答案圆的解题方法归纳

合集下载

关于圆的题型归纳和解题技巧

关于圆的题型归纳和解题技巧

关于圆的题型归纳和解题技巧
一、题型归纳
1、求圆的半径和面积:
有时会给出圆的弦或者其他部分的参数,通过这些参数可以求出圆的半径和面积;有时可以使用圆的性质,如圆的内接三角形、外接三角形等,来求出圆的半径和面积;有时候还可以使用极坐标系来求解;
2、求圆的直径和周长:
一般来说周长=直径×π,可以利用这个公式求圆的周长;有时可以利用圆的性质,如圆的内接三角形、外接三角形等,来求圆的直径;也可以利用极坐标系来求解;
3、求圆心角:
有时给出的是圆的扇形的面积或者弧长,可以通过求出这个面积或者弧长对应的角度来求出圆心角;有时也给出的是圆弧上一点与圆心的连线,可以利用此线段及其他线段的角度来求出圆心角;
4、求圆的外接矩形或者其他图形:
有时给出的是圆的面积和某种图形的面积,可以计算出圆外接图形的面积,从而求出圆的外接矩形;有时也可以使用圆的性质,如圆的内接三角形、外接三角形等,来求出圆的外接矩形或者其他图形。

二、解题技巧
1、多用圆的性质:
圆的性质是圆的重要组成部分,其中有很多性质都可以用来帮助
解答圆的问题,如圆的内接三角形、外接三角形等;
2、注意圆的关键参数:
在回答圆的问题时,要特别注意特殊参数,如半径、直径等,它们可以使用其他参数来求出;
3、利用极坐标系:
极坐标系是求解圆的一种重要方法,它可以帮助我们简化复杂的问题,使得计算更简单、更快捷;
4、利用其他图形的特殊参数:
有些圆的题目可以利用其他图形的特殊参数来求解,例如外接矩形的长和宽,或者外接三角形的边长等。

圆的解题思路和方法

圆的解题思路和方法

圆的解题思路和方法
圆的解题思路和方法:
圆的概念:圆是由一个特定的中心点和半径构成的一种几何形状。

圆的特征有两个,一是所有的点都等距离其中心点;二是所有的点都
等弧度。

1. 圆的性质:
(1)半径相等:任意两点之间的距离是固定的,这就是圆的最重
要的性质——圆的半径相等,自然定义了圆的等距性。

(2)弧度相等:所有点都等弧度是指任意一点到圆心连接线所组
成的叫锣都是相同角度,即这两条弧都是圆心所在的圆上的一个圆心角,所以也满足圆的弧度等性。

2. 计算:
(1)计算圆的面积:
圆的面积的计算公式为S=πr2,其中S表示圆的面积,r表示圆的半径,π为圆周率,常量。

(2)计算圆的周长:
圆的周长的计算公式为C=2πr,其中C表示圆的周长,r表示圆的半径,π为圆周率,常量。

3. 其他解法:
(1)使用距离公式:可使用距离公式求解,距离公式为
d=(x2−x1)2+(y2−y1)2,若给定两点,求出距离为半径的话,就可以
求出圆的中心点和半径;
(2)使用三角函数:将圆的问题转化为三角函数的求解问题,若
已知一点位置和圆心角,可求出该点在圆上的坐标,根据给定多个点,可还原出圆的中心点和半径;
(3)使用椭圆转换:通过将椭圆转换为圆,可以求出圆的中心点
和半径,即可求出圆的方程;
(4)使用数值方法:使用最小二乘法(Least Square Method)、牛顿法(Newton's Method)等数值方法可求出圆的中心点和半径等参数,从而求出圆的方程。

以上就是关于圆的解题思路和方法的大致概况,可以根据不同情
况选择合适的解题方法,从而解决关于圆的问题。

初中数学 圆的解题方法总结

初中数学  圆的解题方法总结

初中数学圆的解题方法总结情形1. 弦若圆的题目中出现关于弦的相关知识点,要想到弦相关的定理和一些性质,垂径定理、弦心距、勾股定理等.例1.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O 上,且PD∥CB,弦PB与CD交于点F(1)求证:FC=FB;(2)若CD=24,BE=8,求⊙O的直径.分析:(1)根据两平行弦所夹的弧相等,得到弧PC=弧BD,然后由等弧所对的圆周角相等及等角对等边,可以证明FC=FB.(2)连接OC,在Rt△OCE中用勾股定理计算出半径,然后求出直径.证明:(1)∵PD∥CB,∴弧PC=弧BD,∴∠FBC=∠FCB,∴FC=FB.(2)解:如图,连接OC,设圆的半径为r,在Rt△OCE中,OC=r,OE=r﹣8,CE=12,∴r²=(r﹣8)²+12²,解方程得r=13.所以⊙O的直径为26.情形2. 直径出现直径时,要联想圆心角、圆周角等性质,构造等腰三角形、直角三角形等图形。

例2.如图,在⊙O中,将弧BC沿弦BC所在直线折叠,折叠后的弧与直径AB相交于点D,连接CD.(1)若点D恰好与点O重合,则∠ABC=______ °;(2)延长CD交⊙O于点M,连接BM.猜想∠ABC与∠ABM的数量关系,并说明理由.分析:(1)根据折叠的性质和圆周角定理解答即可;(2)作点D关于BC的对称点D',利用对称的性质和圆周角定理解答即可.证明:(1)∵若点D恰好与点O重合,∴∠COD=60°(跳步啦),∴∠ABC=∠OBC=∠COD=30°;(2)∠ABM=2∠ABC,作点D关于BC的对称点D',连接CD',BD',∵对称,∴∠DBC=∠D'BC,DC=D'C,连接CO,D'O,AC,∴∠AOC=2∠ABC,∠D'OC=2∠D'BC,∴∠AOC=∠D'OC,∴AC=D'C,∵DC=D'C,∴AC=DC,∴∠CAD=∠CDA,∵AB是直径,∴∠ACB=90°,∴∠CAD+∠ABC=90°,设∠ABC=α,则∠CAD=∠CDA=90°﹣α,∴∠ACD=180°﹣∠CAD﹣∠CDA=2α,即∠ACD=2∠ABC,∵∠ABM=∠ACD,∴∠ABM=2∠ABC.情形3:切线如果题目给出有切线,我们可以思考添加过切点的半径,连结圆心和切点,利用切线的性质和定理构造出直角或直角三角形,再使用勾股定理解出一些边角关系。

关于圆的题型归纳和解题技巧

关于圆的题型归纳和解题技巧

关于圆的题型归纳和解题技巧
x
一、圆的主要题型
1、给定一个圆,求该圆的圆心坐标
(1)若给出圆的表达式,则此时只需要求出该表达式中的a和b即可;
(2)若给出圆的三点坐标,则此时可以先由这三点构造三角形,并求出其外接圆的圆心;
(3)若给出圆的中点坐标及半径,则此时圆心即为所给的中点坐标。

2、给定一个圆,求该圆的圆周长及面积
(1)若给出圆的表达式,则此时可以求出圆周长及面积;
(2)若给出圆的三点坐标,则此时可以先求出外接圆的圆心,再求出其圆周长及面积;
(3)若给出圆的中点坐标及半径,则此时可以求出圆周长及面积。

3、给定两个圆,求其交点的坐标
(1)若给出两个圆的表达式,则此时可以进行二次方程的求解,求出其交点;
(2)若给出两个圆的中点和半径,则此时可以先求出两个圆的表达式,再求出其交点;
(3)若给出两个圆的三点坐标,则此时可以先求出两个圆的表
达式,再求出其交点。

二、圆的解题技巧
1、把圆的表达式转换成标准圆的表达式,即x2+y2+2gx+2fy+c=0,把不符合标准圆的表达式变成符合标准圆的表达式;
2、根据题目给出的信息,把圆的参数一步步求出,把圆的中点坐标及其他参数按照题目要求结合起来;
3、要注意把圆的表达式排列整齐,给出圆的表达式后,把整理好的表达式带入到题干中,求出答案;
4、根据已知的信息,结合数学知识,把圆的参数一步步求出,然后结合起来求出圆的面积和圆周长;
5、根据已知的两个圆所在的方程,结合数学知识,构造二次曲线,然后再求出两者的共同点,即为两个圆的交点。

圆压轴题题型归纳及方法

圆压轴题题型归纳及方法

圆压轴题题型归纳及方法
圆压轴题是高中数学中常见的题型之一,本文将对圆压轴题进行归纳总结,并介绍解题方法。

一、题型分类
圆压轴题可分为以下几类:
1.圆的相切问题:给定两个圆,求它们的公切线或内切线的位置关系。

2.圆的切线问题:给定一条直线和一个圆,求这条直线与圆的切点位置。

3.圆的位置问题:给定两个圆的位置关系,求它们的大小关系或者位置。

二、解题方法
1.圆的相切问题:
(1)公切线问题:如果两个圆外切,则两个圆的公切线为它们圆心的连线;如果两个圆内切,则它们的公切线为它们圆心的连线。

(2)内切线问题:如果两个圆内切,则它们的内切线为它们圆心的连线;如果两个圆外切,则它们的内切线为它们圆心的连线的延长线。

2.圆的切线问题:
(1)求切线方程:先求出圆心与直线的距离,然后根据勾股定理求出切点坐标,再根据切点坐标和切线斜率求出切线方程。

(2)判别式:通过判别式判断直线与圆的位置关系,如果判别式
为负,则直线与圆没有交点,如果判别式为0,则直线与圆有一个交点,如果判别式为正,则直线与圆有两个交点。

