(完整版)三年级奥数第三十一讲用假设法解题

合集下载

三年级奥数举一反三第293031周年龄问题还原法解题假设法解题

三年级奥数举一反三第293031周年龄问题还原法解题假设法解题

三年级奥数举一反三第293031周年龄问题还原法解题假设法解题第二十九周年龄问题专题简析:年龄问题可以说是前面所讲的和差问题及差倍问题的综合,要正确解答这类题,首先要弄清:两个不同年龄的人,年龄之差始终不变,但两个人年龄的倍数关系却在不断地变化。

年龄问题的主要特征是:大小年龄差是一个不变的量。

我们可以抓住差不变这个特点,利用和差、差倍等知识来分析解答这类应用题。

例题1 三年前爸爸年龄是女儿的4倍,爸爸今年43岁,女儿今年多少岁?思路导航:由题意可知爸爸今年43岁,则三年前爸爸的年龄是43-3=40岁,40岁正好是女儿年龄的4倍,女儿三年前的年龄是40÷4=10岁,今年女儿的年龄是10+3=13岁。

练习一1,四年前小林年龄是小丽的2倍,小林今年12岁,小丽今年多少岁?2,五年前爷爷年龄是孙子的7倍,孙子今年14岁,爷爷今年多少岁?3,儿子今年10岁,爸爸今年34岁。

几年前,爸爸的年龄是儿子的4倍?例题2 明明4岁时,妈妈年龄是明明的8倍。

今年明明12岁,妈妈今年多少岁?思路导航:妈妈的年龄是明明的8倍,那么妈妈与明明的年龄相差4×8-4=28岁。

妈妈与明明的年龄差是不变的,今年明明12岁,那么妈妈的年龄是12+28=40岁。

练习二1,玲玲7岁时,爸爸年龄是玲玲的5倍。

今年爸爸40岁,玲玲今年多少岁?2,爷爷63岁时,他的年龄是小青的9倍。

今年小青12岁,爷爷今年多少岁?3,两年前妈妈年龄是儿子的5倍,儿子今年9岁,妈妈今年多少岁?例题3 女儿今年3岁,妈妈今年33岁。

几年后,妈妈的年龄是女儿的7倍?思路导航:女儿今年3岁,妈妈今年33岁,她们的年龄差是33-3=30岁。

她们年龄差不变,几年后,妈妈的年龄是女儿的3倍,把女儿的年龄看作1份,妈妈的年龄就有7份,相差7-1=6份,6份是30岁,所以几年后女儿的年龄是30÷6=5岁。

也就是说,5-3=2年后,妈妈的年龄是女儿的7倍。

小学三年级奥数用假设法解题例题及练习题

小学三年级奥数用假设法解题例题及练习题

【导语】⽤假设法解答类似“鸡兔同笼”的问题时,可以根据题意假设⼏个量相同,然后进⾏推算,所得结果与题中对应的数量不符合时,要能够正确地运⽤别的量加以调整,从⽽找到正确的答案。

以下是整理的《⼩学三年级奥数⽤假设法解题例题及练习题》,希望帮助到您。

【篇⼀】 例题1、鸡、兔共笼,鸡⽐兔多30只,⼀共有脚168只,鸡、兔各多少只? 思路导航:因为鸡⽐兔多30只,则可以把30只鸡的脚从总数中去掉,剩下的鸡兔就同样多了。

每⼀对鸡和兔共4+2=6只脚,⽤6去除剩下的鸡兔总脚数,就可求出兔的只数。

兔的只数:(168-2×30)÷(4+2)=18只; 鸡的只数:18+30=48只。

练习题: 1、鸡兔共笼,鸡⽐兔多25只,⼀共有脚170只。

鸡、兔各⼏只? 2、买甲、⼄两种戏票,甲种票每张4元,⼄种票每张3元,⼄种票⽐甲种票多买了9张,⼀共⽤去97元。

两种票各买了⼏张? 3、鸡兔共有脚48只,如果将鸡的只数与兔的只数互换则共有脚42只。

鸡、兔各⼏只?【篇⼆】 例题2、⽔果糖的块数是巧克⼒糖的3倍,如果⼩红每天吃2块⽔果糖,1块巧克⼒糖,若⼲天后,⽔果糖还剩下7块,巧克⼒糖正好吃完。

原来⽔果糖有⼏块? 思路导航:⽔果糖的块数是巧克⼒糖的3倍,如果⼩红每天吃1块巧克⼒糖,3块⽔果糖,那若⼲天后,两种糖正好同时吃完。

现在⼩红每天吃2块⽔果糖,少吃3-2=1块,结果若⼲天后⽔果糖还剩下7块。

所以共吃了7÷1=7天,⽔果糖有2×7+7=21块。

练习题: 1、⼩英家有些梨和苹果,苹果的个数是梨的3倍,爸爸和⼩英每天各吃1个苹果,妈妈每天吃1个梨。

若⼲天后,苹果还剩9个,⽽梨恰巧吃完。

原来苹果有多少个? 2、某商店有些红⽓球和黄⽓球,红⽓球的只数是黄⽓球的4倍。

每天卖出2只红⽓球和1只黄⽓球,若⼲天后,红⽓球剩下12只,黄⽓球刚好卖完。

红⽓球原来有多少只? 3、四(3)班有彩⾊粉笔和⽩粉笔若⼲盒,⽩粉笔是彩⾊粉笔的7倍。

小学三年级奥数第31讲 用假设法解题(含答案分析)

小学三年级奥数第31讲 用假设法解题(含答案分析)

第31讲用假设法解题一、专题简析:假设是数学中思考问题的一常见的方法,有些应用题乍看很难求出答案,但是如果我们合理地进行假设,往往会使问题得到解决。

所谓假设法就是依照已知条件进行推算,根据数量上出现的矛盾,作适当的调整,从而找到正确答案。

我国古代趣题“鸡兔同笼”就是运用假设法解决问题的一个范例。

解答“鸡兔同笼”问题的基本关系式是:兔数=(总脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)用假设法解答类似“鸡兔同笼”的问题时,可以根据题意假设几个量相同,然后进行推算,所得结果与题中对应的数量不符合时,要能够正确地运用别的量加以调整,从而找到正确的答案。

