第20.1节和第20.2节讲述了数据的来源、整理及收集方法。
在教学过程中,教师应针对这些难点和重点内容,运用生动的案例、实际操作和小组讨论等多种教学方法,帮助学生理解和掌握本章知识。同时,注重培养学生在实际情境中运用数据分析的能力,提高其学科核心素养。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《数据的分析》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要根据数据做出决策的情况?”(例如:购物时比较商品的价格和性能)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索数据分析的奥秘。
-与教材关联:教材通过案例和练习,引导学生运用数学知识进行数据分析,提高学生的数学思维能力。
3.实践应用能力:使学生掌握数据分析的基本方法,并能将其应用于解决实际生活中的问题,培养学以致用的实践能力。
-与教材关联:教材第20章设置实际问题,让学生在实践中运用数据分析的方法,提高解决问题的能力。
初中数学 第20章数据的分析 全章教案
第二十章数据的分析20.1数据的代表20.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法:1、重点:会求加权平均数2、难点:对“权”的理解1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值第二十章数据的分析课题20.1 数据的代表课时:六课时第一课时20.1.1 平均数【学习目标】1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
【重点难点】重点:会求加权平均数难点:对“权”的理解【导学指导】学习教材P124-P127相关内容,思考、讨论、合作交流后完成下列问题:1.你认为P124“思考”中小明的做法有道理吗?为什么?2.正确的解法应是怎样的?请谈谈你的看法。
3.什么是加权平均数?4.P125“例1”中,所求的结果已不再是各人听说读写成绩的简单平均,而是听说读写成绩的加权平均数,它们的权分别是多少?5.P126“例2”中,两名选手的单项成绩都是两个95分与一个85分,为什么他们的最后得分不同呢?谈谈你对权的作用的体会。
【课堂练习】1.教材P127练习第1,2题。
2、在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,则这个样本的平均数为.3、某人打靶,有a次打中x环,b次打中y环,则这个人平均每次中靶环。
4、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:试判断谁会被公司录取,为什么?5、在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。
八年级数学下册第二十章数据的分析数学活动教案(新版)新人教版
八年级数学下册第二十章数据的分析数学活动教案(新版)新人教版第二十章数据的分析【教学目标】知识与技能进一步理解平均数、中位数、众数、方差等统计量的意义,会用适当的统计量进行数据分析;过程与方法经历提出问题,数据收集、整理、描述、分析等统计过程,体会样本估计总体的思想,发展数据分析观念;情感、态度与价值观体会统计的实际应用价值.【教学重难点】重点:结合身边素材提出统计问题,开展统计活动.难点:结合身边素材提出统计问题,开展统计活动.【导学过程】【情景导入】我们已经学习了数据的收集、整理、描述、分析等统计活动,统计与生活实际紧密联系,其实,我们身边就有大量的统计问题.请大家分组讨论,每一小组提出一个可以在课内调查的统计问题.【新知探究】活动1、请同学们合作完成下面的活动:1.全班同学一起讨论,提出5个问题对全班同学进行调查,例如全班同学的平均身高是多少?全班同学的平均体重是多少?等等;2.全班同学分成五个小组,每个小组选择一个问题进行调查,并将调查过程和结果在全班展示;3.将各组的结果汇总到一起,得到全班同学的一个“平均情况”,找出一个最能代表全班“平均情况”的同学.活动2、请全班同学分成几个小组,合作完成下面的活动:1. 每个小组分别测量本组同学的每分脉搏次数,得到几组数据;2.求出本组数据的平均数、中位数、众数、方差等;3.与其他小组进行交流,估计一颗“正常”心脏的每分跳动次数;4.查找资料,看看一颗“正常”心脏的每分跳动次数,与你们的调查结果进行对照,谈谈你们对用样本估计总体的感受.以“每分脉搏次数问题”为例,进行现场调查分析.统计调查的基本步骤是哪些?(1)你的小组准备采用什么方法收集数据?是全面调查方式还是抽样调查方式?(2)你的小组准备怎样整理数据和描述数据?(3)你的小组准备怎样分析数据?请各组介绍和展示统计分析过程及得到的结论:(1)介绍你所在小组的数据收集与分析过程;(2)你得出了哪些结论?依据分别是什么?【知识梳理】1.本次统计活动中,你经历了哪些环节?2.各个统计环节你是怎样做的?3.经历这次调查活动,你有什么体会?2。
第二十章数据的分析教案全章
人教版八年级(下)数学教案《数据的分析》单元教案(一)学习目标1.进一步理解平均数、中位数与众数等统计量的统计意义;2.会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势;3.会计算极差与方差,理解它们的统计意义,会用它们表示数据的波动情况;4.能用计算器的统计功能进行统计计算,进一步体会计算器的优越性;5.会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想;6.从事收集、整理、描述与分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活与生产中的作用,养成用数据说话的习惯与实事求就是的科学态度。
(二)重、难点分析统计中常用的平均数有算数平均数(简单算数平均数与加权算数平均数)、调与平均数、几何平均数等。
根据《标准》的要求,本章着重研究了加权平均数。
(三)内容分析本章主要研究平均数(主要就是加权平均数)、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势与离散情况,并通过研究如何用样本的平均数与方差估计总体的平均数与方差,进一步体会用样本估计总体的思想。
下面就是本章知识展开的结构框图。
本章知识的展开顺序如下图:(四)课时分配全章教学约需15课时(不包括选学内容的课时数),具体内容与课时分配如下:18.1 数据的代表约6课时18.2 数据的波动约5课时18.3 课题学习约2课时数学活动小结约2课时18、1数据的代表18、1、1平均数(第一课时)一、教学目标:1、使学生理解数据的权与加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义与作用:描述一组数据集中趋势的特征数字,就是反映一组数据平均水平的特征数。
二、重点、难点分析: 1、重点:会求加权平均数 2、难点:对“权”的理解 三、课程类型:新授课方法手段:启发式教学法 四、课堂引入:1、若不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可供借鉴参考。
2020-2021学年人教版数学八年级下册:第二十章数据的分析(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平均数、中位数、众数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对数据分析的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
最后,总结回顾环节,我意识到需要让学生们更多地参与到总结中来。通过提问或让他们用自己的话复述所学知识,可以检验他们对知识点的掌握程度,并及时发现并纠正他们的误解。
-频数分布表和频数分布直方图的制作:学生在制作过程中可能会对组距、组数的选取和图表的绘制感到困惑。
-难点举例:如何根据数据的特点选择合适的组距,以及如何将频数分布表中的数据准确地反映在频数分布直方图上。
-数据分析的应用:将所学的数据分析方法应用于解决实际问题,学生可能难以将理论与实际结合。
-难点举例:如何从实际情境中提取关键数据,运用所学统计量进行有效的分析,并提出合理的结论。
在教学过程中,教师应针对这些重点和难点内容,采用举例、演示、练习等多种教学方法,确保学生能够理解透彻并能够灵活运用。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《数据的分析》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要分析数据的情况?”比如统计班级同学的身高、体重等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索数据分析的奥秘。
4.培养学生运用所学的数据分析方法,对现实生活中的问题进行探究,培养科学思维和解决问题的能力。
5.通过实践活动,培养学生团队协作、沟通交流的能力,增强数据分析在实际生活中的应用意识。
数据的分析全章教案
