大学物理-电磁学

合集下载

大学物理电磁学

大学物理电磁学

大学物理电磁学引言电磁学是物理学的一个重要分支,研究电荷之间相互作用的原理和电磁波的特性。

在大学物理学中,电磁学是必学的一门课程,它涵盖了电荷、电场、电势、电流、电磁感应、电磁波等基本概念和原理。

本文将介绍大学物理电磁学的基本原理和相关内容。

一、电荷和电场电荷是电磁学的基本物理量之一,分为正电荷和负电荷。

正电荷和负电荷相互吸引,相同电荷相互排斥。

电场是电荷在周围产生的一种力场,用于描述电荷对其他电荷的作用力。

电场强度是衡量电场强弱的物理量,它的定义是单位正电荷所受的力。

二、电场的产生和性质电荷在空间中形成的电场是由电荷成对产生的。

当有多个电荷时,它们各自产生的电场可以叠加。

电场的性质包括电场的线性性质、电场的无旋性和电场的势能。

三、电势和电势能电势是描述电场对单位正电荷做的功的物理量。

电势是标量,它对应于电场的能量分布。

电势能是电荷在电场中具有的能量,它是由电势引起的。

四、电容和电容器电容是描述电场在电荷分布上的储存能力的物理量。

电容器是用来储存电荷和能量的装置,由两个导体之间的介质隔开,形成电场。

常见的电容器包括电容器、平行板电容器和球形电容器。

五、电流和电阻电流是电荷随时间变化的物理量,是单位时间内流过某个横截面的电荷量。

电阻是导体对电流流动的阻碍,它符合欧姆定律。

电流在电路中的运动受到欧姆定律和基尔霍夫定律的约束。

六、磁场和磁感应磁场是由带电粒子的运动产生的物理现象,描述了磁力的作用。

磁感应是描述磁场强度的物理量。

电流在导线中产生磁场,被称为安培环路定律。

七、电磁感应和法拉第定律电磁感应是通过磁场的变化产生电场的现象。

法拉第定律描述了导体中感应电动势与磁通量变化的关系。

法拉第定律是电磁感应定律的基础,它是电磁感应现象的定量描述。

八、电磁波和光学电磁波是由电场和磁场相互作用而产生的一种波动现象。

电磁波具有电磁场的传播性质,包括光学、无线电波等各种波动现象。

结论大学物理电磁学是电磁学的基本课程,涵盖了电荷、电场、电势、电流、电磁感应、电磁波等内容。

大学物理电磁学

大学物理电磁学

大学物理电磁学是物理学的一个重要分支,主要研究电磁现象的规律和本质。

电磁学在科学技术、工业生产和日常生活中都有着广泛的应用。

本文将从电磁学的基本概念、基本定律和电磁波的传播等方面对大学物理电磁学进行介绍。

一、基本概念1.电荷:电荷是物质的一种属性,分为正电荷和负电荷。

电荷间的相互作用规律是:同种电荷相互排斥,异种电荷相互吸引。

2.电场:电场是电荷及变化磁场周围空间里存在的一种特殊物质,它对放入其中的电荷有作用力。

电场的强度用电场强度E表示,单位是牛/库仑。

3.磁场:磁场是磁体周围空间里存在的一种特殊物质,它对放入其中的磁体有作用力。

磁场的强度用磁感应强度B表示,单位是特斯拉。

4.电磁波:电磁波是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量。

电磁波在真空传播速度与光速一样,速度为30万千米/秒。

二、基本定律1.库仑定律:库仑定律是描述电荷之间相互作用的定律,其内容为:真空中两点电荷间的作用力与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力在它们的连线上。

2.安培定律:安培定律是描述电流和电流激发磁场的定律,其内容为:电流I1通过一条无限长直导线时,在距离导线r处产生的磁场强度H1与I1成正比,与r成反比,即H1与I1r成反比。

磁场方向垂直于电流方向和通过点的平面。

3.法拉第电磁感应定律:法拉第电磁感应定律是描述磁场变化引起电场变化的定律,其内容为:穿过电路的磁通量发生变化时,产生感应电动势。

感应电动势的大小与磁通量变化率成正比,与电路的匝数成正比。

4.麦克斯韦方程组:麦克斯韦方程组是描述电磁场分布和电磁波传播的四个偏微分方程,包括库仑定律、法拉第电磁感应定律、安培定律和位移电流定律。

三、电磁波的传播1.电磁波的发射:电磁波的产生通常是通过振荡电路实现的。

当振荡电路中的电场和磁场相互垂直且同相振荡时,电磁波便会产生并向外传播。

大学物理《电磁学》PPT课件

大学物理《电磁学》PPT课件

电场性质
对放入其中的电荷有力的作用 ,且力的方向与电荷的正负有 关。
磁场性质
对放入其中的磁体或电流有力 的作用,且力的方向与磁极或
电流的方向有关。
库仑定律与高斯定理
库仑定律
描述真空中两个静止点电荷之间的相互作用 力,与电荷量的乘积成正比,与距离的平方 成反比。
高斯定理
通过任意闭合曲面的电通量等于该曲面内所包围的 所有电荷的代数和除以真空中的介电常数。
当导体回路在变化的磁场中或导体回路在恒定的磁场中运动时
,导体回路中就会产生感应电动势。
法拉第电磁感应定律公式
02
E = -n(dΦ)/(dt)。
法拉第电磁感应定律的应用
03
用于解释电磁感应现象,计算感应电动势的大小,判断感应电
动势的方向。
自感和互感现象分析
自感现象
当一个线圈中的电流发生变化时 ,它所产生的磁通量也会随之变 化,从而在线圈自身中产生感应 电动势的现象。
程称为磁化。随着外磁场强度的增大,铁磁物质的磁感应强度也增大。
03
铁磁物质的饱和现象
当铁磁物质被磁化到一定程度后,其内部磁畴的排列达到极限状态,此
时即使再增加外磁场强度,铁磁物质的磁感应强度也不会再增加,这种
现象称为饱和现象。
04
电磁感应与暂态过程
法拉第电磁感应定律及应用
法拉第电磁感应定律内容
01
06
现代电磁技术应用与发展趋势
超导材料在电磁领域应用前景
超导材料的基本特性:零电阻、完全抗磁性
超导磁体在MRI、NMR等医疗设备中的应用
超导电缆在电力传输中的优势及挑战
高温超导材料的研究进展及潜在应用
光纤通信技术发展现状及趋势