3.圆的位置问题:
(1)大小关系:判断两个圆的半径大小关系,如果一个圆的半径大于另一个圆的半径,则它的面积也大于另一个圆的面积。

(2)位置关系:根据两个圆的圆心距离和两个圆的半径之和与差的大小关系,判断它们的位置关系,如重合、内含、外离、相交等。

以上是圆压轴题的归纳总结及解题方法,希望对同学们的学习有所帮助。

天津中考数学圆的题的解题技巧

天津中考数学圆的题的解题技巧

解题技巧一:掌握圆的基本概念1. 圆的定义:平面上与一个定点的距离等于r的全部点的集合,这个定点叫做圆心,距离r叫做半径。

2. 圆的元素:圆心、半径、直径、弧、弦、切线、切点等。

3. 圆的公式:圆的周长C=2πr,圆的面积S=πr²。

4. 圆的相关定理:相交弦定理、相交弧定理等。

解题技巧二:掌握圆的性质1. 圆的性质:相等弧对应的圆周角相等,相等弦对应的圆周角相等,等腰三角形的高与底的积等于弦的二倍等。

2. 圆的判定方法:判定两个角是否为圆周角的方法有:是否在同一个圆内;是否相等;是否有公共点。

判定两条线段是否是圆的切线的条件是:两条直线是否有公共点;是否存在一个等于半径长的线段。

3. 圆的位似性质:圆内接四边形的三对角顶点角之和为360°,圆外接四边形的对角之和为360°。

解题技巧三:掌握圆的作图方法1. 画圆的基本步骤:确定圆心、半径;用圆规或者圆规尺作出圆心;用圆规或者定长圆弧尺作出半径。

2. 圆的相关作图方法:圆的切线、圆的切点、平行于已知直线的直线上某点到圆的切点等。

解题技巧四:掌握圆的相关计算方法1. 计算圆的周长和面积2. 计算圆的相关角度3. 计算圆内接四边形或者外接四边形的顶点位置、角度等。

总结:天津中考数学中关于圆的题目难度适中,主要考核考生对圆的基本概念和性质的掌握程度,以及对圆的相关计算和作图方法的应用能力。

考生在备考过程中需加强对圆的定义、性质、公式的记忆和理解,掌握圆的相关计算和作图方法,并通过大量的练习题来提高解题能力。

通过巩固基础知识、强化实际应用能力,考生们一定能够在中考数学中圆的题目中取得好成绩。

解题技巧五:解题方法与实例分析在解答天津中考数学中关于圆的题目时,考生可以采用以下方法进行解题:1. 圆的基本概念题目当遇到关于圆的基本概念的题目时,首先需要理清题目中圆的定义、元素以及相关公式和定理,然后根据所给定的条件,应用数学知识进行分析和推理,得出结论。

高考数学命题热点名师解密:专题(25)圆的解题方法(文)(含答案)

高考数学命题热点名师解密:专题(25)圆的解题方法(文)(含答案)