第20章数据的分析20.1.1平均数(1)教学目标1.复习数据处理的一般过程,初步感受数据分析的意义.2.通过实例知道平均数的意义,会计算平均数. 教学重点和难点1.重点:数据处理的一般过程,平均数的意义.2.难点:数据分析的意义.(本章学习,学生需要自备计算器)教学过程(一)复习旧知,导入新课师:在工作中,人们经常需要做各种决策.譬如说,某个地方的电视台台长,他需要考虑各类节目每天播出多长时间,新闻节目一天播几个小时?体育节目一天播几小时?动画节目、娱乐节目、戏曲节目一天播几个小时?考虑这些就是做决策. 师:那么这位电视台台长怎么做决策呢?(稍停)这件事不能凭电视台台长的个人喜好来决定.我是电视台台长,我喜欢戏曲节目,我这个电视台一天到晚都播戏曲节目,这行不行啊?这显然不行.要决定各类节目每天播多长时间,先要做调查研究.师:调查什么呢?(稍停)调查这个地方的老百姓对新闻、体育、动画、娱乐、戏曲等节目的喜爱情况,调查这个地方的青少年、成年人、老年人对各类节目的喜爱情况,还可以调查一些别的相关情况.情况弄清了,才好做决策,这样做出来的决策才会有依据.所以说,做决策先要做调查研究.师:那么怎么做调查研究呢?从统计角度来说,做调查研究就是数据处理的过程(板书:数据处理的过程). 师:(指板书)数据处理过程是一个什么样的过程?(师出示下面的数据处理过程图)师:(指准上图)数据处理过程就是从收集数据到整理数据,到描述数据,到分析数据,最后得出结论的过程. 师:(指准上图)初一的时候,我们已经学过如何收集数据,如何整理数据,如何描述数据. 师:如何收集数据?(稍停)收集数据有两种方式,一种是全面调查(板书:全面调查,加框并连线),一种是抽样调查(板书:抽样调查,加框并连线). 师:(指准上图)什么是全面调查?什么是抽样调查?(稍停)全面调查是通过调查总体来收集数据(板书:调查总体),抽样调查是通过调查样本来收集数据(板书:调查样本).师:譬如说,要调查某个地区的人对电视节目的喜爱情况,如果调查这个地区的所有人,这就是全面调查,这个地区所有的人叫总体;如果随机抽出1000个人,只调查这1000个人,这就是抽样调查,这1000个人叫样本. 师:(指准上图)收集数据后,接下来要整理数据.为什么要整理数据?(稍停)因为通过调查收集到的数据是一大堆杂乱无章的数据,所以需要通过制表来整理数据(板书:制表). 师:(指准图)整理好了数据,接下来要描述数据,为什么要描述数据?(稍停)得出结论分析数据描述数据整理数据收集数据整理数据是通过制表来整理的,而描述数据是通过绘图来描述的(板书:绘图).因为图比表形象,所以通过绘图来描述数据可以把调查获得的情况更形象更直观地反映出来.师:描述数据的图有四种,哪四种?(稍停)一种是条形图(板书:条形图),一种是扇形图(板书:扇形图),一种是折线图(板书:折线图),一种是直方图(板书:直方图,板书后上图成下图).师:(出示画有下面条形图的纸,并指准)这是一个条形图,从这个图我们可以看到,在抽样调查的1000个人中,有239人最喜爱新闻节目,有224人最喜爱体育节目,有126人最喜爱动画节目,有309人最喜爱娱乐节目,有102人最喜爱戏曲节目.因为柱线越高人数越多,所以哪一组人多哪一组人少,从柱线高低一看就清楚了.师:(出示画有下面扇形图的纸,并指准)这是一个扇形图,从这个图我们可以看到,抽样调查的人中,有30.9%最喜爱娱乐节目,有10.2%最喜爱戏曲节目,有12.6%最喜爱动画节目,有22.4%最喜爱体育节目,有23.9%最喜爱新闻节目.因为扇形面积越大所占的百分比也越大,所以哪一组所占百分比大哪一组所占百分比小,从扇形面积大小一看就清楚了. 师:(出示画有下面折线图的纸,并指准)这是一个折线图,从这个图我们可以很直观地看到,喜爱新闻节目人的百分比随着年龄的增大而增大.师:(出示画有下面直方图的纸,并指准)这是一个直方图,它反映的是初一某班63名同学身高的分布情况.看到没有?身高在1米49到1米53的有4人,身高在1米53到1米57的有11人,身高在1米57 到1米61的有24人,身高在1米61到1米65的有13人,身高在1米65到1米69的有8人,身高在1米69到1米73的有3人.从这个图很直观地可以看出,这个班的身高呈现中间多两头少的特点.师:条形图、扇形图、折线图、直方图都是用来描述数据的,但描述的内容是不同的.(边讲边出示图)条形图描述的是各组的具体数据,扇形图描述的是各组所占的百分比,折线图描述的是数据的变化趋势,而直方图描述的是数据的分布情况. 师:(指准数据处理过程图)前面我们复习了数据处理的头三步:收集数据、整理数据、描述数据,按照数据处理的过程,从今天开始我们该学习什么?生:(齐答)分析数据.师:对!接着初一所学的,从本节课开始我们要学习数据的分析. 师:数据都整理好了,数据都描述好了,为什么还要搞什么数据分析呢?前面我们已经看到,通过整理数据和描述数据,可以了解数据的一些情况,但这些情况新闻青少年成年人老年人30%20%10%0%40%百分比年龄段人数身高/cm149153157161165169173510152025381324114直方图折线图扇形图条形图绘图调查样本调查总体抽样调查全面调查制表得出结论分析数据描述数据整理数据收集数据只是数据的一部分情况,数据中还有别的重要情况并没有通过整理和描述反映出来,所以,为了更全面地掌握数据的情况,还需要进行数据分析.师:那么,通过数据分析我们能获得数据的什么情况?怎么进行数据分析?这正是本章我们要学习的内容.师:下面就让我们先来看一个数据分析的例子. (二)尝试指导,讲授新课问题:某班进行了一次数学测验,第一组的成绩是:56,32,63,74,85,22,44,78,91,65;第二组的成绩是:46,39,75,83,16,94,66,60,57,72. 请问:哪个组的成绩好?师:(指板书)大家看一看这个问题,想一想怎么解决问题.(让生思考一会儿)师:谁来说说解决问题的想法?生:……(让一两名同学说)师:(指板书)怎么解决这个问题?先求出第一组的平均分,再求出第二组的平均分,然后比较哪个平均分高,平均分高的组成绩好.师:怎么求平均分呢?第一组的平均分等于第一组10个同学的分数之和除以10(边讲边板书:56+32+…+91+6510),用计算器算出10个同学的分数之和为610(板书:=61010),结果是61(板书:=61). 师:下面请同学计算第二组的平均分,可以用计算器算.(生计算)师:你算出第二组的平均分是多少?生:……(多让几名同学回答)师:第二组的平均分等于第二组10个同学的分数之和除以10(边讲边板书:46+39+…+57+7210),用计算器算出10个同学的分数之和为608(板书:=60810),结果是60.8(板书:=60.8).师:(指准板书)从这两个平均分,我们可以得出结论:第一组的成绩比第二组好(板书:第一组成绩好). 师:(指准板书)这个问题解决了,解决这个问题的关键在哪儿?(稍停)关键在于求出每组的平均分61和60.8.我们把61叫做这10个数的平均数,把60.8叫做这10个数的平均数.师:从61和60.8这两个平均数,哪位同学知道什么是平均数?生:……(让学生用自己的语言概括)如果有n个数x1,x2,…,xn ,那么12n x+x++xx=n,叫做这n个数的平均数.师:(指准板书)如果有n个数x1,x2,…,xn,那么12n x+x++xx=n,叫做这n个数的平均数,x读作“x 拔(bá)”.师:下面请同学们做几道计算平均数的题目. (三)试探练习,回授调节1.填空:783,769,774,779,765的平均数是 .2.填空:在由某电视台举办的唱歌比赛中,由10位评委现场给每位歌手打分,然后去掉其中的一个最高分和一个最低分,其余分数的平均数作为该歌手的成绩.已知10位评委给歌手潘多打分是9.5,9.5,9.3,9.8,,9.4,9.1,9.6,9.5,9.2,9.6,则潘多的得分是(结果保留到小数点后第2位). (四)归纳小结,布置作业师:(指准板书)本节课我们先复习了数据处理的过程,数据处理包括收集数据、整理数据、描述数据、分析数据、得出结论等过程.然后我们学习了一个分析数据的例子,在这个例子中,我们是怎么来分析数据的?(稍停)我们是通过求平均数来分析数据,从而解决问题.师:平均数是分析数据时候十分有用的概念,下节课我们将进一步研究平均数. 课外补充作业:3.填空:43,50,71,64的平均数是 .4.填空:一个中学足球队的20名队员的身高如下(单位:厘米):170,167,171,168,160,172,168,162,172,169,164,174,169,165,175,170,165,167,170,172,则这些队员的平均身高为厘米.5.填空:拉萨今年1月上旬各天的最低气温依次是(单位:℃):-6,-5,-7,-7,-6,-4,-5,-7,-8,-7,则它们的平均气温为℃.20.1.1平均数(2)教学目标1.通过实例经历加权平均数概念的形成过程,知道加权平均数的意义,会计算加权平均数.2.复习总体、个体、样本、样本容量的概念,会利用样本的平均数估计总体的平均数,渗透统计思想. 教学重点和难点1.重点:加权平均数.2.难点:对数据权概念的理解. 教学过程(一)基本训练,巩固旧知1.填空:(1)数据处理过程包括数据、数据、数据、数据、得出结论;(2)如果有n个数x1,x2,…,xn,那么12n x+x++xx= n,叫做这个n个数的 .(二)创设情境,导入新课师:数据处理过程包括收集数据、整理数据、描述数据、分析数据、得出结论,上节课我们开始学习分析数据,我们首先学习了分析数据的一个重要概念,什么概念?(稍停)平均数.本节课我们将继续学习平均数(板书课题:20.1.1平均数),先来看一个例子.(三)尝试指导,讲授新课(师出示问题)问题:某中学初二年级进行了一次数学测验,各班的人数及平均分如下表:班级人数平均分一班30二班4062三班5041这次测验初二年级的平均分是多少?