中考实际应用题 真题

合集下载

中考数学专题实际应用题(解析版)

中考数学专题实际应用题(解析版)
(2)今年该村村民再投入了10万元,增设了土特产的实体销售和网上销售项目并实现盈利,村民在接受记者采访时说,预计今年餐饮和住宿的收入比去年还会有10%的增长.这两年的总收入除去所有投资外还能获得不少于10万元的纯利润,请问今年土特产销售至少收入多少万元?
【答案】(1)去年餐饮收入11万元,住宿收入5万元;(2)今年土特产销售至少有6.4万元的收入
【解析】
【分析】
(1)设去年餐饮收入为x万元,住宿为收入y万元,根据题意列出方程组,求出方程组的解即可得到结果;
(2)设今年土特产的收入为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.
【详解】解:(1)设去年餐饮收入x万元,住宿收入y万元,
依题意得: ,
解得: ,
答:去年餐饮收入11万元,住宿收入5万元;
【答案】(1) ;(2)①60,②20,1500;(3)当 时,捐赠后 每天的剩余利润不低于1025元
【解析】
【分析】
(1)从表格中取点代入一次函数解析式即可求解;(2)①由表格信息规律直接填写答案,或利用(1)中的函数解析式,求当 时的函数值.②建立W与 的函数关系式,利用二次函数性质求最大值即可.(3)先求捐赠后的利润为1025元时的销售单价,再利用二次函数的性质直接下结论即可;
2.(2019年重庆市中考数学模拟试卷5月份试题)今年五一期间,重庆洪崖洞民俗风情街景区受热棒,在全国最热门景点中排名第二.许多游客慕名来渝到网红景点打卡,用手机拍摄夜景,记录现实中的“千与千寻”,手机充电宝因此热销.某手机配件店有A型(5000毫安)和B型(10000毫安)两种品牌的充电宝出售
(1)已知A型充电宝进价40元,售价60元,B型充电宝进价60元,要使B型充电宝的利润率不低于A型充电宝的利润率,则B型充电宝的售价至少是多少元(利润率= ×100%)

中考二次函数实际问题应用题 3

中考二次函数实际问题应用题 3

中考二次函数实际问题应用题2.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出工辆车时,日收益为y 元.(日收益=日租金收入一平均每日各项支出)(1)公司每日租出x 辆车时,每辆车的日租金为 元(用含x 的代数式表示); (2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元? (3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?3.某汽车在刹车后行驶的距离s (单位:米)与时间t (单位:秒)之间的关系得部分数据如下表:时间t (秒)0.2 0.4 0.6 0.8 1.0 1.2 … 行驶距离s (米) 02.85.27.28.81010.8…(1)根据这些数据在给出的坐标系中画出相应的点;(2)选择适当的函数表示s 与t 之间的关系,求出相应的函数解析式;(3)①刹车后汽车行驶了多长距离才停止?②当t 分别为t 1,t 2(t 1<t 2)时,对应s 的值分别为s 1,s 2,请比较11s t 与22s t 的大小,并解释比较结果的实际意义.4.某商场购进一批L 型服装(数量足够多),进价为40元/件,以60元/件销售,每天销售20件。

根据市场调研,若每件每降1元,则每天销售数量比原来多3件。

现商场决定对L型服装开展降价促销活动,每件降价x元(x为正整数)。

在促销期间,商场要想每天获得最大销售利润,每件降价多少元?每天最大销售毛利润为多少?(注:每件服装销售毛利润指每件服装的销售价与进货价的差)5.某科技开发公司研制出一种新型产品,每件产品的成本为2400元,销售单价定为3000 元.在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10 件时,每件按3000 元销售;若一次购买该种产品超过10 件时,每多购买一件,所购买的全部产品的销售单价均降低10 元,但销售单价均不低于2600 元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600 元?(2)设商家一次购买这种产品x件,开发公司所获的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)6.某商品的进价为每件50元,售价为每件60元,每个月可卖出200件。

宜昌中考应用题练习题

宜昌中考应用题练习题

宜昌中考应用题练习一、代数应用题1. 某商店举行促销活动,所有商品均按原价的8折销售。

小明购买了一件原价为200元的商品,实际支付了多少元?2. 一辆汽车从A地出发,以60km/h的速度行驶,另一辆汽车从B 地出发,以80km/h的速度行驶。

两车相向而行,3小时后相遇。

求A、B两地之间的距离。

3. 甲、乙两人共同完成一项工作,甲单独完成需要10天,乙单独完成需要15天。

两人合作完成这项工作需要多少天?二、几何应用题1. 在直角坐标系中,点A(2,3)到原点的距离是多少?2. 一个等腰三角形的底边长为10cm,腰长为13cm,求该三角形的面积。

3. 某正方形的对角线长为10cm,求正方形的面积。

三、概率统计应用题1. 从一副去掉大小王的52张扑克牌中随机抽取一张,求抽到红桃的概率。

2. 某班级有50名学生,其中男生30名,女生20名。

随机抽取一名学生,求抽到女生的概率。

3. 一名学生参加数学、语文、英语三科考试,已知他数学及格的概率为0.9,语文及格的概率为0.8,英语及格的概率为0.7。

求该学生至少有一科不及格的概率。

四、实际应用题1. 一辆公交车每站平均上下车人数为20人,若公交车共经过10个站点,求这辆公交车在整个行程中共上下车的人数。

2. 某品牌手机原价为3000元,现在降价20%销售,求手机的现价。

3. 某工厂生产一批产品,合格率为90%,若这批产品共有1000个,求不合格产品的数量。

五、综合应用题1. 甲、乙两人分别从A、B两地同时出发,相向而行。

甲的速度为4km/h,乙的速度为6km/h。

经过2小时后,两人相距10km。

求A、B两地之间的距离。

2. 某商品的原价为x元,现打8折销售,实际售价为y元。

求x与y之间的关系式。

3. 在一个长方形花园中,长是宽的2倍,若宽为10米,求花园的面积。

六、物理应用题1. 一辆小车以20m/s的速度行驶,突然刹车,加速度为5m/s²,求小车停止前行驶的距离。

中考数学试卷真题应用题

中考数学试卷真题应用题

1. 下列各数中,有理数是()A. √2B. πC. -3D. 2/32. 已知数列 {an} 的前n项和为 Sn,且 S1=2,S2=5,S3=12,则数列 {an} 的通项公式是()A. an=3n-1B. an=3nC. an=3n+1D. an=3n-23. 已知 a,b,c 成等差数列,且 a+b+c=0,则 b 的值是()A. 0B. -1C. 1D. 24. 在△ABC中,∠A=45°,∠B=30°,则△ABC是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 钝角三角形5. 已知二次函数 y=ax^2+bx+c(a≠0)的图象与x轴的交点坐标为(-2,0)和(1,0),则该函数的解析式是()A. y=x^2-2x-2B. y=x^2+2x-2C. y=x^2-2x+2D. y=x^2+2x+2二、填空题6. 若 a,b,c 成等差数列,且 a+b+c=0,则 b 的值是______。

7. 已知二次函数 y=ax^2+bx+c(a≠0)的图象与x轴的交点坐标为(-2,0)和(1,0),则该函数的解析式是______。

8. 在△ABC中,∠A=45°,∠B=30°,则△ABC是______。

9. 已知数列 {an} 的前n项和为 Sn,且 S1=2,S2=5,S3=12,则数列 {an} 的通项公式是______。

三、解答题10. (15分)已知 a,b,c 成等差数列,且 a+b+c=0,求证:b=0。

证明:由题意得:a+b+c=0。

又因为 a,b,c 成等差数列,所以有 2b=a+c。

将 a+b+c=0 代入上式得:2b+2b=0,即 4b=0。

因此,b=0。

证毕。

11. (15分)已知二次函数 y=ax^2+bx+c(a≠0)的图象与x轴的交点坐标为(-2,0)和(1,0),求该函数的解析式。

解:设该二次函数的解析式为 y=ax^2+bx+c。

初三年级数学应用题

初三年级数学应用题

初三年级数学应用题题目一:速度与时间问题小华骑自行车从家到学校,如果以每小时15公里的速度行驶,他需要40分钟。

现在小华决定加快速度,以每小时20公里的速度行驶,求他需要多少时间才能到达学校。

解答:首先,我们需要将40分钟转换为小时,即40分钟 = 40/60 = 2/3小时。

已知速度v1 = 15公里/小时,时间t1 = 2/3小时。

根据速度、时间和距离的关系:距离 = 速度× 时间,我们可以求出小华家到学校的距离:距离= v1 × t1 = 15 × (2/3) = 10公里。

现在,小华以v2 = 20公里/小时的速度行驶,我们可以求出他需要的时间t2:t2 = 距离 / v2 = 10 / 20 = 1/2小时。

将1/2小时转换为分钟,即1/2 × 60 = 30分钟。

所以,小华以20公里/小时的速度行驶,需要30分钟到达学校。

题目二:成本与利润问题一家工厂生产一种商品,每件商品的成本是50元,如果以每件100元的价格出售,工厂每天可以卖出200件。

现在工厂决定降价销售,每件商品降价10元,求降价后每天的利润和销量。

解答:首先,我们计算原来的利润和销量:每件商品的利润 = 售价 - 成本 = 100 - 50 = 50元。

每天的总利润 = 每件商品的利润× 销量= 50 × 200 = 10000元。

现在,每件商品降价10元,新的售价为90元。

每件商品的新利润 = 新售价 - 成本 = 90 - 50 = 40元。

假设降价后销量增加到x件,我们可以根据利润不变的原则建立方程:原来的总利润 = 新的总利润10000 = 40 × x解得 x = 10000 / 40 = 250件。

所以,降价后每天的利润仍然是10000元,但是销量增加到了250件。

题目三:浓度问题一个容器内装有100升的盐水,其中盐的浓度为5%。

现在向容器中加入50升的纯水,求混合后的盐水浓度。

中考应用题精选(含答案)

中考应用题精选(含答案)

中考应用题精选(含答案)中考应用题精选(含答案)一、小明购买水果小明去水果店购买了一些苹果和橙子,苹果的单价为5元/斤,橙子的单价为4元/斤。

小明共购买了9斤水果,支付了43元。

1. 请问小明购买了多少斤苹果,多少斤橙子?解答:设小明购买的苹果为x斤,橙子为y斤,则由题意可得以下方程组:x + y = 9 (1)5x + 4y = 43 (2)(1)式乘以4,再与(2)式相减可得:4x + 4y - 5x - 4y = 36 - 43 => -x = -7 => x = 7所以小明购买了7斤苹果,9 - 7 = 2斤橙子。

2. 小明购买水果总共需要支付多少金额?解答:设小明购买的苹果总价为a元,橙子总价为b元,由题意可得以下方程组:a +b = 43 (3)5a + 4b = 9 * 5 (4)将(3)式乘以4,再与(4)式相减可得:4a + 4b - 5a - 4b = 172 - 45 => -a = 127 => a = -127(舍去)所以小明购买水果总共需要支付43元。

二、小明的年龄问题小明的爷爷今年87岁,小明今年10岁。

已知小明的爸爸在小明出生时是小明年龄的2倍,现在的爸爸年龄是小明年龄的3倍。

1. 请问小明的爸爸今年多少岁?解答:设小明的爸爸今年为x岁,则可得以下方程:10 - x = 2(x - 10) (5)将(5)式化简,得:10 - x = 2x - 203x = 30x = 10所以小明的爸爸今年10岁。