大学物理《电磁学》PPT课件

大学物理《电磁学》PPT课件

2 2 B Bx B y 0.1T
Bz tan 0.57 Bx
300
~1012T ~106T ~7×104T ~0.3T ~10-2T ~5×10-5T ~3×10-10T
资料
原子核表面 中子星表面 目前最强人工磁场 太阳黑子内部 太阳表面 地球表面 人体
2.电场与磁场的相对性
S应线是闭 合的,因此它在任 意封闭曲面的一侧 穿入,必在另一侧 全部穿出。
↑载流螺线管的磁感应线 ←载流直导线的磁感应线 比较
1 e E dS
S
0
Q
dV
静电场中高斯定理反映静电场是有源场;
m B dS 0
安 培 演 示 电 流 相 互 作 用 的 装 置 ( 复 制 品 )
电流与电流之间的相互作用
I
F F
I
电流与电流之间的相互作用
I F
F
I
磁场对运动电荷的作用
电子束
+
磁场对运动电荷的作用
电子束
S N
+
我们得把问题引向一个更深的层次 思想深邃的科学家自问:磁铁究竟是什么?如 果磁场是由电荷运动激发的,那么来自一块磁铁的 磁场是否也可能是由于电流的的效果呢? 安培用通电螺线管很好地模拟了一个磁针:
①方向: 曲线上一点的切 线方向和该点的磁场 方向一致。 ②大小:
磁感应线的疏密反映磁场的强弱。
B
③性质: •磁感应线是无头无尾的闭合曲线,磁场中任 意两条磁感应线不相交。 •磁感应线与电流线铰链 通过无限小面元dS 的磁感应线数目dm与dS 的 比值称为磁感应线密度。我们规定磁场中某点的磁


2

大学物理电磁学

大学物理电磁学

P
E
x
E
OR x
2
P.23/102
电荷与电场
练习:无限大均匀带电平面的电场(电荷面密度)。
为利用例3结果简化计算。将无限大平面视为半径R 的圆盘 —— 由许多均匀带电圆环组成。
dr
思路 dq ?
r O Px
dE ?
E dE ?
dq 2 π r dr
dE
4
π
0
x dq (x2
r2
其通上 过每 垂点 直切E 向的:单位该面点积E 的方条向数等于场强的大小,
即其疏密与场强的大小成正比。
E
E
4
q
π 0r3
r
+
2020/8/15
P.25/102
电荷与电场
电偶极子的电场线
2020/8/15
一对正电荷的电场线
均匀带电直导 线的电场线
P.26/102
平板电容器中的电场线
电荷与电场
静电场中电场线的特点: 1. 电场线起始于正电荷,终止于负电荷。
2. 电场线不闭合,不相交。 3. 电场线密集处电场强,电场线稀疏处电场弱。
2020/8/15
P.27/102
二、电通量
电荷与电场
通过电场中某一给定面的电场线的总条数叫做通过 该面的电通量(electric flux)。
S
E
Φe
ES
n
2020/8/15
P.6/102
电荷与电场
3. 静电力叠加原理
两点电荷间相互作用力不因其它电荷的存在而改变。
点电荷系对某点电荷的作用等于系内各点电荷单独存在
时对该电荷作用的矢量和。
F F1 F2 Fn

大学物理电磁学公式全集

大学物理电磁学公式全集

静电场小结一、库仑定律(两个点电荷,d>>r)二、电场强度三、场强迭加原理‎点电荷场强点电荷系场强‎连续带电体场‎强四、静电场高斯定‎理五、几种典型电荷‎分布的电场强‎度均匀带电球面‎均匀带电球体‎均匀带电长直‎圆柱面均匀带电长直‎圆柱体无限大均匀带‎电平面六、静电场的环流‎定理七、电势八、电势迭加原理‎点电荷电势点电荷系电势‎连续带电体电‎势九、几种典型电场‎的电势均匀带电球面‎均匀带电直线‎十、导体静电平衡‎条件(1) 导体内电场强‎度为零;导体表面附近‎场强与表面垂‎直。

(2) 导体是一个等‎势体,表面是一个等‎势面。

推论一电荷只分布于‎导体表面推论二导体表面附近‎场强与表面电‎荷密度关系十一、静电屏蔽导体空腔能屏‎蔽空腔内、外电荷的相互‎影响。

即空腔外(包括外表面)的电荷在空腔‎内的场强为零‎,空腔内(包括内表面)的电荷在空腔‎外的场强为零‎。

十二、电容器的电容‎平行板电容器‎圆柱形电容器‎球形电容器孤立导体球十三、电容器的联接‎并联电容器串联电容器十四、电场的能量电容器的能量‎电场的能量密‎度电场的能量稳恒电流磁场‎小结一、磁场运动电荷的磁‎场毕奥——萨伐尔定律二、磁场高斯定理‎三、安培环路定理‎四、几种典型磁场‎有限长载流直‎导线的磁场无限长载流直‎导线的磁场圆电流轴线上‎的磁场圆电流中心的‎磁场长直载流螺线‎管内的磁场载流密绕螺绕‎环内的磁场五、载流平面线圈‎的磁矩m和S沿电流‎的右手螺旋方‎向六、洛伦兹力七、安培力公式八、载流平面线圈‎在均匀磁场中‎受到的合磁力‎载流平面线圈‎在均匀磁场中‎受到的磁力矩‎电磁感应小结‎一、电动势非静电性场强‎电源电动势一段电路的电‎动势闭合电路的电‎动势当时,电动势沿电路‎(或回路)l的正方向,时沿反方向。