师:大家一起来看这个问题.某中学初二年级进行了一次数学测验,各班的人数及平均分如下表.(指准表)从表中可以看出,初二年级共有三个班,一班30人,平均分77分;二班40人,平均分62分;三班50人,平均分41分.要求的是这次测验初二年级的平均分.师:大家再仔细地看一看这个问题,然后算一算初二年级的平均分. (生计算,师巡视,要给学生充足的思考时间)师:你算出来的初二年级平均分是多少?生:……(多让几名同学回答)师:有同学算出的初二年级的平均分是60分,他是怎么算出来的呢?他把一班的平均分77分、二班的平均分62、三班的平均分41相加,再除以3(边讲边板书:77+62+413),结果是60(边讲边板书:=60). 师:你认为这样算对吗?为什么?(让生思考一会儿再叫学生)生:……(多让几名同学发表看法)师:(指式子)这样算初二年级的平均分是不对的!为什么?(指准表)因为一班、二班、三班的人数不同,所以各班的平均分对全年级平均分的影响不同.一班只有30人,人数最少,所以一班的平均分对全年级平均分的影响最小;而三班有50人,人数最多,所以三班的平均分对全年级平均分的影响最大.由于三班人数最多,而且平均分才41分,所以就是不算我们也可以肯定,初二年级的平均分应该高于60分,还是低于60分?生:(齐答)低于60分.师:通过上面的讨论,我们知道,初二年级的平均分不能按三个班的平均分之和除以3这样去算,那么应该怎么算初二年级的平均分呢?(稍停)师:初二年级的平均分应该等于全年级的总分除以全年级的人数(板书:初二年级的平均分=全年级的总分全年级的人数).师:(指板书)大家想一想是不是这样的.(让生想一会儿)师:全年级总分等于什么?(指准表)等于一班的总分加上二班的总分加上三班的总分.一班的总分是77×30,二班的总分是62×40,三班的总分是41×50,所以全年级的总分等于77×30+62×40+41×50(边讲边板书:=7730+6240+4150 ).师:全年级的人数等于什么?等于一班的人数加上二班的人数加上三班的人数(边讲边在分母上板书:30+40+50). 师:(指式子)用计算器计算这个式子,结果是57(边讲边板书:=57). 师:初二年级平均分是57分,低于60分,与我们想象的是一样的. 师:(指准式子)上面我们用这个式子算出了初二年级的平均分是57,那么57这个数叫什么?(稍停)57也是一种平均数,但它不是上节课我们讲过的那种平均数.它叫什么平均数呢?57叫做77,62,41的加权平均数(板书:57叫做77,62,41的加权平均数).师:加权平均数、加权平均数就是加了权的平均数.什么是权?(指准式子)30是77的权,40是62的权,50是41的权(板书:30,40,50分别叫做77,62,41.的权).师:权反映了数据的重要程度,一个数据的权越大,这个数据就越重要.(指准式子)譬如,在77,62,41这三个数据中,41的权是50,权最大,所以与77,62相比,41这个数据对全年级平均分的影响最大.换一句话说,在决定全年级平均分的时候41的“权力”最大. (四)试探练习,回授调节2.下表是校篮球队队员的年龄分布:年龄131415人数1452求校篮球队队员的平均年龄.(可以使用计算器)(五)尝试指导,讲授新课师:下面我们来看一道例题. (师出示例题)例:某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如下表所示:使用寿命/时8001200160020002400灯泡个数/个1019253412(1)这个问题中的总体、个体、样本、样本容量各指什么?(2)抽出的100只灯泡的平均使用寿命是多少?(3)这批灯泡的平均使用寿命是多少?(先让生仔细读题,然后师边讲解边解题,解题过程如下)解:(1)总体是这批灯泡,个体是这批灯泡中的每个灯泡,样本是抽出的100只灯泡,样本容量为100.(2)抽出的100只灯泡的平均使用寿命为80010+120019+160025+200034+240012100=1676(小时)(3)样本的平均数为1676,可以用样本的平均数估计总体的平均数,所以这批灯泡的平均使用寿命大约是1676小时. (六)归纳小结,布置作业师:本节课我们学习了什么?本节课我们学习了加权平均数.什么是加权平均数?(指准问题)这个问题已知各班的人数和平圴分,要求的是全年级的平均分,全年级的平均分就是名班平均分的加权平均数. (师出示板书有下面内容的小黑板)如果n个数x1,x2,…,xn的权分别是w1,w2,…,wn ,那么1122nn12n xw+xw++xww+w++w叫做这n个数的加权平均数. 师:(指准板书)一般来说,如果n个数x1,x2,…,xn的权分别是w1,w2,…,wn,那么1122nn12n xw+xw++xww+w++w叫做这n个数的加权平均数. 20.1.1平均数(3)教学目标1.会运用加权平均数解决实际问题,加深理解加权平均数及权的意义.2.感受数学与人类生活的密切联系,培养应用意识. 教学重点和难点1.重点:运用加权平均数解决实际问题.2.难点:理解数据权的作用. 教学过程(一)基本训练,巩固旧知1.填空:(1)扎西射靶5次,成绩是9环、7环、10环、8环、6环,扎西平均每次射中的环数== ;(2)卓玛射靶5次,成绩是9环1次,8环2次,7环2次,卓玛平均每次射中的环数== . (二)创设情境,导入新课师:前面我们学习了两种平均数,哪两种平均数?(师板书)如果有n个数x1,x2,…,xn,那么12n x+x++xn,叫做这n个数的平均数.师:(指准板书)如果有n个数x1,x2,…,xn,那么12n x+x++x n,叫做这n个数的平均数.为了与另一种平均数相区别,我们可以把这种平均数叫做简单平均数(板书:简单).师:另一种平均数叫什么平均数?(稍停)叫加权平均数.什么叫加权平均数?(师出示下面的板书)如果n个数x1,x2,…,xn的权分别是w1,w2,…,wn,那么1122nn12n xw+xw++xww+w++w 叫做这n个数的加权平均数. 师:(指板书)请大家把加权平均数的定义仔细读几遍.(生默读)师:简单平均数、加权平均数都是平均数,它们在实际生活中有着广泛的应用,下面我们就来看一个运用加权平均数解决实际问题的例子. (三)尝试指导,讲授新课师板书下面例题例:一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩如下:应试者听说读写甲858378乙73808582(1)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照3:3:2:2的比例确定,计算两名应试者的平均成绩.从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2:2:3:3的比例确定,计算两名应试者的平均成绩.从他们的成绩看,应该录取谁?师:请大家把这个题目认真默读几遍.(生默读,要给学生充足的读题时间)师:同桌之间互相说一说题目的意思.(同桌互相说)师:题目的意思大致清楚了,老师要提几个问题问大家,第一个问题是:这道题目要我们解决什么问题?生:……(多让几名同学发表看法)师:这道题目要我们从甲乙两名应试者中录取一个人. 师:老师要问的第二个问题是:根据什么来录取?生:……(多让几名同学回答)师:根据听、说、读、写的平均成绩来录取,谁的平均成绩高就录取谁. 师:老师要问的第三个问题是:怎么求每个人听、说、读、写的平均成绩?生:……(多让几名同学发表看法)师:(指准例题中的表)这是甲、乙两人听、说、读、写的成绩,求平均成绩,实际上就是求听、说、读、写四项成绩的加权平均数.要求加权平均数需要知道权是多少,所以老师接着要问:(指(1)题)在第(1)小题中,听、说、读、写四项成绩的权各是多少?生:……(多让几名同学发表看法)师:(指准(1)题)题目中规定,听、说、读、写成绩按照3:3:2:2的比例确定,可见四项成绩中,听的权为3,说的权也是3,读的权为2,写的权也是2.第(1)小题为什么要这样分配权?生:……(多让几名同学发表看法)师:(指准(1)题)这是因为这家公司想招一名口语能力较强的翻译,以3,3,2,2分配权,可以突出口语成绩,可以体现听说成绩比读写成绩更重要.师:上面老师总共提了五个问题,弄清了这五个问题,下面我们一起来做这个题目.(以下师边讲解边板书(1)题的解题过程,解题过程如课本第126页所示;(2)题由学生自己完成)师:例题做完了,通过做这个例题,我们可以发现一个有意思的现象,什么现象?(稍停)甲乙两人听、说、读、写的成绩始终没变,但在(1)小题中,我们录取的是甲,而在(2)小题中,我们录取的却是乙.这是什么原因呢?生:……(多让几名同学发表看法)师:尽管甲乙两人听、说、读、写的成绩始终没变,但因为(1)小题权的分配与(2)小题权的分配不一样,所以平均成绩也就不一样,所以录取的结果也就不一样.从两个不同的结果,我们能体会到什么?(稍停)能体会到权的作用. (四)试探练习,回授调节2.完成下面的解题过程:一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩.进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A908090B809090请决出两人的名次.解:选手A的最后得分是==选手B的最后得分是= =最后得分可知选手获得第一名,选手获得第二名. (五)归纳小结,布置作业师:本节课我们学习了运用加权平均数解决实际问题的例子,通过本课的学习,你有什么收获?生:……(多让几名同学说)(作业:练习1、2)20.1.2中位数和众数(1)教学目标1.