专题26 圆的解题方法一.【学习目标】1.掌握圆的标准方程和一般方程,会用圆的方程及其几何性质解题.2.能根据所给条件选取适当的方程形式,利用待定系数法求出圆的方程,解决与圆有关的问题.3.能利用直线与圆、圆与圆的位置关系的几何特征判断直线与圆、圆与圆的位置关系,能熟练解决与圆的切线和弦长等有关的综合问题;体会用代数法处理几何问题的思想.二.方法规律总结1.在求圆的方程时,应根据题意,合理选择圆的方程形式.圆的标准方程突出了圆心坐标和半径,便于作图使用;圆的一般方程是二元一次方程的形式,便于代数运算;而圆的参数方程在求范围和最值时应用广泛.同时,在选择方程形式时,应熟悉它们的互化.如果问题中给出了圆心与圆上的点两坐标之间的关系或圆心的特殊位置时,一般用标准方程;如果给出圆上的三个点的坐标,一般用一般方程.2.在二元二次方程中x2和y2的系数相等并且没有xy项,只是表示圆的必要条件而不是充分条件.3.在解决与圆有关的问题时,要充分利用圆的几何性质,这样会使问题简化.涉及与圆有关的最值问题或范围问题时应灵活、恰当运用参数方程.4.处理直线与圆、圆与圆的位置关系常用几何法,即利用圆心到直线的距离,两圆心连线的长与半径和、差的关系判断求解.5.求过圆外一点(x0,y0)的圆的切线方程:(1)几何方法:设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0.由圆心到直线的距离等于半径,可求得k,切线方程即可求出.(2)代数方法:设切线方程为y-y0=k(x-x0),即y=kx-kx0+y0,代入圆方程,得一个关于x的一元二次方程,由Δ=0,求得k,切线方程即可求出.(以上两种方法只能求斜率存在的切线,斜率不存在的切线,可结合图形求得).6.求直线被圆截得的弦长(1)几何方法:运用弦心距、半径及弦的一半构成的直角三角形,计算弦长|AB|=2·r2-d2.(2)代数方法:运用韦达定理.弦长|AB|=[(x A+x B)2-4x A·x B](1+k2).7.注意利用圆的几何性质解题.如:圆心在弦的垂直平分线上,切线垂直于过切点的半径,切割线定理等,在考查圆的相关问题时,常结合这些性质一同考查,因此要注意灵活运用圆的性质解题. 三.【典例分析及训练】例1.圆:与轴正半轴交点为,圆上的点,分别位于第一、二象限,并且,若点的坐标为,则点的坐标为()A. B. C. D.【答案】B【解析】由题意知,,设的坐标为,则, ,,因为,所以,即,又,联立解得或,因为在第二象限,故只有满足,即.故答案为B.练习1.已知圆上的动点和定点,则的最小值为()A. B. C. D.【答案】D【解析】如图,取点,连接,,,,,,,因为,当且仅当三点共线时等号成立,的最小值为的长,,,故选D.【点睛】本题主要考查圆的方程与几何性质以及转化与划归思想的应用,属于难题. 转化与划归思想解决高中数学问题的一种重要思想方法,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,解答本题的关键是将转化为.练习2.已知点为函数的图象上任意一点,点为圆上任意一点,则线段的长度的最小值为()A. B. C. D.【答案】A【解析】依题意,圆心为,设点的坐标为,由两点间距离公式得,设,,令解得,由于,可知当时,递增,时,,递减,故当时取得极大值也是最大值为,故,故时,且,所以,函数单调递减.当时,,,当时,,即单调递增,且,即,单调递增,而,故当时,函数单调递增,故函数在处取得极小值也是最小值为,故的最小值为,此时.故选A.练习3.直线l是圆C1:(x+1)2+y2=1与圆C2:(x+4)2+y2=4的公切线,并且l分别与x轴正半轴,y轴正半轴相交于A,B两点,则△AOB的面积为A. B. C. D.【答案】A【解析】如图,设OA=a,OB=b,由三角形相似可得:,得a=2.再由三角形相似可得:,解得b=.∴△AOB的面积为.故选A.(二)圆的一般方程例2.若由方程x2-y2=0和x2+(y-b)2=2所组成的方程组至多有两组不同的实数解,则实数b的取值范围是( )A.b≥2或b≤-2 B.b≥2或b≤-2 C.-2≤b≤2 D.-2≤b≤2【答案】B练习1.若圆的圆心在第一象限,则直线一定不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】A【解析】因为圆的圆心坐标为,由圆心在第一象限可得,所以直线的斜率,轴上的截距为,所以直线不过第一象限.练习2.若方程a2x2+(a+2)y2+2ax+a=0表示圆,则a的值为A.a=1或a=–2 B.a=2或a=–1 C.a=–1 D.a=2【答案】C【解析】若方程a2x2+(a+2)y2+2ax+a=0表示圆,则,解得a=–1.故答案为:C(三)点与圆的位置关系例3.例3.过点作直线的垂线,垂足为M,已知点,则当变化时,的取值范围是A. B. C. D.【答案】B练习 1.已知点,,是圆内一点,直线,,,围成的四边形的面积为,则下列说法正确的是()A. B. C. D.【答案】A【解析】由已知,四条直线围成的四边形面积,故选A.练习2.设点M(3,4)在圆外,若圆O上存在点N,使得,则实数r的取值范围是()A. B. C. D.【答案】C【解析】如图,要使圆O:x2+y2=r2(r>0)上存在点N,使得∠OMN=,则∠OMN的最大值大于或等于时一定存在点N,使得∠OMN=,而当MN与圆相切时∠OMN取得最大值,此时OM=5,ON=,又点M(3,4)在圆x2+y2=r2(r>0)外,∴实数r的取值范围是.故选:C.(四)圆的几何性质例4.如图,在平面直角坐标系内,已知点,,圆C的方程为,点P为圆上的动点.求过点A的圆C的切线方程.求的最大值及此时对应的点P的坐标.【答案】(1)或;(2)最大值为,.【解析】当k存在时,设过点A切线的方程为,圆心坐标为,半径,,解得,所求的切线方程为,当k不存在时方程也满足;综上所述,所求的直线方程为:或;设点,则由两点之间的距离公式知,要取得最大值只要使最大即可,又P为圆上的点,,,此时直线OC:,由,解得舍去或,点P的坐标为练习1.已知圆心在x轴正半轴上的圆C与直线相切,与y轴交于M,N两点,且.Ⅰ求圆C的标准方程;Ⅱ过点的直线l与圆C交于不同的两点D,E,若时,求直线l的方程;Ⅲ已知Q是圆C上任意一点,问:在x轴上是否存在两定点A,B,使得?若存在,求出A,B两点的坐标;若不存在,请说明理由.【答案】(I);(II)或;(III)存在,或,满足题意.【解析】Ⅰ由题意知圆心,且,由知中,,,则,于是可设圆C的方程为又点C到直线的距离为,所以或舍,故圆C的方程为,Ⅱ设直线l的方程为即,则由题意可知,圆心C到直线l的距离,故,解得,又当时满足题意,因此所求的直线方程为或,Ⅲ方法一:假设在x轴上存在两定点,,设是圆C上任意一点,则即,则,令,解得或,因此存在,,或,满足题意,方法二:设是圆C上任意一点,由得,化简可得,对照圆C的标准方程即,可得,解得解得或,因此存在,或,满足题意.练习2.设点P是函数图象上任意一点,点Q坐标为,当取得最小值时圆与圆相外切,则的最大值为A. B. C. D.【答案】C【解析】根据题意,函数y,即(x﹣1)2+y2=4,(y≤0),对应的曲线为圆心在C(1,0),半径为2的圆的下半部分,又由点Q(2a,a﹣3),则Q在直线x﹣2y﹣6=0上,当|PQ|取得最小值时,PQ与直线x﹣2y﹣6=0垂直,此时有2,解可得a=1,圆C1:(x﹣m)2+(y+2)2=4与圆C2:(x+n)2+(y+2)2=9相外切,则有3+2=5,变形可得:(m+n)2=25,则mn,故选:C.练习3.已知,是单位向量,•0.若向量满足||=1,则||的最大值为()A. B. C. D.【答案】C【解析】∵||=||=1,且,∴可设,,.∴.∵,∴,即(x﹣1)2+(y﹣1)2=1.∴的最大值.故选:C.练习4.设P,Q分别是圆和椭圆上的点,则P,Q两点间的最大距离是( )A. B.C. D.【答案】C【解析】圆的圆心为M(0,6),半径为,设,则,即,∴当时,,故的最大值为.故选C.(五)轨迹问题例 5.已知线段AB的端点B的坐标为(3,0),端点A在圆上运动;(1)求线段AB中点M的轨迹方程;(2)过点C(1,1)的直线m与M的轨迹交于G、H两点,当△GOH(O 为坐标原点)的面积最大时,求直线m的方程并求出△GOH面积的最大值.(3)若点C(1,1),且P在M轨迹上运动,求的取值范围.【答案】(1);(2);(3)【解析】(1)解:设点由中点坐标公式有又点在圆上,将点坐标代入圆方程得:点的轨迹方程为:(2)令,则当,即时面积最大为2又直线过点,,∴到直线的距离为,当直线斜率不存在时,到的距离为1不满足,令故直线的方程为:(3)设点,由于点则,令有,由于点在圆上运动,故满足圆的方程.当直线与圆相切时,取得最大或最小故有所以练习1.已知线段AB的端点B的坐标为(3,0),端点A在圆上运动;(1)求线段AB中点M的轨迹方程;(2)过点C(1,1)的直线m与M的轨迹交于G、H两点,求以弦GH 为直径的圆的面积最小值及此时直线m的方程.学-科网(3)若点C(1,1),且P在M轨迹上运动,求的取值范围.(O 为坐标原点)【答案】(1);(2)圆的面积最小值(3)【解析】(1)解:设点由中点坐标公式有又点在圆上,将点坐标代入圆方程得:点的轨迹方程为:(2)由题意知,原心到直线的距离∴当即当时,弦长最短,此时圆的面积最小,圆的半径,面积又,所以直线斜率,又过点故直线的方程为:(3)设点,由于点法一:所以,令有,由于点在圆上运动,故满足圆的方程. 当直线与圆相切时,取得最大或最小故有所以法二:∴从而练习2.四棱锥P-ABCD中,AD⊥面PAB,BC⊥面PAB,底面ABCD为梯形,AD=4,BC=8,AB=6,∠APD=∠CPB,满足上述条件的四棱锥的顶点P的轨迹是()A.圆的一部分 B.椭圆的一部分 C.球的一部分 D.抛物线的一部分【答案】A练习3.已知椭圆的左右焦点分别为,过的直线与过的直线交于点,设点的坐标,若,则下列结论中不正确的是()A.B.C.D.【答案】A【解析】由椭圆的左右焦点分别为F1(﹣1,0),F2(1,0),过F1的直线l1与过F2的直线l2交于点P,且l1⊥l2,∴P在线段F1F2为直径的圆上,故x02+y02=1,∴1,故A错误,B正确;3x02+2y02>2x02+2y02=2(x02+y02)=2>1,故C正确;由圆x2+y2=1在P(x0,y0)的切线方程为:x0x+y0y=1,如图,∵坐标原点O(0,0)与点()在直线x0x+y0y=1的同侧,且x0×0+y0×0=0<1,∴,故D正确.∴不正确的选项是A.故选:A.练习4.已知圆C: (为锐角) ,直线l:y=kx,则A.对任意实数k与,直线l和圆C相切 B.对任意实数k与,直线l和圆C有公共点C.对任意实数k与,直线l和圆C相交 D.对任意实数k与,直线l和圆C相离【答案】B【解析】由题意,圆心坐标为:,所以圆心的轨迹方程为:,所以圆心与原点的距离为1,所以圆必过原点.由于直线过原点,所以直线与圆必有交点.故选B.(六)直线与圆的位置关系例6.已知抛物线的顶点在坐标原点,其焦点在轴正半轴上,为直线上一点,圆与轴相切(为圆心),且,关于点对称.(1)求圆和抛物线的标准方程;(2)过的直线交圆于,两点,交抛物线于,两点,求证:.【答案】(1)的标准方程为.的标准方程为(2)见证明【解析】(1)设抛物线的标准方程为,则焦点的坐标为.已知在直线上,故可设因为,关于对称,所以,解得所以的标准方程为.因为与轴相切,故半径,所以的标准方程为.(2)由(1)知,直线的斜率存在,设为,且方程为则到直线的距离为,所以,由消去并整理得:.设,,则,,.所以因为,,,所以所以,即.练习1.已知以点为圆心的圆经过点和,线段的垂直平分线交圆于点和,且.(1)求直线的方程;(2)求圆的方程.【答案】(1);(2)或.【解析】(1)直线的斜率,的中点坐标为直线的方程为(2)设圆心,则由点在上,得.①又直径,,.②由①②解得或,圆心或圆的方程为或练习2.已知直线,曲线,若直线与曲线相交于、两点,则的取值范围是____;的最小值是___.【答案】【解析】直线l:kx﹣y k=0过定点(1,),曲线C为半圆:(x﹣2)2+y2=4(y≥0)如图:由图可知:k OP,k PE,∴;要使弦长AB最小,只需CP⊥AB,此时|AB|=22,故答案为:[,];.练习3.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M与两定点A、B的距离之比为λ(λ>0,λ≠1),那么点M的轨迹就是阿波罗尼斯圆.下面,我们来研究与此相关的一个问题.已知圆:x2+y2=1和点,点B(1,1),M为圆O上动点,则2|MA|+|MB|的最小值为_____.【答案】【解析】如图所示,取点K(﹣2,0),连接OM、MK.∵OM=1,OA=,OK=2,∴,∵∠MOK=∠AOM,∴△MOK∽△AOM,∴,∴MK=2MA,∴|MB|+2|MA|=|MB|+|MK|,在△MBK中,|MB|+|MK|≥|BK|,∴|MB|+2|MA|=|MB|+|MK|的最小值为|BK|的长,∵B(1,1),K(﹣2,0),∴|BK|=.故答案为:.练习4.已知直线l:mx﹣y=1,若直线l与直线x+m(m﹣1)y=2垂直,则m的值为_____,动直线l:mx﹣y=1被圆C:x2﹣2x+y2﹣8=0截得的最短弦长为_____.【答案】0或2 .(七)圆与圆的位置关系例1.在平面直角坐标系中,已知点和直线:,设圆的半径为1,圆心在直线上.(Ⅰ)若圆心也在直线上,过点作圆的切线.(1)求圆的方程;(2)求切线的方程;(Ⅱ)若圆上存在点,使,求圆心的横坐标的取值范围.【答案】(Ⅰ)(1)或(2)或(Ⅱ)【解析】(Ⅰ)(1)由得圆心为,∵圆的半径为1,∴圆的方程为:.(2)由圆方程可知过的切线斜率一定存在,设所求圆的切线方程为,即,∴,解之得:或,∴所求圆的切线方程为:或.即或.(Ⅱ)∵圆的圆心在直线:上,设圆心为,则圆的方程为:,又∵,∴设为,则整理得:,设为圆,∴点应该既在圆上又在圆上∴圆和圆有公共点,∴,即:,解之得:即的取值范围为:.练习1.在平面直角坐标系中,已知的顶点坐标分别是,,,记外接圆为圆.(1)求圆的方程;(2)在圆上是否存在点,使得?若存在,求点的个数;若不存在,说明理由.【答案】(1)(2)存在,且个数为2【解析】(1)设外接圆的方程为,将代入上述方程得:解得则圆的方程为(2)设点的坐标为,因为,所以化简得:.即考查直线与圆的位置关系点到直线的距离为所以直线与圆相交,故满足条件的点有两个。

