目标层与准则层的特征根及向量
计量地理学第六章——层次分析法
二 基本过程
(三)构造判断矩阵(AHP决策分析中一个关键的步骤)
①判断矩阵表示针对上一层次中的某元素而言,评定该 层次中各有关元素相对重要性程度的判断。其形式如下:
二 基本过程
(三)构造判断矩阵
②其中,bij 表示对于Ak 而言,元素Bi 对Bj 的相对重要性 程度的判断值。
标度
1 3 5 7 9 2,4,6,8 倒数
3 1 / 3 1
3 1 / 3 1
0.405
W 2.466 1
0.105
W 0.637 0.258
λmax
n (AW )i i 1 nWi
0.318
1.936
0.785
3 0.105 3 0.637 3 0.258
3.037
三 计算方法
1、将判断矩阵每一列归一化
(二)建立层次结构模型
在这一个步骤中,要求将问题所含的要素进行分组,把每 一组作为一个层次,并将它们按照:最高层(目标层)——若 干中间层(准则层)——最低层(措施层)的次序排列起来。
最高层
表示解决问题的目的,即层次分析要达到的目 标
中间层
表示实现目标所涉及的因素、准则和策略等。 分为若干子层,如准则层、约束层和策略层。
所需要的定量化数据较少,但对问题的本质,问题所涉 及的因素及其内在关系分析得比较透彻、清楚。
缺点:存在着较大的随意性。 譬如,对于同样一个决策问题,如果在互不干扰、互不
影响的条件下,让不同的人同样都采用AHP决策分析方法进 行研究,则他们所建立的层次结构模型、所构造的判断矩阵 很可能是各不相同的,分析所得出的结论也可能各有差异。
法
1
2
n
n
Wi W i
层次分析法
第四讲层次分析法在现实世界中,往往会遇到决策的问题,比如如何选择旅游景点的问题,选择升学志愿的问题等等。
在决策者作出最后的决定以前,他必须考虑很多方面的因素或者判断准则,最终通过这些准则作出选择。
比如选择一个旅游景点时,你可以从宁波、普陀山、浙西大峡谷、雁荡山和楠溪江中选择一个作为自己的旅游目的地,在进行选择时,你所考虑的因素有旅游的费用、旅游地的景色、景点的居住条件和饮食状况以及交通状况等等。
这些因素是相互制约、相互影响的。
我们将这样的复杂系统称为一个决策系统。
这些决策系统中很多因素之间的比较往往无法用定量的方式描述,此时需要将半定性、半定量的问题转化为定量计算问题。
层次分析法是解决这类问题的行之有效的方法。
层次分析法将复杂的决策系统层次化,通过逐层比较各种关联因素的重要性来为分析、决策提供定量的依据。
一、建立系统的递阶层次结构首先要把问题条理化、层次化,构造出一个有层次的结构模型。
一个决策系统大体可以分成三个层次:(1) 最高层(目标层):这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果;(2) 中间层(准则层):这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则;(3) 最低层(方案层):这一层次包括了为实现目标可供选择的各种措施、决策方案等。
比如旅游景点问题,我们可以得到下面的决策系统:目标层——选择一个旅游景点准则层——旅游费用、景色、居住、饮食、交通方案层——宁波、普陀山、浙西大峡谷、雁荡山、楠溪江二、构造成对比较判断矩阵和正互反矩阵在确定了比较准则以及备选的方案后,需要比较若干个因素对同一目标的影响,从额确定它们在目标中占的比重。
如旅游问题中,五个准则对于不同决策者在进行决策是肯定会有不同的重要程度,而不同的方案在相同的准则上也有不同的适合程度表现。
层次结构反映了因素之间的关系,但准则层中的各准则在目标衡量中所占的比重并不一定相同,在决策者的心目中,它们各占有一定的比例。
多目标决策模型层次分析法AHP代数模型离散模型