经历概念的形成过程,知道什么是中位数,会求一组数据的中位数.2.会结合实际问题说明中位数的意义,渗透统计思想. 教学重点和难点1.重点:中位数.2.难点:结合实际问题说明中位数的意义. 教学过程(一)创设情境,导入新课(师出示一组数据) 5,6,2,3,2 师:(指这组数据)这是一组数据,这组数据的平均数等于多少?(板书:平均数)师:这组数据的平均数等于这五个数之和除以5(边讲边板书:=5+6+2+3+25),结果等于3.6(边讲边板书:=3.6). 师:平均数3.6反映的是什么?(稍停)平均数3.6反映的是这组数据的平均大小.因为平均数反映的是一组数据的平均大小,所以我们就经常把平均数当作一组数据的代表(板书:数据的代表).师:譬如在看NBA的时候,解说员说:湖人队的身高比火箭队高.他这样说的意思是什么?(稍停)意思是:湖人队身高的平均数大于火箭队身高的平均数.他这样说实际上是把湖人队身高的平均数当作湖人队所有队员身高数据的代表,把火箭队身高的平均数当作火箭队所有队员身高数据的代表.师:又譬如,老师说:这次测验(1)班的成绩比(2)班好,老师这样说的意思是什么?(稍停)意思是:这次测验(1)班的平均分大于(2)班的平均分.老师这样说实际上是把(1)班的平均分当作(1)班所有同学分数的代表,把(2)班的平均分当作(2)班所有同学分数的代表.师:从这两个例子,我们可以看到,一组数据的平均数可以当作这组数据的代表.那么除了平均数,还有别的数可以当作一组数据的代表吗?有的,中位数也可以当作一组数据的代表.本节课我们就来学习中位数(板书:中位数). (二)尝试指导,讲授新课师:什么是中位数?简单地说,中位数就是一组数据中大小处于中间位置的数. 师:(指上面这组数据)这组数据的中位数是什么?(稍停)把这组数据从小到大排列一下(边讲边板书:2,2,3,5,6),处于中间位置的数是哪个?(稍停)是3.处于中间位置的数是3,所以这组数据的中位数是3(板书:=3). 师:下面我们再来看一组数据.(师出示一组数据) 5,6,2,4,3,5 师:(指上面这组数据)大家把这组数据从小到大排列一下,找一找处于中间位置的是什么数.(生找数)师:找到了吗?你找到的是什么数?生:……(多让几名同学回答)师:下面我们一起来找.先把这组数据从小到大排列(边讲边板书:2,3,4,5,5,6),排好了再看什么数处于中间位置.(指准数)在这组数据中,看到没有?4,5两个数处于中间位置. 师:既然4和5处于中间位置,4和5都是中位数吗?(稍停)不是,4和5都不是中位数.那么中位数是什么?中位数是4和5的平均数(板书:中位数=4+52),结果是4.5(板书:=4.5). 师:(指准板书)从这两个例子,我们可以概括出求中位数的方法,怎么概括?大家想一想.(生思考,要给学生充足的思考时间)师:怎么求中位数?谁来说说你是怎么概括的?生:……(多让几名同学发表看法,鼓励学生用自己的语言概括)师:一组数据中大小处于中间位置的数叫做中位数,那么中位数怎么求呢?(指准数组)把一组数据从小到大排列,如果这组数据有奇数个,那么处于中间位置的数就是这组数据的中位数;如果这组数据有偶数个,那么处于中间两个数据的平均数就是这组数据的中位数.师:下面大家来做几个求中位数的练习. (三)试探练习,回授调节填空:(1)14,3,17,9,22,13,4,7,11这组数据的中位数是;。
第二十章 数据的分析教案全章(精品)
八年级(下)数学教案《数据的分析》马娟单元教案(一)学习目标1.进一步理解平均数、中位数和众数等统计量的统计意义;2.会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势;3.会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况;4.能用计算器的统计功能进行统计计算,进一步体会计算器的优越性;5.会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想;6.从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度。
(二)重、难点分析统计中常用的平均数有算数平均数(简单算数平均数和加权算数平均数)、调和平均数、几何平均数等。
根据《标准》的要求,本章着重研究了加权平均数。
(三)内容分析本章主要研究平均数(主要是加权平均数)、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。
下面是本章知识展开的结构框图。
本章知识的展开顺序如下图:(四)课时分配全章教学约需15课时(不包括选学内容的课时数),具体内容和课时分配如下:18.1 数据的代表约6课时18.2 数据的波动约5课时18.3 课题学习约2课时数学活动小结约2课时18.1数据的代表18.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点分析: 1、重点:会求加权平均数 2、难点:对“权”的理解 三、课程类型:新授课 方法手段:启发式教学法 四、课堂引入:1、若不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可供借鉴参考。
人教版八年级数学第20章-数据的分析-教案
第二十章 数据的分析 20.1数据的集中趋势 20.1.1平均数(2课时)一、问题引入:1、一般地,对于n 个数n x x x x ......,,321,我们把 叫做这n 个数的算术平均数(mean),简称 ,记为 ,读作 .2、在实际问题中,一组数据的各个数据的 未必相同.因而,在计算这组数据的平均数时,往往给每个数据一个 .如例1中4、3、1分别是创新、综合知识、语言三项测试成绩的权(weight),而称134188350472++⨯+⨯+⨯为A 的三项测试成绩的 .二、基础训练:1、数据2、3、4、1、2的平均数是________,这个平均数叫做_________平均数.2、一组数据的平均数是3,将这组数据每个数都扩大2倍,则所得一组新数据的平均数是( ) A. 3 B. 5 C. 6 D. 无法确定3、如果一组数据5, -2, 0, 6, 4, x 的平均数为6,那么x 等于( ) A. 3 B. 4 C. 23 D. 64、某市的7月下旬最高气温统计如下(1)在这十个数据中,34的权是 ,32的权是______.(2)该市7月下旬最高气温的平均数是 ,这个平均数是_________平均数.5、一个班级40人,数学老师第一次统计这个班级的平均成绩为85分,在复查时发现漏记了一个学生的成绩80分,那么这个班级学生的实际平均成绩应为 ( ) A. 83分 B. 85分 C. 87分 D. 84分三、例题展示:例:小明骑自行车的速度是15km/h ,步行的速度是5km/h.(1)如果小明先骑自行车1h ,然后又步行了1h ,那么他的平均速度是 . (2)如果小明先骑自行车2h ,然后又步行了3h ,那么他的平均速度是 .四、课堂检测:1、在一次知识竞赛中,10名学生的得分如下:80,84,78,76,88,97,82,67,75,71,则他们的平均成绩为。
2、一个地区某月前两周从星期一到星期五各天的最低气温依次是(单位:℃):x1, x2, x3, x4, x5和x1+1, x2+2, x3+3, x4+4, x5+5,若第一周这五天的平均最低气温为7℃,则第二周这五天的平均最低气温为。
八年级下数学第二十章(数据的分析)教案
第二十章数据的分析20.1数据的代表20.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法:1、重点:会求加权平均数2、难点:对“权”的理解3、难点的突破方法:首先应该复习平均数的概念:把一组数据的总和除以这组数据的个数所得的商,叫做这组数据的平均数。
复习这个概念的好处有两个:一则可以将小学阶段的关于平均数的概念加以巩固,二则便于学生理解用数据与其权数乘积后求和作为加权平均数的分子。
在教材P136“讨论”栏目中要讨论充分、得当,排除学生常见的思维障碍。
讨论问题中的错误做法是学生常见错误,尤其是中差生往往按小学学过的平均数计算公式生搬硬套。
在讨论过程中教师应注意提问学生平均数计算公式中分子是什么、分母又是什么?学生由前面复习平均数定义可答出分子是数据的总和、分母是数据的个数,这时教师可递进设疑:那么,题目中涉及的每个数据是每个占有耕地面积还是人均占有耕地面积呢?数据个数是指A、B、C三个县还是三个县的总人数呢?这样看来小明的做法有道理吗,为什么?通过以上几个问题的设计为学生充分思考和相互讨论交流就铺好了台阶。
要使学生更好的去理解权的意义,可以再举一些生活、学习中的例子。
比如:初二.五班有4个小组,在一次测验中第一组有7名同学得了99分,1名同学得了61分,第二组有1名同学得到了100分、7名同学得62分。
能否由26210026199+<+得出第二小组平均成绩这样的结论?为什么?这个例子简单明了又便于学生想象理解,能够让学生从中体会到得99分的7个人比1个得61分的学生对平均成绩影响更大,从而理解权的意义。
在讨论栏目过后,引出加权平均数。
最好让学生将公式与小学学过的平均数计算公式作比较看看意义上是否一致,这样做利于学生把新旧知识联系起来,利于对加权平均数公式的理解,也利于理解“权”的意义。
第二十章数据的分析(教案)
-数据的趋势分析
5.案例分析
-实际问题中的数据分析
-数据分析的应用与拓展
二、核心素养目标