2. 请问小明的爷爷今年多少岁?解答:根据题意,小明的爷爷今年是小明爸爸的3倍,而小明爸爸今年是10岁,所以小明的爷爷今年87岁。

三、小明和小红的比例题小明和小红一起种植蔬菜,小明每天需要花费2小时来照料蔬菜园,小红每天需要花费3小时来照料蔬菜园。

已知小明比小红每天多照料蔬菜园1小时,两人一共照料蔬菜园13天。

1. 请问小明独自照料蔬菜园需要多少天才能完成任务?解答:设小明独自照料蔬菜园需要x天才能完成任务。

2023年九年级数学中考专题:实际问题与二次函数压轴应用题

2023年九年级数学中考专题:实际问题与二次函数压轴应用题

2023年九年级数学中考专题:实际问题与二次函数压轴应用题1.某工厂生产A 型产品,每件成本为20元,当A 型产品的销售单价为x 元时,销售量为y 万件.要求每件A 型产品的销售单价不低于20元且不高于28元.经市场调查发现,y 与x 之间满足一次函数关系,且当x =23时,y =34;x =25时,y =30.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)若某次销售刚好获得182万元的利润,则每件A 型产品的销售单价是多少元?(3)设该工厂销售A 型产品所获得的利润为w 万元,将该产品的销售单价定为多少元时,才能使销售该产品所获得的利润最大?最大利润是多少万元?2.如图,有长为24m 的篱笆,一面利用墙(墙的最大可用长度a 为12m )围成中间隔有一道篱笆的矩形花圃,设花圃的宽AB 为m x ,面积为2m S .(1)求S 与x 的函数表达式.(2)如果要围成面积为245m 的花圃,AB 的长是多少米?(3)根据(1)中求得的函数关系式,判断当x 取何值时,花圃的面积最大?最大面积是多少?3.2022年2月4日,第24届冬季奥林匹克运动会在北京举行,吉祥物“冰墩墩”备受人民的喜爱,某商店经销吉祥物“冰墩墩”玩具,销售成本为每件40元,据市场分析,若按每件50元销售,一个月能售出500件;销售单价每涨1元,月销售量就减少10件,针对这种玩具的销售情况,请解答以下问题:(1)求当销售单价涨多少元时,月销售利润能够达到8000元;(2)商店想在月销售成本不超过9000元的情况下,使得月销售利润达到8000元,求销售定价应为多少元?4.某大型商场准备购买一批A 型和B 型商品,已知一件A 型商品的进价比一件B 型商品的进价多30元,用6000元采购A 型商品的件数是用1200元采购B 型商品的件数的2倍.(1)求一件A ,B 型商品的进价分别为多少元?(2)该商场购进A 型和B 型商品若干,准备采取“买二送一”的优惠销售方案,即:买两件A 型商品赠送一件B型商品,通过一段试销发现A 型商品每天的销售量y (件)与A 型商品的销售单价x (元)满足:2200y x =-+,若商场继续以上述优惠销售方案进行销售,当A 型商品的销售单价定为多少元时,每天的销售利润最大,并求出此时的最大销售利润.5.某数学兴趣小组想借助如图所示的直角墙角ADC ∠(两边足够长),用20m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边).(1)若围成的花园面积为291m ,求矩形花园AB 的长;(2)在点P 处有一棵树与墙CD ,AD 的距离分别为12m 和6m ,要能将这棵树围在花园内(含边界,不考虑树的粗细),又使得花园面积有最大值,求此时矩形花园AB 的长.6.第一届全国青年运动会射箭项目决赛于10月20-24日在福建省莆田市体育公园举行.我市某工艺厂为青运会设计了一款成本为每件20元的工艺品,投放市场进行试销后发现每天的销售量y (件)是售价x (元/件)的一次函数:当售价为20元/件时,每天销售量为800件;当售价为25元/件时,每天的销售量为750件.(1)求y 与x 的函数关系式(2)如果该工艺品售价最高不能超过每件50元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价-成本)7.中秋节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:小王:该水果的进价是每千克22元;小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低1元,每天的销售量将增加40千克.根据他们的对话,解决下面所给问题:设降价(0)x x >元,每天所获得的利润为w 元.(1)超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果的销售价为每千克多少元?(2)这种水果的销售价定为多少时,可使每天销售利润最大?最大的利润是多少?8.贫困户李大爷在某单位精准扶贫工作队的帮扶下,将一片坡地改造后种植了优质水果蓝莓,经核算,种植成本为18元/千克.今年正式上市销售,通过30天的试销发现:①第1天卖出20千克,以后每天比前一天多卖4千克:②销售价格y (元/千克)与时间x (天)之间满足如下函数关系:76(120)(2030)mx m x x y n x x -≤<⎧=⎨≤≤⎩,为正整数,为正整数,且第12天的售价为32元/千克,第23天的售价为25元/千克. (1)填空:m =_______,n =_______;试销中销售量P (千克)与时间x (天)之间的函数关系式为_______;(2)求销售蓝莓第几天时,当天的利润W 最大?最大利润是多少元?(3)求试销的30天中,当天利润W 不低于870元的天数共有几天?9.某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月售出500kg ,销售价每涨价1元,月销售量就减少5kg .(1)当销售单价定为60元时,计算月销售量和销售利润.(2)商店想让顾客获得更多实惠的情况下,使月销售利润达到9000元,销售单价应定为多少?(3)当售价定为多少元时会获得最大利润?求出最大利润.10.某商店出售一款商品,经市场调查反映,该商品的日销售量y(件)与销售单价x(元)之间满足一次函数关系,关于该商品的销售单价,日销售量,日销售利润的部分对应数据如表:[注:日销售利润=日销售量×(销售单价﹣成本单价)](1)根据以上信息,求y关于x的函数关系式.(2)①填空:该产品的成本单价是元,表中a的值是.②求该商品日销售利润的最大值.ABCD,墙长为25米.设11.小茗同学准备用一段长为50米的篱笆在家修建一个一边靠墙的矩形花圃(矩形)花圃的一边AD为x米.(1)如图1,写出花圃的面积S(平方米)与x(米)的函数关系式;(2)图1中花圃的面积能为300平方米吗?若能,请求出x的值;若不能,请说明理由;(3)为方便进出,小茗同学决定在BC边上留一处长为a米(04)<<的门(如图2),且最终围成的花圃的最大a面积为325平方米,直接写出a的值.12.包河区发展农业经济产业,在大圩乡种植多品种的葡萄,已知某葡萄种植户李大爷的葡萄成本为10元/kg,如果在未来40天葡萄的销售单价p(元/kg)与时间t(天)之间的函数关系式为:120(120)4135(2140)2t t t p t t t ⎧+≤<⎪⎪=⎨⎪+<≤⎪⎩,为整数,为整数,且葡萄的日销量y (千克)与时间t (天)的关系如下表:(1)请直接写出y 与t 之间的变化规律符合什么函数关系?并求在第15天的日销售量是多少千克?(2)在后20天(即2140t ≤≤,t 为整数),请求出哪一天的日销售利润最大?日销售利润最大为多少?(3)在实际销售的前20天中,李大爷决定每销售1千克水果就捐赠n 元利润(8n <)给留守儿童作为助学金,前20天销售完后李大爷发现,每天扣除捐赠后的日销售利润随时间t 的增大而增大,请求出n 的取值范围.13.红灯笼,象征着国家团圆,红红火火,挂灯笼成为我国的一种传统文化.小明在春节前购进甲、乙两种红灯笼,用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,已知乙灯笼每对进价比甲灯笼每对进价多9元.(1)求甲、乙两种灯笼每对的进价;(2)经市场调查发现,乙灯笼每对售价50元时,每天可售出98对,售价每提高1元,则每天少售出2对,若规定每对乙灯笼的利润不能高于30元,设乙灯笼每对售价为x 元,小明一天通过乙灯笼获得利润y 元. ①求出y 与x 之间的函数解析式;②乙种灯笼的销售单价为多少元时,一天获得利润最大?最大利润是多少元?14.跳台滑雪是冬季奥运会的比赛项目之一,如图,运动员通过助滑道后在点A 处起跳经空中飞行后落在着陆坡BC 上的点P 处,他在空中飞行的路线可以看作抛物线的一部分,这里OA 表示起跳点A 到地面OB 的距离,OC 表示着陆坡BC 的高度,OB 表示着陆坡底端B 到点O 的水平距离,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系:2116y x bx c =-++,已知70m OA =,60m OC =,落点P 的水平距离是40m ,竖直高度是30m .(1)点A 的坐标是_____,点P 的坐标是_______;(2)求满足的函数关系2116y x bx c =-++; (3)运动员在空中飞行过程中,当他与着陆坡BC 竖直方向上的距离达到最大时,直接写出此时的水平距离.15.某商家销售一种纪念品.每个纪念品进价40元,规定销售单价不低于44元,且不高于52元.销售期间发现,当销售单价定为44元时,每天可售出300个,销售单价每上涨1元,每天销量减少10个.现商家决定提价销售,设每天销售量为y 个,销售单价为x 元.(1)在横线上直接写出y 与x 之间的函数关系式;(2)求当每个纪念品的销售单价是多少元时,商家每天获利2400元;(3)将纪念品的销售单价定为多少元时,商家每天销售纪念品获得的利润w 元最大?最大利润是多少元?16.金秋十月,我省某农业合作社有机水稻再获丰收,加工成有机大米后通过实体和电商两种渠道进行销售.该有机大米成本为每千克 14 元,销售价格不低于成本,且不超过 25 元/千克,根据各销售渠道的反馈,发现该有机大米一天的销售量y (千克)是该天的售价x (元/千克)的一次函数,部分情况如表:(1)求一天的销售量y (千克)与售价x (元/千克)之间的函数关系式并写出x 的取值范围.(2)若某天销售这种大米获利 2400 元,那么这天该大米的售价为多少?(3)该有机大米售价定为多少时,当天获利w 最大?最大利润为多少?17.某公司为了宣传一种新产品,在某地先后举行18场产品促销会,已知该产品每台成本为4万元,设第x 场产品的销售量为y (台),在销售过程中获得以下信息:信息1:已知第一场销售产品38台,然后每增加一场,产品就少卖出2台;信息2:产品的每场销售单价p (万元)由基本价和浮动价两部分组成,其中基本价保持不变,第1场—第10场浮动价与销售场次x 成正比,第11场—第18场浮动价与销售场次x 成反比,经过统计,得到如下数据:(1)求y 与x 之间的函数关系式;(2)求销售单价p 与销售场次x 之间的函数关系式;(3)当产品销售单价为6.5万元时,求销售场次是第几场?(4)在这18场产品促销会中,哪一场获得的利润最大,最大利润是多少?(结果保留整数)18.某商场经营A 种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x 元()40x >,请用含x 的代数式表示该玩具的销售量______.(2)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于450件的销售任务,求商场销售该品牌玩具获得的最大利润.(3)该商场计划将(2)中所得的利润的一部分采购一批B 种玩具并转手出售,根据调查准备两种方案: 方案①:月初出售,获利15%,并可用本和利再投资C 种玩具,到月末又可获利10%;方案②:只到月末出售直接获利30%,但要另支付仓库保管费350元.请问商场如何使用这笔资金,采用哪种方案获利较多?尝试填写以下表格.参考答案:1.(1)y 与x 的函数关系式为280y x =-+,自变量x 的取值范围是2028x ≤≤(2)每件A 型产品的销售单价是27元(3)该产品的销售单价定为28元时,才能使销售该产品所获得的利润最大,最大利润是192万元2.(1)()232448S x x x =-+≤<;(2)AB 的长为5m ;(3)当4x =时,围成的花圃的面积最大,最大面积为248m .3.(1)涨10元或30元(2)80元4.(1)一件A ,B 型商品的进价分别为50元,20元(2)A 型商品的销售单价定为80元时,每天的销售利润最大,最大销售利润为800元5.(1)13m 和7m .(2)8m6.(1)101000y x =-+(2)当售价定为50元时,该工艺品每天获得的利润最大,最大利润为12000元.7.(1)每千克29元(2)定为32元时可使每天销售利润最大,最大的利润是4000元8.(1)12-,25,416P x =+; (2)第18天的利润最大,最大利润为968元;(3)共有12天9.(1)销售单价定为60元时,月销售量为450千克,销售利润为9000元(2)销售单价应定为60元(3)当售价定为95元时会获得最大利润,求出最大利润为15125元.10.(1)10900y x =-+(2)①40,4560 ②该商品日销售利润的最大值为6250元11.(1)21252S x x =-+(2)能为300平方米,此时x 的值为20(3)a 的值为112.(1)2120y t =-+;90kg(2)21天,1131元(3)58n ≤<13.(1)甲种灯笼单价为26元/对,乙种灯笼的单价为35元/对;(2)①222686930y x x =-+-,②乙种灯笼的销售单价为每对65元时,一天获得利润最大,最大利润是2040元.14.(1)()0,70A ,()40,30P ; (2)21370162y x x =-++; (3)18m15.(1)()107404452y x x =-+≤≤(2)当每个纪念品的销售单价是50元时,商家每天获利2400元(3)将纪念品的销售单价定为52元时,商家每天销售纪念品获得的利润w 元最大,最大利润是2640元16.(1)5501504201yx x(2)18元11(3)当22x =时,w 有最大值3200元.17.(1)240y x =-+ (2)()()1411044541118x x p x x⎧+≤≤⎪⎪=⎨⎪+≤≤⎪⎩ (3)当产品销售单价为6.5万元时,销售场次是第10场和第18场(4)在这18场产品促销会中,第11场获得的利润最大,最大利润约为74万元18.(1)101000x -+(2)max 11250w =元。

初三数学上册应用题试卷

初三数学上册应用题试卷

一、选择题(每题5分,共50分)1. 一辆汽车从甲地开往乙地,每小时行驶60千米。

如果汽车提前1小时出发,那么汽车需要多少小时才能到达乙地?A. 3小时B. 4小时C. 5小时D. 6小时2. 一个长方形的长是10厘米,宽是6厘米,它的周长是多少厘米?A. 26厘米B. 24厘米C. 22厘米D. 28厘米3. 一个数加上它的两倍等于36,这个数是多少?A. 12B. 18C. 20D. 244. 一个班级有男生和女生共50人,男生人数是女生的3倍,男生和女生各有多少人?A. 男生30人,女生20人B. 男生40人,女生10人C. 男生45人,女生5人D. 男生50人,女生0人5. 一个正方形的边长增加了10%,那么它的面积增加了多少?A. 10%B. 20%C. 21%D. 30%6. 一辆自行车以每小时15千米的速度行驶,行驶了3小时后,自行车行驶了多少千米?A. 45千米B. 50千米C. 60千米D. 75千米7. 一个长方体的长、宽、高分别是6厘米、4厘米、3厘米,它的体积是多少立方厘米?A. 72立方厘米B. 96立方厘米C. 108立方厘米D. 120立方厘米8. 一个班级有学生60人,其中参加篮球比赛的有20人,参加足球比赛的有30人,同时参加篮球和足球比赛的有10人,那么至少有多少人既没有参加篮球比赛也没有参加足球比赛?A. 10人B. 15人C. 20人D. 25人9. 一个等腰三角形的底边长为8厘米,腰长为6厘米,那么这个三角形的面积是多少平方厘米?A. 24平方厘米B. 30平方厘米C. 36平方厘米D. 42平方厘米10. 一个数的十分之一加上它的二分之一等于7,这个数是多少?A. 10B. 14C. 16D. 18二、填空题(每题5分,共50分)1. 如果一个数的平方等于36,那么这个数是_________。