二、精讲精练例1:鸡、兔共30只,共有脚84只。

鸡、兔各有多少只?练习一1、鸡、兔共100只,共有脚280只。

鸡、兔各多少只?2、鸡、兔共50只,共有脚160只。

鸡、兔各几只?例2:鸡、兔共笼,鸡比兔多30只,一共有脚168只,鸡、兔各多少只?练习二1、鸡兔共笼,鸡比兔多25只,一共有脚170只。

鸡、兔各几只?2、买甲、乙两种戏票,甲种票每张4元,乙种票每张3元,乙种票比甲种票多买了9张,一共用去97元。

两种票各买了几张?例3:某学校举行数学竞赛,每做对一题得9分,做错一题倒扣3分。

共有12道题,王刚得了84分。

王刚做错了几题?练习三1、某小学进行英语竞赛,每答对一题得10分,答错一题倒扣2分,共15题,小华得了102分。

小华答对几题?2、运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元。

运后运费为8880元,损失了几箱?例4 :水果糖的块数是巧克力糖的3倍,如果小红每天吃2块水果糖,1块巧克力糖,若干天后,水果糖还剩下7块,巧克力糖正好吃完。

原来水果糖有几块?1、小英家有些梨和苹果,苹果的个数是梨的3倍,爸爸和小英每天各吃1个苹果,妈妈每天吃1个梨。

若干天后,苹果还剩9个,而梨恰巧吃完。

(完整版)小学三年级下册数学奥数题

(完整版)小学三年级下册数学奥数题

第一讲:错中求解1、小马虎在做一道减法题时,把减数十位上的 2 看做了 5,结果获取的差是 342,正确的差是多少?2、小明在做减法题时,把被减数十位上的3 错写成 8,结果获取的差是 284,正确的差是多少?3、小马虎在计算一道题目时,把某数乘以3 加 20,误看作某数除以 3 减 20,得数是 72,某数是多少?正确的得数是多少?4、小丽在计算一道题时,把某数乘以 4 加 20,误看作除以 4 减 20,得数为 35,某数是多少?正确的结果呢?5、小马虎在做两位数乘两位数的题时,把乘数的个位上的 5 看做 2,乘得结果是 550,本质应为 625,这两个两位数各是几?6、小华在做一道两位数乘法时,把乘数个位上的 3 错写成 5,乘得的结果是875,正确的结果是 805,这两个两位数分别为多少?17、小林在计算有余数除法时,把被除数137 看作 173,结果商比正确结果大了 4,但余数恰好同样,正确的除法算式应是多少?8、王刚在计算有余数除法时,把被除数171 错写成 117,结果比原来少 9,但余数恰好同样,正确的除法算式应是多少?9、小林和小华同时做一道被减数是四位数的减法时,小林计算时在这个四位数的左端错添了一个5,而小华在这个数的右端也错添了一个 5,结果两人所得的差相差 22122,求这个四位数。

10、把 3 写在某个三位数的左端获取一个四位数,把 3 写在这个数的右端也获取一个四位数,这两个四位数的差是 1071,求这个三位数。

第二讲用对应法解题1、奶奶去买水果,若是她买 4 千克梨和 5 千克荔枝,需花 58 元;若是她买 6 千克梨和 5 千克荔枝,那么需花 62 元,问 1 千克梨和 1 千克荔枝各多少元?22、 3 筐苹果和 5 筐橘子共重 270 千克, 3 筐苹果和 7 筐橘子共重 342 千克,一筐苹果和一筐橘子各重多少千克?3、学校买足球和排球,买 3 个足球和 4 个排球共需要190 元,若是买 6 个足球和 2 个排球需要230 元,一个足球和一个排球各需要多少元?4、 5 筐番茄和 2 筐黄瓜共重 330 千克, 3 筐番茄和 4 筐黄瓜共重 310 千克,一筐番茄和一筐黄瓜各重多少千克?5、商店里有一些气球,其中红气球和蓝气球共21 只,蓝气球和黄气球共 28 只,黄气球和红气球共 29 只,红气球、蓝气球和黄气球各有多少只?6、小明和小红共12 岁,小红和小丽共17 岁,小丽和乳名共13 岁,三人各多少岁?37、三年级三个班种了一片小树林。

小学三年级奥数第31讲 用假设法解题(含答案分析)

小学三年级奥数第31讲 用假设法解题(含答案分析)

第31讲用假设法解题一、专题简析:假设是数学中思考问题的一常见的方法,有些应用题乍看很难求出答案,但是如果我们合理地进行假设,往往会使问题得到解决。

所谓假设法就是依照已知条件进行推算,根据数量上出现的矛盾,作适当的调整,从而找到正确答案。

我国古代趣题“鸡兔同笼”就是运用假设法解决问题的一个范例。

解答“鸡兔同笼”问题的基本关系式是:兔数=(总脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)用假设法解答类似“鸡兔同笼”的问题时,可以根据题意假设几个量相同,然后进行推算,所得结果与题中对应的数量不符合时,要能够正确地运用别的量加以调整,从而找到正确的答案。