圆的证明题解题技巧

圆的证明题解题技巧

圆的证明题解题技巧圆的证明题解题技巧一、前置知识在学习圆的证明之前,需要掌握以下基础知识:1. 直线的性质:平行、垂直、夹角等概念及其性质。

2. 三角形的性质:内角和为180度、等腰三角形、直角三角形等概念及其性质。

3. 相似三角形:比例关系、相似定理等概念及其应用。

4. 同余三角形:对应边、对应角相等的三角形。

5. 利用构造方法求解几何问题:如作垂线、作中线、作平分线等方法。

二、圆的定义与性质圆是由平面上所有到定点距离相等的点组成的图形。

其中,定点称为圆心,到圆心距离称为半径。

圆上任意两点间的距离称为弧长,弧长所对应的圆心角称为弧度。

1. 圆心角与弧度关系当一个圆心角所对应的弧长恰好为半径时,这个圆心角称为一弧度。

因此,一周360度对应着2π弧度。

2. 圆内接四边形如果一个四边形的四个顶点都在同一圆上,那么这个四边形就是圆内接四边形。

圆内接四边形的两组对角线互相垂直且交点在圆心。

3. 圆的切线与切点如果一条直线与圆相切,那么这条直线称为圆的切线。

与切点相对应的半径垂直于切线。

三、常见证明题型及技巧1. 证明两条直线相交于圆上如果已知两条直线AB、CD分别与一个圆相交于点A、B、C、D,我们需要证明这两条直线相交于圆上。

技巧:连接AC和BD,利用三角形性质和同余三角形定理可以证明AC和BD垂直且交于O(圆心)。

2. 证明一个三角形为等腰三角形如果已知一个三角形ABC中AB=AC,我们需要证明这个三角形是等腰三角形。

技巧:以A为圆心作一个以AB为半径的圆,并延长BC至与该圆相交于D。

连接AD并证明AD垂直BC即可得出结论。

3. 证明一个四边形为菱形如果已知一个四边形ABCD中AB=BC=CD=DA,我们需要证明这个四边形是菱形。

技巧:以A为圆心作一个以AB为半径的圆,并分别延长AD、BC至与该圆相交于E、F。

连接AE、BF并证明AE和BF垂直且交于O(圆心)即可得出结论。

4. 证明一个四边形为矩形如果已知一个四边形ABCD中AB=CD且BC=DA,我们需要证明这个四边形是矩形。

初三圆的解题技巧和方法

初三圆的解题技巧和方法

初三圆的解题技巧和方法
初三圆的解题技巧和方法可以从以下几个方面来总结:
1.熟练掌握基本概念和性质:对于圆的基本概念和性质要熟练掌
握,比如圆的半径、直径、弧、弦等概念,以及圆的一些重要性质,如圆心角与弧的关系、垂径定理等。

2.熟记公式定理:圆中有许多重要的公式定理,比如切割线定
理、切线长定理、相交弦定理等,这些定理在解题中有着重要的应用。

3.学会画图和识图:圆的问题往往与图形密切相关,因此要学会
画图和识图。

在解题时,要根据题目描述的情境,画出相应的图形,以便更好地解决问题。

4.掌握解题思路:对于圆的题目,要掌握一些基本的解题思路。

比如对于一个与圆相关的证明题,可以通过分析题目中的条件和结论,结合已知的定理和性质,逐步推导出证明的思路;对于一个求解问题,可以通过分析题目中的条件和要求,结合已知的公式定理,找到求解的突破口。

5.多做练习:要想提高圆的解题能力,多做练习是关键。

可以通
过大量的练习来加深对圆的基本概念、性质、公式定理的理解和掌握,提高解题的速度和准确性。

6.善于总结和反思:在做题过程中,要善于总结和反思。

对于做
错的题目,要分析原因,找出自己的薄弱点,以便更好地提
高;对于做对的题目,也要总结思路和方法,以便以后遇到类似的问题可以更快地解决。

总之,要想提高圆的解题能力,需要从多个方面入手,不断加强基本概念和性质的理解和掌握,多做练习并善于总结和反思。

关于圆的几何证明计算题的解题方法

关于圆的几何证明计算题的解题方法

关于圆的几何证明计算题的解题方法经过圆心的弦是直径;圆上任意两点间的部分叫做圆弧,简称弧;圆上任意一条直径的两个端点分圆成两条弧,每一条弧叫做半圆;大于半圆弧的弧叫优弧,小于半圆弧的弧叫做劣弧;由弦及其所对的弧组成的图形叫做弓形。

(1)当两圆外离时,d>R_+r;(2)当两圆相外切时,d=R_+r;(3)当两圆相交时,R_-r<d<R_+r(R≥r);(4)当两圆内切时,d=R_-r(R>r);(4)当两圆内含时,d<R_-r。

其中,d为圆心距,R、r分别是两圆的半径。

如何判定四点共圆,我们主要有以下几种方法:(1)到一定点的距离相等的n个点在同一个圆上;(2)同斜边的直角三角形的各顶点共圆;(3)同底同侧相等角的三角形的各顶点共圆;(4)如果一个四边形的一组对角互补,那么它的四个顶点共圆;(5)如果四边形的一个外角等于它的内对角,那么它的四个顶点共圆;(6)四边形ABCD的对角线相交于点P,若PA_*PC=PB_*PD,则它的四个顶点共圆;(7)四边形ABCD的一组对边AB、DC的延长线相交于点P,若PA_*PB=PC_*PD,则它的四个顶点共圆。

1、作直径上的圆周角当告诉了一条直径,一般通过作直径上的圆周角,利用直径所对的圆周角是直角这一条件来证明问题.2、作弦心距当告诉圆心和弦,一般通过过圆心作弦的垂线,利用弦心距平分弦这一条件证明问题.3、过切点作半径当含有切线这一条件时,一般通过把圆心和切点连起来,利用切线与半径垂直这一性质来证明问题.4、作直径当已知条件含有直角,往往通过过圆上一点作直径,利用直径所对的圆周角为直角这一性质来证明问题.5、作公切线当已知条件中含两圆相切这一条件,往往通过过这个切点作两圆的公切线,通过公切线找到两圆之间的关系.6、作公共弦当含有两圆相交这一条件时,一般通过作两圆的公共弦,由两圆的弦之间的关系,找出两圆的角之间的关系.7、作两圆的连心线若已知中告诉两圆相交或相切,一般通过作两圆的连心线,利用两相交圆的连心线垂直平分公共弦或;两相切圆的连心线必过切点来证明问题.8、作圆的切线若题中告诉了我们半径,往往通过过半径的外端作圆的切线,利用半径与切线垂直或利用弦切角定理来证明问题.9、一圆过另一圆的圆心时则作半径题中告诉两个圆相交,其中一个圆过另一个圆的圆心,往往除了通过作两圆的公共弦外,还可以通过作圆的半径,利用同圆的半径相等来证明问题.10、作辅助圆当题中涉及到圆的切线问题(无论是计算还是证明)时,通常需要作辅助线。