2. 一个长方形的面积是24平方厘米,如果它的长是6厘米,那么它的宽是_________厘米。

中考应用题

中考应用题

1、一种农药,用药液和水按1:100配制而成。

要配制这种农药505千克,需要药液多少千克?2、在比例尺是1:500000的地图上,量得两地间的距离是3.4厘米,两地间的实际距离是多少?3、一个会议大厅里有10根底面直径0.4米,高6米的圆柱形柱子,现在要刷上油漆,每平方米用油漆0.5克,刷这些柱子要用油漆多少千克?4、一个圆锥形沙堆,高是1.8米,底面直径是16米。

如果工人师傅用容积是0.7立方米的小推车运这堆沙子,要运多少车?(根据实际情况取近似值,得数保留整数)5、一个圆柱体形的蓄水池,从里面量底面周长31.4米,深2.4米,在它的内壁与底面抹上水泥。

抹水泥部分的面积是多少平方米?6、一段圆柱体钢长1.8米,底面半径为0.4分米,每立方分米重7.8千克.这段圆钢重多少千克?7、一个圆锥形沙堆,底面周长是12.56米,高6米,将这些沙铺在宽10米的道路上铺0.04厘米厚,可以铺多少米长?8、一幢教学楼的平面图上,量的楼长16厘米,宽7.2厘米。

已知比例尺是1250,这幢教学楼的实际面积是多少平方米?9、、一幅地图的线段比例尺是: ,甲乙两城在这幅地图上相距18厘米,一辆火车以每小时80千米的速度从甲城开往乙城,需要几小时才能到达。

1.某汽车公司二月份出口汽车1.3 万辆,比上月增长三成。

一月份出口汽车多少万辆?2.王大伯家要挖一口圆柱形水井,在比例尺是1:80的设计图上,水井口的直径是1厘米,井深10厘米。

40 0 80 120千米挖这口水井要挖出多少立方米的土?3.工程队修建一段高速公路,原计划每天修0.4千米,60天完成任务。

由于增加了机器设备,实际每天比原计划多修25%,实际多少天完成任务?(用比例解)4.小丽家买了一套售价为32 万元的普通商品房。

如果一次付清房款,就按九六折优惠价付款。

(1)打折后房子的总价是多少元?(2)买这套房子还要按照实际房价的1.5%缴纳契税,契税是多少元?5.一个圆柱形玻璃缸的底面半径是20厘米,缸内盛有水,将一个底面半径是10厘米,高是30厘米的圆锥形铁块完全浸没在水中(水没有溢出),玻璃缸中的水面上升多少厘米?1、修一条路,如果每天修120米,8天可以修完;如果每天修150米,几天可以修完?(用比例方法解)2、工地上有一堆圆锥形沙堆,高1.5米,底面直径是6米,如果每立方米沙约重1.7吨.这堆沙约重多少吨? (精确到0.1吨3、一间会议室用面积16平方分米的方砖铺地需要540块,如果改用边长为6分米的方砖铺地,需要多少块?(用比例知识来解)4、用同样的砖铺地,铺18平方米要用618块砖。

数学中考应用题及答案

数学中考应用题及答案

数学中考应用题及答案1. 某工厂生产一种产品,原计划每天生产100件,实际每天生产120件。

若原计划生产时间为30天,实际生产时间为25天,求实际生产效率比原计划提高了百分之几?答案:解:首先计算原计划和实际的生产总量。

原计划生产总量 = 100件/天× 30天 = 3000件实际生产总量 = 120件/天× 25天 = 3000件接下来计算提高的百分比。

提高的百分比 = [(实际生产量 - 原计划生产量) / 原计划生产量] × 100%提高的百分比 = [(3000 - 3000) / 3000] × 100% = 0%答:实际生产效率与原计划相比没有提高。

2. 某商店购进一批商品,进价为每件20元,若按每件30元出售,可售出500件。

若每件商品提价1元,销售量将减少20件。

求该商店为获得最大利润,每件商品应定价多少元?答案:解:设每件商品提价x元,则每件商品的售价为(30+x)元,销售量为(500-20x)件。

利润函数为:y = (30+x-20)(500-20x) = -20x^2 + 300x + 5000这是一个开口向下的二次函数,对称轴为x = 7.5。

当x = 7.5时,y取得最大值,此时售价为30 + 7.5 = 37.5元。

答:每件商品应定价为37.5元,此时利润最大。

3. 某校组织学生去春游,若租用45座客车,则有15人没有座位;若租用同样数量的60座客车,则多出一辆,其余车刚好坐满。

求该校共有多少名学生?答案:解:设租用45座客车x辆,则学生总数为45x + 15。

根据题意,租用60座客车时,有(x-1)辆坐满,一辆空着,所以学生总数为60(x-1)。

将两个表达式相等,得到方程:45x + 15 = 60(x-1)解方程得:45x + 15 = 60x - 6015 + 60 = 60x - 45x75 = 15xx = 5所以,学生总数为:45 × 5 + 15 = 240人。

09-13南京中考卷应用题

09-13南京中考卷应用题

0913南京中考卷应用题一、选择题(每题1分,共5分)1. 下列哪种函数是奇函数?A. y = x^2B. y = x^3C. y = |x|D. y = x + 12. 已知三角形ABC中,AB=8,BC=10,AC=12,该三角形是?A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形3. 下列哪个单位是电功率的单位?A. 安培(A)B. 伏特(V)C. 欧姆(Ω)D. 瓦特(W)4. 在化学方程式4Fe + 3O2 = 2Fe2O3中,Fe的化合价是?A. +2B. +3C. 0D. 25. 下列哪个朝代不属于我国古代“春秋五霸”?A. 齐B. 晋C. 燕D. 楚二、判断题(每题1分,共5分)1. 一元二次方程的解一定是实数。

()2. 函数y=kx(k为常数)的图像是一条直线。

()3. 水的化学式是H2O2。

()4. 地球自转的方向是自西向东。

()5. 我国现行宪法是1982年颁布的。

()三、填空题(每题1分,共5分)1. 平方差公式是______。

2. 地球上最大洲是______洲。

3. 氧化还原反应中,失去电子的物质称为______。

4. 我国第一颗原子弹爆炸成功的时间是______年。

5. 语文课文《背影》的作者是______。

四、简答题(每题2分,共10分)1. 请简要解释欧姆定律。

2. 简述影响蒸发快慢的因素。

3. 请写出三角形的内角和定理。

4. 请简述细胞膜的功能。

5. 请列举我国四大发明。

五、应用题(每题2分,共10分)1. 某商店举行打折活动,原价120元的商品打8折,请问折后价格是多少?2. 甲、乙两地相距360公里,一辆汽车从甲地出发,以60公里/小时的速度行驶,多久能到达乙地?3. 一个长方体的长、宽、高分别是10cm、6cm、4cm,求其体积。

4. 某班级有男生20人,女生30人,求男生和女生人数的比例。

5. 已知等差数列的前5项和为35,第5项为15,求首项和公差。

中考数学专题:实际应用题带答案

中考数学专题:实际应用题带答案

1.2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.2.为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?3.为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.4.小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x 支,购买费用为y元,请写出y关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B 型画笔?5.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.甲、乙两种书柜每个的价格分别是多少元?若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.6.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2016年利润为2亿元,2018年利润为2.88亿元.(1)求该企业从2016年到2018年利润的年平均增长率;(2)若2019年保持前两年利润的年平均增长率不变,该企业2019年的利润能否超过3.4亿元?7.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?8.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?9.今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.10.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2) 当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3) 将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元.答案和解析1.【答案】解:(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由题意可得:,解得:,答:生产甲、乙两种型号的防疫口罩分别是15万只和5万只;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20-a)万只,利润为w万元,由题意可得:12a+4(20-a)≤216,∴a≤17,∵w=(18-12)a+(6-4)(20-a)=4a+40是一次函数,w随a的增大而增大,∴a=17时,w有最大利润=108(万元),答:安排生产甲种型号的防疫口罩17万只,乙种型号的防疫口罩3万只,最大利润为108万元.【解析】(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由“某医药公司每月生产甲、乙两种型号的防疫口罩共20万只和该公司三月份的销售收入为300万元”列出方程组,可求解;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20-a)万只,利润为w万元,由“四月份投入成本不超过216万元”列出不等式,可求a的取值范围,找出w与a的函数关系式,由一次函数的性质可求解.本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,弄清题中的等量关系是解本题的关键.2.【答案】解:设降价后的销售单价为x元,则降价后每天可售出[300+5(200-x)]个,依题意,得:(x-100)[300+5(200-x)]=32000,整理,得:x2-360x+32400=0,解得:x1=x2=180.180<200,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.【解析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.设降价后的销售单价为x元,则降价后每天可售出[300+5(200-x)]个,根据总利润=每个产品的利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.3.【答案】解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x 天,由题意得=解得:x=15,经检验,x=15是原分式方程的解,2x=30.答:甲工程队单独完成此项工程需15天,乙工程队单独完成此项工程需30天.(2)设甲工程队做a天,乙工程队做b天根据题意得a/15+b/30=1整理得b+2a=30,即b=30-2a所需费用w=4.5a+2.5b=4.5a+2.5(30-2a)=75-0.5a根据一次函数的性质可得,a 越大,所需费用越小,即a=15时,费用最小,最小费用为75-0.5×15=67.5(万元)所以选择甲工程队,既能按时完工,又能使工程费用最少.答:选择甲工程队,既能按时完工,又能使工程费用最少.【解析】(1)如果设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.4.【答案】解:(1)设超市B型画笔单价为a元,则A型画笔单价为(a-2)元.根据题意得,=,解得a=5.经检验,a=5是原方程的解.答:超市B型画笔单价为5元;(2)由题意知,当小刚购买的B型画笔支数x≤20时,费用为y=0.9×5x=4.5x,当小刚购买的B型画笔支数x>20时,费用为y=0.9×5×20+0.8×5(x-20)=4x+10.所以,y关于x的函数关系式为y=(其中x是正整数);(3)当4.5x=270时,解得x=60,∵60>20,∴x=60不合题意,舍去;当4x+10=270时,解得x=65,符合题意.答:若小刚计划用270元购买B型画笔,则能购买65支B型画笔.【解析】(1)设超市B型画笔单价为a元,则A型画笔单价为(a-2)元.根据等量关系:第一次花60元买A型画笔的支数=第二次花100元买B型画笔的支数列出方程,求解即可;(2)根据超市给出的优惠方案,分x≤20与x>20两种情况进行讨论,利用售价=单价×数量分别列出y关于x的函数关系式;(3)将y=270分别代入(2)中所求的函数解析式,根据x的范围确定答案.本题考查了一次函数的应用,分式方程的应用等知识,解题的关键是:(1)理解题意找到等量关系列出方程;(2)理解超市给出的优惠方案,进行分类讨论,得出函数关系式;(3)根据函数关系式中自变量的取值范围对答案进行取舍.5.【答案】(1)解:设甲种书柜单价为x元,乙种书柜的单价为y元,由题意得:,解之得:,答:甲种书柜单价为180元,乙种书柜的单价为240元.(2)解:设甲种书柜购买m个,则乙种书柜购买(20-m)个;由题意得:,解之得:8≤m≤10,因为m取整数,所以m可以取的值为:8,9,10,即:学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个,方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.【解析】本题主要考查二元一次方程组、一元一次不等式组的综合应用能力,根据题意准确抓住相等关系或不等关系是解题的根本和关键.(1)设甲种书柜单价为x元,乙种书柜的单价为y元,根据:若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元列出方程组求解即可;(2)设甲种书柜购买m个,则乙种书柜购买(20-m)个.根据:购买的乙种书柜的数量≥甲种书柜数量且所需资金≤4320列出不等式组,解不等式组即可得不等式组的解集,从而确定方案.6.【答案】解:(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解得x1 =0.2=20%,x2 =-2.2 (不合题意,舍去).答:这两年该企业年利润平均增长率为20%.(2)如果2019年仍保持相同的年平均增长率,那么2019年该企业年利润为:2.88(1+20%)=3.456,3.456>3.4答:该企业2019年的利润能超过3.4亿元.【解析】此题考查一元二次方程的应用,根据题意寻找相等关系列方程是关键,难度不大.(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解方程即可;(2)根据该企业从2016年到2018年利润的年平均增长率来解答.7.【答案】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10-a)所,由题意得:,解得,∴3≤a≤5,∵a取整数,∴a=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【解析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.本题考查了一元一次不等式组的应用,二元一次方程组的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.8.【答案】解:(1)当售价为55元/千克时,每月销售水果=500-10×(55-50)=450千克;(2)设每千克水果售价为x元,由题意可得:8750=(x-40)[500-10(x-50)],解得:x1=65,x2=75,答:每千克水果售价为65元或75元;(3)设每千克水果售价为m元,获得的月利润为y元,由题意可得:y=(m-40)[500-10(m-50)]=-10(m-70)2+9000,∴当m=70时,y有最大值为9000元,答:当每千克水果售价为70元时,获得的月利润最大值为9000元.【解析】本题主要考查二次函数的应用,一元二次方程的应用,解题的关键是熟练掌握销售问题中关于销售总利润的相等关系,并据此列出函数解析式及熟练掌握二次函数的性质.(1)由月销售量=500-(销售单价-50)×10,可求解;(2)设每千克水果售价为x元,由利润=每千克的利润×销售的数量,可列方程,即可求解;(3)设每千克水果售价为m元,获得的月利润为y元,由利润=每千克的利润×销售的数量,可得y与x的关系式,由二次函数的性质可求解.9.【答案】解:(1)设这一批树苗平均每棵的价格是x元,根据题意列,得:,解这个方程,得x=20,经检验,x=20是原分式方程的解,并符合题意,答:这一批树苗平均每棵的价格是20元;(2)由(1)可知A种树苗每棵的价格为:20×0.9=18(元),B种树苗每棵的价格为:20×1.2=24(元),设购进A种树苗t棵,这批树苗的费用为w元,则:w=18t+24(5500-t)=-6t+132000,∵w是t的一次函数,k=-6<0,∴w随t的增大而减小,又∵t≤3500,∴当t=3500棵时,w最小,此时,B种树苗每棵有:5500-3500=2000(棵),w=-6×3500+132000=111000,答:购进A种树苗3500棵,BA种树苗2000棵时,能使得购进这批树苗的费用最低,最低费用为111000元.【解析】【试题解析】(1)设这一批树苗平均每棵的价格是x元,根据题意列方程解答即可;(2)分别求出A种树苗每棵的价格与B种树苗每棵的价格,设购进A种树苗t棵,这批树苗的费用为w元,根据题意求出w与t的函数关系式,再根据一次函数的性质解答即可.本题考查了分式方程的应用,一次函数的应用以及一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.10.【答案】解:(1)y=300-10(x-44),即y=-10x+740(44≤x≤52);(2)根据题意得(x-40)(-10x+740)=2400,解得x1=50,x2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)w=(x-40)(-10x+740)=-10x2+1140x-29600=-10(x-57)2+2890,而a=-10<0,且对称轴为直线x=57,当x<57时,w随x的增大而增大,而44≤x≤52,所以当x=52时,w有最大值,最大值为-10(52-57)2+2890=2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.【解析】(1)销售单价每上涨1元,每天销售量减少10本,则销售单价每上涨(x-44)元,每天销售量减少10(x-44)本,所以y=300-10(x-44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;(2)利用每本的利润乘以销售量得到总利润得到(x-40)(-10x+740)=2400,然后解方程后利用x的范围确定销售单价;(3)利用每本的利润乘以销售量得到总利润得到w=(x-40)(-10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.本题考查了二次函数的应用:利用二次函数解决利润问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围.也考查了一元二次方程的应用.。