二、精讲精练例1:鸡、兔共30只,共有脚84只。

鸡、兔各有多少只?练习一1、鸡、兔共100只,共有脚280只。

鸡、兔各多少只?2、鸡、兔共50只,共有脚160只。

鸡、兔各几只?例2:鸡、兔共笼,鸡比兔多30只,一共有脚168只,鸡、兔各多少只?练习二1、鸡兔共笼,鸡比兔多25只,一共有脚170只。

鸡、兔各几只?2、买甲、乙两种戏票,甲种票每张4元,乙种票每张3元,乙种票比甲种票多买了9张,一共用去97元。

两种票各买了几张?例3:某学校举行数学竞赛,每做对一题得9分,做错一题倒扣3分。

共有12道题,王刚得了84分。

王刚做错了几题?练习三1、某小学进行英语竞赛,每答对一题得10分,答错一题倒扣2分,共15题,小华得了102分。

小华答对几题?2、运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元。

运后运费为8880元,损失了几箱?例4 :水果糖的块数是巧克力糖的3倍,如果小红每天吃2块水果糖,1块巧克力糖,若干天后,水果糖还剩下7块,巧克力糖正好吃完。

原来水果糖有几块?1、小英家有些梨和苹果,苹果的个数是梨的3倍,爸爸和小英每天各吃1个苹果,妈妈每天吃1个梨。

若干天后,苹果还剩9个,而梨恰巧吃完。

(完整版)3年级奥数假设法解题

(完整版)3年级奥数假设法解题

小学三年级奥数题——用假设法解题练习一:1、鸡兔共30只,共有脚84只,鸡兔各有多少只?2、鸡兔共100只,共有脚280只,鸡兔各有多少只?3、鸡兔共50只,兔的脚比鸡的脚少40只,鸡兔各有多少只?4、鸡兔共45只,鸡的脚比兔的脚多60只,鸡兔各有多少只?练习二:1、鸡兔同笼,鸡比兔多30只,一共有脚168只。

鸡兔各有多少只?2、鸡兔同笼,鸡比兔多25只,一共有脚170只。

鸡兔各有多少只?3、买甲、乙两种戏票,甲种票每张4元,乙种票每张3元,乙种票比甲种票多买了9张,一共用去97元,两种票各买了多少张?4、共有鸡兔的脚48只,若将鸡的只数与兔的只数互换一下则共有脚42只,鸡兔各有几只?练习三:1、某校举行数学竞赛,每做对一题得9分,做错一题倒扣3分,共有12道题,小明得了84分,他做错了多少题?2、某小学进行英语竞赛,每答对一题得10分,答错一题倒扣2分,共有15道题,小明得了102分,他做对了多少题?3、某公司运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元,运后的运费结算为8880元,问这次运输损失了几箱?4、某车间生产一批服装共250件,生产一件可得25元,如果有一件不符合要求,则倒扣20元,生产后得到费用5350元。

问有几件不合格?练习四:1、水果糖的块数是巧克力糖的3倍,如果小明每天吃2块水果糖,1块巧克力糖,几天后,水果糖还剩下7块,巧克力糖正好吃完。

原来水果糖有多少块?2、小明家有些梨和苹果,苹果的个数是梨的3倍,爸爸和小明每天各吃1个苹果,妈妈每天吃1个梨。

若干天后,苹果还剩9个,而梨恰好吃完,原来苹果有多少个?3、某商店有些红气球和黄气球,红气球的只数是黄气球的4倍,每天卖出2只红气球和1只黄气球,若干天后,红气球剩下12只,黄气球刚好卖完。

红气球原来有多少?4、四(3)班有彩色粉笔和白色粉笔若干盒,白粉笔的盒数是彩色粉笔的7倍,每天用去2盒白粉笔和1盒彩色粉笔,当彩色粉笔全部用完时,白粉笔还剩10盒,原来白粉笔有几盒?练习五:1、学校买来8张办公桌和6把椅子,共花去1650元。

小学奥数各年级经典题解题技巧大全——假设法

小学奥数各年级经典题解题技巧大全——假设法

小学奥数各年级经典题解题技巧大全——假设法假设法当应用题用一般方法很难解答时,可假设题中的情节发生了变化,假设题中两个或几个数量相等,假设题中某个数量增加了或减少了,然后在假设的基础上推理,调整由于假设而引起变化的数量的大小,题中隐蔽的数量关系就可能变得明显,从而找到解题方法。

这种解题方法就叫做假设法。

用假设法解应用题,要通过丰富的想象,假设出既合乎题意又新奇巧妙,既简单又便于计算的条件。

有些用一般方法能解答的应用题,用假设法解答可能更简捷。

(一)假设情节变化解:假设篮球没有借出,足球借出一个,那么,可以把现有篮球的个数看作是3份数,把现有足球的个数看作2份数,两种球的总份数是:3+2=5(份)原来篮球的个数是:原来足球的个数是:21-12=9(个)答略。

例2 :甲乙两个煤场共存煤92吨,从甲场运出28吨后,乙场的存煤比甲场的4倍少6吨。

两场原来各存煤多少吨?(适于六年级程度)解:假设从甲场运出的不是28吨,而是比28吨少6吨的22吨,那么,乙场的存煤数就正好是甲场的4倍,甲场的存煤是1份数,乙场的存煤是4甲场原来存煤:92-50=42(吨)答略。

(二)假设两个(或几个)数量相等例1:有两块地,平均亩产粮食185千克。

其中第一块地5亩,平均亩产粮食203千克。

如果第二块地平均亩产粮食170千克,第二块地有多少亩?(适于五年级程度)解:假设两块地平均亩产粮食都是170千克,则第一块地的平均亩产量比两块地的平均亩产多:203-170=33(千克)5亩地要多产:33×5=165(千克)两块地实际的平均亩产量比假设的平均亩产量多:185-170=15(千克)因为165千克中含有多少个15千克,两块地就一共有多少亩,所以两块地的亩数一共是:165÷15=11(亩)第二块地的亩数是:11-5=6(亩)答略。