二、电磁感应的实‎验定律1、楞次定律:闭合回路中感‎生电流的方向‎是使它产生的‎磁通量反抗引‎起电磁感应的‎磁通量变化。

楞次定律是能‎量守恒定律在‎电磁感应中的‎表现。

大学物理电磁学电磁感应

大学物理电磁学电磁感应
有电流产生必有电动势存在
二、 法拉第电磁感应定律
通过回路面积内的磁通量发生变化时,回路中产生 的感应电动势与磁通量对时间的变化率成正比。
1、数学表述
i
k
dΦm dt
在SI制中比例系数为1
i
dΦm dt
§12-1 电磁感应定律

N
匝线圈 i
N
dΦm dt
d (NΦm ) dt
令 Ψ NΦm 全磁通 磁通链数
洛仑兹力不提供能量, 他只起到了一个传递能量的 作用。
至此详谬得以解释
f0
v
v0 V f
§12-2 动生电动势
例1有力一线半运圆动形。金已属知导:线v在, B匀,强R磁. 场中作切割磁
求:动生电动势。
b
解:方法一
作辅助线 a b,形成闭合回路。
i i
0
a (v
b
半圆
B) dl
ab
2RBv
② 求电量
i dq 0 sin t
dt R
q
idt
0 sin tdt
0R
BS sin td (t) 2BS
0R
R
§12-2 动生电动势
求解动生电动势的步骤
1. 选择 dl 方向;
2. 确定 dl 所在处的 B 及 v 3. 确定 v × B 的方向; 4. 确定 dl 与 v × B 的夹角
B A
vC
§12-2 动生电动势
例3 一直导线CD在一无限长直电流磁场中作
切割磁力线运动。求:动生电动势。
解: 方法一
d (v B) dl
v
0I
sin
900 dl
I
cos1800

大学物理_电磁学公式全集

大学物理_电磁学公式全集

静电场小结一、库仑定律二、电场强度三、场强迭加原理点电荷场强点电荷系场强连续带电体场强四、静电场高斯定理五、几种典型电荷分布的电场强度均匀带电球面均匀带电球体均匀带电长直圆柱面均匀带电长直圆柱体无限大均匀带电平面六、静电场的环流定理七、电势八、电势迭加原理点电荷电势点电荷系电势连续带电体电势九、几种典型电场的电势均匀带电球面均匀带电直线十、导体静电平衡条件(1) 导体内电场强度为零;导体表面附近场强与表面垂直。

(2) 导体是一个等势体,表面是一个等势面。

推论一电荷只分布于导体表面推论二导体表面附近场强与表面电荷密度关系十一、静电屏蔽导体空腔能屏蔽空腔内、外电荷的相互影响。

即空腔外(包括外表面)的电荷在空腔内的场强为零,空腔内(包括内表面)的电荷在空腔外的场强为零。

十二、电容器的电容平行板电容器圆柱形电容器球形电容器孤立导体球十三、电容器的联接并联电容器串联电容器十四、电场的能量电容器的能量电场的能量密度电场的能量稳恒电流磁场小结一、磁场运动电荷的磁场毕奥——萨伐尔定律(sin@ 二、磁场高斯定理三、安培环路定理四、几种典型磁场有限长载流直导线的磁场无限长载流直导线的磁场圆电流轴线上的磁场圆电流中心的磁场长直载流螺线管内的磁场载流密绕螺绕环内的磁场五、载流平面线圈的磁矩m和S沿电流的右手螺旋方向六、洛伦兹力七、安培力公式八、载流平面线圈在均匀磁场中受到的合磁力载流平面线圈在均匀磁场中受到的磁力矩电磁感应小结一、电动势非静电性场强电源电动势一段电路的电动势闭合电路的电动势当时,电动势沿电路(或回路)l的正方向,时沿反方向。