中考专题 应用题

中考专题    应用题

1.某校计划一次性购买A、B两种类型的铅球共20枚,已知购买3枚A型铅球和2枚B型铅球共需570元,购买2枚A型铅球和5枚B型铅球共需710元.(1)求购买一枚A型铅球和一枚B型铅球分别需多少元;(2)若购买A型铅球的数量不少于15枚,购买两种铅球的总费用不超过2480元,则共有几种购买方案?并设计出最省钱的购买方案.2.小李计划从网上批发一些饰品摆摊售卖,经过多方调查,仔细甄别,他选定了A、B两款网红饰品,其进价分别为每个x元、y元.已知购进A款饰品8个和B款饰品6个所需花费相同;购进A款饰品10个和B款饰品4个共需230元.(1)请求出A、B两款饰品的进价分别是多少?(2)小李计划购进两款饰品共计100个(其中A款饰品最多62个),要使所需费用不多于1700元,则他有哪几种购进方案?(3)小李最后准备将A、B两款饰品单价分别定为21元,28元,他计划按照(2)中能够获得最大利润的方案购进,而且为吸引顾客,他准备在售卖过程中,给予顾客不同金额的现金红包,若要保证最后的利润率不低于35%,那么他给出的红包总额不能超过多少元?3.某学校准备购进一批红外线测温仪和口罩若干包.已知购买1个红外线测温仪和2包口罩共需460元;购买2个红外线测温计和3包口罩共需880元.(1)求一个红外线测温仪和一包口罩的售价各是多少元;(2)学校准备购进红外线测温仪20个,口罩若干包(超过30包).某药店对这两种商品给出优惠活动,活动一:购买1个红外线测温仪送1包口罩;活动二:购买口罩30包以上,超出的部分按售价的五折优惠,红外线测温仪不打折.①设购买口罩x包,选择活动一的总费用为y1元,选择活动二的总费用为y2元,请分别求出y1,y2与x的函数关系式;②学校购买口罩的包数x在什么范围内,选择优惠活动一比活动二更省钱?请说明理由.4.某文教店用1200元购进了甲、乙两种钢笔.已知甲种钢笔进价为每支12元,乙种钢笔进价为每支10元.文教店在销售时甲种钢笔售价为每支15元,乙种钢笔售价为每支12元,全部售完后共获利270元.(1)求这个文教店购进甲、乙两种钢笔各多少支?(2)若该文教店以原进价再次购进甲、乙两种钢笔,且购进甲种钢笔的数量不变,而购进乙种钢笔的数量是第一次的2倍,乙种钢笔按原售价销售,而甲种钢笔降价销售.当两种钢笔销售完毕时,要使再次购进的钢笔获利不少于340元,甲种钢笔最低售价每支应为多少元?5.小美打算买一束百合和康乃馨组合的鲜花,在“母亲节”祝福妈妈.已知买2支百合和1支康乃馨共需花费14元,3支康乃馨的价格比2支百合的价格多2元.(1)求买一支康乃馨和一支百合各需多少元?(2)小美准备买康乃馨和百合共11支,且百合不少于2支.设买这束鲜花所需费用为w元,康乃馨有x支,求w与x之间的函数关系式,并设计一种使费用最少的买花方案,写出最少费用.6.2022年北京冬奥会点燃了人们对冰雪运动的热情,各种有关冬奥会的纪念品也一度脱销.某实体店购进了甲、乙两种纪念品各30个,共花费1080元.已知乙种纪念品每个进价比甲种纪念品贵4元.(1)甲、乙两种纪念品每个进价各是多少元?(2)这批纪念品上架之后很快售罄.该实体店计划按原进价再次购进这两种纪念品共100件,销售官网要求新购进甲种纪念品数量不低于乙种纪念品数量的(不计其他成本).已知甲、乙纪念品售价分别为24元/个,30元/个.请问实体店应怎样安排此次进货方案,才能使销售完这批纪念品获得的利润最大?7.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”.这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?8.某超市经销甲、乙两种品牌的洗衣液,已知进货时,购买4瓶甲品牌洗衣液与5瓶乙品牌洗衣液的价钱相等,购买3瓶甲品牌洗衣液和4瓶乙品牌洗衣液共需186元.(1)求两种品牌洗衣液的进价;(2)若超市计划用不超过3120元购进甲、乙两种品牌的洗衣液共120瓶,且在进价基础上,把甲品牌洗衣液每瓶提价20%,乙品牌洗衣液每瓶上涨4元销售,超市应购进甲、乙两种品牌洗衣液各多少瓶,才能在两种洗衣液完全售出后所获利润最大?最大利润是多少元?9.民族要复兴,乡村必振兴.2月21日发布的2021年中央一号文件,主题是全面推进乡村振兴,加快农业农村现代化.乡村振兴战略的实施效果要用农民生活富裕水平来评价,某合作社为尽快打开市场,对本地新产品进行线上和线下销售相结合的模式,具体费用标准如下:线下销售模式:标价5元/千克,八折出售;线上销售模式:标价5元/千克,九折出售,超过6千克时,超出部分每千克再让利1.5元.购买这种新产品x千克,所需费用为y元,y与x之间的函数关系如图所示.根据以上信息回答下列问题:(1)请求出两种销售模式对应的函数解析式;(2)说明图中点C坐标的实际意义;(3)若想购买这种产品10千克,请问选择哪种模式购买最省钱?10.学校拟购进一批手动喷雾消毒设备,已知1个A型喷雾器和2个B型喷雾器共需90元;2个A型喷雾器和3个B型喷雾器共需165元.(1)问一个A型喷雾器和一个B型喷雾器的单价各是多少元?(2)学校决定购进两种型号的喷雾器共60个,并且要求B型喷雾器的数量不能多于A 型喷雾器的4倍,请你设计出最为省钱的购买方案,并说明理由.11.学校计划购买甲、乙两种品牌的羽毛球拍若干副.已知购买3副甲种品牌球拍和2副乙种品牌球拍共需230元;购买2副甲种品牌球拍和1副乙种品牌球拍共需140元.(1)甲、乙两种品牌球拍的单价分别是多少元?(2)学校准备购买这两种品牌球拍共100副,要求乙种品牌球拍数量不超过甲种品牌球拍数量的3倍,那么购买多少副甲种品牌球拍最省钱?12.新年伊始,某酒店为了给游客提供更舒适的环境,决定更换酒店的部分空调和电视机.已知购买2台空调和3台电视机共得12300元;购买3台空调和1台电视机共需11100元.(1)求空调和电视机的单价;(2)若该酒店准备购买空调和电视机共50台,且空调数量不少于电视机的2倍,请设计出最省钱的购买方案,并说明理由.13.正值樱桃上市时节,某水果店分两次购进红樱桃和黄樱桃两种水果进行销售,两次购进同一种水果的进价相同,具体情况如下表所示:购进的数量(斤)购进所需费用(元)红樱桃黄樱桃第一次3040720第二次4030680(1)求红樱桃和黄樱桃每斤的进价;(2)水果店决定红樱桃以每斤10元出售,黄樱桃以每斤15元出售.为满足市场需要,需购进红樱桃和黄樱桃两种共200斤,且红樱桃的数量不少于黄樱桃数量的4倍,请你求出获利最大的进货方案,并确定最大利润.14.第39届“中国洛阳牡丹文化节”期间,某工艺品商店促销大小两种牡丹瓷盘,发布如下信息:※每个大盘的批发价比每个小盘多120元;※※一套组合瓷盘包括一个大盘与四个小盘;※※※每套组合瓷盘的批发价为320元.根据以上信息:(1)求每个大盘与每个小盘的批发价;(2)若该商户购进小盘的数量是大盘数量的5倍还多18个,并且大盘和小盘的总数不超过320个,该商户计划将一半的大盘成套销售,每套500元,其余按每个大盘300元,每个小盘80元零售.设该商户购进大盘x个.①试用含x的关系式表示出该商户计划获取的销售额;②请帮助他设计一种获取销售额最大的方案并求出最大销售额.15.为丰富学生课外业余生活,某校计划购买A,B两种羽毛球.已知两种羽毛球的购买信息如表所示:A种(副)B种(副)总费用(元)2030170015251350(1)A,B两种羽毛球每副的价格分别是多少元?(2)若学校计划购买A,B两种羽毛球共35副,B种羽毛球的数量不超过A种羽毛球数量的2倍.请设计出最省钱的购买方案,并求出此方案的总费用.16.某专卖店的新型节能产品,进价每件60元,售价每件129元,为了支持环保公益事业,每销售一件捐款3元.且未来40天,该产品将开展每天降价1元的促销活动,即从第一天起每天的单价均比前一天降1元,市场调查发现,设第x天(1≤x≤40且x为整数)的销量为y件,y与x满足一次函数的数量关系:当x=1时,y=35;当x=5时,y=55.(1)求y与x的函数关系式;(2)设第x天去掉捐款后的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大,最大利润是多少元?[注:日销售利润=日销售量×(销售单价﹣进货单价﹣其他费用)]17.世间立足实不易,唯有真情暖人心.“地摊经济”搞活以来,王林决定购买A型和B型两款玩具摆摊出售,经询问知购三个A型玩具和两个B型玩具共需190元,购进两个A型玩具和三个B型玩具共需210元.(1)一个A型玩具和一个B型玩具的售价分别是多少元?(2)王林预备首批购进玩具30个,手头本钱仅为1000元,为了不超出预算,王林最多可购进B型玩具多少个?18.五一期间,某数码产品专营店预备购买A品牌手机和B品牌手机共30台,已知2台A品牌手机和1台B品牌手机价格为7800元,1台A品牌手机和2台B品牌手机的价格为6600元.(1)若购进A品牌手机x台,购进A、B品牌手机的总费用为W,求W与x的函数关系式;(2)若该数码产品专营店购进两种品牌手机的总费用不超过60000元,那么专营店最多购进A品牌手机多少台?19.某营业厅销售3部A型号手机和2部B型号手机的营业额为10800元,销售4部A型号手机和1部B型号手机的营业额为10400元.(1)求每部A型号手机和B型号手机的售价;(2)该营业厅计划一次性购进两种型号手机共50部,其中B型号手机的进货数量不超过A型号手机数量的3倍.已知A型手机和B型手机的进货价格分别为1500元/部和1800元/部,设购进A型号手机a部,这50部手机的销售总利润为W元.该营业厅购进A型号和B型号手机各多少部时,才能使销售总利润最大,最大利润为多少元?20.为了切实保护自然生态环境,某地政府实施全面禁渔.禁渔后,某水库自然生态养殖的鱼在市场上热销,经销商老李每天从该水库购进草鱼和鲢鱼进行销售,两种鱼的进价和售价如下表所示:进价(元)售价(元/斤)鲢鱼a5草鱼b销量不超过200斤的部分销量超过200斤的部分87已知老李购进10斤鲢鱼和20斤草鱼需要155元,购进20斤鲢鱼和10斤草鱼需要130元.(1)求a,b的值;(2)老李每天购进两种鱼共300斤,并在当天都销售完,其中销售鲢鱼不少于80斤且不超过120斤,设每天销售鲢鱼x斤(销售过程中损耗不计).①端午节这天,老李打算让利销售,将鲢鱼售价每斤降低m元,草鱼售价全部定为7元/斤,为了保证当天销售这两种鱼总获利W(元)的最小值不少于320元,求m的最大值.②老李又想出的新的让利销售方案,端午节当天老李决定销售鲢鱼80斤,草鱼220斤,且两种鱼都不再降价,按表中售价销售,但花费共计200元购买赠品并全部赠送给前来买鱼的消费者,此种方案与①中m取最大值时的方案相比哪种方案老李的利润率更高?21.冰墩墩(BingDwenDwen),是2022年北京冬季奥运会的吉祥物.将熊猫形象与富有超能量的冰晶外壳相结合,头部外壳造型取自冰雪运动头盔,装饰彩色光环,整体形象酷似航天员.冬奥会来临之际,冰墩墩玩偶非常畅销.小冬在某网店选中A,B两款冰墩墩玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶价格类别进货价(元/个)2015销售价(元/个)2820(1)第一次小冬550元购进了A,B两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小冬进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小冬计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?(3)小冬第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小冬来说哪一次更合算?(注:利润率=×100%)。