解:此题可以有三种答案。

答:剩下的两根绳子一样长。

答:甲绳剩下的部分比乙绳剩下的部分长。

三年级奥数用假设法解题

三年级奥数用假设法解题

练习四
• 2,某商店有些红气球和黄气球,红气 球的只数是黄气球的4倍。每天卖出2只 红气球和1只黄气球,若干天后,红气 球剩下12只,黄气球刚好卖完。红气球 原来有多少只?
练习四
• 3,四(3)班有彩色粉笔和白粉笔若干 盒,白粉笔是彩色粉笔的7倍。每天用 去2盒白粉笔和1盒彩色粉笔,当彩色粉 笔全部用完时,白色粉笔还剩10盒。原 来白色粉笔有多少盒?
• 例题3 某学校举行数学竞赛,每做 对一题得9分,做错一题倒扣3分。 共有12道题,王刚得了84分。王刚 做错了几题?
•练 习 三 • 1,某小学进行英语竞赛,每答对一题
得10分,答错一题倒扣4分,共15题, 小华得了102分。小华答对几题?
•练 习 三
• 2,运输衬衫400箱,规定每箱运费30 元,若损失一箱,不但不给运费,并要 赔偿100元。运后运费为10700元,损 失了几箱?
• 例题3 某学校举行数学竞赛,每做 对一题得9分,做错一题倒扣3分。 共有12道题,王刚得了84分。王刚 做错了几题?
12×9-84
=108-84
=24(分) 24÷(3+9) =24÷12 =2(题) 答:王刚做错了2题。
• 例题4 水果糖的块数是巧克力糖的3倍, 如果小红每天吃2块水果糖,1块巧克力 糖,若干天后,水果糖还剩下7块,巧 克力糖正好吃完。原来水果糖有几块?
用假设法解题
• 回顾例题
例题1
鸡、兔共30只,共有脚84只。鸡、 兔各有多少只?
84-30×2=24(只) 兔子:24÷(4-2)=12(只) 鸡:30-12=18(只)
• 例题2 鸡、兔共笼,鸡比兔多 30只,一共有脚168只,鸡、兔 各多少只?

168-30×2=108(只) 兔子: 108÷(2+4)=18(只) 鸡: 18+30=48(只)

小学三年级奥数:假设法解应用题

小学三年级奥数:假设法解应用题

用假设法解题教案教学目标:1、知识与技能:初步学会运用“假设”的策略分析数量关系,并能根据问题的特点确定合理的解题步骤。

2、过程与方法:在解决实际问题过程的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

3、情感态度与价值观:养成独立思考、主动与他人合作交流、自觉检验等习惯,积累解决问题的经验,增强解决问题的策略意识,获取解决问题的成功体验,提高学好数学的信心。

教学重点:理解并运用假设的策略解决问题。

教学难点:了解当假设与实际结果发生矛盾时该如何进行调整。

教学过程:一、新课导入(谈话法引入)1、谈话法引入:(1)想要知道这捆2元的钱有多少,必须知道什么?(2)想要知道这捆5元的钱有多少,必须知道什么?(直接数出张数)2、我有10张2元和5元的钱,一共32元,问2元的和5元的各几张?师:请同学们把题目读一读,在题目中你能找到哪些数学信息,要我们解决什么问题?现在你还能解决这个问题吗?有什么困难吗?接着引出解决此问题需要满足两个条件,张数和元数都得对。

生:通过读题,可知,(1)一共有32元(2)一共有10张(3)有5元面额,有2元面额。

要我们解决的问题是2元的和5元的有几张?师:先自己想一想,你准备怎样来解决这个问题?然后和小组里的同学交流一下,并动笔试一试你的策略是否有效。

二、探究新知(例题精析)1、师:下面我们一起交流一下自己的想法。

假如都是2元的,摆一下,你发现了什么,共多少钱?比32元是多了还是少了?(1)拿一张5元的换一张2元的后,你发现了什么?(2)又换一张呢?……(3)回顾演变你发现了什么变了?什么没变?有什么启发?(4)记录一下换到32元的过程。

完成算式。

2、还能假设5元吗?试一试,用自己的方法记录过程。

3、回顾小结:假设时完成了第一个条件,替换后完成了第二个条件。

例题1、鸡、兔共30只,共有脚84只。

鸡、兔各有多少只?解:假设全是鸡,那就有30×2=60只脚与实际相比差:84-60=24只脚所以兔子只数:24÷(4-2)=12(只)鸡只数:30-12=18(只)答:鸡有18只,兔有12只。

三年级奥数举一反三第293031周年龄问题还原法解题假设法解题

三年级奥数举一反三第293031周年龄问题还原法解题假设法解题

三年级奥数举一反三第293031周年龄问题还原法解题假设法解题第二十九周年龄问题专题简析:年龄问题可以说是前面所讲的和差问题及差倍问题的综合,要正确解答这类题,首先要弄清:两个不同年龄的人,年龄之差始终不变,但两个人年龄的倍数关系却在不断地变化。

年龄问题的主要特征是:大小年龄差是一个不变的量。

我们可以抓住差不变这个特点,利用和差、差倍等知识来分析解答这类应用题。

例题1 三年前爸爸年龄是女儿的4倍,爸爸今年43岁,女儿今年多少岁?思路导航:由题意可知爸爸今年43岁,则三年前爸爸的年龄是43-3=40岁,40岁正好是女儿年龄的4倍,女儿三年前的年龄是40÷4=10岁,今年女儿的年龄是10+3=13岁。

练习一1,四年前小林年龄是小丽的2倍,小林今年12岁,小丽今年多少岁?2,五年前爷爷年龄是孙子的7倍,孙子今年14岁,爷爷今年多少岁?3,儿子今年10岁,爸爸今年34岁。