二、电磁感应的实验定律1、楞次定律:闭合回路中感生电流的方向是使它产生的磁通量反抗引起电磁感应的磁通量变化。

楞次定律是能量守恒定律在电磁感应中的表现。

2、法拉第电磁感应定律:当闭合回路l中的磁通量变化时,在回路中的感应电动势为若时,电动势沿回路l的正方向,时,沿反方向。

对线图,为全磁通。

大学物理——电磁学

大学物理——电磁学

大学物理——电磁学电磁学是物理学中的一门基础学科,研究电荷之间相互作用的规律性和电磁波的产生、传播以及与物质的相互作用。

电磁学的理论和应用范围广泛,是现代通讯、信息技术、能源领域中必不可少的一门科学。

1. 静电学静电学是电磁学的一个分支,主要研究静电场、电荷分布和电势等基本概念及其相互关系。

静电学的基本定理是库仑定律,它描述了电荷之间的相互作用力与其距离的平方成反比。

此外,静电学还研究电荷密度、电场强度、电荷守恒定律、高斯定理等。

2. 恒定电流学恒定电流学是研究静态电荷(即不随时间变化的电荷)所产生的电流和电场。

这一分支的基本定理为安培定律,它描述了电流与导线长度、截面积的乘积和导体电荷密度的乘积成正比。

恒定电流学还研究电阻、电势差、欧姆定律、基尔霍夫定律等。

3. 电磁场电磁场是指在空间中存在的包含电场和磁场的物理场。

电磁场的基本方程是麦克斯韦方程组,它是电磁学研究的核心。

麦克斯韦方程组包括四个方程,其中两个是描述电场的方程,另外两个是描述磁场的方程。

这些方程可以用来描述电磁波的产生、传播和与物质的相互作用等现象。

4. 电磁波电磁波是电场和磁场在空间中传播的波动现象。

电磁波的产生需要电荷在空间中振动,形成变化的电场和磁场,产生一种横波。

电磁波的特点是在真空中传播,速度是光速,而且具有波长和频率等特征。

电磁波的应用极广,包括无线通信、雷达、移动通讯等。

5. 辐射现象辐射现象是指电荷加速时会产生电磁波辐射的现象。

这一现象是电子学的基础,也是实现电子器件中心频率和带宽的重要途径。

辐射现象的基本定理是洛伦兹方程,它描述了电子发射电磁辐射能量的表达式。

强烈的电磁辐射还会带来安全风险,例如核辐射和光辐射等。

总之,电磁学是一门广泛应用的学科,在通讯技术、信息技术、能源等领域中都有着重要的应用。

它不仅具有基础理论的重要性,还承担着促进社会发展和改善人类生活的使命。

6. 电动力学电动力学是电磁学的一个分支,主要研究带电粒子在电场和磁场中的运动规律。

大学物理电磁学总结(精华)课件

大学物理电磁学总结(精华)课件

一、教学内容1. 库仑定律:描述静电力的大小和方向,公式为F=kq1q2/r^2,其中k为库仑常数,q1和q2分别为两个点电荷的电量,r为它们之间的距离。

2. 电场强度:描述电场对电荷的作用力,公式为E=F/q,其中F为电场对电荷的作用力,q为电荷的电量。

3. 高斯定律:描述电场通过一个闭合曲面的通量与该闭合曲面内部的总电荷之间的关系,公式为Φ=Q/ε0,其中Φ为电通量,Q为闭合曲面内部的总电荷,ε0为真空中的电常数。

4. 磁感应强度:描述磁场对运动电荷的作用力,公式为B=F/IL,其中F为磁场对运动电荷的作用力,I为电流的大小,L为电流所在导线的有效长度。

5. 安培定律:描述电流产生的磁场,公式为B=μ0I/2πr,其中B为磁场的大小,I为电流的大小,r为电流所在导线到被测点的距离,μ0为真空中的磁常数。

6. 法拉第电磁感应定律:描述磁场变化产生的电动势,公式为E=ΔΦ/Δt,其中E为电动势,ΔΦ为磁通量的变化量,Δt为时间的变化量。

二、教学目标1. 掌握大学物理电磁学的基本概念和公式。

2. 能够运用电磁学的知识解决实际问题。

3. 培养学生的科学思维和解决问题的能力。

三、教学难点与重点重点:库仑定律、电场强度、高斯定律、磁感应强度、安培定律、法拉第电磁感应定律。

难点:高斯定律、安培定律、法拉第电磁感应定律的理解和应用。

四、教具与学具准备教具:黑板、粉笔、PPT课件。

学具:教材、笔记本、笔。

五、教学过程1. 实践情景引入:讲解库仑定律时,可以引入两个点电荷之间的相互作用力。

2. 例题讲解:讲解电场强度时,可以举例一个正点电荷对周围电荷的作用力。

3. 随堂练习:让学生计算一个负点电荷对周围电荷的作用力。

4. 讲解高斯定律:讲解高斯定律时,可以举例一个闭合曲面内部的电荷对曲面外的电场的影响。

5. 讲解磁感应强度:讲解磁感应强度时,可以举例磁场对运动电荷的作用力。

6. 讲解安培定律:讲解安培定律时,可以举例电流产生的磁场对周围导线的影响。

大学物理电磁学

大学物理电磁学

大学物理电磁学
第一章:静止电荷的电场
讲授内容:电荷、库仑定律、电场和电场强度以及场强叠加原理、电场线和电通量、高斯定律、利用高斯定律求静电场的分布基本要求:掌握静电场场强的概念及其叠加原理、能求解连续带电体的场强分布;理解用高斯定理律计算电场的条件和方法本章重点:电场强度的矢量叠加性、高斯定律
本章难点:微积分的应用
1.库仑定律
注意:矢量符号的印刷体以黑体加粗表示,手写书写体时必须带上标箭头。

2. 叠加原理:两个以上的点电荷对一个点电荷的作用力等于各个点电荷。

单独存在时对该点电荷的作用的矢量和。

3.电场:是电荷周围空间里存在的一种特殊物质。

4.电场强度:是用来表示电场的强弱和方向的物理量,下面是定义式。

5.电场线:是为了直观形象地描述电场分布而在电场中引入的一些假想的曲线。

电场线的特性:
a.始于由正电荷,止于负电荷;
b.电场线不相交;
c.静电场线不闭合;
(曲线上每一点的切线方向为电场方向;电场线的疏密程度代表场强大小)
6.电通量:通过电场中某一个面的电场线数叫做通过这个面的电场强度通量。

注:一般规定由内向外的方向为各处面元法向的正方向。

7.高斯定律:
8.电偶极子:电偶极子由等量异号电荷构成,电偶极矩方向由负电荷指向正电荷。

大学物理电磁学PPT课件

大学物理电磁学PPT课件

磁场是电流周围存在的一种特殊物质,它 对放入其中的磁体或电流有力的作用。
磁场的描述
磁场对电流的作用
磁场可以用磁感线来描述,磁感线的疏密 表示磁场的强弱,磁感线的切线方向表示 磁场的方向。
磁场对放入其中的电流有力的作用,这个力 的大小与电流的大小、磁场的强弱以及电流 与磁场的夹角有关。
电磁感应定律
电磁感应现象
当闭合回路中的磁通量发生变化时,回路中就会 产生感应电流,这种现象称为电磁感应现象。
楞次定律
感应电流的方向总是要阻碍引起感应电流的磁通 量的变化,即“增反减同”。
法拉第电磁感应定律
感应电动势与磁通量变化率的负值成正比,即E=n(ΔΦ)/(Δt),其中E为感应电动势,n为线圈匝数 ,ΔΦ为磁通量的变化量,Δt为时间的变化量。
在各向同性介质中传播特性
在各向同性介质中,平面电磁波的传播速度、传播方向和电场、磁场分量之间的关系遵 循一定的规律,如折射定律、反射定律等。
反射、折射和衍射现象
反射现象
当电磁波遇到介质界面时,一部分能量被反射回原介质,形成反 射波。
折射现象Βιβλιοθήκη 当电磁波从一种介质传播到另一种介质时,传播方向会发生改变, 形成折射波。
互感现象
当两个线圈靠近并存在磁耦合时,一个线圈中的电流变化会在另一个线圈中产 生感应电动势。互感系数与两个线圈的形状、大小、匝数以及它们之间的相对 位置有关。
交流电路基本概念及分析方法
交流电路基本概念
交流电路是指电流、电压和电动势的大小和方向都随时间作周期性变化的电路。与交流电相对应的是直流电,其 电流、电压和电动势的大小和方向均不随时间变化。
06
电磁学实验方法与技巧
常见电磁学实验仪器介绍