中考数学实际应用问题及答案

中考数学实际应用问题及答案

中考实际应用题1. 为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)m m-3月处理污水量(吨/台)220 180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过164万元,问最多购买A型污水处理器多少台?并求购买A型最多时每月处理污水量的吨数.2. 某厂家生产甲、乙两种零部件,已知甲种零部件每件的成本比乙种零部件每件的成本多1500元,且投入40000元生产甲种零部件的件数和投入28000元生产乙种的件数相同.(1)求甲、乙两种零部件每件成本各是多少元?(2)如果两种零部件共生产70件,该集团至少要投入290000元,那么,甲种零部件至少生产多少件?3. 某家电商场今年1月份开始销售一批某品牌液晶电视,1月份每台按所标价格销售,售出40台,2月份商场搞降价促销活动,每台降价400元销售,这样2月份比1月份多售出10台,销售款比1月份多40000元.(1)求这批电视1月份每台标价是多少元?(2)进入3月份,公司又按1月份所标价格的九折销售,将这批电视全部售出,销售款总量超过568600元,求这批电视最少有多少台?4. 为了解决农民工子女入学难的问题,哈市建立了一套进城农民工子女就学的保障机制,其中一项就是免交“借读费”。

据统计,2013年秋季有5000名农民工子女进入主城区中小学学习,预测2014年秋季进入主城区中小学学习的农民工子女将比2013年有所增加,其中小学增加20%,中学增加30%,这样,2014年秋季将新增1160名农民工子女在主城区中小学学习。

(1)如果按小学每生每年收“借读费”500元,中学每生每年收“借读费”1000元计算,求2014年新增的1160名中小学生共免收多少“借读费”?(2)如果小学每40名学生配备2名教师,中学每40名学生配备3名教师,若按2014年秋季入学后,农民工子女在主城区中小学就读的学生人数计算,一共需要配备多少名中小学教师?5. 冰雪大世界决定在寒假期间举办学生专场游园会,入场券分为团体票和零售票,其中团体票占总票数的23,已知一张团体票比一张零售票少20元,买20张团体票和买15张零售票所花的钱是相同的.(1)求每张团体票和零售票各为多少元钱?(2)在第一周内,共售出团体票的35,售出零售票的一半;如果在第二周内,团体票按每张80元出售,并计划在该周内售出全部余票,那么零售票应按每张多少元定价才能使第二周的票款与第一周的票款收入持平?(3)在(2)的条件下,若该专场的入场卷共发行了1500张,主办方准备拿出全部票款的10%进行“为贫困山区的孩子购买学习用具”的慈善公益活动.已知每套A型图书50元,每套B型图书40元.该地区需要两种图书共260套.则最多可以购买多少套A型图书?6. 丑小鸭电器超市购进A、B两种型号的电风扇进行销售,若一台A种型号的进价比一台B 种型号的进价多30元,用2000元购进A种型号的数量是用3400元购进B种型号的数量的一半.(1)求每台A种型号和B种型号的电风扇进价分别是多少元?(2)该超市A种型号电风扇每台售价260元,B种型号电风扇每件售价l90元,超市根据市场需求,决定再采购这两种型号的电风扇共30台,若本次购进的两种电风扇全部售出后,总获利不少于1400元,求该超市本次购进A种型号的电风扇至少是多少台?7.在国道202公路改建工程中,某路段长4000米,由甲乙两个工程队拟在30天内(含30天)合作完成,已知两个工程队各有10名工人(设甲乙两个工程队的工人全部参与生产,甲工程队每人每天的工作量相同,乙工程队每人每天的工作量相同),甲工程队1天、乙工程队2天共修路200米;甲工程队2天,乙工程队3天共修路350米.(1)试问甲乙两个工程队每天分别修路多少米?(2)甲乙两个工程队施工10天后,由于工作需要需从甲队抽调m人去学习新技术,总部要求在规定时间内完成,请问甲队可以抽调多少人?(3)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲乙两队需各做多少天?最低费用为多少?8. 电动自行车已成为市民日常出行的首选工具。

中考初中数学应用题经典练习题

中考初中数学应用题经典练习题

中考初中数学应用题经典练习题中考初中数学应用题经典练题一、综合题(共8题;共85分)1.(10分)(2015•深圳)下表为深圳市居民每月用水收费标准,(单位:元/m3)。

根据表格,当用水量不超过22立方米时,每立方米的水费为a元,超过22立方米后,每立方米的水费为1.5元。

1) 已知某用户用水10立方米,共交水费23元,求a的值。

解:设a为每立方米的水费。

当用水量不超过22立方米时,总用水量为10立方米,总水费为10a元。

当用水量超过22立方米时,总用水量为0立方米,总水费为0元。

因此,总水费为10a元,根据题意,有10a+12(1.5)=23,解得a=1.05.2) 在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?解:当用水量不超过22立方米时,总用水量为x立方米,总水费为xa元。

当用水量超过22立方米时,总用水量为5月份用水量减去22立方米,总水费为(5月份用水量-22)×1.5元。

因此,总水费为xa+(5月份用水量-22)×1.5元,根据题意,有xa+(5月份用水量-22)×1.5=71,代入a=1.05,解得5月份用水量为34立方米。

2.(10分)XXX要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜,若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元。

1) 求每个A型放大镜和每个B型放大镜各多少元?设每个A型放大镜的价格为x元,每个B型放大镜的价格为y元。

根据题意,有8x+5y=220,4x+6y=152.解得x=12,y=28,因此每个A型放大镜12元,每个B 型放大镜28元。

2) XXX决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?设购买A型放大镜的数量为m,购买B型放大镜的数量为n。

根据题意,有mx+ny≤1180,m+n=75.要求购买的A型放大镜数量最多,即要求x/m的值最小。

中考数学总复习《实际应用题》专项测试卷(带有答案)

中考数学总复习《实际应用题》专项测试卷(带有答案)