几年前,爸爸的年龄是儿子的4倍?例题2 明明4岁时,妈妈年龄是明明的8倍。

今年明明12岁,妈妈今年多少岁?思路导航:妈妈的年龄是明明的8倍,那么妈妈与明明的年龄相差4×8-4=28岁。

妈妈与明明的年龄差是不变的,今年明明12岁,那么妈妈的年龄是12+28=40岁。

练习二1,玲玲7岁时,爸爸年龄是玲玲的5倍。

今年爸爸40岁,玲玲今年多少岁?2,爷爷63岁时,他的年龄是小青的9倍。

今年小青12岁,爷爷今年多少岁?3,两年前妈妈年龄是儿子的5倍,儿子今年9岁,妈妈今年多少岁?例题3 女儿今年3岁,妈妈今年33岁。

几年后,妈妈的年龄是女儿的7倍?思路导航:女儿今年3岁,妈妈今年33岁,她们的年龄差是33-3=30岁。

她们年龄差不变,几年后,妈妈的年龄是女儿的3倍,把女儿的年龄看作1份,妈妈的年龄就有7份,相差7-1=6份,6份是30岁,所以几年后女儿的年龄是30÷6=5岁。

也就是说,5-3=2年后,妈妈的年龄是女儿的7倍。

假设法解题

假设法解题

假设法解题
这是一个经典的逻辑问题,通常使用假设法来解决。

假设法是一种通过假设某一条件成立或不成立,然后根据这个假设进行推理,最后得出结论的解题方法。

假设法解题的一般步骤如下:
假设某一条件成立或不成立。

根据这个假设进行推理,得出结论。

如果结论与题目中的已知条件矛盾,则说明假设不成立,需要调整假设。

如果结论与题目中的已知条件一致,则说明假设成立。

现在,我们用这个方法来解决这个问题:
题目:有100匹马跟100块石头,马分3种,大型马;中型马跟小型马.其中一匹大马一次可以驮3块石头,中型马可以驮2块,而小型马2头可以驮一块石头.问需要多少匹大马,中型马跟小型马?(问题的关键是刚好必须是用完100匹马)
假设需要 x 匹大马,y 匹中型马和 z 匹小型马。

根据题目,我们可以建立以下方程:
x + y + z = 100 (因为总共有100匹马)
3x + 2y + z/2 = 100 (因为总共有100块石头)
现在我们要来解这个方程组,找出 x, y 和 z 的值。

计算结果为: [{x: 7, y: 31, z: 62}]
所以,需要 7 匹大马,31 匹中型马和 62 匹小型马。

三年级奥数 用假设法解题

三年级奥数 用假设法解题

第31讲用假设法解题一、专题简析:假设是数学中思考问题的一常见的方法, 有些应用题乍看很难求出答案, 但是如果我们合理地进行假设, 往往会使问题得到解决. 所谓假设法就是依照已知条件进行推算, 根据数量上出现的矛盾, 作适当的调整, 从而找到正确答案. 我国古代趣题“鸡兔同笼”就是运用假设法解决问题的一个范例.解答“鸡兔同笼”问题的基本关系式是:兔数=(总脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)用假设法解答类似“鸡兔同笼”的问题时, 可以根据题意假设几个量相同, 然后进行推算, 所得结果与题中对应的数量不符合时, 要能够正确地运用别的量加以调整, 从而找到正确的答案.二、精讲精练例1:鸡、兔共30只, 共有脚84只. 鸡、兔各有多少只?练习一1、鸡、兔共100只, 共有脚280只. 鸡、兔各多少只?2、鸡、兔共50只, 共有脚160只. 鸡、兔各几只?例2:鸡、兔共笼, 鸡比兔多30只, 一共有脚168只, 鸡、兔各多少只?练习二1、鸡兔共笼, 鸡比兔多25只, 一共有脚170只. 鸡、兔各几只?2、买甲、乙两种戏票, 甲种票每张4元, 乙种票每张3元, 乙种票比甲种票多买了9张, 一共用去97元. 两种票各买了几张?例3:某学校举行数学竞赛, 每做对一题得9分, 做错一题倒扣3分. 共有12道题, 王刚得了84分. 王刚做错了几题?练习三1、某小学进行英语竞赛, 每答对一题得10分, 答错一题倒扣2分, 共15题, 小华得了102分. 小华答对几题?2、运输衬衫400箱, 规定每箱运费30元, 若损失一箱, 不但不给运费, 并要赔偿100元. 运后运费为8880元, 损失了几箱?例4 :水果糖的块数是巧克力糖的3倍, 如果小红每天吃2块水果糖, 1块巧克力糖, 若干天后, 水果糖还剩下7块, 巧克力糖正好吃完. 原来水果糖有几块?1、小英家有些梨和苹果, 苹果的个数是梨的3倍, 爸爸和小英每天各吃1个苹果, 妈妈每天吃1个梨. 若干天后, 苹果还剩9个, 而梨恰巧吃完. 原来苹果有多少个?2、某商店有些红气球和黄气球, 红气球的只数是黄气球的4倍. 每天卖出2只红气球和1只黄气球, 若干天后, 红气球剩下12只, 黄气球刚好卖完. 红气球原来有多少只?例5 :学校买来8张办公桌和6把椅子, 共花去1650元. 每张办公桌的价钱是每把椅子的2倍, 每张办公桌和每把椅子各多少元?1、买4张办公桌9把椅子共用252元, 1张桌子和3把椅子的价钱正好相等. 桌、椅单价各多少元?2、学校买来4个篮球和5个排球, 共用了185元. 已知1个篮球比1个排球贵8元, 那么篮球每个多少元?排球每个多少元?三、课后作业1、鸡、兔共45只, 鸡的脚比兔的脚多60只. 鸡、兔各多少只?2、鸡兔共有脚48只, 如果将鸡的只数与兔的只数互换则共有脚42只. 鸡、兔各几只?3、某车间生产一批服装共250件, 生产1件可得25元, 如果有1件不符合要求, 则倒扣20元. 生产后得到费用5350元, 有几件不符合要求?4、四(3)班有彩色粉笔和白粉笔若干盒, 白粉笔是彩色粉笔的7倍. 每天用去2盒白粉笔和1盒彩色粉笔, 当彩色粉笔全部用完时, 白色粉笔还剩10盒. 原来白色粉笔有多少盒?5、小明买2个乒乓球和4个皮球共用去52元, 6个乒乓球的价钱相当于1个皮球的价钱. 乒乓球、皮球的单位各多少元?加减巧算一、知识要点在进行加减运算时, 为了又快又好, 除了要熟练地掌握计算法则外, 还需要掌握一些巧算的方法. 加减法的巧算主要是运用“凑整”的方法, 把接近整十、整百、整千的数看做所接近的数进行简算.进行加减巧算时, 凑整之后, 对于原数与整十、整百、整千……相差的数, 要根据“多加要减去, 少加要再加, 多减要加上, 少减要再减”的原则进行处理. 另外, 可以结合加法交换律、结合律以及减法的性质进行凑整, 从而达到简算的目的.二、精讲精练【例题1】你有好办法迅速算出结果吗?(1) 502+799-298-98 (2) 9999+999+99+9练习1:计算.(1) 308+203-399-97 (2) 99999+9999+999+99+9(3) 1999+199+19 (4) 375+483+525+617【例题2】计算.(1) 487+321+113+279 (2) 736-567+264(3) 877+345-677 (4) 528-248-152练习2:计算.(1) 321+127+73+279 (2) 235-125+365 (3) 987-733-167 (4) 487+(413-89)【例题3】计算下面各题.(1) 962-(284+262) (2) 432-(154-168)练习3:计算.(1) 421+(279-125) (2) 812+(168-112)(3) 823-(175+323) (4) 538-(283-162) 【例题4】2000-111-89-112-88-113-87-114-86-115-85-116-84练习4:计算.(1)800-99-1-98-2-97-3-96-4-95-5(2) 1000-10-20-30-40-50-60-70-80-90【例题5】计算: 98+97-96-95+94+93-92-91+90+89-88-87……-4-3+2+1练习5:计算.(1) 2009+1+2-3-4+5+6-7-8+9+10-11-12+13+14……+2006(2) 1+2-3+4+5-6+7+8-9……+97+98-99三、课后作业1、计算下列各题.(1)256+503+44 (2)953—267—133(3)465—198+335 (4)362—202+238文档仅供参考2、用简便方法计算下列各题.(1)43+40+39+41+37+42 (2)503+301-298-91+52(3)199999+19999+1999+199+19 (4)83+81+78+80+84+78+79+77+843、巧算1000-99-98-97-96-95-5-4-3-2-14、29999+2999+299+295、(1)2356-(356+187)(2)5723-(723-189)6、(534+786+896)+(104+214+466)文档仅供参考。