1.培养学生的数据分析观念,使其能够从实际情境中收集、整理数据,运用统计量进行描述与分析,增强数据解读能力。
2.培养学生运用数学语言表达数据特征,通过绘制频数分布表、直方图等图表,提高数据可视化能力。
在总结回顾环节,我发现学生们对本节课的知识点掌握得还不错,但仍有一些疑问。这说明我在教学过程中可能还有一些地方需要改进,比如在难点讲解上可以更加细致,确保学生能够真正消化吸收。
在实践活动环节,学生们的参与度很高,小组讨论和实验操作都进行得很顺利。但我发现,有些小组在讨论时,个别成员的参与度不高,这可能影响了整个小组的讨论效果。因此,我计划在下次活动中,加强对小组讨论的引导,确保每个成员都能积极参与。
学生小组讨论的环节让我感到欣慰,大部分学生能够提出有见地的观点,并将所学知识运用到实际问题中。但在讨论过程中,我也发现了一些学生对数据分析在实际生活中的应用还不够了解。为了提高学生的应用能力,我打算在今后的教学中,增加一些与实际生活紧密相关的案例分析,让学生更好地理解数据分析的价值。
3.培养学生运用数据分析方法解决实际问题,培养问题解决能力和创新意识,激发对数据科学的兴趣。
4.培养学生团队合作精神,学会在小组讨论中倾听他人意见,提高沟通与协作能力。
5.培养学生严谨的科学态度,通过数据分析的过程,养成细心、认真、客观的评价习惯。
三、教学难点与重点
1.教学重点
-数据收集与整理:重点在于让学生掌握数据收集的方法和整理的技巧,如设计调查问卷、记录数据、制作表格等。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与数据分析相关的实际问题。
第二十章-数据的分析教案全章(精品)
人教版八年级(下)数学教案《数据的分析》单元教案(一)学习目标1.进一步理解平均数、中位数和众数等统计量的统计意义;2.会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势;3.会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况;4.能用计算器的统计功能进行统计计算,进一步体会计算器的优越性;5.会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想;6.从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度。
(二)重、难点分析统计中常用的平均数有算数平均数(简单算数平均数和加权算数平均数)、调和平均数、几何平均数等。
根据《标准》的要求,本章着重研究了加权平均数。
(三)内容分析本章主要研究平均数(主要是加权平均数)、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。
下面是本章知识展开的结构框图。
本章知识的展开顺序如下图:(四)课时分配全章教学约需15课时(不包括选学内容的课时数),具体内容和课时分配如下:18.1 数据的代表约6课时18.2 数据的波动约5课时18.3 课题学习约2课时数学活动小结约2课时18.1数据的代表18.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点分析: 1、重点:会求加权平均数 2、难点:对“权”的理解 三、课程类型:新授课方法手段:启发式教学法 四、课堂引入:1、若不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可供借鉴参考。
数据的分析全章教案-人教版(精品教案)
第二十章数据的分析数据的代表20.1.1平均数(第一课时)一、教学目标:、使学生理解数据的权和加权平均数的概念、使学生掌握加权平均数的计算方法、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法:—、重点:会求加权平均数、难点:对“权”的理解三、例习题意图分析、教材的问题及讨论栏目在教学中起到的作用。
()、这个问题的设计和讨论栏目在此处安排最直接和最重要的目的是想引出权的概念和加权平均数的计算公式。
()、这个讨论栏目中的错误解法是初学者常见的思维方式,也是已学者易犯的错误。
在这里安排讨论很得当,起揭示思维误区,警示学生、加深认识的作用。
()、客观上,教材的问题是一个实际问题,它照应了本节的前言——将在实际问题情境中,进一步探讨它们的统计意义,体会它们在解决实际问题中的作用,揭示了统计知识在解决实际问题中的重要作用。
()、的云朵其实是复习平均数定义,小方块则强调了权意义。
:、教材例的作用如下:()、解决例要用到加权平均数公式,所以说它最直接、最重要的目的是及时复习巩固公式,并且举例说明了公式用法和解题书写格式,给学生以示范和模仿。
()、这里的权没有直接给出数量,而是以比的形式出现,为加深学生对权的意义的理解。
()、两个问题中的权数各不相同,直接导致结果有所不同,这既体现了权数在求加权平均数的作用,又反映了应用统计知识解决实际问题时要灵活、体现知识要活学活用。
、教材例的作用如下:()、这个例题再次将加权平均数的计算公式得以及时巩固,让学生熟悉公式的使用和书写步骤。
()、例与例的区别主要在于权的形式又有变化,以百分数的形式出现,升华了学生对权的意义的理解。
()、它也充分体现了统计知识在实际生活中的广泛应用。
《四、课堂引入:、若不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可供借鉴参考。
第二十章数据分析教案
第二十章数据的解析20. 1数据的集中20.均匀数第 1均匀数(1)1.使学生理解并掌握数据的和加均匀数的观点.2.使学生掌握加均匀数的算方法.要点会求加均匀数.点“ ”的理解.一、复入某校八年共有 4 个班,在一次数学考中参照人数和成以下:班 1 班 2 班 3 班 4 班参照人数40424532均匀成80818279求校八年学生在次数学考中的均匀成.下述算方法能否合理?什么?1x=4× (79 + 80+81+ 82) =均匀数的观点及算公式:x + x + x +⋯+ xn一般地,假如有n 个数 x , x , x ,⋯, x,有 x=123,此中 x 叫做 n 个数的123n n均匀数,作“x 拔”.二、授新:一家企业打算招聘一名英文翻,甲、乙两名者行了听、、、写的英水平,他的各成 ( 百分制 ) 如表所示 .者听写甲85788573乙73808283(1) 假如家企业想招一名合能力的翻,算两名者的均匀成( 百分制 ) .从他的成看,取?(2) 假如家企业想招一名笔能力的翻,听、、、写成依照2∶ 1∶ 3∶ 4 的比确立算两名者的均匀成( 百分制 ) .从他的成看,取?于 (1) ,依据均匀数公式,甲的均匀成:85+ 78+ 85+ 73= 80.25 ,4乙的均匀成73+ 80+ 82+ 83= 79.5.4因甲的均匀成比乙高,所以取甲.于 (2) ,听、、、写成依照2∶ 1∶ 3∶ 4 的比确立,明各成的“重要程度”有所不一样,、写的成比听、的成更为“重要”.所以,甲的均匀成85× 2+ 78× 1+85× 3+ 73× 4= 79.5 ,2+1+ 3+4乙的均匀成73× 2+ 80× 1+82× 3+ 83× 4=80.4.2+1+ 3+4因乙的均匀成比甲高,所以取乙.上述(1) 是利用均匀数的公式算均匀成,此中的每个数据被同样重要.而(2) 是依据需要不一样型的数据予与其重要程度相的比重,此中的2, 1, 3, 4 分称听、、、写四成的,相的均匀数79.5 ,分称甲和乙的听、、、写四成的加平均数.一般地,若n 个数x1, x2,⋯, x n的分是w1, w2,⋯,w n,x1w1+ x2w2+⋯+x n w nw1+ w2+⋯+ w n叫做 n 个数的加均匀数.三、例解【例 1】教材第112 例 1【例 2】了定某种灯泡的量,此中100 只灯泡的使用寿命行了量,果以下表:(位:小 )寿命450550600650700只数2010301525求些灯泡的均匀使用寿命.解:些灯泡的均匀使用寿命:450× 20+ 550× 10+600× 30+650× 15+ 700× 25x==597.5(小)20+ 10+ 30+ 15+ 25四、稳固1.在一个本中, 2 出了 x1次, 3 出了 x2次, 4 出了 x3次, 5 出了 x4次,个本的均匀数 ________.【答案】 2x1+ 3x2+4x 3+ 5x4x1+ x2+ x3+ x42.某人打靶,有 a 次打中 x , b 次打中 y ,个人均匀每次中靶________.ax+ by【答案】a+b五、堂小:你学到了什么新知?生 1:数据的和加均匀数的观点.生 2:掌握加均匀数的算方法.⋯⋯均匀数是中的一个重要观点,新教材着重学生在活的程中领会均匀数的本内涵,理解均匀数的意,展学生的念,鉴于以上,我在中突出了学生在详细情境中领会什么要学均匀数,着重引学生在的背景中理解均匀数的含,在比、察中掌握均匀数的特色,而运用均匀数解决,认识它的价.第 2 课时均匀数(2)1.加深对加权均匀数的理解.2.会依据频数散布表求加权均匀数,解决一些实质问题.3.会用计算器求加权均匀数的值.要点依据频数散布表求加权均匀数.难点依据频数散布表求加权均匀数.一、复习导入采纳教材原有的引入问题,设计的几个问题以下:(1)请同学们阅读教材中的研究问题,依照统计表能够读出哪些信息?(2)这里的组中值指什么,它是如何确立的?(3)第二组数据的频数 5 指什么呢?(4)假如每组数据在本组中散布较为均匀,每组数据的均匀值和组中值有什么关系?