大学物理《电磁学》

大学物理《电磁学》
电磁波
以波动形式传播的电磁场,包括无线电波、可见光、不可 见光(紫外线和红外线)、X射线和伽马射线等。
电磁学的发展历程
17世纪
牛顿的力学体系建立,为电磁学的发展奠定了基 础。
18世纪
库仑定律和安培定律的发现,揭示了电荷和电流 之间的相互作用规律。
19世纪
法拉第和麦克斯韦的贡献,提出了电磁感应理论 和麦克斯韦方程组,统一了电学和磁学的规律。
掌握常用的数据处理方法,如平均值、 中位数、标准差等统计量的计算,以 及数据的线性回归分析、曲线拟合等。
06 电磁学的应用案例分析
高压输电线路的设计与优化
高压输电线路的设计
在高压输电线路的设计过程中,需要考虑电磁场的分布、线路的电阻、电感等参数,以及线路的机械强度和稳定 性。
优化设计
通过优化设计,可以降低线路的损耗、提高输电效率,同时减少对周围环境的电磁干扰。
电磁学在生活和科技中的应用
01ห้องสมุดไป่ตู้
02
03
04
无线通信
无线电波用于长距离通信,包 括广播、电视和移动通信等。
电力传输
利用磁场和电场的相互作用, 实现电能的远距离传输。
医疗成像
如X射线和磁共振成像技术, 利用电磁波探测人体内部结构

新能源
太阳能电池利用光电效应将光 能转化为电能,风力发电利用 风能驱动发电机产生电能。
法拉第电磁感应定律
感应电动势的大小与磁通量变化率成正比。
楞次定律
感应电流产生的磁场总是阻碍原磁场的变化。
麦克斯韦方程组的推导与解释
推导过程
基于安培环路定律、法拉第电磁感应 定律等基本原理,通过数学推导得到 麦克斯韦方程组。
解释

大学物理《电磁学》PPT课件

大学物理《电磁学》PPT课件

大学物理《电磁学》PPT课件•电磁学基本概念与原理•静电场中的导体和电介质•恒定电流及其应用•磁场性质与描述方法•电磁感应原理及技术应用•电磁波传播特性及技术应用目录CONTENTS01电磁学基本概念与原理电场强度描述电场强弱的物理量,其大小与试探电荷所受电场力成正比,与试探电荷的电荷量成反比。

静电场由静止电荷产生的电场,其电场线不随时间变化。

电势与电势差电势是描述电场中某点电势能的物理量,电势差则是两点间电势的差值,反映了电场在这两点间的做功能力。

欧姆定律描述导体中电流、电压和电阻之间关系的定律。

恒定电流电流大小和方向均不随时间变化的电流。

静电场与恒定电流磁场磁感应强度磁性材料磁路与磁路定律磁场与磁性材料由运动电荷或电流产生的场,其对放入其中的磁体或电流有力的作用。

能够被磁场磁化并保留磁性的材料,分为永磁材料和软磁材料。

描述磁场强弱的物理量,其大小与试探电流所受磁场力成正比,与试探电流的电流强度和长度成反比。

磁路是磁性材料构成的磁通路径,磁路定律描述了磁路中磁通、磁阻和磁动势之间的关系。

描述变化的磁场产生感应电动势的定律。

法拉第电磁感应定律描述感应电流方向与原磁场变化关系的定律。

楞次定律描述磁场与变化电场之间关系的定律。

麦克斯韦-安培环路定律由变化的电场和磁场相互激发而产生的在空间中传播的电磁振荡。

电磁波电磁感应与电磁波麦克斯韦方程组及物理意义麦克斯韦方程组由四个基本方程构成的描述电磁场基本规律的方程组,包括高斯定理、高斯磁定理、法拉第电磁感应定律和麦克斯韦-安培环路定律。