中考数学总复习《实际应用题》专项测试卷(带有答案)学校:___________班级:___________姓名:___________考号:___________类型一 行程问题典例精讲例 1 已知小明的家、体育场、文化宫在同一直线上.下面的图象反映的过程是:小明早上从家跑步去体育场,在那里锻炼了一阵后又走到文化宫去看书画展览,然后散步回家.图中x 表示时间(单位是min ),y 表示到小明离家的距离(单位是km). 请根据相关信息,解答下列问题: (Ⅰ)填表:小明离开家的时间/min 5 10 15 30 45 小明离家的距离/km131(Ⅰ)填空:Ⅰ小明在文化宫停留了________min ;Ⅰ小明从家到体育场的速度为________km/min ; Ⅰ小明从文化宫回家的平均速度为______km/min ;Ⅰ当小明距家的距离为35 km 时,他离开家的时间为________min ;(Ⅰ)当0≤x ≤45时,请直接写出y 关于x 的函数解析式.例1题图【思维教练】(Ⅰ)观察图象可知,前45 min 图象有三段,分别计算每一段的解析式,将对应时间代入解析式即可求解;(Ⅰ)Ⅰ小明在文化宫停留的时间是45 min 后小明到达文化宫后图象水平的部分;Ⅰ和Ⅰ根据:速度=路程÷时间,即可确定对应速度;Ⅰ观察图象可知,小明距家的距离为35 km 有两次,分别在0~15 min 之间和30~45 min 之间,根据(Ⅰ)中求得的解析式,令y =35代入即可求解;(Ⅰ)在(Ⅰ)中计算的三段解析式即是0~45 min 的y 关于x 的函数解析式. 【自主解答】针对演练1. 甲、乙两车从A 城出发前往B 城,在整个行程中,甲车离开A 城的距离y 1 km 与甲车离开A 城的时间x h 的对应关系如图所示,乙车比甲车晚出发12h ,以60 km/h 的速度匀速行驶.第1题图(Ⅰ)填空:ⅠA ,B 两城相距________km ;Ⅰ当0≤x ≤2时,甲车的速度为________km/h ; Ⅰ乙车比甲车晚________h 到达B 城; Ⅰ甲车出发4 h 时,距离A 城________km ;Ⅰ甲、乙两车在行程中相遇时,甲车离开A 城的时间为________h ; (Ⅰ)当0≤x ≤173时,请直接写出y 1关于x 的函数解析式;(Ⅰ)当72≤x ≤5时,两车所在位置的距离最多相差多少km?2. 一艘游轮从甲地出发,途经乙地前往丙地,路线图如图Ⅰ所示.当游轮到达乙地时,一艘货轮沿着同样的线路从甲地出发前往丙地.已知游轮的速度为20 km/h ,离开甲地的时间记为t(单位:h),两艘轮船离甲地的路程s(单位:km)关于t的图象如图Ⅰ所示(游轮在停靠前后的行驶速度不变).货轮比游轮早1.6 h到达丙地.第2题图根据相关信息,解答下列问题:(Ⅰ)填表:游轮离开甲地的时间/h514162124游轮离甲地的路程/km100280(Ⅰ)填空:Ⅰ 游轮在乙地停靠的时长为__________h;Ⅰ 货轮从甲地到丙地所用的时长为________h,行驶的速度为________km/h;Ⅰ 游轮从乙地出发时,两艘轮船相距的路程为__________km.(Ⅰ)当0≤t≤24时,请直接写出游轮离甲地的路程s关于t的函数解析式.类型二最优方案选取典例精讲例2新冠肺炎疫情席卷而来,为了员工的健康安全,某公司欲购进一批口罩,在甲药店不管一次购买多少包,每包价格为70元a,在乙药店购买同样的口罩,一次购买数量不超过30包时,每包售价为80元,一次购买数量超过30包时,超过部分价格打八折b.设在同一家药店一次购买这种口罩的包数为x(x为非负整数).(Ⅰ)根据题意填写表格:一次性购买数量/包2050100…甲药店付款金额/元3500…乙药店付款金额/元3680…(Ⅰ)设在甲药店购买这种口罩的金额为y1元,在乙药店购买这种口罩的金额为y2元,分别写出y1、y2关于x的函数关系式;(Ⅰ)根据题意填空:Ⅰ若该公司在甲药店和乙药店一次购买口罩的数量相同,且花费相同c,则该公司在同一家药店一次购买口罩的数量为________包;Ⅰ若该公司在同一家药店一次购买口罩的数量为120包d,则该公司在甲、乙两家药店中的________药店购买花费少;Ⅰ若该公司在同一家药店一次购买口罩花费了4200元e,则该公司在甲、乙两家药店中的________药店购买数量多.【分层分析】(Ⅰ)由题干信息a和b可知,在甲药店购买时,y1关于x的函数关系式为________;在乙药店购买时,不超过30包时,y2关于x的函数关系式为________;超过30包时,y2关于x的函数关系式为________;(Ⅰ)Ⅰ由题干信息c可得,当x>30,且y1=y2时,可得方程________;Ⅰ由题干信息d可得,当x=120时,y1=________,y2=________;Ⅰ由题干信息e可得,y1=________=4200,y2=________=4200.【自主解答】针对演练1. 同一种品牌的空调在甲、乙两个电器店的标价均为每台3000元.现甲、乙两个电器店优惠促销,甲电器店的优惠方案:如果一次购买台数不超过5台时,价格为每台3000元,如果一次购买台数超过5台时,超过部分按六折销售,乙电器的优惠方案:全部按八折销售.设某校在同一家电器店一次购买空调的数量为x (x为正整数).(Ⅰ)根据题意,填写下表:一次购买台数(台)2615…甲电器店收费(元)6000…乙电器店收费(元)4800…(Ⅰ)设在甲电器店购买收费y1元,在乙电器店购买收费y2元,分别写出y1,y2关于x的函数关系式;(Ⅰ)当x>6时,该校在哪家电器店购买更合算?并说明理由.2.梨木台自然风景区是国家4A级景区,地处天津最北端,被称为“天津北极”.小明一家计划在“十一”国庆假期租用共享汽车去梨木台自然风景区游玩,现有甲、乙两家共享汽车公司分别提供了两种租车方案,具体租车费用如下:甲公司:收取固定租金120元,此外还需收取租车费,按每小时10元收取;乙公司:无固定租金,直接以租车时间计费,每小时租金为30元;设小明一家出去游玩租车用时为x小时(x>0).(Ⅰ)根据题意填表:租车时间/小时458甲公司租车租金/元170乙公司租车租金/元150(Ⅰ)设在甲、乙公司租车租金分别为y1,y2元,分别写出y1,y2关于x的函数解析式;(Ⅰ)根据题意填空:Ⅰ若小明一家在甲、乙两公司的租车租金相同,则租车时间为________小时;Ⅰ若小明一家计划租车约7小时,则在甲、乙两公司中________公司租车租金少;Ⅰ若小明一家计划租车费用为270元,则在甲、乙两公司中________公司租车时间少.3. 4月23日是“世界读书日”.甲、乙两个书店在这一天举行了购书优惠活动.在甲书店,所有书籍按标价总额的8折出售,在乙书店,一次购书的标价总额不超过100元的按标价总额计费,超过100元后的部分打6折.设在同一家书店一次购书的标价总额为x(单位:元,x>0).(Ⅰ)根据题意,填写下表:一次购书的标价总额/元50150300…在甲书店应支付金额/元120…在乙书店应支付金额/元130…(Ⅰ)设在甲书店应支付金额y1元,在乙书店应支付金额y2元,分别写出y1,y2关于x的函数关系式;(Ⅰ)根据题意填空:Ⅰ若在甲书店和在乙书店一次购书的标价总额相同,且应支付的金额相同,则在同一个书店一次购书的标价总额________元;Ⅰ若在同一个书店一次购书应支付金额为280元,则在甲、乙两个书店中的________书店购书的标价总额多;Ⅰ若在同一个书店一次购书的标价总额120元,则在甲、乙两个书店中的________书店购书应支付的金额少.4.某公园计划打造银杏园,向园林公司购买一批银杏树苗.甲、乙两个园林公司销售同等规格的银杏苗.在甲园林公司,不论一次购买数量是多少,价格均为8元/棵,在乙园林公司,当购买棵数不超过50棵时,按照10元/棵付款,当购买棵数超过50棵时,超过的部分树苗每棵按7折付款.设公园负责人小李在同一个园林公司一次购买的银杏苗的数量为x棵(x 为正整数).(Ⅰ)根据题意填表:购买棵数/棵40160300…甲园林应付金额/元1280…乙园林应付金额/元1270…(Ⅰ)设在甲园林公司应付款y1元,在乙园林公司应付款y2元,分别求y1,y2关于x的函数解析式;(Ⅰ)根据题意填空:Ⅰ若小李在甲园林公司和在乙园林公司一次购买银杏苗的数量相同,且付款金额也相同,则小李在同一个园林公司一次购买的银杏苗的数量为________棵;Ⅰ若小李在同一个园林公司一次购买银杏苗的数量为140 棵时,则小李在甲、乙两个园林公司中的________园林公司付款的金额少;Ⅰ若小李在同一个园林公司一次购买银杏苗付款金额为2040元,则小李在甲、乙两个园林公司中的________园林公司购买的数量多.类型三最优方案设计典例精讲例3某水果经销商计划租用A,B两种货车共16辆a,将680吨水果运往某批发市场b.已知每辆A种货车最多可装运50吨水果,租车费用为800元c,每辆B种货车最多可装运40吨水果,租车费用为720元d.设租用A种货车x辆(x为正整数).(Ⅰ)根据题意填表:租用A种货车的数量/辆4812…租用A种货车的费用/元6400…租用B种货车的费用/元8640…(Ⅰ)当租车总费用为12240元时,求此时的租车方案;(Ⅰ)给出完成此项运送任务最节省费用的租车方案,并说明理由.【分层分析】(Ⅰ)由租车总费用=A种车辆总费用+B种车辆总费用,结合题干a,b,c,d 可知,当租用A种货车x辆,B种货车数量为______辆,A种货车租车总费用=______,B 种货车租车总费用=________,已知总费用为12240元,可列关于x的方程为12240=________,解得x即可确定此时的租车方案;(Ⅰ)由题干a可知,要完成此次运输任务,两车运输的水果不能少于680吨,结合题干b,c,d可列不等式为________,解得________,设租车的总费用为y元,结合题干a,b,c,d 可列y关于x的函数解析式为________,根据函数解析式的增减性,可知当x=________时y最小.【自主解答】针对演练1. 某服装公司有A型童装80件,B型童装120件,分配给下属的“万达”和“万象城”两个专卖店销售,其中140件给万达店,60件给万象城店,且都能卖完,两专卖店销售这两种童装每件的利润(元)如表:A型利润(元)B型利润(元)万达店10080万象城店8090(Ⅰ)设分配给万达店A型产品x件(20≤x≤80),请在下表中用含x的代数式填写:A型分配量(件)B型分配量(件)万达店x万象城店若记这家服装公司卖出这200件产品的总利润为y(元),求y关于x的函数关系;(Ⅰ)现要求总利润不低于18140元,请说明有多少种不同分配方案,并写出各种分配方案.2. A市和B市分别有库存某种机器12台和6台,现决定支援C市10台,D市8台,已知从A市调运一台机器到C市、D市的运费分别为130元和200元;从B市调运一台机器到C市、D市的运费分别为100元和150元.(Ⅰ)填空:若从A市运往C市机器5台Ⅰ从A市运往D市机器________台;Ⅰ从B市运往C市机器________台;Ⅰ从B市运往D市机器________台.(Ⅰ)填空:设从A市运往C市机器x台,总运费为y元.Ⅰ从A市运往D市机器________台;Ⅰ从B市运往C市机器________台;Ⅰ从B市运往D市机器________台;Ⅰ总运费y关于x的函数关系式为y=______;Ⅰ若总运费不超过2650元,共有________种不同的调动方案.(Ⅰ)求使总运费最低的调运方案,最低总运费是多少?3. 某工厂打算新建造10条生产线用于生产某种新产品,经过考察后有甲、乙两种生产线可供选择,已知每条甲种生产线建造费用为100万元,每天可生产500件产品,每条乙种生产线建造费用为30万元,每天可生产100件产品,设工厂建造甲种生产线x条(x为正整数).(Ⅰ)根据题意填表:甲种生产线数量/条36 (x)甲种生产线建造费用/万元300…乙种生产线建造费用/万元210…(Ⅰ)当x为何值时,该工厂新建造生产线的总费用为790万元;(Ⅰ)若该工厂计划使这些生产线每天至少生产3400个产品,则该工厂应该如何选择建造生产线的方式,使得建造总费用最低.4. 某校计划租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少要有1名教师,租车费用不超过2300元.现有甲、乙两种大客车,它们的载客量和租金如下:甲种客车乙种客车载客量/(人/辆)4530租金/(元/辆)400280为给出最节省费用的租车方案,请先帮小明完成分析,再解决问题.小明的分析:(Ⅰ)可以先考虑共需租多少辆车,从乘车人数的角度出发,要注意到以下要求:Ⅰ要保证240名师生都有车坐;Ⅰ要使每辆汽车上至少有1名教师.根据Ⅰ可知,汽车总数不能少于________,根据Ⅰ可知,汽车总数不能大于________,综合起来可知汽车总数为________;(Ⅰ)设租用甲种客车x辆(x为非负整数),试填写下表:车型甲乙数量/(辆)x载客人数/(人)45x费用/(元)400x(Ⅰ)请给出租车费用最节省的方案.类型四最值问题典例精讲例4小王计划批发“山东大樱桃”和“泰国榴莲”两种水果共120斤a,樱桃和榴莲的批发价分别为32元/斤和40元/斤b.设购买了樱桃x斤(x≥0).(Ⅰ)若小王批发这两种水果正好花费了4400元,那么小王分别购买了多少斤樱桃和榴莲?填写下表,并列方程求解;品种批发价(元/斤)购买斤数(斤)小王应付的钱数(元)樱桃32x榴莲40(Ⅰ)设小王购买两种水果的总花费为y元,试写出y与x之间的函数表达式;(Ⅰ)若要求所批发的榴莲的斤数不少于樱桃斤数的2倍c,那么购买樱桃的数量为多少斤时,可使小王的总花费最少?这个最少花费是多少?【分层分析】(Ⅰ)由题干信息a可知,当购买樱桃x斤时,则购买榴莲________斤,由应付钱数=批发量×批发价,结合题干信息b可知,小王此时购买樱桃应付的钱数为______,购买榴莲应付的钱数为______;(Ⅰ)由总花费=购买樱桃应付的钱+购买榴莲应付的钱,结合(Ⅰ)知,y关于x的函数表达式为________________________________________________________________________;(Ⅰ)由题干信息a,c可列不等式为____________,结合(Ⅰ)知,当x=________时,小王的总花费最少,最少花费为________元.【自主解答】针对演练1. 某超市3月份购进甲、乙两种商品共50件,甲商品进价为100元/件,售价为120元/件,乙商品进价为110元/件,售价为150元/件. 设超市购进甲商品x 件. (Ⅰ)根据题意填表:购进甲商品的数量/件 10 20 x 甲商品获得的利润/元 200 乙商品获得的利润/元1600(Ⅰ)若销售完这批商品后超市共获利1700元,求甲、乙两种商品各购进了多少件? (Ⅰ)若该超市计划4月份再次购进甲、乙两种商品共50件,其中乙商品数不超过甲商品数的2倍,求销售完这50件商品超市可获得的最大利润是多少?2. 小明和小华住在甲地,两人计划周末一起出去到乙地游玩.甲,乙两地相距60 km ,两人以不同的出行方式前往乙地,小明乘坐汽车以60 km/h 的速度前往乙地,小华则骑电动车以30 km/h 的速度从甲地出发前往乙地,小明到达乙地后在等小华半小时后,临时有事以40 km/h 的速度返回甲地,小华则继续前往乙地独自游玩,设行驶时间为x h . (Ⅰ)根据题意填表:时间/h0.5 1 1.5 2 … 小明到甲地的距离/km 30 60 … 小华到甲地的距离/km1545…(Ⅰ)当小明和小华两人相遇时,求行驶时间; (Ⅰ)求小明和小华在相遇前的最大距离为多少km ?参考答案类型一 行程问题典例精讲例 1 解:(Ⅰ)23,1,0.5;【解法提示】设小明离家的距离y 与小明离开家的时间x 的关系式为y =kx (k ≠0,0≤x ≤15),将(15,1)代入y =kx 得,15k =1,解得k =115,Ⅰy =115x (0≤x ≤15).当x =10时,y =115×10=23;当x =15时,y =115×15=1;从图中可知,当小明离开家的时间为45 min 时,小明离家的距离为12km.(Ⅰ)Ⅰ25;Ⅰ115;Ⅰ160;Ⅰ9或42;【解法提示】Ⅰ由图可知,小明离家时间为45 min 时,到达文化馆,小明离家时间为70 min 时,离开文化馆,故小明在文化馆停留70-45=25 min ;Ⅰ由图可知,小明离家时间为15 min 时,到距家1 km 的体育馆,则速度=115km/min ;Ⅰ由图可知,小明离家时间为70 min 时,离开距家12km 的文化馆,小明离家时间为100 min 时,回到家中,则速度为:0.5100-70=160km/min ;Ⅰ由图可知,小明距家的距离有两次为0.6 km ,分别在0 min ~15 min 之间和30 min ~45 min 之间,满足y =115x (0≤x ≤15),当y =35时,即115x =35,Ⅰx =9,则小明第一次距家的距离为35km 时,他离开家的时间为9 min ;设30 min ~45 min 时小明离家的距离y 与时间x的函数关系式为:y =kx +b (k ≠0),将(30,1),(45,12)代入,得⎩⎪⎨⎪⎧30k +b =145k +b =12,解得⎩⎪⎨⎪⎧k =-130b =2,Ⅰy =-130x +2(30≤x ≤45),则当y =35时,即-130x +2=35,解得x =42.则小明第二次距家的距离为35km 时,他离开家的时间为42 min .