初中圆的解题方法

初中圆的解题方法

初中圆的解题方法
初中数学中,圆是一个重要的知识点。

掌握圆的解题方法对于提高数学成绩至关重要。

下面是一些常见的初中圆的解题方法:
1. 垂径定理及其推论:垂径定理是圆的一个重要性质,它告诉我们通过圆心并与圆相交的直径将平分其他相交的弦,并且平分弧。

利用这个定理,我们可以解决与弦、弧和直径有关的问题。

2. 圆周角定理:圆周角定理告诉我们与圆相交的角的度数等于其所夹弧所对的圆心角的度数的一半。

这个定理在解决与圆周角有关的问题时非常有用。

3. 切线长定理:切线长定理说明,通过圆外一点引圆的两条切线,它们的切线长相等。

这个定理在解决与切线有关的问题时很有用。

4. 弦长公式:弦长公式是计算弦长的关键公式,它告诉我们如何使用圆心角和半径来计算弦长。

5. 面积和周长公式:圆的面积和周长公式是解决与面积和周长有关问题的关键。

6. 代数方法:在解决与圆有关的综合问题时,我们经常需要使用代数方法。

例如,设未知数、建立方程或不等式,然后解方程或不等式来找到答案。

7. 构造法:构造法是一种常用的解题方法,它通过构造辅助线或图形来解决问题。

例如,在解决与切线有关的问题时,我们经常需要构造半径和切线之间的垂直关系。

总之,掌握这些解题方法对于解决初中圆的题目非常重要。

通过不断练习和总结,你可以更好地掌握这些方法,提高自己的数学成绩。

关于圆的题型归纳和解题技巧

关于圆的题型归纳和解题技巧

关于圆的题型归纳和解题技巧
一、关于圆的题型归纳
1、求圆的周长、面积;
2、求圆的弦长、切线长;
3、求圆的外接矩形面积;
4、求圆的内接正三角形面积;
5、求圆的内切正三角形面积;
6、求扇形的面积;
7、求弧长、圆心角;
8、求圆的关系题;
9、求圆的判断题;
10、求圆外一点与圆的关系;
11、求外切圆与内切圆;
12、求圆的标准方程;
13、求圆的对称性;
14、求圆的有关数据推导;
15、求圆的分析绘图;
16、求圆的位置关系;
17、求圆的等价关系;
18、求圆的数字抽象;
二、关于圆的解题技巧
1、对圆的判断题,可以用圆心、半径、圆周等参数来判断;
2、圆内外的点是成对称的,可利用对称性解题;
3、求外切圆与内切圆时,可以找到相同的弦长、半径最大值最小值;
4、求弧长时,可以用圆心角的正弦余弦公式,通过求出弧长和半径的比值来计算出弧长;
5、求扇形的面积,可以用圆心角的正弦余弦公式求出扇形的三角形面积,再乘上圆心角的度数;
6、求两圆之间的关系时,可以用其半径大小比较,进行判断;
7、圆的位置关系一般利用同心圆或相切圆的方式来进行求解;
8、求圆的数字抽象时,要根据题目中提到的圆的参数,抽取出通用的圆的方程;
9、求圆的等价关系,可以用圆的标准方程,结合圆的圆心和半径,进行求解;
10、求圆的参数关系时,可以根据圆的标准方程来求出圆的参数和面积等;
11、圆的分析绘图时,要把握好图形的特征,找出圆的圆心,半径,角度等关系;
12、求圆的有关数据的推导时,可以用圆的标准方程,结合圆的圆心和半径等求解。

关于圆的题型归纳和解题技巧

关于圆的题型归纳和解题技巧

关于圆的题型归纳和解题技巧
一、圆的题型归纳
1. 直线与圆的位置关系:直线与圆可以相切、相交、外切、内切。

2. 圆的性质:取点到圆心的距离相等;圆两点到圆心的连线,长度相等,角度相等;圆周上的点,到圆心两条连线的比值相等。

3. 圆心角:圆心角及其扇形的面积,与圆上两点的距离有关。

4. 关于圆的全等:两个半径相等的圆,它们的圆心角两端的线段的角度也相等;重心相等的圆,它们的圆心角也是相等的。

5. 关于圆的切线:圆上的点到圆心连线,为切线;圆上两点连线为切线;任一点到圆心的连线与任一点到圆上另外一点的连线的夹角为切线。

二、解题技巧
1. 图形分析法:根据题意绘制出合理的几何图形,对圆形的部分应尽量详细地描绘出来,综合分析各个部分的相互关系,以此判断圆形的计算结果。

2. 数字分析法:根据数据来分析圆形的特性,比如圆的半径是给定的,那么可以根据圆的性质和圆心角来推算其他参数的值;又如圆心角的角度是已知的,则可以推算出其它参数的值。

3. 结论法:圆周上的点,所到圆心的连线的比值都是相同的;圆心角的扇形面积和它的的圆心角的角度有关。

这些基本性质可以在解题中灵活地运用,通过比较不同扇形的面积来判断其可行的解,从
而推断出解题的具体值。

中考圆的综合题解题技巧

中考圆的综合题解题技巧

中考圆的综合题解题技巧
中考圆的综合题是中考数学中的重点难点之一,需要掌握一定的解题技巧。

以下是关于中考圆的综合题解题技巧的详细讲解:
1. 熟练掌握圆的基本性质
在解题前,要熟练掌握圆的基本性质,如圆心角、圆周角、弧长公式、弦长公式等。

这些基本性质是解题的基础,只有熟练掌握了这些知识点,才能更好地解决综合题。

2. 确定已知条件和求解目标
在解题时,首先要明确已知条件和求解目标,根据题目给出的条件,确定需要求解的未知量。

然后,可以根据已知条件和求解目标,将题目转化为不同形式的方程或几何关系。

3. 运用平面几何图形绘制技巧
在解决综合题时,可以通过平面几何图形的绘制来帮助自己更好地理解题目。

可以根据题目给出的条件,画出对应的图形,从而更好地确定几何关系,进而解决问题。

4. 运用代数方法解题
在解决综合题时,还可以运用代数方法,通过列方程求解未知量。

在列方程时,需要根据题目的要求,选择适当的未知量,并根据已知条件列出方程。

通过解方程求解未知量,从而得到答案。

5. 综合运用多种方法
在解决综合题时,还可以综合运用多种方法,如平面几何图形绘制、代数方法、解方程、等比例等。

通过综合运用多种方法,可以更好地解决复杂的综合题。

综上所述,中考圆的综合题需要掌握一定的解题技巧,包括熟练掌握圆的基本性质、确定已知条件和求解目标、运用平面几何图形绘制技巧、运用代数方法解题以及综合运用多种方法等。

只有掌握了这些技巧,才能更好地解决中考圆的综合题。

六年级数学圆的面积应用题题型分类解题方法

六年级数学圆的面积应用题题型分类解题方法

六年级数学圆的面积应用题题型分类解题方法一、基础知识梳理1. 圆的面积公式:S=πr²或S=1/4πd²,其中,S代表圆的面积,r或d代表圆的半径,π是圆周率,约等于3.14。

2. 题目中常出现的量:圆的半径、直径、周长、面积等。

二、题型分类及解题方法1. 已知圆的半径或直径求面积或周长【解题方法】根据圆的面积公式或周长公式求解。

【例题】已知一个圆的半径为3cm,求这个圆的面积。

【解法】S=πr²=3.14×3²=28.26(cm²)2. 已知与圆相关的一些数据求圆的面积的最大值或最小值【解题方法】找到一个面积最大或最小的条件,根据圆的面积公式求解。

【例题】一个圆形的跑道,直径为10m,求跑道面积的最大值。

【分析】跑道宽度适当,使其一边为直边,另一边为弧边时面积最大。

半径为5m时面积最大,S=πr²-1/4πd²=π(5²-5²)=πm²3. 圆与其它图形的组合应用题【解题方法】分析题目中所给条件,将圆与其它图形相结合进行解题。

【例题】一个圆形花坛的直径是8m,中间有一个正方形花圃,边长为2m,求花坛总面积。

【分析】首先求出圆形花坛的面积,再减去正方形花坛的面积即可得到花坛总面积。

S圆=πr²=3.14×(8/2)²=50.24(m²),S正=2×2=4(m²),总面积=S圆-S正=50.24-4=46.24(m²)三、总结解决圆的面积应用题,首先要熟悉圆的面积公式,并能够根据公式进行求解。

同时,要能够找到题目中的一些条件,将这些条件与圆的面积相结合进行解题。

在解决圆与其它图形的组合应用题时,需要将圆与其它图形相结合进行分析。

解题过程中要注意单位统一。

解题技巧专题:圆中的最值问题(含隐圆问题)