物理意义麦克斯韦方程组揭示了电磁现象的统一性,预测了电磁波的存在,为电磁学的发展奠定了基础。

同时,该方程组在物理学、工程学等领域具有广泛的应用价值。

02静电场中的导体和电介质导体在静电场中的性质静电感应当导体置于外电场中时,导体内的自由电子受到电场力的作用,将重新分布,使得导体内部电场为零。

静电平衡当导体内部和表面的电荷分布不再随时间变化时,称导体达到了静电平衡状态。

大学物理 电磁学

大学物理 电磁学

大学物理:电磁学电磁学是物理学的一个分支,主要研究电磁现象、电磁辐射、电磁场以及它们与物质之间的相互作用。

在本文中,我们将探讨电磁学的基本概念、历史背景、研究领域以及在现实生活中的应用。

一、基本概念1、电荷与电荷密度电荷是物质的一种属性,它可以产生电场。

电荷分为正电荷和负电荷。

电荷的分布可以用电荷密度来描述,它表示单位体积内所包含的电荷数量。

2、电场与电场强度电场是空间中由电荷产生的力线所形成的场。

电场强度是描述电场强弱的物理量,它与电荷密度有关。

3、磁场与磁感应强度磁场是由电流或磁体产生的场。

磁感应强度是描述磁场强弱的物理量,它与电流密度和磁场中的电荷有关。

4、电磁波电磁波是由电磁场产生的波动现象,它包括无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等。

二、历史背景电磁学的研究可以追溯到17世纪和18世纪,当时科学家们开始研究静电和静磁现象。

19世纪初,英国物理学家迈克尔·法拉第发现了电磁感应定律,即变化的磁场可以产生电流。

1864年,英国物理学家詹姆斯·克拉克·麦克斯韦将法拉第的发现与自己的研究结合起来,提出了著名的麦克斯韦方程组,预言了电磁波的存在。

三、研究领域1、静电学:研究静止电荷所产生的电场、电势、电容、电导等性质。

2、静磁学:研究静止磁场以及磁体和电流所产生的磁场和磁场分布。

3、电磁感应:研究变化的磁场和电场以及它们之间的相互作用和变化规律。

4、电磁波:研究电磁波的产生、传播、散射、反射和吸收等性质以及在各种介质中的行为。

四、应用电磁学在现实生活中有着广泛的应用,如:1、电力工业:利用电磁感应原理发电、输电和用电。

2、通信工程:利用电磁波传递信息,包括无线电通信、微波通信、光纤通信等。

3、电子技术:利用电磁学原理制造电子设备,如电视机、计算机、雷达等。

4、磁悬浮技术:利用磁力使物体悬浮,减少摩擦和能耗。

5、医学成像:利用电磁波和磁场进行医学诊断和治疗。

大学物理电磁学

大学物理电磁学
交流电路的功率
有功功率、无功功率和视在功率 的概念及其计算。
04
磁场性质及其描述
Chapter
磁感线及磁通量概念
磁感线
描述磁场分布的曲线,其切线方向表示 磁场方向,疏密程度表示磁场强度。
VS
磁通量
通过某一面积的磁感线条数,反映磁场在 该区域的分布情况。
安培环路定理及应用
安培环路定理
磁场中沿任意闭合路径的线积分等于穿过该 路径所包围面积的电流代数和的常数倍。
大学物理电磁学
目录
• 电磁学基本概念与原理 • 静电场性质及其描述 • 稳恒电流与电路分析 • 磁场性质及其描述 • 电磁感应与暂态过程分析 • 麦克斯韦方程组与电磁波传播
01
电磁学基本概念与原理
Chapter
电场与磁场定义
电场
由电荷产生的特殊物理场,描述 电荷间的相互作用。
磁场
由电流或磁体产生的特殊物理场 ,描述磁极间的相互作用。
光子概念
光子是量子力学中的基本粒子,构成光和其 他电磁辐射的量子。光子的能量与电磁波的
频率成正比。
黑体辐射和普朗克公式
黑体辐射
黑体是一个理想化的物体,能完全吸收外来的电磁辐射 ,不会有任何的反射与透射。黑体辐射是指黑体发出的 电磁辐射。
普朗克公式
描述黑体辐射的强度和频率的关系,是量子力学的基石 之一。普朗克公式揭示了黑体辐射的能量是不连续的, 以一份份的能量子(即光子)的形式发射或吸收。
感应电动势的大小与磁通量的变化率成正比,即e=dΦ/dt,其中e为感应电动势,Φ为磁通量,t为时间。
法拉第电磁感应定律是电磁感应现象的基础,也是电机 、变压器等电气设备的工作原理。
自感和互感现象
自感现象是指一个线圈中的电流发生变化时, 在线圈自身中产生感应电动势的现象。

大学物理电磁学基础知识点汇总

大学物理电磁学基础知识点汇总

大学物理电磁学基础知识点汇总一、电场1、库仑定律库仑定律描述了真空中两个静止点电荷之间的相互作用力与它们电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着它们的连线。

其表达式为:$F = k\frac{q_1q_2}{r^2}$,其中$k$为库仑常量,$q_1$和$q_2$为两个点电荷的电荷量,$r$为它们之间的距离。

2、电场强度电场强度是描述电场力的性质的物理量,定义为单位正电荷在电场中所受到的力。

其表达式为:$E =\frac{F}{q}$。

对于点电荷产生的电场,其电场强度的表达式为:$E = k\frac{q}{r^2}$,方向沿径向向外(正电荷)或向内(负电荷)。

3、电场线电场线是用来形象地描述电场的一种工具。

电场线的疏密表示电场强度的大小,电场线的切线方向表示电场强度的方向。

静电场的电场线不闭合,始于正电荷或无穷远,终于负电荷或无穷远。

4、电通量电通量是通过某一面积的电场线条数。

对于匀强电场,通过平面的电通量为:$\Phi = ES\cos\theta$,其中$E$为电场强度,$S$为平面面积,$\theta$为电场强度与平面法线的夹角。