小学三年级奥数第31讲 用假设法解题附答案解析

小学三年级奥数第31讲 用假设法解题附答案解析

第31讲用假设法解题一、专题简析:假设是数学中思考问题的一常见的方法,有些应用题乍看很难求出答案,但是如果我们合理地进行假设,往往会使问题得到解决。

所谓假设法就是依照已知条件进行推算,根据数量上出现的矛盾,作适当的调整,从而找到正确答案。

我国古代趣题“鸡兔同笼”就是运用假设法解决问题的一个范例。

解答“鸡兔同笼”问题的基本关系式是:兔数=(总脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)用假设法解答类似“鸡兔同笼”的问题时,可以根据题意假设几个量相同,然后进行推算,所得结果与题中对应的数量不符合时,要能够正确地运用别的量加以调整,从而找到正确的答案。

二、精讲精练例1:鸡、兔共30只,共有脚84只。

鸡、兔各有多少只?练习一1、鸡、兔共100只,共有脚280只。

鸡、兔各多少只?2、鸡、兔共50只,共有脚160只。

鸡、兔各几只?例2:鸡、兔共笼,鸡比兔多30只,一共有脚168只,鸡、兔各多少只?练习二1、鸡兔共笼,鸡比兔多25只,一共有脚170只。

鸡、兔各几只?2、买甲、乙两种戏票,甲种票每张4元,乙种票每张3元,乙种票比甲种票多买了9张,一共用去97元。

两种票各买了几张?例3:某学校举行数学竞赛,每做对一题得9分,做错一题倒扣3分。

共有12道题,王刚得了84分。

王刚做错了几题?练习三1、某小学进行英语竞赛,每答对一题得10分,答错一题倒扣2分,共15题,小华得了102分。

小华答对几题?2、运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元。

运后运费为8880元,损失了几箱?例4 :水果糖的块数是巧克力糖的3倍,如果小红每天吃2块水果糖,1块巧克力糖,若干天后,水果糖还剩下7块,巧克力糖正好吃完。

原来水果糖有几块?练习四1、小英家有些梨和苹果,苹果的个数是梨的3倍,爸爸和小英每天各吃1个苹果,妈妈每天吃1个梨。

若干天后,苹果还剩9个,而梨恰巧吃完。

小学奥数-假设解题

小学奥数-假设解题
例题:一批水泥,用小车装载,要用45辆;用大车装载,只要36辆。已知每辆大车比小车多装4吨,问这批水泥 有多少吨?
题目解析:
大车比小车多装4吨
所以, 这批水泥共有 16 × 45 = 720(吨)。
解题关键是找到 大、小车载重量
每辆小车装144 ÷ 9 = 16(吨)
假设用小车来装载 36辆小车装水泥,还剩下4 ×36 = 144(吨)
假设玻璃杯子全部都是好的,则运费收入应该 是1 × 1000 = 1000(元)
假设解题(六)
难度: 适用范围:小学三年级及以上
例题:某场乒乓球比赛售出30元,40元,50元门票共200张,收入7800元,其中40元和50元的门票张数相等, 每种票各售出多少张?
30 题目解析:
40
50
题目转化为:售出30元、45元两种门票共200张,收 入7800元。利用前面知识自行解题。注意:求出45 元的门票数除以2,即为40元、50元的门票数量。
难度: 适用范围:小学三年级及以上
例题:小兔妈妈采蘑菇,晴天每天采32个,雨天每天只能采22个,它一共采了390个,平均每天采26个。这些天 有几天在下雨?
题目解析:
采了390个,平均每天采26 可得:一共采了 390 ÷ 26 = 15(天)
晴天每天采32个
雨天每天采22个
➢ 假设全是晴天采的,则小兔妈妈应该采32 × 15 = 480(个)
票价40元,50元的票数相等,则可把这
两种票看作都是45元的(即平均价格),减少
一个条件,更便于计算
45
解题关键
假设解题—练习
1、50名同学去划船,一共乘坐11只船,其中每条大船坐6人,每条小船坐4人.问大船和小船各几条?