设计企图 (1) 主假如想引出依据频数散布表求加权均匀数近似值的计算方法;(2)加深了对“权”的意义的理解:当利用组中值近似代替一组数据中的均匀值时,频数恰巧反应这组数据的轻重程度,即权;二、例题精讲【例 2】某跳水队为认识运动员的年纪状况,作了一次年纪检查,结果以下:13岁8人,14岁16人, 15 岁 24 人, 16 岁 2 人.求这个跳水队运动员的均匀年纪( 结果取整数 ) .解:这个跳水队运动员的均匀年纪为x=13× 8+ 14× 16+ 15× 24+ 16×2≈14(岁).8+ 16+ 24+ 2【例 3】某灯泡厂为丈量一批灯泡的使用寿命,从中随机抽查了50 只灯泡.它们的使用寿命以下表所示,这批灯泡的均匀使用寿命是多少?使用寿命 /x/ h600≤ x<10001000 ≤x<14001400 ≤x<18001800 ≤x<22002200 ≤x<2600灯泡只数51012176解析:抽出的50 只灯泡的使用寿命构成一个样本,能够利用样本的均匀使用寿命来预计这批灯泡的均匀使用寿命.解:依据表格,能够得出各小组的组中值,于是800× 5+ 1200× 10+1600× 12+2000 × 17+ 2400× 6x=50= 1672,即样本均匀数为 1672.所以,能够预计这批灯泡的均匀使用寿命大概是1672 h.三、稳固练习某校为了认识学生做课外作业所用时间的状况,对学生做课外作业所用时间进行检查,下表是该校八年级某班50 名学生某一天做数学课外作业所用时间的状况统计表.所用时间 t( 分钟 )人数0< t ≤10410< t ≤20620< t ≤301430< t ≤401340< t ≤50950< t ≤604求: (1) 第二组数据的组中值是多少?(2)该班学生均匀每日做数学作业所用的时间.【答案】解: (1)15(2)该班学生均匀每日做数学作业所用时间为5× 4+ 15×6+ 25× 14+ 35× 13+ 45× 9+ 55× 4x==30.8(分钟)4+ 6+14+ 13+9+ 4四、讲堂小结1.加权均匀数的应用.2.依据频数散布表求加权均匀数.3.学会用计算器求加权均匀数的值.在统计中算术均匀数常用于表示对象的一般水平,它是描绘数据集中程度的一个统计量,它能够反应一组数据的一般状况,也能够用它进行不一样组数据的比较,以看出组与组之间的差异,可见均匀数是统计中的一个重要观点.鉴于这一认识,这节课着重了以下几个方面:一、在现实生活情境中引入,着重数学与生活的联系.二、创建有效的数学学习方式,理解均匀数的意义,学会均匀数的算法.中位数和众数第 1 课时中位数和众数( 1)认识中位数和众数,并会求出一组数据的众数和中位数.要点认识中位数、众数这两种数据代表.难点利用中位数、众数解析数据信息,做出决议.一、复习导入前面已经和同学们研究了均匀数这个数据代表.它在解析数据的过程中担当了重要的角色,今日我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在解析数据的过程中又起到如何的作用.二、解说新课下表是某企业员工月收入的资料.月收入 / 元45000180001000055005000340030001000人数111361111(1)计算这个企业员工月收入的均匀数;(2)若用 (1) 算得的均匀数反应企业全体员工月收入水平,你以为适合吗?师:同学们知道如何计算这个企业员工月收入的均匀数吗?生:依据加权均匀数,能够求出这个企业员工月收入的均匀数为:45000+ 18000+10000+ 5500× 3+5000× 6+ 3400+3000 × 11+ 1000= 6276.1+1+ 1+ 3+6+ 1+ 11+ 1师:很好!那么用第(1) 问中算得的均匀数来反应当企业全体员工的月收入水平,你以为合理吗?生:不合理.由于在这25 名员工中,仅有 3 名员工的收入在6276 元以上,而此外22 名员工的收入都在 6276 元以下.所以,用月收入的均匀数反应全部员工的月收入水平不合理.师:这位同学解析得很好!那么应当选择什么数据来反应当企业员工月收入的水平呢?这就要用到本节课要学习的中位数,利用中位数能够更好地反应这组数据的集中趋向.将一组数据依照由小到大( 或由大到小 ) 的次序摆列,假如数据的个数是奇数,则称位于中间地点的数为这组数据的中位数;假如数据的个数是偶数,则称中间两个数据的均匀数为这组数据的中位数.利用中位数解析数据能够获取一些信息.比如,上述问题中将企业25 名员工月收入数据由小到大摆列,获取的中位数为3400,这说明除掉月收入为3400 元的员工,一半员工收入高于3400 元,另一半员工收入低于3400 元.【例 1】教材第117 页例 4师:方才我们学习中位数,下边我们再来学习一个反应数据集中趋向的另一众数,一组数据中出现次数最多的数据称为这组数据的众数.当一组数占有许多的重复数据时,众数常常能更好地反应当组数据的集中趋向.【例 2】一家鞋店在一段时间内销售了某种女鞋30 双,各样尺码鞋的销售量如表所示.你能依据表中的数据为这家鞋店供给进货建议吗?尺码 / cm22232425销售量/ 双12511731解析:一般来讲,鞋店比较关怀哪一种尺码的鞋的销售量最大,也就是关怀卖出的鞋的尺码构成的一组数据的众数.一段时间内卖出的300 双女鞋的尺码构成一个样本数据,经过解析样本数据能够找出样本数据的众数,从而预计这家鞋店销售哪一种尺码的鞋最多.解:由表能够看出,在鞋的尺码构成的数据中,23.5 是这组数据的众数,即cm 的鞋销售量最大,所以能够建议鞋店多进cm的鞋.三、稳固练习1.数据 8, 9,9, 8,10, 8, 9, 9,8, 10,7, 9, 9, 8 的中位数是 ________,众数是 ________.【答案】992.一组各不同样的数据23, 27,20, 18,x, 12,它的中位数是21,则x 的值是 ________.【答案】223.数据92, 96, 98, 100, x的众数是96,则此中位数和均匀数分别是()A.97,96B.96,C.96,97D.98,97【答案】 B4.假如在一组数据中,23, 25,28, 22 出现的次数挨次为3, 5,3, 1,并且没有其余的数据,则这组数据的众数和中位数分别是()A.24,25B.23,24. 25, 25.23, 25C D【答案】 C四、讲堂小结1.认识了中位数和众数.2.理解了中位数和众数的意义和作用,并能利用它们解析数据信息,做出决议.本次教课中,我经过指引学生在认识中位数和众数的意义以后,让学生利用中位数和众数的知识解决实质问题,交流了知识与实质生活的联系,让学生领会到中位数与众数知识的适用性.第 2 课时中位数和众数(2)1.进一步认识到均匀数、众数、中位数都是数据的代表.2.认识均匀数、中位数、众数在描绘数据时的差异.要点认识均匀数、中位数、众数之间的差异.难点灵巧运用这三个数据代表解决问题.一、复习导入均匀数、中位数和众数都能够作为一组数据的代表,是描绘一组数据集中趋向的量.它们各有自己的特色,能够从不一样的角度供给信息,在实质应用中,需要解析详细问题的状况,选择适合的量反应数据的集中趋向.此外要注意:(1)均匀数计算要用到全部的数据,它能够充足利用全部的数据信息,但它受极端值的影响较大;(2)众数是当一组数据中某一数据重复出现许多时,人们常常关怀的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算也不受极端值的影响;(3)均匀数的大小与一组数据中的每个数据均有关系,任何一个数据的改动都会相应地惹起均匀数的改动;(4)中位数仅与数据的摆列地点有关,某些数据的挪动对中位数没有影响,中位数可能出此刻所给数据中,也可能不在所给的数据中.当一组数据中的个别数据改动较大时,可用中位数描绘其趋向;(5)实质问题中求得的均匀数、众数、中位数应带上单位.二、例题解说【例 1】在一次环保知识比赛中,某班50 名学生成绩以下表所示:得分5060708090100110120人数2361415541分别求出这些学生成绩的众数、中位数和均匀数.解:众数 90 分中位数 85 分均匀数分【例 2】公园里有甲、乙两群旅客正在做集体游戏,两群旅客的年纪以下:( 单位:岁 )甲群: 13, 13,14, 15,15, 15,16, 17,17.乙群: 3, 4, 5, 5, 6, 6, 36, 55.(1)甲群旅客的均匀年纪是 ________岁,中位数是 ________岁,众数是 ________岁,此中能较好地反应甲群旅客年纪特色的是 ________;(2)乙群旅客的均匀年纪是 ________岁,中位数是 ________岁,众数是 ________岁,此中能较好地反应乙群旅客年纪特色的是________.解: (1)151515众数(2)15 5.5 5, 6中位数【例 3】教材第119页例 6三、稳固练习某企业的33 名员工的月薪资 ( 以元为单位 ) 以下:职员董事长副董事长董事总经理经理管理员职员人数11215320薪资5500500035003000250020001500(1)求该企业员工月薪资的均匀数、中位数、众数;(2) 假定副董事长的薪资从5000 元提高到20000 元,董事长的薪资从5500 元提高到30000 元,那么新的均匀数、中位数、众数又是多少?( 精准到元 )(3)你以为应当使用均匀数和中位数中的哪一个来描绘该企业员工的薪资水平?【答案】 (1)20911500 1500 (2)32881500 1500 (3) 中位数或众数均能反应当企业员工的薪资水平,由于企业中少量人的薪资额与大部分人的薪资额差异较大,这样致使均匀数与中位数误差较大,所以均匀数不可以反应这个企业员工的薪资水平.