5、高斯定理高斯定理表明,通过闭合曲面的电通量等于该闭合曲面所包围的电荷量的代数和除以$\epsilon_0$。

即:$\oint_S E\cdot dS =\frac{1}{\epsilon_0}\sum q$。

高斯定理是求解具有对称性电场分布的重要工具。

二、电势1、电势电势是描述电场能的性质的物理量,定义为把单位正电荷从电场中某点移动到参考点(通常取无穷远处)时电场力所做的功。

某点的电势等于该点到参考点的电势差。

点电荷产生的电场中某点的电势为:$V = k\frac{q}{r}$。

2、等势面等势面是电势相等的点构成的面。

等势面与电场线垂直,沿电场线方向电势降低。

3、电势差电场中两点之间的电势之差称为电势差,也称为电压。

其表达式为:$U_{AB} = V_A V_B$。

大学物理电磁学ppt完整版

大学物理电磁学ppt完整版

05 电磁感应现象和 规律
法拉第电磁感应定律内容
01
法拉第电磁感应定律指出,当一个回路中的磁通量发生
变化时,会在回路中产生感应电动势。
02
感应电动势的大小与磁通量的变化率成正比,即e=-
dΦ/dt,其中e为感应电动势,Φ为磁通量,t为时间。
03
法拉第电磁感应定律是电磁学的基本定律之一,揭示了
电磁感应现象的本质和规律。
01
变化的电场和磁场相互激发,形成电磁波。
电磁波传播方式
02
电磁波在真空中以光速传播,不需要介质。
电磁波传播特性
03
电磁波具有横波特性,电场和磁场振动方向相互垂直,且与传
播方向垂直。
电磁波谱及其在各领域应用
电磁波谱
按频率从低到高可分为无线电波、微波、红外线、可见光、紫外线、 X射线和伽马射线等。
无线电波
处于静电平衡状态的导体具有静电屏蔽效应,即外部电场 对导体内部无影响。这种效应在电磁屏蔽、静电防护等方 面有重要应用。
03 稳恒电流与电路 基础知识
稳恒电流条件及特点
稳恒电流条件
电路中各处电荷分布不随时间变化,即达到动态平衡状态。
稳恒电流特点
电流大小和方向均不随时间变化,呈现稳定的流动状态。
欧姆定律与非线性元件分析
技术应用
激光在科研、工业、医疗等领域有着广泛的应用,如激 光测距、激光雷达、激光切割、激光焊接、激光打印、 激光治疗等。随着科技的不断发展,激光的应用领域还 将不断扩大。
THANKS
感谢观看
激光原理及技术应用
激光原理
激光是一种特殊的光源,具有单色性、方向性和相干性 三大特点。激光的产生需要满足粒子数反转和光放大两 个基本条件。在激光器中,通过泵浦源提供能量,使工 作物质中的粒子被激发到高能级,形成粒子数反转分布。 当有一束光通过工作物质时,与激发态粒子相互作用, 产生受激辐射,发出与入射光相同的光子,实现光放大。 通过反射镜的反馈作用,使得光在激光器内来回反射, 不断被放大,最终从输出镜射出形成激光。

大学物理电磁学ppt

大学物理电磁学ppt
¦Qi c
局域守恒
电荷守恒定律是物理学中 普遍的基本定律
水滴皇冠 Nature 455, 1089-1092 (23 October 2008)
“天电”和“地电”一样
富兰克林
§2 库仑定律( Coulomb Law) 1785年,库仑通过扭称实验得到。
1.表述
在真空中, 两个静止点电荷之间的相互作 用力大小,与它们的电量的乘积成正比,与它 们之间距离的平方成反比;作用力的方向沿着 它们的联线,同号电荷相斥,异号电荷相吸。
更小范围倾向于反平方率仍成立
实验表明: 电子半径 <10-20m
5)电力叠加原理(独立作用原理)
& f
¦
& fi
i
qi
q r*i
§3 电场 电场强度 早期:超距作用 后来: 法拉第提出近距作用
并提出力线和场的概念
一.电场 (electric field) z 电荷在其周围产生电场。 z 电荷在电场中受力
哈密顿算子
+
Tangential component
闭合路径的环量
Vector
环量(Circulation) 平均切线分量环路径
第一章 静电场 Electrostatic field
§1 电荷 §2 库仑定律 §3 电场 电场强度 §4 点电荷电场及叠加原理 §5 高斯定理及其应用
§1 电荷
清晰、准确的数学形式表示 (2)1862年,在《论物理的力线》一文中,提出了场的“以太”模 型
并从对称性出发提出了“位移电流”假说 (3)1865年,Maxwell发表了重要论文《电磁场的动力理论》,建立
了电磁场方程,并从场方程出发推出了 E 和 B满足的波动方程

《大学物理》第三篇电磁学

《大学物理》第三篇电磁学

找比较对象 类象
重要作用: (1) 是提出科学假说的重要途径; (2) 是科学阐述或理论证明的辅助手段; (3) 在解决问题的过程中起启发思路、触类旁通的作用。
注意:类比推理所得结论是或然的,需证实或证伪。
3-15-2
磁场
静电场 电
感生 场 电场
一般 电场
高斯定理
SB dS 0
S D0 dS
物质存在的两种基本形式:实物和场
共性:能量、动量、质量
•场能对其中的物体做功 ——表明场有能量
•引力红移与偏折、光压等实验 ——表明场有质量和动量
可相互转化(如正负电子对湮没、同步辐射)
1、电磁场的能量密度与能量
电场能量密度
1 we 2 E D
磁场能量密度
wm
1 2
BH
电磁场能量密度
w
we
S D0 dS
ρdV
V
L E0 dl 0
SB dS 0
D
LH dl S ( j t ) dS
SB dS 0
LH dl S j dS
静电场 基本方程
静电场 基本方程
麦克斯韦方程组是对电磁场宏观规律的 全面总结和概括!
是经典物理三大支柱之一。
再看积分形式的麦克斯韦方程组
jE
2 t
由矢量运算公式: a (b c ) (a b) c b (a c )
(H E) ( H ) E H ( E)
1
(D E
BH)
(H
E)
jE
2 t
(E H ) j E
dW 1
dt
2 V t (D E B H )dV
jD πr 2
2) r >R
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E0
感应 外场
EE'' EE000
导体的静电感应过程
E0
E
E'
EE 0E '0
静电平衡状态
(1).静电平衡Hale Waihona Puke 件: a.导体内部任何一点的场强为零
b.导体表面上任何一点的场强方向垂直 于该点的表面
(2).等价条件: 静电平衡时,导体为等势体.
证:设a和b为静电平衡导体上任意两点
S

qi 0 ----S内无净电荷存在
S内
问题:会不会出现空腔内表面分布有等 量异号电荷的情况呢?
空腔内有电荷q时:空腔内表面感应出 等值异号电量-q,导体外表面的电量为 导体原带电量Q与感应电量q的代数和
由高斯定理和电荷 守恒定律可证
q q Qq
3.静电平衡导体,表面附 近场强的大小与该处表 面的电荷面密度成正比
(2).B板接地时,A板电荷重新分布
σ1 = σ4=0 , Q全部分布在σ2面上 σ2= Q / S = - σ3
单位正 电 荷由a移到b,电场力的功为
b aE dlU a U bU
(1).a、b在导体内部:
b
E0 U0
a
(2).a 、b在导体 表面 :
Edl Edl0即 U0
----静电平衡的导体是等势体
二.静电平衡导体的电荷分布 1.导体处于静电平衡时,导体内部没有
净电荷,电荷只能分布在导体表面上
证:在导体内任一点P处
E
S P
S'
S'
证:过紧靠导体表面的P点作垂直于导体
表面的小圆柱面,下底△S’在导体内