(Ⅰ)y =⎩⎪⎨⎪⎧115x (0≤x ≤15)1(15<x ≤30)-130x +2(30<x ≤45).【解法提示】由图可知,在15 min 到30 min 之间小明离家的距离不变为1 km ,由(Ⅰ)(Ⅰ)知y =115x (0≤x ≤15),y =-130x +2(30≤x ≤45),Ⅰ当0≤x ≤45时 y =⎩⎪⎨⎪⎧115x (0≤x ≤15)1(15<x ≤30)-130x +2(30<x ≤45).针对演练1. 解:(Ⅰ)Ⅰ360;Ⅰ60;Ⅰ56;Ⅰ6803;Ⅰ52或196;【解法提示】Ⅰ由图知,A ,B 两城相距360 km ;Ⅰ当0≤x ≤2时,甲车速度=120÷2=60 km/h ;Ⅰ乙车行驶时间:360÷60=6 h ,Ⅰ乙车比甲车晚出发12h ,Ⅰ乙车比甲车晚到6-173+12=56h ;Ⅰ甲车出发4 h 距A 城:120+(4-83)×(360-120)÷3=6803;Ⅰ设甲、乙相遇时用时为th ,当0≤x ≤83时,Ⅰ0≤x ≤2时甲、乙速度相同,Ⅰ甲、乙在2≤x ≤83之间相遇,则120=(t -12)60,解得t =52;当83≤x ≤173时,120+(t -83)80=(t -12)60,解得t =196,综上所述,当52h 或196h 时,甲、乙相遇.(Ⅰ)y 1=⎩⎪⎨⎪⎧60x (0≤x ≤2)120 (2<x ≤83)80x -2803(83<x ≤173); 【解法提示】当0≤x ≤2时,设解析式为y 1=ax ,将(2,120)代入得120=2x ,解得x =60,Ⅰy 1=60x ;当2<x ≤83,由图象知y 1=120;当83<x ≤173时,设抛物线解析式为y 1=ax +b ,将(83,120),(173,360)代入得⎩⎨⎧120=83k +b360=173k +b,解得⎩⎪⎨⎪⎧k =80b =-2803,即y 1=80x -2803. Ⅰy 1=⎩⎪⎨⎪⎧60x (0≤x ≤2)120 (2<x ≤83)80x -2803(83<x ≤173); (Ⅰ)当72≤x ≤5时,由题意可知,甲车在乙车前面,设两车所在位置的距离相差y km则y =(80x -2803)-(60x -30)=20x -1903Ⅰ20>0Ⅰy 随x 的增大而增大 Ⅰ当x =5时,y 取得最大值1103答:两车所在位置的距离最多相差1103km.2. 解:(Ⅰ)280,360,420;【解法提示】由图Ⅰ知,当t =14时,s =280,Ⅰ游轮停靠前后速度均为20 km/h ,Ⅰ游轮一共行驶的时间t 1=420÷20=21 h ,Ⅰ游轮的停靠时间=24-21=3 h ,Ⅰ当t =21时,游轮行驶时间为21-3=18 h ,此时s =18×20=360 (km).由图知当t =24时,s =420 (km). (Ⅰ)Ⅰ3;Ⅰ8.4,50;Ⅰ130;【解法提示】Ⅰ由(Ⅰ)得停靠时间为3 h ;Ⅰ货轮从甲到丙地所用的时间=24-1.6-14=8.4 h ,Ⅰ货轮的速度=420÷8.4=50 km/h ;Ⅰ游轮从乙地出发的时间t =17 h ,货轮距离甲地=50×(17-14)=150 (km),Ⅰ两船相距=280-150=130 (km). (Ⅰ)s =⎩⎪⎨⎪⎧20t (0≤t ≤14)280(14<t ≤17)20t -60(17<t ≤24).【解法提示】当0≤t ≤14时,设s 1=k 1t 1(k 1≠0),将点(14,280)代入解得k 1=20,即s 1=20t 1;当14<t ≤17时,游轮在乙地停靠,s =280;当17<t ≤24时,设s 2=k 2t 2+b (k 2≠0),将点(21,360),(24,420)代入得 ⎩⎪⎨⎪⎧21k 2+b =36024k 2+b =420,解得⎩⎪⎨⎪⎧k 2=20b =-60,Ⅰs 2=20t 2-60.综上所述 s =⎩⎪⎨⎪⎧20t (0≤t ≤14)280(14<t ≤17)20t -60(17<t ≤24). 类型二 最优方案选取典例精讲例 2 【分层分析】(Ⅰ)y 1=70x ,y 2=80x ,y 2=64x +480; (Ⅰ)70x =64x +480,8400,8160,70x ,64x +480. 解:(Ⅰ)1400;7000;1600;6880;【解法提示】在甲药店不管一次购买多少包,每包价格为70元,买20包时,在甲药店付款金额为70×20=1400(元),买100包,在甲药店付款金额为100×70=7000(元);在乙药店,一次购数量不超过30包时,每包售价为80元,买20包时,在乙药店付款金额为80×20=1600(元),买100包,在乙药店付款金额为80×30+(100-30)×80×0.8=6880(元). (Ⅰ)y 1=70x (x >0);y 2=⎩⎪⎨⎪⎧80x (0<x ≤30)64x +480(x >30);【解法提示】设在同一家药店一次购买这种口罩的包数为x (x 为非负整数),在甲药店购买这种口罩的金额为y 1=70x ,在乙药店购买这种口罩的金额为:当x ≤30时,y 2=80x (0<x ≤30),当x >30时,y 2=80×30+(x -30)×80×0.8=64x +480,综上所述,y 2=⎩⎪⎨⎪⎧80x (0<x ≤30)64x +480(x >30).(Ⅰ)Ⅰ80;Ⅰ乙;Ⅰ甲.【解法提示】Ⅰ依题意得,y 1=y 2,Ⅰ70x =80x ,该方程无解;或70x =64x +480,解得x =80;Ⅰ若该公司在同一家药店一次购买口罩的数量为120包,在甲药店购买这种口罩的金额为y 1=70x =70×120=8400(元),Ⅰ120>30,Ⅰ在乙药店购买这种口罩的金额为y 2=64x +480=64×120+480=8160(元).Ⅰ8400>8160,Ⅰ在乙药店购买花费少;Ⅰ把y =4200代入y 1=70x ,得70x =4200,Ⅰx =60;Ⅰ80×30=2400,2400<4200,Ⅰx >30,把y =4200代入y 2=64x +480=4200,Ⅰx =58.125≈58,Ⅰ60>58,Ⅰ在甲药店购买数量多.针对演练1. 解:(Ⅰ)16800,33000,14400 36000;【解法提示】一次购买6台,甲店收费为:5×3000+(6-5)×3000×0.6=16800(元),乙店收费为:6×3000×0.8=14400(元),一次购买15台,甲店收费为:5×3000+(15-5)×3000×0.6=33000(元),乙店收费为:15×3000×0.8=36000(元). (Ⅰ)当0<x ≤5时,y 1=3000x ;当x >5时,y 1=3000×5+3000×0.6(x -5)=1800x +6000Ⅰy 1=⎩⎪⎨⎪⎧3000x (0<x ≤5且x 为正整数)1800x +6000(x >5且x 为正整数)y 2=3000×0.8x =2400x (x >0且x 为正整数); (Ⅰ)设y 1与y 2的总费用的差为y 元 则y =1800x +6000-2400x =-600x +6000. 当y =0时,即-600x +6000=0,解得x =10. Ⅰ当x =10时,选择甲乙两家电器店购买一样合算; Ⅰ-600<0Ⅰy 随x 的增大而减小. Ⅰx >6Ⅰ当6<x <10时,y 1>y 2,在乙电器店购买更合算;当x >10时,y 1<y 2,在甲电器店购买更合算. 2. 解:(Ⅰ)160,200,120,240;【解法提示】根据题意得,甲公司租车4小时=120+4×10=160(元),甲公司租车8小时=120+8×10=200(元);乙公司租车4小时=4×30=120(元),乙公司租车8小时=8×30=240(元).(Ⅰ)⎩⎪⎨⎪⎧y 1=120+10x (x >0)y 2=30x (x >0); 【解法提示】甲公司租车租金y 1与租车时间x 的关系式为:y 1=120+10x (x >0),乙公司租车租金y 2与租车时间x 的关系式为:y 2=30x (x >0). (Ⅰ)Ⅰ6;Ⅰ甲;Ⅰ乙.【解法提示】Ⅰ当租金相同时,y 1=y 2,Ⅰ120+10x =30x ,解得x =6,Ⅰ租车租金相同时,租车时间为6小时;Ⅰ当租车时间为7小时时,甲公司租车租金y 1=120+10×7=190(元),乙公司租车租金:y 2=30×7=210(元),Ⅰ190<210,Ⅰ甲公司租车租金少;Ⅰ当租车租金为270元时,甲公司租车时长:x =(270-120)÷10=15小时,乙公司租车时长:x =270÷30=9小时,Ⅰ15>9,Ⅰ乙公司租车时间少. 3. 解:(Ⅰ)40,240,50,220;【解法提示】一次性购书的标价总额为50元时,在甲书店应支付:50×0.8=40(元),在乙书店应支付:50(元),一次性购书的标价总额为300元时,在甲书店应支付:300×0.8=240(元),在乙书店应支付:100+(300-100)×0.6=220(元). (Ⅰ)y 1=0.8x (x >0) 当0<x ≤100时,y 2=x当x >100时,y 2=0.6(x -100)+100=0.6x +40Ⅰy 2=⎩⎪⎨⎪⎧x (0<x ≤100)0.6x +40(x >100);(Ⅰ)Ⅰ200;Ⅰ乙;Ⅰ甲.【解法提示】Ⅰ依题意,y 1=y 2,即0.8x =0.6x +40,解得x =200,Ⅰ标价总额为200元时,应支付的金额相同;Ⅰ甲书店标价总额为:280÷0.8=350(元),乙书店的标价总额为:280=0.6x +40,即x =400(元),Ⅰ350<400,Ⅰ在乙书店购书标价总额多;Ⅰ在甲书店应支付:120×0.8=96(元),在乙书店应支付:120×0.6+40=112(元),Ⅰ112>96,Ⅰ在甲书店购书应支付金额少.4. 解:(Ⅰ)320,2400,400,2250;【解法提示】当一次购买40棵时,应付给甲园林公司的金额为40×8=320(元),应付给乙园林公司金额为40×10=400(元);当一次购买300棵时,应付给甲园林公司的金额为300×8=2400(元),应付给乙园林公司的金额为50×10+10×(300-50)×0.7=2250(元). (Ⅰ)y 1=8x (x ≥0) 当0<x ≤50时,y 2=10x当x >50时,y 2=50×10+(x -50)×10×0.7=7x +150Ⅰy 2=⎩⎪⎨⎪⎧10x (0≤x ≤50)7x +150(x >50);(Ⅰ)Ⅰ150;Ⅰ甲;Ⅰ乙.【解法提示】Ⅰ令8x =7x +150,解得x =150;Ⅰ140×8=1120(元),7×140+150=1130(元),故在甲园林公司付款金额少;Ⅰ2040÷8=255,令7x +150=2040,解得x =270,则在乙园林公司购买的数量多.类型三 最优方案设计典例精讲例 3 【分层分析】(Ⅰ)16-x ,800x ,720(16-x ),800x +720(16-x ); (Ⅰ)50x +40(16-x )≥680,x ≥4,y =800x +720(16-x ),4. 解:(Ⅰ)3200,9600,5760,2880; (Ⅰ)由题意得800x +720(16-x )=12240 解得x =9,此时16-9=7答:当租用A 种货车9辆,B 种货车7辆时,租车总费用为12240元; (Ⅰ)由题意得50x +40(16-x )≥680,解得x ≥4. 设租车的总费用为y 元由题意得y =800x +720(16-x )=80x +11520 Ⅰ80>0Ⅰy 随x 的增大而增大 Ⅰ当x =4时,y 取得最小值 此时16-4=12答:完成此项运送任务最节省费用的租车方案为租用A 种货车4辆,B 种货车12辆.针对演练1. 解:(Ⅰ)140-x ,80-x ,x -20; Ⅰ分配给万达店A 型产品x 件(20≤x ≤80),Ⅰy =100x +80(140-x )+80(80-x )+90(x -20)=30x +15800 即y 关于x 的函数关系式是y =30x +15800(20≤x ≤80); (Ⅰ)由题意,可得30x +15800≥18140 解得x ≥78 Ⅰ20≤x ≤80 Ⅰ78≤x ≤80 Ⅰx 是整数 Ⅰx =78,79,80. Ⅰ分配方案有三种:方案一:给万达店A 型产品78件,B 型产品62件,给万象城店A 型产品2件,B 型产品58件;方案二:给万达店A 型产品79件,B 型产品61件,给万象城店A 型产品1件,B 型产品59件;方案三:给万达店A 型产品80件,B 型产品60件,给万象城店A 型产品0件,B 型产品60件.2. 解:(Ⅰ)Ⅰ7;Ⅰ5;Ⅰ1;【解法提示】A 市和B 市分别有库存某种机器12台和6台,现支援C 市10台,D 市8台.若从A 市运往C 市机器5台,则:Ⅰ从A 市运往D 市机器12-5=7台;Ⅰ从B 市运往C 市机器10-5=5台;Ⅰ从B 市运往D 市机器6-5=1台. (Ⅰ)Ⅰ(12-x );Ⅰ(10-x ); Ⅰ(x -4); Ⅰ-20x +2800;Ⅰ3;【解法提示】A 市和B 市分别有库存某种机器12台和6台,现支援C 市10台,D 市8台.设从A 市运往C 市机器x 台,则:Ⅰ从A 市运往D 市机器(12-x )台;Ⅰ从B 市运往C 市机器(10-x )台;Ⅰ从B 市运往D 市机器6-(10-x )=(x -4)台;Ⅰ总运费y 关于x 的函数关系式为:y =130x +200(12-x )+100(10-x )+150(x -4).Ⅰy =-20x +2800;Ⅰ由题意可得:⎩⎪⎨⎪⎧x ≥0-20x +2800≤2650,解得152≤x ≤10.Ⅰx 须为正整数,Ⅰx 的值可取8,9,10,即共有3种方案.(Ⅰ)ⅠA 市运往C 市机器x 台,运往D 市(12-x )台B 市运往C 市机器(10-x )台,运往D 市(x -4)台Ⅰ4≤x ≤10.从A 市运往C 市机器x 台时,总运费为y =-20x +2800Ⅰ-20<0Ⅰy 随x 的增大而减小Ⅰ当x =10时,y 取得最小值,y 的最小值是2600.答:使总运费最低的调运方案是A 市运往C 市10台,A 市运往D 市2台,B 市运往C 市0台,B 市运往D 市6台,最低总费用为2600元.3. 解:(Ⅰ)甲种生产线:600,100x ;乙种生产线:120,300-30x ;(Ⅰ)由题意得:100x +300-30x =790,解得x =7Ⅰ当x =7时,该工厂新建造生产线的总费用为790万元;(Ⅰ)设该工厂新建造生产线的总费用为y 元则y =100x +300-30x =70x +300由题意得:500x +100×(10-x )≥3400解得x ≥6Ⅰ70>0,Ⅰy 随x 的增大而增大Ⅰ当x =6时,y 取得最小值.答:该工厂建造甲种生产线6条,乙种生产线4条时,建造总费用最低.4. 解:(Ⅰ)6,6,6;(Ⅰ)6-x ,180-30x ,-280x +1680;(Ⅰ)根据题意,得⎩⎪⎨⎪⎧45x +180-30x ≥234+6400x -280x +1680≤2300 解得4≤x ≤316设租车费用为y 元,则y =400x -280x +1680=120x +1680(4≤x ≤316,且x 为整数). Ⅰ120>0Ⅰy 随x 的增大而增大.Ⅰ当x =4时,租车费用最少.答:租车费用最节省的方案是租甲种客车4辆,乙种客车2辆.类型四最值问题典例精讲例4【分层分析】(Ⅰ)120-x,32x,4800-40x;(Ⅰ)y=-8x+4800;(Ⅰ)120-x≥2x,40,4480.解:(Ⅰ)32x,120-x,4800-40x;由题意得:32x+4800-40x=4400解得x=50Ⅰ120-x=70.答:小王购买了50斤樱桃和70斤榴莲;(Ⅰ)由题意得:y=32x+4800-40x=-8x+4800Ⅰy=-8x+4800 (0≤x≤120);(Ⅰ)Ⅰ120-x≥2x解得x≤40,由题意知x≥0Ⅰ0≤x≤40Ⅰ-8<0Ⅰy随x的增大而减小Ⅰ当x=40时,y取得最小值,y最小=-8×40+4800=4480元.答:购买樱桃的数量为40斤时,可使小王的总花费最少,最少花费是4480元.针对演练1. 解:(Ⅰ)甲商品获得的利润:400,20x;乙商品获得的利润:1200,40(50-x);(Ⅰ)由题意得,20x+40(50-x)=1700,解得x=15Ⅰ50-x=35Ⅰ甲、乙两种商品各购进了15件、35件;(Ⅰ)设销售完4月份购进的这50件商品超市共获得利润y元根据题意得y=20x+40(50-x)=-20x+2000(0<x<50)Ⅰ-20<0,Ⅰy随x的增大而减小Ⅰ50-x≤2xⅠx ≥503Ⅰ503≤x ≤50 Ⅰx 取整数Ⅰ当x =17时,y 有最大值,最大值为y =-20×17+2000=1660答:当甲种商品购进17件,乙种商品购进33件时,可使超市4月获得的利润最大,最大利润为1660元.2. 解:(Ⅰ)60,40,30,60;(Ⅰ)由题意知:小明从甲地前往乙地的过程中不会与小华相遇小明返回途中与小华相遇,则30x =60-40(x -1.5)解得x =127答:当小明和小华两人相遇时,行驶时间为127h ; (Ⅰ)由(Ⅰ)知,当0≤x <127时,小明和小华未相遇 由题意得,当0≤x ≤1时,小明和小华之间的距离为y =(60-30)x =30xⅠ30>0Ⅰy 随x 的增大而增大当1<x <127时,小明和小华之间的距离逐渐缩小 Ⅰ当x =1时,相遇前小明和小华两人之间距离最大,最大距离为30 km答:小明和小华相遇前,两人之间的最大距离为30 km.。