(完整word版)3年级奥数教程

(完整word版)3年级奥数教程

三年级奥数教材目录第一章实践与应用(一)…………………………………………第一讲对应法解题 (2)第二讲和倍问题 (6)第三讲差倍问题(一) (9)第四讲和差问题 (13)第二章组合与推理(二)…………………………………………第一讲最佳安排 (17)第三章实践与应用(二)………………………………………第一讲年龄问题 (21)第二讲“还原”解题 (24)第三讲“假设”解题 (27)第四讲平均数问题(一) (30)第五讲平均数问题(二) (33)第一讲用对应法解题【专题简析】小朋友在解答应用题时,经常会碰到这样一类题,给定的数量和所对应的数量关系是在变化的,为了使变化的数量看得更清楚,可以把已知条件按照他它们之间的对应关系排列出来,进行观察和分析,从而找到答案,这种解题的思维方法叫对应法。

在用对应法解题时,通常先把题目中的数量关系转化为等式,并把这些等式按顺序编号,然后认真观察,比较对应关系的变化,以便寻找解题的突破口。

【典型例题】【例1】小进去商店买学习用品,如果买了4本练习本,3支2元钱一支的笔,一共用去8元钱。

一本练习本多少钱?【试一试】1.在花店里买1枝百合和5枝1元一枝的康乃馨共需要8元钱。

一枝百合多少钱?2.妈妈在超市里用了20元钱,买了4把牙刷和2条毛巾,她只记得牙刷是3元钱一把,忘记了毛巾的价钱。

你知道吗?能不能帮她算一算?【例2】平价水果店的水果,若买1千克苹果和2千克梨子需18元,若买2千克苹果和2千克梨子则需要24元。

梨子、苹果每千克各多少元钱?【试一试】1.某车间工人,车1个螺丝和2个螺帽需4分钟,车1个螺丝和3个螺帽需5分钟。

车一个螺丝需要多长时间?2.学校需买一些足球和排球,若买1个足球和3个排球需要100元,若买2个足球和3个排球则需要140元。

买一个足球和一个排球共需要多少钱?【例3】奶奶去买水果,如果她买4千克梨和5千克荔枝,需花58元;如果她买6千克梨和5千克荔枝,那么需花62元,问1千克梨和1千克荔枝各多少元?【试一试】1.3筐苹果和5筐橘子共重270千克,3筐苹果和7筐橘子共重342千克,一筐苹果和一筐橘子各重多少千克?2.张老师为图书室买书,如果他买6本童话书和7本故事书需144元;如果买9本童话书和7本故事书需174元,现在张老师买7本童话书和6本故事书共需多少元?【例4】学校买足球和排球,买3个足球和4个排球共需要190元,如果买6个足球和2个排球需要230元,一个足球和一个排球各需要多少元?【试一试】1.5筐番茄和2筐黄瓜共重330千克,3筐番茄和4筐黄瓜共重310千克,一筐番茄和一筐黄瓜各重多少千克?2.4本练习本和5枝圆珠笔共14元,2本练习本和4枝圆珠笔共10元,一本练习本和一枝圆珠笔各多少元?【例5】商店里有一些气球,其中红气球和蓝气球共21只,蓝气球和黄气球共28只,黄气球和红气球共29只,红气球、蓝气球和黄气球各有多少只?【试一试】1.小明和小红共12岁,小红和小丽共17岁,小明和小丽共13岁,三人各多少岁?2.新华书店有批书,故事书和连环画共70本,连环画和科技书共82本,科技书和故事书共76本,三种书各多少本?课外作业家长签名:__________1.小芬买2本童话书和1本16元钱的科普书一共用去40元。

三年级奥数举一反三第293031周年龄问题还原法解题假设法解题[4]

三年级奥数举一反三第293031周年龄问题还原法解题假设法解题[4]

第二十九周年龄问题专题简析:年龄问题可以说是前面所讲的和差问题及差倍问题的综合,要正确解答这类题,首先要弄清:两个不同年龄的人,年龄之差始终不变,但两个人年龄的倍数关系却在不断地变化。

年龄问题的主要特征是:大小年龄差是一个不变的量。

我们可以抓住差不变这个特点,利用和差、差倍等知识来分析解答这类应用题。

例题1 三年前爸爸年龄是女儿的4倍,爸爸今年43岁,女儿今年多少岁?思路导航:由题意可知爸爸今年43岁,则三年前爸爸的年龄是43-3=40岁,40岁正好是女儿年龄的4倍,女儿三年前的年龄是40÷4=10岁,今年女儿的年龄是10+3=13岁。

练习一1,四年前小林年龄是小丽的2倍,小林今年12岁,小丽今年多少岁?2,五年前爷爷年龄是孙子的7倍,孙子今年14岁,爷爷今年多少岁?3,儿子今年10岁,爸爸今年34岁。