解题技巧专题:圆中的最值问题(含隐圆问题)
思路分析:
8.如图,已知⊙O的半径为m,点C为直径AB延 长线上一点,BC=m.过点C任作一直线l,若l上总 存在点P,使过P所作的⊙O的两切线互相垂直, 则∠ACP的最大值等于 45°.
解析:设PM、PN是过P所作的⊙O的两切线且互 相垂直,则∠MON=90°.∴四边形PMON是正方 形.根据勾股定理求得OP= 2m.∴P点在以O为圆 心,以 2m长为半径的大圆⊙O上.过C点作大 ⊙O的切线,切点即为P点,此时∠ACP有最大值, 如图所示.∵PC是大圆⊙O的切线, ∴OP⊥PC.∵OC=2m,OP= 2 m, ∴PC= OC2 OP2= 2m.∴OP=PC. ∴∠ACP=45°. ∴∠ACP的最大值等于45°.故答案为45°.
(2)解:∵OF⊥AC,∴AF=CF.
而OA=OB,
∴OF为△ACB的中位线. ∴OF= 1 BC=3.
2 ∴DF=OD-OF=5-3=2.
(3)若⊙O的半径为5,∠DOA=80°,点P是线段 AB上任意一点,试求出PC+PD的最小值. (3)解:作C点关于AB的对称点C′,连接C′D交AB于 P,连接OC,如图. ∵PC=PC′, ∴PD+PC=PD+PC′=DC′. ∴此时PC+PD的值最小. ∵ AD=CD,∴∠COD=∠AOD=80°.
9.如图,P是矩形ABCD内一点,AB=4,AD=2, AP⊥BP,则当线段DP最短时,CP= 2 3 .
解析:以AB为直径作半圆O,连接OD,与半圆O交 于==O2点BP2=,′,12∠当AAB点D=PO2与=.∵P∠′A重ADO合=D时2=,,∠∠DOBPDA最CD短==,4950则°°A.,∴O∴=DPOO′=DP′ OD-OP′=2 2-2.过P′作P′E⊥CD于点E,则易得 P′E=DE=2- 2.∴CE=CD- DE= 2+2.∴CP′= PE2 CE2 =2 3.故答案为2 3.

圆的最值问题求解四法

圆的最值问题求解四法

2023年9月上半月㊀解法探究㊀㊀㊀㊀圆的最值问题求解四法◉云南省普洱市孟连县第一中学㊀孙宝恩㊀㊀摘要:与圆有关的最值问题是近年来高考数学的热点之一,它着重考查数形结合与转化思想.求圆的最值问题 四化法 的基本思路是,利用平面几何知识,或利用圆的参数方程,或设圆上点的坐标,将其转化为函数的最值问题.关键词:化为斜率法;化为截距法;化为距离法;化为三角函数法㊀㊀与圆有关的最值问题,因为其代数式具有明显的几何意义,所以应优先考虑数形结合法.运用数形结合法求最值,既可以借助图形直观获得简捷解法,又可避免因对限制条件考虑不周造成的失误,还有利于沟通数学各个分支,深化思维,全面提高学生数学综合素质[1].涉及与圆有关的最值问题,可借助圆的几何性质,并根据代数式的几何意义,利用数形结合思想来求解.一般情况下,求形如t =y -bx -a的最值问题,可转化为动直线的斜率问题;求形如t =a x +b y +c 的最值问题,可转化为动直线的截距问题;求形如(x -a )2+(y -b )2的最值问题,可转化为动点到定点的距离问题.另外,还可以通过建立目标函数求最值.与圆有关的最值问题,既是高中数学中的难点问题,又是近年来高考中的热点题型,因此有必要熟悉和掌握其常用的解题思路与方法.1化为斜率法例1㊀已知实数x ,y 满足方程x 2+y 2-4x +1=0,求yx的最大值和最小值.解:原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆.yx 的几何意义是该圆上一点与原点连线的斜率,所以设yx=k ,即y =k x .图1当直线y =k x 与圆相切时,如图1,斜率k 取最大值或最小值,此时2k -0k 2+1=3,解得k =ʃ3所以yx的最大值为3,最小值为-3.思路与方法:本题中yx 的几何意义是圆上的点与原点连线的斜率,两切线的斜率为其最值,可由2k -0k 2+1=3求切线的斜率,也可将y =k x 代入圆的方程,由Δȡ0,求解k 的范围.例2㊀求y =1+s i n x2+c o s x 的最值.图2解:将原函数式变形为y =s i n x -(-1)c o s x -(-2),其几何意义是在直角坐标系中,动点(c o s x ,s i n x )与定点P (-2,-1)连线的斜率.动点P 的轨迹为单位圆(如图2),由图可知,k P B 最小,k P C 最大.显然,k P B =0.由t a n θ=O B P B =12,得t a n øB P C =t a n2θ=2t a n θ1-t a n 2θ=43,即k P C =43.故y 的最小值为0,最大值为43.思路与方法:从本题的解题思路可以归纳 形如f (x )-ag (x )-b 的函数式,可以将其看作点(g (x ),f (x ))与点(b ,a )连线的斜率,这也是最常见的解题方法.2化为截距法例3㊀在圆O :x 2+y 2=1上求一点P ,使得过点P 的切线与两条坐标轴所围成的三角形面积最小.解法1:设P (x 1,y 1),则切线l 为x 1x +y 1y =1,即x 1x 1+y 1y 1=1,截距a =1x 1,b =1y 1.所以,过点P 的切线与两坐标轴所围成的三角形面积为S =12a97Copyright ©博看网. All Rights Reserved.解法探究2023年9月上半月㊀㊀㊀b =121x 1 1y 1=12x 1y 1ȡ1x 21+y 21=11=1,当且仅当x 1=y 1=22时,取等号,S 的最小值为1.故所求点P 的坐标为(22,22),(22,-22),(-22,-22),(-22,22).解法2:因为点P 在圆x 2+y 2=1上,可设P (c o s φ,s i n φ),所以切线l :x c o s φ+y s i n φ=1,其截距a =1c o s φ,b =1s i n φ.因此,过点P 的切线与两坐标轴所围成的三角形面积为S =12a b =121c o s φ 1s i n φ=1s i n 2φȡ1.当s i n 2φ=ʃ1,即φ=ʃπ4,ʃ34π时,S 取最小值,且最小值为1.故所求点P 的坐标为(22,22),(22,-22),(-22,-22),(-22,22).思路与方法:本题的两种解法都是将与圆有关的求三角形的最值问题转化为直线与圆相切的截距型问题.通过设点P 的坐标,先求出截距,然后再根据三角形面积公式推出S әȡ1,最后确定点P 的位置.例4㊀设x ,y 满足y =-x 2-2x ,求S =x +y 的最大值和最小值.图3解:y =-x 2-2x =1-(x +1)2,其图象为如图3所示的半圆O ᶄ,S 的最大值与最小值分别是直线y =-x +S 和半圆O ᶄ有公共点时截距的最大值与最小值.由A (-2,0),k A D =-1,得D (0,-2),即S m i n =-2.又O ᶄB =B C =1,所以O ᶄC =2,得O C =2-1=O D ᶄ,则点D ᶄ的坐标为(0,2-1),即S m a x =2-1.故S 的最大值与最小值分别为2-1,-2.思路与方法:本题是将其转化㊁变形为截距型最值问题,并对半圆㊁直线截距的几何意义进行了由 隐 到 显 的挖掘,其中紧扣 S 的最大值与最小值分别是直线y =-x +S 和半圆O ᶄ有公共点时截距S的最大值与最小值 是关键.3化为距离法例5㊀在әA B C 中,øA ,øB ,øC 所对的边分别为a ,b ,c ,且c =10,c o s A c o s B =b a =43,P 为әA B C的内切圆上的动点,求点P 到顶点A ,B ,C 的距离的平方和的最大值与最小值.解法1:由c o s A c o s B =b a ,得c o s A c o s B =s i n Bs i n A ,即s i n 2A =s i n2B .在әA B C 中,因为A ʂB ,所以2A +2B =π,则A +B =π2,故әA B C 为直角三角形.图4由c =10,b a =43,可得a =6,b =8.建立如图4所示的平面直角坐标系,设әA B C 的内切圆圆心为O ᶄ,切点分别为D ,E ,F ,则|A D |+|D B |+|E C |=12(10+8+6)=12,内切圆的半径r =|E C |=12-10=2,则内切圆O ᶄ方程为(x -2)2+(y -2)2=4.设圆O ᶄ上动点P 的坐标为(x ,y ),则点P 到顶点A ,B ,C 的距离的平方和为S =P A 2+P B 2+P C 2=(x -8)2+y 2+x 2+(y -6)2+x 2+y 2=3[(x -2)2+(y -2)2]-4x +76=88-4x .由点P 在圆上,可知,0ɤx ɤ4,于是S 的最大值为88,最小值为88-4ˑ4=72.解法2:同解法1,得әA B C 是直角三角形,其内切圆半径r =2.设圆上动点P 的坐标为(2+2c o s α,2+2s i n α)(0ɤαɤ2π),则点P 到顶点A ,B ,C 的距离的平方和为S =P A 2+P B 2+P C 2=(2c o s α-6)2+(2+2s i n α)2+(2+2c o s α)2+(2s i n α-4)2+(2+2c o s α)2+(2+2s i n α)2=80-8c o s α.因为0ɤαɤ2π,所以S 的最大值为=80+8=88,最小值为=80-8=72.思路与方法:本题可转化为点到直线的距离型最值问题.解法1是由三角形的边㊁角关系推证出әA B C 为直角三角形,然后建立平角直角坐标系,通过设三角形内切圆,求三角形三边的长度获解;解法2在已知әA B C 为直角三角形的基础上,通过设动点坐标,利用三角函数求出最值.08Copyright ©博看网. All Rights Reserved.2023年9月上半月㊀解法探究㊀㊀㊀㊀例6㊀已知实数x ,y 满足方程x 2+y 2-4x +1=0,求x 2+y 2的最大值和最小值.图5解:x 2+y 2-4x +1=0可化为(x -2)2+y 2=3,它表示以C (2,0)为圆心,3为半径的圆.如图5所示,x 2+y 2表示圆上的一点与坐标原点距离的平方.由平面几何知识可知,在坐标原点和圆心连线与圆的两个交点处取得最大值和最小值.又因为圆心C 到原点的距离为2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-43.思路与方法:本题中的x 2+y 2可看作是圆上的点与原点距离的平方,所以可以借助平面几何知识,利用数形结合法快速求解.4化为三角函数法例7㊀已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0)(m >0).若圆C 上存在点P ,使得øA P B =90ʎ,则m 的最大值为(㊀㊀).A.7㊀㊀㊀㊀B .6㊀㊀㊀㊀C .5㊀㊀㊀㊀D.4解:设点P (x 0,y 0),则x 0=3+c o s θ,y 0=4+s i n θ{(θ为参数).由øA P B =90ʎ,得A P ң B P ң=0,即(x 0+m )(x 0-m )+y 20=0,则m 2=x 20+y 20=26+6c o s θ+8s i n θ=26+10s i n (θ+φ)ɤ36(其中t a n φ=34).所以0<m ɤ6,即m 的最大值为6.故选答案:B .思路与方法:本题是通过建立目标函数来求最值.由于øA P B =90ʎ,则点P 也在以A B 为直径的圆上,因此问题还可转化为两圆有公共点,求m 的最大值,即两圆内切时,m 有最大值6.例8㊀半圆O 的直径为2,A 为直径延长线上一点,O A =2,B 为半圆上任意一点,以A B 为一边作等边三角形A B C .问点B 在什么位置时,四边形O A C B的面积最大,并求这个最大值.图6解:如图6,设øA O B =α(0<α<π),在әA O B 中,又O B =1,O A =2,由余弦定理,得A B 2=O A 2+O B 2-2O A O B c o s α=5-4c o s α.设四边形O A C B 的面积为S ,则㊀㊀㊀S =12O A O B s i n α+34A B 2=s i n α+34(5-4c o s α)=534+(s i n α-3c o s α)=534+2s i n (α-π3),当且仅当s i n (α-π3)=1,即α=5π6时,四边形O A C B的面积最大,且最大值为534+2.思路与方法:本题通过运用余弦定理,将与圆有关的四边形面积的最值问题,转化为三角函数问题来求解.从解题过程不难看出,对y =a s i n x +b c o s x (a ,b ʂ0)引入辅角θ,则y =a 2+b 2s i n (x +θ)(其中t a n θ=ba),其最值一目了然.根据以上典例及 四化法 的运用情况,可以把与圆有关的最值问题大致归纳总结为以下几种类型:①定点与圆上的点的距离的最值题型,可将其转化为定点到圆心的距离ʃ半径 ;②定直线与圆上点的距离的最值题型,可将其转化为 圆心到直线的距离ʃ半径 ;③形如t =y -bx -a 的最值题型,可将其转化为动直线的斜率问题(切线处取得最值);④形如t =a x +b y +c 的最值题型,可将其转化为动直线的截距问题(切线处取得最值);⑤形如(x -a )2+(y -b )2的最值问题,可将其转化为定点到圆上动点的最值问题.圆是一种很规则的图形,解答与圆有关的最值问题很适合采用数形结合法.运用 四化法 解题的关键,是在准确理解题意的基础上进行合理联想和类比,将代数式通过转化㊁变形㊁给予几何解释[2].上述典型例题的解析可以帮助学生学会从 形 中觅 数 的思路与方法,掌握如何根据图形去寻求数量关系的技巧,能够娴熟地将几何问题代数化,通过不断加强这类题型的解题训练,最终达到触类旁通㊁举一反三㊁开阔思路㊁运用自如㊁综合提高的目的.参考文献:[1]杜超.例谈与圆有关的最值问题[J ].理科考试研究,2021(9):16G18.[2]程会海.与圆有关的最值问题的解题策略例说[J ].中学数学,2022(5):64G65.Z 18Copyright ©博看网. All Rights Reserved.。