中考数学专题:实际应用题带答案

中考数学专题:实际应用题带答案

中考数学专题:实际应用题带答案购进甲型书柜,每个书柜可放置20本书,每个书柜的成本为200元;购进乙型书柜,每个书柜可放置30本书,每个书柜的成本为300元。

现有预算元,需要购进的书柜总数不能超过200个。

1)如何购进书柜,才能最大化放置的图书数量?2)如果要求购进的书柜数量必须要超过100个,应该如何购进书柜,才能最大化放置的图书数量?3)如果要求购进的书柜数量必须要超过100个,并且每个书柜必须要放置至少25本书,应该如何购进书柜,才能最大化放置的图书数量?树苗的总价最低,应该购进多少捆A种树苗和多少捆B 种树苗?1) 学校需要购买甲种书柜3个、乙种书柜2个,共需1020元;需要购买甲种书柜4个、乙种书柜3个,共需1440元。

求甲、乙两种书柜每个的价格分别是多少元?2) 学校需要购买共20个书柜,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供4320元资金。

请设计几种购买方案供学校选择。

1) 某汽车零部件生产企业从2016年到2018年的年平均增长率为12%。

若2019年保持前两年的年平均增长率不变,该企业2019年的利润能否超过3.4亿元?2) 某县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担。

若国家财政拨付资金不超过万元,地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元。

请问共有哪几种改扩建方案?1) 当售价为55元/千克时,每月销售水果为450千克。

2) 每千克水果售价为17.5元时,月利润为8750元。

3) 获得的月利润最大的每千克水果售价为52元。

1) 这一批树苗平均每棵的价格为615元。

2) 应该购进3500棵A种树苗和2000捆B种树苗。

树苗的费用最低,应该购买多少A种树苗和B种树苗才能达到最低费用?并求出最低费用。

在俄罗斯世界杯足球赛期间,一家商店销售了一批足球纪念册,每本进价40元。

2023中考复习——应用题(学生版)

2023中考复习——应用题(学生版)

应用题一、二元一次方程组1.(2014遂宁中考·19)(9分)我市某超市举行店庆活动,对甲、乙两种商品实行打折销售.打折前,购买3件甲商品和1件乙商品需用190元;购买2件甲商品和3件乙商品需用220元.而店庆期间,购买10件甲商品和10件乙商品仅需735元,这比打折前少花多少钱?2.(2020遂宁中考·20)(9分)新学期开始时,某校九年级一班的同学为了增添教室绿色文化,打造温馨舒适的学习环境,准备到一家植物种植基地购买A、B两种花苗.据了解,购买A种花苗3盆,B种花苗5盆,则需210元;购买A种花苗4盆,B种花苗10盆,则需380元.(1)求A、B两种花苗的单价分别是多少元?(2)经九年级一班班委会商定,决定购买A、B两种花苗共12盆进行搭配装扮教室.种植基地销售人员为了支持本次活动,为该班同学提供以下优惠:购买几盆B种花苗,B种花苗每盆就降价几元,请你为九年级一班的同学预算一下,本次购买至少准备多少钱?最多准备多少钱?二、分式方程1.(2011遂宁中考·20)(9分)一场特大暴雨造成遂渝高速公路某一路段被严重破坏.为抢修一段120米长的高速公路,施工队每天比原计划多修5米,结果提前4天完成抢修任务.问原计划每天抢修多少米?2.(2012遂宁中考·20)(9分)经过建设者三年多艰苦努力地施工,贯通我市的又一条高速公路“遂内高速公路”于2012年5月9日全线通车.已知原来从遂宁到内江公路长150km,高速公路路程缩短了30km,如果一辆小车从遂宁到内江走高速公路的平均速度可以提高到原来的1.5倍,需要的时间可以比原来少用1小时10分钟.求小汽车原来和现在走高速公路的平均速度分别是多少?3.(2013遂宁中考·20)(9分)2013年4月20日,我省雅安市芦山县发生了里氏7.0级强烈地震.某厂接到在规定时间内加工1500顶帐篷支援灾区人民的任务.在加工了300顶帐篷后,厂家把工作效率提高到原来的1.5倍,于是提前4天完成任务,求原来每天加工多少顶帐篷?4.(2014遂宁中考·20)(9分)一场特大暴雨造成遂渝高速公路某一路段被严重破坏.为抢修一段120米长的高速公路,施工队每天比原计划多修5米,结果提前4天完成抢修任务.问原计划每天抢修多少米?5.(2019遂宁中考·21)(9分)仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3750元购进第二批仙桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于2460元,剩余的仙桃每件售价最多打几折?(利润=售价-进价)三、一元二次方程的应用1.(2016遂宁中考·20)(9分)红旗连锁超市花2000购进一批糖果,按80%的利润定价无人购买,决定降价出售,但仍无人购买.结果又一次降价后才售完,但仍盈利45.8%,两次降价的百分率相同,问每次降价的百分率是多少?2.(2021遂宁中考·21)(9分)某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高x元.(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?四、一次函数+不等式1.(2012遂宁中考·23)(10分)我市新都生活超市准备一次性购进A、B两种品牌的饮料100箱,此两种饮料每箱的进价和售价如下表所示.设购进A种饮料x箱,且所购进的两种饮料能全部卖出,获得的总利润为y元.品牌A B进价(元/箱)6549售价(元/箱)8062(1)求y关于x的函数关系式;(2)由于资金周转原因,用于超市购进A、B两种饮料的总费用不超过5600元,并要求获得利润不低于1380元,则从两种饮料箱数上考虑,共有哪几种进货方案?(利润=售价﹣进价)2.(2013遂宁中考·23)(10分)四川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式;(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.五、综合1.(2017遂宁中考·21)(9分)2017年遂宁市吹响了全国文明城市创建决胜“集结号”.为了加快创建步伐,某运输公司承担了某标段的土方运输任务,公司已派出大小两种型号的渣土运输车运输土方.已知一辆大型渣土运输车和一辆小型渣土运输车每次共运15吨;3辆大型渣土运输车和8辆小型渣土运输车每次共运70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车每次各运土方多少吨?(2)该渣土运输公司决定派出大小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出7辆,问该渣土运输公司有几种派出方案?(3)在(2)的条件下,已知一辆大型渣土运输车运输花费500元/次,一辆小型渣土运输车运输花费300元/次,为了节约开支,该公司应选择哪种方案划算?2.(2022遂宁中考·19)(9分)某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?。

河北中考应用题及答案

河北中考应用题及答案

河北中考应用题及答案
题目:某工厂生产一种新型节能灯,其成本价为每盏15元。

根据市场调查,若定价为每盏20元,则每月可销售800盏;若定价每增加1元,则每月少销售40盏。

设每盏灯的定价为x元,每月利润为y元。

要求:①求y与x的函数关系式;②若要使利润最大,每盏灯的定价应为多少元?
答案:
① 根据题意,每盏灯的利润为(x-15)元,每月销售量为[800-40(x-
20)]盏。

因此,每月利润y=(x-15)[800-40(x-20)]。

② 将①中的函数关系式展开,得到y=-40x^2+1800x-18000。

这是一个二次函数,其开口向下,因此存在最大值。

通过求导数或配方法,可以求得当x=22.5时,y取得最大值。

分析:此题考查了二次函数的应用,关键在于理解题意,找到等量关系,列出函数关系式。

通过分析函数的性质,可以求得最大利润对应的定价。

解答:
① 首先,我们根据题意列出利润函数关系式。

每盏灯的利润为售价减去成本价,即(x-15)元。

每月销售量为800-40(x-20)盏。

因此,每月利润y可以表示为:
y = (x-15)[800-40(x-20)]
② 接下来,我们需要求出使利润最大的定价。

将上述函数关系式展开,得到:
y = -40x^2 + 1800x - 18000
这是一个二次函数,其开口向下,因此存在最大值。

我们可以通过求
导数或配方法找到最大值对应的x值。

通过计算,我们可以得到当
x=22.5时,y取得最大值。

结论:为了使利润最大,每盏灯的定价应为22.5元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

26.某校九年级三班为开展“迎2008年北京奥运会”的主题班会活动,派了小林和小明两位同学去学校附近的超市购买钢笔作为奖品.已知该超市的锦江牌钢笔每支8元,红梅牌钢每支4.8元,他们要购买这两种笔共40支.(1)如果他们两人一共带了240元,全部用于购买奖品,那么能买这两种笔各多少支?(2)小林和小明根据主题班会活动的设奖情况,决定所购买的锦江牌钢笔的数量要少于红梅牌钢笔的数量的12,但又不少于红梅牌钢笔的数量的14.如果他们买了锦江牌钢笔x 支,买这两种笔共花了y 元.①请写出y (元)关于x (支)的函数关系式,并求出自变量x 的取值范围;②请帮他们计算一下,这两种笔各购买多少支时,所花的钱最少,此时花了多少元?26. 金泉街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的32;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成. (1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元.工程预算的施工费用为50万元.为缩短工期以减少对住户的影响,拟安排甲、乙两队合作完成这项工程,则工程预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.26.某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=-2x+80(1≤x ≤30,且x 为整数);又知前20天的销售价格1Q (元/件)与销售时间x(天)之间有如下关系:11Q 302x =+(1≤x ≤20,且x 为整数),后10天的销售价格2Q (元/件)与销售时间x(天)之间有如下关系:2Q =45(21≤x ≤30,且x 为整数).(1)试写出该商店前20天的日销售利润1R (元)和后l0天的日销售利润2R (元)分别与销售时间x(天)之间的函数关系式;(2)请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润. 注:销售利润=销售收入一购进成本.26.随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点.据某市交通部门统计,2007年底全市汽车拥有量为180万辆,而截止到2009年底,全市的汽车拥有量已达216万辆.(1)求2007年底至2009年底该市汽车拥有量的年平均增长率;(2)为保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2011年底全市汽车拥有量不超过231.96万辆;另据估计,从2010年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.假定每年新增汽车数量相同,请你计算出该市每年新增汽车数量最多不能超过多少万辆.26.解:(1)设能买锦江牌钢笔x 支,则能买红梅牌钢笔(40)x -支.依题意, 得8 4.8(40)240x x +-=. 解得15x =.40401525x -=-=∴.答:能买锦江牌钢笔15支,红梅牌钢笔25支.(2)①依题意,得8 4.8(40) 3.2192y x x x =+-=+.又由题意,有1(40)21(40)4x x x x ⎧<-⎪⎪⎨⎪-⎪⎩,.≥ 解得4083x <≤. y ∴关于x 的函数关系式为 3.2192y x =+,自变量x 的取值范围是4083x <≤且x 为整数. ②对一次函数 3.2192y x =+,3.20k =>∵,y ∴随x 的增大而增大.∴对4083x <≤,当8x =时,y 值最小. 此时4040832x -=-=, 3.28192217.6y =⨯+=最小(元). 答:当买锦江牌钢笔8支,红梅牌钢笔32支时,所花钱最少,为217.6元.26.解:(1)设乙队单独完成这项工程需要x 天,则甲队单独完成这项工程需要23x 天. 根据题意,得10113012233x x x ⎛⎫ ⎪++= ⎪ ⎪⎝⎭. 解得90x =.经检验,90x =是原方程的根. ····································································································································· 3分 22906033x ∴==. 答:甲、乙两队单独完成这项工程各需要60天和90天. ··································································································· 1分(2)设甲、乙两队合作完成这项工程需要y 天.则有1116090y ⎛⎫+= ⎪⎝⎭. 解得36y =. ································································································································································· 2分需要施工费用:36(0.840.56)50.4⨯+=(万元). ···························································································· 1分 50.450>,∴工程预算的施工费用不够用,需追加预算0.4万元. ······································································································ 1分26.. 解:(1)设该市汽车拥有量的年平均增长率为x 。

相关文档
最新文档