几年前,爸爸的年龄是儿子的4倍?例题2 明明4岁时,妈妈年龄是明明的8倍。

今年明明12岁,妈妈今年多少岁?思路导航:妈妈的年龄是明明的8倍,那么妈妈与明明的年龄相差4×8-4=28岁。

妈妈与明明的年龄差是不变的,今年明明12岁,那么妈妈的年龄是12+28=40岁。

练习二1,玲玲7岁时,爸爸年龄是玲玲的5倍。

今年爸爸40岁,玲玲今年多少岁?2,爷爷63岁时,他的年龄是小青的9倍。

今年小青12岁,爷爷今年多少岁?3,两年前妈妈年龄是儿子的5倍,儿子今年9岁,妈妈今年多少岁?例题3 女儿今年3岁,妈妈今年33岁。

几年后,妈妈的年龄是女儿的7倍?思路导航:女儿今年3岁,妈妈今年33岁,她们的年龄差是33-3=30岁。

她们年龄差不变,几年后,妈妈的年龄是女儿的3倍,把女儿的年龄看作1份,妈妈的年龄就有7份,相差7-1=6份,6份是30岁,所以几年后女儿的年龄是30÷6=5岁。

也就是说,5-3=2年后,妈妈的年龄是女儿的7倍。

练习三1,小明今年7岁,爷爷今年62岁。

几年前,爷爷的年龄是小明的12倍?2,儿子今年2岁,爸爸今年的年龄是儿子的16倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练 习 四
1,小英家有些梨和苹果,苹果的个数是梨的3倍,爸爸和小英每天各吃1个苹果,妈妈每天吃1个梨。若干天后,苹果还剩9个,而梨恰巧吃完。原来苹果有多少个?
2,某商店有些红气球和黄气球,红气球的只数是黄气球的4倍。每天卖出2只红气球和1只黄气球,若干天后,红气球剩下12只,黄气球刚好卖完。红气球原来有多少只?
所以,每张办公桌:1650÷11=150元 每把椅子:150÷2=75元。
练 习 五
1,买4张办公桌9把椅子共用252元,1张桌子和3把椅子的价钱正好相等。桌、椅单价各多少元?
2,学校买来4个篮球和5个排球,共用了185元。已知1个篮球比1个排球贵8元,那么篮球每个多少元?排球每个多少元?
3,小明买2个乒乓球和4个皮球共用去52元,6个乒乓球的价钱相当于1个皮球的价钱。乒乓球、皮球的单位各多少元?
2,鸡、兔共50只,共有脚160只。鸡、兔各几只?
3,鸡、兔共45只,鸡的脚比兔的脚多60只。鸡、兔各多少只?
例题2鸡、兔共笼,鸡比兔多30只,一共有脚168只,鸡、兔各多少只?
思路导航:因为鸡比兔多30只,则可以把30只鸡的脚从总数中去掉,剩下的鸡兔就同样多了。每一对鸡和兔共4+2=6只脚,用6去除剩下的鸡兔总脚数,就可求出兔的只数。
例题4水果糖的块数是巧克力糖的3倍,如果小红每天吃2块水果糖,1块巧克力糖,若干天后,水果糖还剩下7块,巧克力糖正好吃完。原来水果糖有几块?
思路导航:水果糖的块数是巧克力糖的3倍,如果小红每天吃1块巧克力糖,3块水果糖,那若干天后,两种糖正好同时吃完。现在小红每天吃2块水果糖,少吃3-2=1块,结果若干天后水果糖还剩下7块。所以共吃了7÷1=7天,水果糖有2×7+7=21块。
练 习 三
1,某小学进行英语竞赛,每答对一题得10分,答错一题倒扣4分,共15题,小华得了102分。小华答对几题?
2,运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元。运后运费为8880元,损失了几箱?
3,某车间生产一批服装共250件,生产1件可得25元,如果有1件不符合要求,则倒扣20元。生产后得到费用5350元,有几件不符合要求?
解答“鸡兔同笼”问题的基本关系式是:
兔数=(总脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)
用假设法解答类似“鸡兔同笼”的问题时,可以根据题意假设几个量相同,然后进行推算,所得结果与题中对应的数量不符合时,要能够正确地运用别的量加以调整,从而找到正确的答案。
二、精讲精练
例题1鸡、兔共30只,共有脚84只。鸡、兔各有多少只?
辅导教案
学员姓名
辅导科目
奥数
年 级
三年级
授课教师
课 题
用假设法解题
授课时间
教学目标
重点、难点
教学内容
一、知识要点
假设是数学中思考问题的一常见的方法,有些应用题乍看很难求出答案,但是如果我们合理地进现的矛盾,作适当的调整,从而找到正确答案。我国古代趣题“鸡兔同笼”就是运用假设法解决问题的一个范例。
兔的只数:(168-2×30)÷(4+2)=18只; 鸡的只数:18+30=48只。
练 习 二
1,鸡兔共笼,鸡比兔多25只,一共有脚170只。鸡、兔各几只?
2,买甲、乙两种戏票,甲种票每张4元,乙种票每张3元,乙种票比甲种票多买了9张,一共用去97元。两种票各买了几张?
3,鸡兔共有脚48只,如果将鸡的只数与兔的只数互换则共有脚42只。鸡、兔各几只?
3,四(3)班有彩色粉笔和白粉笔若干盒,白粉笔是彩色粉笔的7倍。每天用去2盒白粉笔和1盒彩色粉笔,当彩色粉笔全部用完时,白色粉笔还剩10盒。原来白色粉笔有多少盒?
例题5学校买来8张办公桌和6把椅子,共花去1650元。每张办公桌的价钱是每把椅子的2倍,每张办公桌和每把椅子各多少元?
思路导航:假设学校买的全部是办公桌,根据“每张办公桌的价钱是每把椅子的2倍”,则买6把椅子的价钱只能买6÷2=3张办公桌,那么1650元就相当于8+3=11张办公桌的价钱。
例题3某学校举行数学竞赛,每做对一题得9分,做错一题倒扣3分。共有12道题,王刚得了84分。王刚做错了几题?
思路导航:这类题实与鸡兔同笼同类,还用假设法进行思考。
若全做对,应得9×12=108分,现在少了108-84=24分。为什么会少24分,因为做错一题,不但得不到9分,反而需要倒扣3分,里外少了12分,所以错了24÷12=2题。
思路导航:假设全是鸡,共有脚:30×2=60只; 比实际少:84-60=24只;
这是因为把4只脚的兔子都按2只脚的鸡计算了。
每把一只兔子算作一只鸡,少算:4-2=2只脚,现在共少算了24只脚,说明把:24÷2=12只兔子按鸡算了。所以,共有兔子12只,有鸡30-12=18只。
练 习 一
1,鸡、兔共100只,共有脚280只。鸡、兔各多少只?
相关文档
最新文档