四、讲堂小结1.认识均匀数、中位数、众数之间的差异.2.灵巧运用这三个数据代表解决问题.本节课第一从复习均匀数、中位数和众数的定义开始,接着列出这三种统计量各自的特色和合用条件,为防止太甚抽象,在后边设计的例题中都有这些统计量的应用,培育学生应用数学的意识.数据的颠簸程度1.认识方差的定义和计算公式.2.理解方差观点的产生和形成过程.3.会用方差比较两组数据的颠簸大小.要点方差产生的必需性和应用方差公式解决实质问题.点理解方差的观点并会运用方差的公式解决.一、情境入1.同学看下边的:( 幻灯片出示 )科院划某地适合的甜玉米种子.种子,甜玉米的量和量的定性是科院所关怀的.认识甲、乙两种甜玉米种子的有关状况,科院各用10 自然条件同样的田行,获取各田每公的量( 位:t ) 以下表所示 .甲乙依据些数据估,科院哪一种甜玉米种子呢?上边两数据的均匀数分是x 甲≈ 7.54 , x 乙≈ 7.52 ,明在田中,甲、乙两种甜玉米的均匀量相差不大.由此能够估出个地域栽种两种甜玉米,它的均匀量相差不大.了直地看出甲、乙两种甜玉米量的散布状况,我把两数据画成下边的1和 2.:比上边的两幅能够看出,甲种甜玉米在各田的量波大,乙种甜玉米在各田的量集中地散布在均匀量邻近,从中看出的果可否用一个量来刻画呢?就是我本所要学的内容——方差.教明:从上边看到,于一数据,除需要认识它的均匀水平外,经常需要认识它的波大小 ( 即偏离均匀数的大小 ) .2.方差的观点教解:了描绘一数据的波大小,能够采纳不只一种法,比如,能够先求得各个数据与数据的均匀数的差的,再取其均匀数,用个均匀数来权衡数据的波大小,往常,采纳的是下边的做法:在一数据中,各数据与它的均匀数的差的平方的和的均匀数是s2,那么我用21222s = [(x 1-x) + (x 2- x) +⋯+ (x n-x) ]n来权衡数据的波大小,并把它叫做数据的方差.一数据的方差越大,明数据的波越大;数据的方差越小,明数据的波越小,教要解析公式中每一个元素的意,以便学生理解和掌握.在学生理解了方差的观点以后,再回到了引例中,通算甲、乙两种甜玉米的方差,依据理明哪一种甜玉米的量更好.教示范:两数据的方差分是2=( 7.65 -222s 甲)+(- 7.54 )+⋯+(- 7.54 )≈ 0.01 ,102=(-222s 乙)+(- 7.52 )+⋯+(- 7.52 )≈ 0.002.10然 s 甲2> s 乙2,即甲种甜玉米的波大,与我从 1 和 2 看到的果一致.由此可知,在田中,乙种甜玉米的量比定.正如用本的均匀数估体的均匀数一,也能够用本的方差来估体的方差.所以能够推,在个地域栽种乙种甜玉米的量比甲种的定.合考甲、乙两个品种的均匀量和量的定性,能够推个地域比适合栽种乙种甜玉米.做使学生深刻地领会到数学根源于践,又反来作用于践,不使学生学数学生厚的趣,并且培育了学生用数学的意.二、例解【例 1】教材第125 例 1【例 2】教材第127 例 2【例 3】 ( 幻灯片出示 ) 已知两数据:甲:10乙:10分算两数据的方差.学生自己手算,求均匀数激学生用化公式算,找一名学生到黑板算.解:依据公式可得1x 甲= 10+8( - 0.1 +0.3 - 0.2 + 0.1 + 0.4 + 0- 0.2 - 0.3)1=10+× 0= 1081x 乙= 10+8(0.2 + 0- 0.5 + 0.3 + 0.5 -0.4 - 0.2 + 0.1)1=10+× 0= 108s21222甲=8- 10) +- 10) +⋯+-10) ] 1=8(0.01 + 0.09 +⋯+ 0.09)1=8× 0.44 =212- 10)22s 乙=- 10) + (10+⋯+-10) ]81=8(0.04 + 0+⋯+ 0.01)1=8× 0.84 =从 s 甲2< s 乙2知道,乙数据比甲数据波大.三、稳固1.已知一数据2, 0,- 1, 3,- 4,数据的方差________.【答案】 62.甲、乙两名学生在同样的条件下各射靶10 次,命中的数以下:甲: 7, 8, 6, 8, 6, 5,9, 10,7, 4乙: 9, 5, 7, 8, 7, 6,8, 6, 7, 7算,两人射数的均匀数同样,但s 甲2________s 乙2,所以确立 ________去参加比.【答案】>乙四、堂小1.知小:通的学,我知道了于一数据,有只知道它的均匀数不,需要知道它的波大小,而描绘一数据的波大小的量不只一种,最常用的是方差.2.方法小:求一数据方差的方法:先求均匀数,再利用均匀数求方差.本次教课在解决引例,通数据的解析,从前学的知不可以解决新,引出矛盾,里了小的,学生在交流中获取启,而使学生的思生碰撞,生新的火花,真实体“不一样的人,在数学上获取不一样的展”.1、一知半解的人,多不谦逊;见多识广有本事的人,必定谦逊。
人教版八年级下数学-第二十章----数据的分析全章设计教案
第二十章数据的分析§20、1平均数(一)教学目标知识与技能1、掌握算术平均数,加权平均数的概念。
2、会求一组数据的算术平均数和加权平均数过程与方法经历探索加权平均数对数据处理的过程,体验对统计基本思想的理解过程,能运用数据信息的分析解决一些简单的实际问题。
情感态度与价值观1、通过小组合作的活动,培养学生的合作意识和能力。
2、通过解决实际问题,让学生体会数学与生活的密切联系重点算术平均数,加权平均数的概念及计算。
难点加权平均数的概念及计算。
教学过程备注教学过程与师生互动第一步:引入新课:在某次数学测试后,你想了解自己与班级平均成绩的比较,你先想了解该次数学成绩什么量呢?(引入课题)第二步:讲授新课:1、引例:下面是某班30位同学一次数学测试的成绩,各小组讨论如何求出它们的平均分:95、99、87、90、90、86、99、100、95、87、88、86、94、92、90、95、87、86、88、86、90、90、99、80、87、86、99、95、92、92甲小组:X= =91(分)甲小组做得对吗?有不同求法吗?乙小组:X= ×××××××= 91(分)乙小组的做法可以吗?还有不同求法吗?丙小组:先取一个数90做为基准a,则每个数分别与90的差为:5、9、-3、0、0、-4、……、2、2求出以上新的一组数的平均数X'=1所以原数组的平均数为X=X'+90=91想一想,丙小组的计算对吗?2、议一议:问:求平均数有哪几种方法?①平均数:一般地,如果有n个数x1,x2,……,x n,那么,叫做这n个数的平均数,读作“x拔”。
②加权平均数:如果n个数中,x1出现f1次,x2出现f2次,……,x k出现f k次,(这里f1+f2+……+f k=n),那么,根据平均数的定义,这n个数的平均数可以表示为这样求得的平均数叫做加权平均数,其中f1,f2,……,f k叫做权。
人教版八年级数学第20章-数据的分析-教案
第二十章 数据的分析 20.1数据的集中趋势 20.1.1平均数(2课时)一、问题引入:1、一般地,对于n 个数n x x x x ......,,321,我们把 叫做这n 个数的算术平均数(mean),简称 ,记为 ,读作 .2、在实际问题中,一组数据的各个数据的 未必相同.因而,在计算这组数据的平均数时,往往给每个数据一个 .如例1中4、3、1分别是创新、综合知识、语言三项测试成绩的权(weight),而称134188350472++⨯+⨯+⨯为A 的三项测试成绩的 .二、基础训练:1、数据2、3、4、1、2的平均数是________,这个平均数叫做_________平均数.2、一组数据的平均数是3,将这组数据每个数都扩大2倍,则所得一组新数据的平均数是( ) A. 3 B. 5 C. 6 D. 无法确定3、如果一组数据5, -2, 0, 6, 4, x 的平均数为6,那么x 等于( ) A. 3 B. 4 C. 23 D. 64、某市的7月下旬最高气温统计如下(1)在这十个数据中,34的权是 ,32的权是______.(2)该市7月下旬最高气温的平均数是 ,这个平均数是_________平均数.5、一个班级40人,数学老师第一次统计这个班级的平均成绩为85分,在复查时发现漏记了一个学生的成绩80分,那么这个班级学生的实际平均成绩应为 ( ) A. 83分 B. 85分 C. 87分 D. 84分三、例题展示:例:小明骑自行车的速度是15km/h ,步行的速度是5km/h.(1)如果小明先骑自行车1h ,然后又步行了1h ,那么他的平均速度是 . (2)如果小明先骑自行车2h ,然后又步行了3h ,那么他的平均速度是 .四、课堂检测:1、在一次知识竞赛中,10名学生的得分如下:80,84,78,76,88,97,82,67,75,71,则他们的平均成绩为。
2、一个地区某月前两周从星期一到星期五各天的最低气温依次是(单位:℃):x1, x2, x3, x4, x5和x1+1, x2+2, x3+3, x4+4, x5+5,若第一周这五天的平均最低气温为7℃,则第二周这五天的平均最低气温为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级(下)数学教案《数据的分析》单元教案学习目标1.进一步理解平均数、中位数和众数等统计量的统计意义;2.会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势;3.会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况;4.能用计算器的统计功能进行统计计算,进一步体会计算器的优越性;5.会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想;6.从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度。