SEdS
E
EdSES
S
S
0
0
4.静电平衡导体,表面曲率越大的地方,
电荷面密度越大 R
r
以一特例说明: Q
q
r
R
设有两个相距很远的导体球,半径分别 为R和r(R >r),用一导线将两球相连
UR
1
4 0
Q R
A
A
导体和介介质2
§9-2 有导体时静电场的分析方法
导体放入静电场中:
导体的电荷 重新分布
导体上的电荷分 布影响电场分布
静电平衡状态
[例1]半径为R的不带电导体球附近有一
点电荷q,它与球心O相距d,求 导体
球上感应电荷在球心处产生的电场强度
及此时球心处的电势; 若将导体球接
地,球上的净电荷为多少?
取静一电 任平意衡 小导的体高内斯面E S 0
EdS0 S
qi 0
S内
SP
----体内无 净电荷
即电荷只能分布在导体表面上
2.有空腔的导体:设空腔导体带电荷Q
空腔内没有电荷时:导 体内部和空腔内表面上 都没有净电荷存在,电
Q S
荷只分布在导体外表面
证导:体在内导E 体内0作 一包E 围d 空S 腔的0高斯面 S
解:不考虑边缘效应时,可认为板上电 荷均匀分布在板表面上
设四个表面上的电荷面密度分别为1, 2,3和4
a.作两底分别在两导体板内而侧面垂直
于板面的闭合柱面为高斯面
E ds102S3S 0
1 2 3 ⅠⅡ
4 Ⅲ
2 3
S
b.板内任一点P点的场强为 P
Ep210220230240 0 1 4
(1).设两板带等值异号电荷+q 和-q:
由 14 23
有 2 3 0
1
4
----电荷分布在极板外侧面 Ⅰ Ⅱ Ⅲ
1
4
q S
由场强叠加原理可得:
E1
1 20
4 20
q 0S
方向向左
1
4
E2
1 20
4 20
0
ⅠⅡ Ⅲ
E3
1 20
4 20
q 0S
方向向右
(3).设两极板所带电量分别为q1和q2:
12q1/S 34q2/S
14(q1q2)/S 21
q' 40R
而q在O处的电势为 U q
U0 UU'
q 4 0d
4 0 d
导体球接地:设球上的净电荷为q1
U0
q q1
40d 40R
0
q1
d
解得
q1
R d
q
OR
q
[例2]两块放置很近的大导体板,面积均 为S,试讨论以下情况空间的电场分布 及导体板各面上的电荷面密度. 两板 所带电荷等值异号;两板带等值同号电 荷;两极板带不等量电荷
§9-1静电场中的导体
一.导体的静电平衡条件
1.静电感应现象
a.静电感应:外电场的作 用导致导体中电荷重新分 布而呈现出带电的现象
B
A
b.静电平衡状态:导体内部和表面上都 没有电荷的定向移动状态
2.导体的静电平衡条件
无加外电场
E0
电子在和电晶场格力点作阵用作下随作机宏的 观微定观向热运动
导体的静电感应过程
可得 14(q 1q2)/2S
2
q1 S
1
q1 q2 2S
3
2
q2q1 2S
由场强叠加原理有
1 2 3 4
E1210220230240
ⅠⅡ Ⅲ
1 q1 q2
E E23221100022202022230030S224040
2 0 1 0
q1 q2
2
q1
0 Sq
2
2 0S
[例3]把一块原来不带电的金属板B移近
4R 2 R 4 0 R
R R 0
Ur
1
4 0
q
r
4r 2 r 4 0 r
r r 0
r R
R r
三.导体静电平衡特性的应用
1.尖端放电
避雷针
1750年美富兰克首先发明避雷针
2.静电屏蔽
静电屏蔽:隔绝电的相互作用,使内外
互不影响的现象. a.对外电场的屏蔽
E0
b.接地空腔 导体屏蔽腔 内电荷对外 界的影响.
一块带有+Q的金属板A平行放置,设两
板面积均为S,板间距D。
(1)当B不接地时,UAB=? (2)B接地时,UAB=? σ1 σ2 σ3 σ4
解: A板单独存在时电荷均匀
分布.
D
(1).当B板靠近A板时,B板
将有感应电荷产生,有
A
B
σ1 =σ4 σ2 = -σ3
板间是匀强电场:E=σ2/ε0=Q/2ε0S ∴UAB=Ed=Q d/2ε0S
q'
q'
解:建立如图所 示的坐标系
OR
d
q
x 设导体球表面感
应出电荷q’
a.球心O处场强为零,是±q’的电场和
q即的电E 场0 叠E 加 的E 结果0
E 'E [4q0d2
q'
q'
(i) ]O4R q 0dd2
q
i
b.因为所有感应电荷在O处的电势为
U' dq' 0
(12)Sq (34)Sq
1234SqSq 0

2 Ⅱ
3

140
----电荷分布在极板内侧面
2 q/S 3 q/S
由场强叠加原理有
E1
2 20
3 20
同理
E3 0 0
E2
2 20
3 20
q 0S
2 3 ⅠⅡ Ⅲ
方向向右
(2).设两板带等值同号电荷+q:
(1+ 2)Sq (3+ 4)Sq
(1 2) (3 4) 0
相关文档
最新文档