关于圆的题型归纳和解题技巧高中

关于圆的题型归纳和解题技巧高中

关于圆的题型归纳和解题技巧高中
圆是数学中最常见的图形之一,许多数学题都是围绕着圆这个图形所设计出来的,所以掌握圆题型的归纳和相关解题技巧对中学生来说是非常重要的。

本文将从圆的定义、特点分析、题型归纳和解题技巧等主要方面来展开讨论,希望能够对同学们掌握有关圆的知识有所帮助。

圆的定义和特点
一般来说,圆是一个二维的平面图形,可以定义为周围均匀曲线,其曲线上任意一点距离圆心固定的距离均相等,距离称为半径。

易证而知,心与圆上任意一点的距离恒定,则构成一个完美的图形,一般说,一个圆有一个中心点,这个点是该圆的另外两个特殊点(也可以说是边界点),即圆上的点,该点也可以用圆的参数方程来表示。

圆的题型归纳
圆的题型设置各有特点,圆的题型可以归纳出五大类:(1)求圆的半径或周长;(2)求圆周上任意一点到圆心的距离;(3)求圆的面积;(4)求圆心或圆上任意一点的坐标;(5)计算两个圆的位置关系求出重叠部分的面积。

圆的解题技巧
①根据题意推断出圆的参数方程。

需要理解题目,找出参数方程涉及到的参数,由参数方程求出答案。

②找出圆的特殊点来解题。

根据题意可以知道圆的特殊点,例如可以用圆的等边三角形(三角形的三个顶点在圆周上)来求得圆的半径等。

③推广思考,利用圆的克服变换法求解题。

可以利用一些特殊的变换,将复杂的圆形题目改成熟悉的直线方程题,把圆题解成一系列的直线方程来求解。

综上,即使中学生们觉得圆题目难以理解,但只要通过准确理解题意,运用正确的解题思路,还是可以轻松搞定这些圆题的。

只要把握好思路,多加练习就可以做到圆题的“拿捏如在掌握”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BA圆的解题方法归纳1.?遇到弦时(解决有关弦的问题时)常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。

作用:①利用垂径定理;②利用圆心角及其所对的弧、弦和弦心距之间的关系;③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。

1、AB 是的直径,CD 是的一条弦,且CE ⊥AB 于E ,连结AC ,BC 。

若BE=2,CD=8,求AB 和AC 的长。

解:∵AB 是⊙O 的直径,CD ⊥AB ∴CE=ED=4?设⊙O 的半径为r ,OE=OB-BE=r-2? 在Rt △OEC 中,r=5? ∴AB=10 又CD=8, ∴CE=DE=4, ∴AE=8 ∴AC=?2、圆O 的直径AB 和弦CD 交于E ,已知AE=6cm ,EB=2cm ,∠CEA=30求CD 。

答案2.? 遇到有直径时常常添加(画)直径所对的圆周角。

作用:利用圆周角的性质,得到直角或直角三角形。

1、如图,AB 是⊙O 的直径,AB=4,弦BC=2,∠B=2、如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,∠BAC=50°,则∠ADC= ?3.? 遇到90°的圆周角时常常连结两条弦没有公共点的另一端点。

作用:利用圆周角的性质,可得到直径。

1、如图,AB 、AC 是⊙O 的的两条弦,∠BAC=90°,AB=6,AC=8,⊙O 的半径是2、如图,已知在等腰△ABC 中,∠A=∠B=30°,过点C 作CD ⊥AC 交AB 于点D ;求证:BC 是过A ,D ,C 三点的圆的切线解:(1)作出圆心O ,? 以点O 为圆心,OA 长为半径作圆 (2)证明:∵CD ⊥AC ,∴∠ACD=90° ∴AD 是⊙O 的直径连结OC ,∵∠A=∠B=30°, ∴∠ACB=120°, 又∵OA=OC , ∴∠ACO=∠A =30°B∴∠BCO=∠ACB-∠ACO =120°-30°=90°∴BC⊥OC,∴BC是⊙O的切线.?4.? 遇到弦时常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。

作用:①可得等腰三角形;②据圆周角的性质可得相等的圆周角。

1、如图,弦AB的长等于⊙O的半径,点C在弧AMB上,则∠C的度数是________.2、如图,△ABC是⊙O的内接三角形,AD是⊙O 的直径,若∠ABC=50°,求∠CAD的度数。

解:连接CD,∠ADC=∠ABC=50°∵AD是⊙O 的直径,∴∠ACD=90°?∴∠CAD+∠ADC=90°?∴∠CAD=90°-∠ADC=90°-50°= 40°5.? 遇到有切线时(1)常常添加过切点的半径(连结圆心和切点)作用:利用切线的性质定理可得到直角或直角三角形。