(二)重、难点分析统计中常用的平均数有算数平均数(简单算数平均数和加权算数平均数)、调和平均数、几何平均数等。
根据《标准》的要求,本章着重研究了加权平均数。
内容分析本章主要研究平均数(主要是加权平均数)、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。
下面是本章知识展开的结构框图。
本章知识的展开顺序如下图:(四)课时分配全章教学约需15课时(不包括选学内容的课时数),具体内容和课时分配如下:18.1 数据的代表约6课时18.2 数据的波动约5课时18.3 课题学习约2课时数学活动小结约2课时数据的代表18.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点分析:1、重点:会求加权平均数2、难点:对“权”的理解三、课程类型:新授课方法手段:启发式教学法四、课堂引入:1、若不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可供借鉴参考。
某校初二年级共有4个班,在一次数学考试中参考人数和成绩如下:求该校初二年级在这次数学考试中的平均成绩下述计算方法是否合理为什么x =41(79+80+81+82)= 五、例习题分析:例1和例2均为计算数据加权平均数型问题,因为是初学尤其之前与平均数计算公式已经作过比较,所以这里应该让学生搞明白问题中是否有权数,即是选择普通的平均数计算还是加权平均数计算,其次若用加权平均数计算,权数又分别是多少例2的题意理解很重要,一定要让学生体会好这里的几个百分数在总成绩中的作用,它们的作用与权的意义相符,实际上这几个百分数分别表示几项成绩的权。
六、随堂练习:1、老师在计算学期总平均分的时候按如下标准:作业占100%、测验占30%、期中占35%、期末考试占35%,小关和小兵的成绩如下表:2求这些灯泡的平均使用寿命 答案:1.x 小关 = x 小兵 =80 2. x =小时七、反馈练习:1、在一个样本中,2出现了x 1次,3出现了x 2次,4出现了x 3次,5出现了x 4次,则这个样本的平均数为 .2、某人打靶,有a 次打中x 环,b 次打中y 环,则这个人平均每次中靶 环。
八、作业布置:3、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:试判断谁会被公司录取,为什么4、在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。
已知该班平均成绩为80分,问该班有多少人 答案:1.432143215432x x x x x x x x ++++++ 2.ba byax ++ 3.甲x = 2x =乙被录取 4. 39人 九、板书设计:十、课后反思:要使学生更好的去理解权的意义,可以再举一些生活、学习中的例子。
比如:初二.五班有4个小组,在一次测验中第一组有7名同学得了99分,1名同学得了61分,第二组有1名同学得到了100分、7名同学得62分。
能否由26210026199+<+得出第二小组平均成绩这样的结论为什么这个例子简单明了又便于学生想象理解,能够让学生从中体会到得99分的7个人比1个得61分的学生对平均成绩影响更大,从而理解权的意义。
数据的代表18.1.1平均数(第二课时)一、教学目标:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值 二、重点、难点和难点的突破方法: 1、重点:根据频数分布表求加权平均数 2、难点:根据频数分布表求加权平均数 三、课程类型:新授课 方法手段:启发式教学法 课堂引入采用教材原有的引入问题,设计的几个问题如下:(1)、请同学读P140探究问题,依据统计表可以读出哪些信息 (2)、这里的组中值指什么,它是怎样确定的 (3)、第二组数据的频数5指什么呢(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。
五、随堂练习1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表165 身高(cm )185175 155 1452、下表是截至到2002年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄八、作业布置:3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。
答案:1.约万元 2.约29岁 分贝 九、板书设计:十、课后反思:应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X ≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。
而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。
所以利用组中值X 频数去代替这组数据的和还是比较合理的,而且这样做的最大好处是简化了计算量。
数据的代表18.1.2 中位数和众数(第一课时)一、教学目标1、认识中位数和众数,并会求出一组数据中的众数和中位数。
2、理解中位数和众数的意义和作用。
它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。
3、会利用中位数、众数分析数据信息做出决策。
二、重点、难点和难点的突破方法: 1、重点:认识中位数、众数这两种数据代表60 噪音/分贝8070 50 40 902、难点:利用中位数、众数分析数据信息做出决策。
三、课程类型:新授课方法手段:启发式教学法四、课堂引入严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。
它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。
五、例习题的分析教材P144例4,从所给的数据可以看到并没有按照从小到大(或从大到小)的顺序排列。
因此,首先应将数据重新排列,通过观察会发现共有12个数据,偶数个可以取中间的两个数据146、148,求其平均值,便可得这组数据的中位数。
教材P145例5,由表中第二行可以查到号鞋的频数最大,因此这组数据的众数可以得到,所提的建议应围绕利于商家获得较大利润提出。
六、随堂练习1某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件)1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150求这15个销售员该月销量的中位数和众数。
假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗如果不合理,请你制定一个合理的销售定额并说明理由。
根据表格回答问题:商店出售的各种规格空调中,众数是多少假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定答案:1. (1)210件、210件(2)不合理。
因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的额定。
2. (1)匹(2)通过观察可知匹的销售最大,所以要多进匹,由于资金有限就要少进2匹空调。
七、反馈练习数据8、9、9、8、10、8、99、8、10、7、9、9、8的中位数是,众数是一组数据23、27、20、18、X、12,它的中位数是21,则X的值是.数据92、96、98、100、X的众数是96,则其中位数和平均数分别是()、96 、96.4 C.96、97 、97八、作业布置:如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是()、25 、24 C.25、25 、25随机抽取我市一年(按365天计)中的30天平均气温状况如下表:请你根据上述数据回答问题:(1).该组数据的中位数是什么(2).若当气温在18℃~25℃为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天答案:1. 9;2. 22;;; 5.(1)15. (2)约97天九、板书设计:十、课后反思:教学过程中注重双基,一定要使学生能够很好的掌握中位数和众数的求法,求中位数的步骤:⑴将数据由小到大(或由大到小)排列,⑵数清数据个数是奇数还是偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。
求众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据。
18.1.2 中位数和众数(第二课时)一、教学目标:1、进一步认识平均数、众数、中位数都是数据的代表。
2、通过本节课的学习还应了解平均数、中位数、众数在描述数据时的差异。
3、能灵活应用这三个数据代表解决实际问题。
二、重点、难点和突破难点的方法1、重点:了解平均数、中位数、众数之间的差异。
2、难点:灵活运用这三个数据代表解决问题。
三、课程类型:新授课方法手段:启发式教学法四、课堂引入:本节课的课堂引入可以通过复习平均数、中位数和众数定义开始,为完成重点、突破难点作好铺垫,没有必要牵强的加入一个生活实例作为引入问题。