1、如图,AB是⊙O的直径,弦AC与AB成30°角,CP与⊙O切于C,交AB•的延长线于D,(1)求证:AC=CP.(2)若CP=6,求图中阴影部分的面积(结果精确到0.1)。

(参考数据:,π=3.14)解:(1)连结OC∵AO=OC?∴∠ACO=∠A=30°?∴∠COP=2∠ACO=60°? ∵PC切⊙O于点C?∴OC⊥PC∴∠P=30°?∴∠A=∠P∴AC=PC 。

(2)在Rt △OCP 中,tan ∠P=∴OC=2∵S △OCP =CP ·OC=×6×2=6且S 扇形COB =∴S 阴影= S △OCP -S 扇形COB =。

? (2)常常添加连结圆上一点和切点 作用:可构成弦切角,从而利用弦切角定理。

2、(1)如图OA 、OB 是⊙O 的两条半径,且OA ⊥OB ,点C 是OB 延长线上任意一点:过点C 作CD 切⊙O 于点D ,连结AD 交DC 于点E .求证:CD=CE(2)若将图中的半径OB 所在直线向上平行移动交OA 于F ,交⊙O 于B’,其他条件不变,那么上述结论CD=CE 还成立吗?为什么?(3)若将图中的半径OB 所在直线向上平行移动到⊙O 外的CF ,点E 是DA 的延长线与CF 的交点,其他条件不变,那么上述结论CD=CE 还成立吗?为什么解题思路:本题主要考查圆的有关知识,考查图形运动变化中的探究能力及推理能力. 解答:(1)证明:连结OD 则OD ⊥CD ,∴∠CDE+∠ODA=90° 在Rt △AOE 中,∠AEO+∠A=90°在⊙O 中,OA=OD ∴∠A=∠ODA , ∴∠CDE=∠AEO 又∵∠AEO=∠CED ,∠CDE=∠CED ∴CD=CE (2)CE=CD 仍然成立.∵原来的半径OB 所在直线向上平行移动∴CF ⊥AO 于F , 在Rt △AFE 中,∠A+∠AEF=90°.连结OD ,有∠ODA+∠CDE=90°,且OA=OD .∠A=∠ODA ∴∠AEF=∠CDE 又∠AEF=∠CED ∴∠CED=∠CDE ∴CD=CE (3)CE=CD 仍然成立.∵原来的半径OB 所在直线向上平行移动.AO ⊥CF 延长OA 交CF 于G ,在Rt △AEG 中,∠AEG+∠GAE=90°连结OD ,有∠CDA+∠ODA=90°,且OA=OD ∴∠ADO=∠OAD=∠GAE ∴∠CDE=∠CED ∴CD=CE考查目标二、主要是指点与圆的位置关系、直线与圆的位置关系以及圆与圆的位置关系的相关内容。

学生要学会用动态的观点理解和解决与圆有关的位置关系的问题。

6.? 遇到证明某一直线是圆的切线时(1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线段,再证垂足到圆心的距离等于半径。

1、如图所示,已知AB 是⊙O 的直径,AC⊥L 于C ,BD⊥L 于D ,且AC+BD=AB 。

求证:直线L 与⊙O 相切。

?(2)若直线过圆上的某一点,则连结这点和圆心(即作半径),再证其与直线垂直。

2、如图,四边形ABCD 内接于⊙O ,BD 是⊙O 的直径,AE CD ⊥,垂足为E ,DA 平分. (1)求证:AE 是⊙O 的切线;(2)若301cm DBC DE ∠==,,求BD 的长解题思路:运用切线的判定 (1)证明:连接OA ,DA 平分BDE ∠,BDA EDA ∴∠=∠.OA OD ODA OAD =∴∠=∠,.OAD EDA ∴∠=∠. OA CE ∴∥.AE DE ⊥,9090AED OAE DEA ∴∠=∠=∠=,. AE OA ∴⊥.AE ∴是⊙O 的切线.(2)BD 是直径,90BCD BAD ∴∠=∠=.3060DBC BDC ∠=∠=,,120BDE ∴∠=.DA 平分BDE ∠,60BDA EDA ∴∠=∠=.30ABD EAD ∴∠=∠=.在Rt AED △中,90302AED EAD AD DE ∠=∠=∴=,,. 在Rt ABD △中,903024BAD ABD BD AD DE ∠=∠=∴==,,. DE 的长是1cm ,BD ∴的长是4cm .2、PA 、PB 分别与⊙O 相切于点A 、B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N (1)求证:OM=AN (2)若⊙O 的半径R=3,PA=9,求OM 的长答案【1】链接OA 、OB∵AP 是切线,OA 是半径 ∴OA ⊥AP ∵MN ⊥AP ∴OA//MN∴四边形OANM 是平行四边形∴OM=AN【2】设AN=X所以NP=AP-AN=9-x∴OM=x△MNP是直角△有勾股定理得出MP2=x2-18x+90证△OBM与△MNP相似(这个很简单懒得打字了自己证明)∴OB/MN=OM/MP∴(3/3)2=x2/(x2-18x+90)∴x=5∴OM=5?7.? 遇到两相交切线时(切线长)常常连结切点和圆心、连结圆心和圆外的一点、连结两切点。

作用:据切线长及其它性质,可得到:①角、线段的等量关系;②垂直关系;③全等、相似三角形。

【例9】如图,P是⊙O外一点,PA、PB分别和⊙O切于A、B,C是弧AB上任意一点,过C作⊙O的切线分别交PA、PB于D、E,若△PDE的周长为12,则PA长为______________答案∵PA,PB分别和⊙O切于A,B两点,∴PA=PB,∵DE是⊙O的切线,∴DA=DC,EB=EC,∵△PDE的周长为12,即PD+DE+PE=PD+DC+EC+PE=PD+AD+EB+PE=PA+PB=2PA=12,∴PA=6.8.? 遇到三角形的内切圆时连结内心到各三角形顶点,或过内心作三角形各边的垂线段。

作用:利用内心的性质,可得:①??? 内心到三角形三个顶点的连线是三角形的角平分线;②??? 内心到三角形三条边的距离相等。

1、△ABC的内切圆圆O与AC、AB、BC分别相切于点D、E、F,且AB=5cm,BC=9cm,AC=6cm,求AE、BF和CD的长。

答案解:设AE为X 因为圆O是三角形ABC的内切圆所以AD=AE BE=BF CF=CD那么 AD=AE=X BE=AB-AE=5-X CD=AC-AD=6-X BF=BE=5-X CF=CD=6-X BC=CF+BF=6-X+5-X=9 解得X=1 那么AE=1 BF=4 CD=52、如图,Rt △ABC 中,∠C=90°,AC=6,BC=8,则△ABC 的内切圆半径r=________.设△ABC 的内接圆圆心为点O 。

过点O 作OE 垂直AC 于E ,作OF 垂直BC 于F ,作OG 垂直AB 于G 。

连结AO ,BO ,CO 。

设内接圆的半径为X 。

易知四边形OECF 为正方形。

因此EC 为X 。

AE 为6-X 。

同理可得BF 为8-X 。

易得△AEO 与△AGO 全等。

因此AG =AE =6-X 。

△BFO 与△BGO 全等。

因此BG =BF =8-X 。

根据勾股定理,得AB =10。

即AG BG =10。

因此6-X 8-X =10。

解得X =2。

即内接圆的半径为2。

九.? 遇到三角形的外接圆时1、直角三角形,如果三角形是直角三角形,那么它的外接圆的直径就是直角三角形的斜边. 已知:在△ABC 中,AB =13,BC =12,AC =5,求△ABC 的外接圆的半径.解:∵AB =13,BC =12,AC =5, ∴AB 2=BC 2+AC 2, ∴∠C =90°,∴AB 为△ABC 的外接圆的直径, ∴△ABC 的外接圆的半径为6.5.2、如图,已知,在△ABC 中,AB =10,∠A =70°,∠B =50°,求△ABC 外接圆⊙O 的半径. 分析:可转化为①的情形解题. 解:作直径AD ,连结BD.则∠D =∠C =180°-∠CAB -∠BAC =60°,∠DBA =90°∴AD =D sin AB = 60sin 10=3320∴△ABC 外接圆⊙O 的半径为3310.十.? 遇到三角形的外接圆和内切圆时1、如图,Rt△ABC 中,AC=8,BC=6,∠C=90°,⊙I 分别切AC ,BC,AB 于D ,E ,F ,求Rt△ABC 的内心I 与外心O 之间的距离.1ID ,IE ,IF ,IB ,证四边形CEID 为正方形,求出ID=CE=2,证BF=BE=4,OF=1,再在Rt △IFO 中求IO )在Rt △ABC 中,∠C=90°,AC=3,AB=5,则它的内切圆与外接圆半径分别为( C ) A .1.5,2.5 B .2,5 C .1,2.5 D .2,2.5A。

相关文档
最新文档