层次分析法建模层次分析法(AHP-Analytic Hierachy process)---- 多目标决策方法70 年代由美国运筹学家T·L·Satty提出的,是一种定性与定量分析相结合的多目标决策分析方法论。
吸收利用行为科学的特点,是将决策者的经验判断给予量化,对目标(因素)结构复杂而且缺乏必要的数据情况下,採用此方法较为实用,是一种系统科学中,常用的一种系统分析方法,因而成为系统分析的数学工具之一。
传统的常用的研究自然科学和社会科学的方法有:机理分析方法:利用经典的数学工具分析观察的因果关系;统计分析方法:利用大量观测数据寻求统计规律,用随机数学方法描述(自然现象、社会现象)现象的规律。
基本内容:(1)多目标决策问题举例AHP建模方法(2)AHP建模方法基本步骤(3)AHP建模方法基本算法(3)AHP建模方法理论算法应用的若干问题。
参考书:1、姜启源,数学模型(第二版,第9章;第三版,第8章),高等教育出版社2、程理民等,运筹学模型与方法教程,(第10章),清华大学出版社3、《运筹学》编写组,运筹学(修订版),第11章,第7节,清华大学出版社一、问题举例:A.大学毕业生就业选择问题获得大学毕业学位的毕业生,“双向选择”时,用人单位与毕业生都有各自的选择标准和要求。
就毕业生来说选择单位的标准和要求是多方面的,例如:①能发挥自己的才干为国家作出较好贡献(即工作岗位适合发挥专长);②工作收入较好(待遇好);③生活环境好(大城市、气候等工作条件等);④单位名声好(声誉-Reputation);⑤工作环境好(人际关系和谐等)⑥发展晋升(promote, promotion)机会多(如新单位或单位发展有后劲)等。
问题:现在有多个用人单位可供他选择,因此,他面临多种选择和决策,问题是他将如何作出决策和选择?——或者说他将用什么方法将可供选择的工作单位排序?B.假期旅游地点选择工作选择贡献收入发展声誉工作环境生活环境可供选择的单位P1’P2 ‘----- P n暑假有3个旅游胜地可供选择。
层次分析法的实施——五步骤
准则层
C1 调动职工生产
积极性
C2 提高企业
技术水平
C3 改善职工物质
文化生活
方案层
P1 发奖金
P2 扩建福
利设施
P3 办学校
P4 建图书
馆或俱
乐部
P5 技术改造
. #;
A
C1
C2
…
Ck
(2)建立判断矩阵 C1
a12
a11
…
a1k
参见(P136)标度
C2
a21
a22
…
a2k
判断矩阵A-C:
Ck
ak1
对Wi进行归一化处理: Wi
Wi
n
Wj
j 1
(i, j 1,2, , n)
. #;
(4)层次总排序
所谓层次总排序就是针对最高层目标而言,本层次 各要素重要性的次序排序。
C层
P层 P1 P2 … Pn
因素及权重
C1
C2
1(1) 2(1) …
CK
k(1)
11(2) 12(2)
…
21(2) 22(2)
P5 0.046 0.263
0
0.172
方案 排序
4 3 1 5 2
P1
P2
发奖金 扩建福
利设施
P3
P4
P5
办学校 建图书 技术改造
馆或俱
乐部
. #;
3. 层次分析法
(1)分析复杂系统所包含的因素及其相互关系,形成多层次的分析 结构模型;
(2)将各要素及上层要素进行两两比较判断,得到其相对重要程度 的比较标度,建立判断矩阵;
方案层
方案1 方案2 方案3
层次分析法原理
旅
和方案
途
方案层P
P1
P2
P3
选择旅游地的层次结构
用于解决问题 的备选方案
6
(2)构造判断矩阵
通过相互比较确定各准则对于目标的权重,即构造判断矩 阵。在层次分析法中,为使矩阵中的各要素的重要性能够进行 定量显示,引进了矩阵判断标度(1~9标度法) :
标度
含义
1
表示两个元素相比,具有同样的重要性
3
表示两个元素相比,前者比后者-1
CI=0 时A一致; CI 越大,A的不一致性程度
(2)随机一致性指标RI:
越严重。
n 1 2 3 4 5 6 7 8 9 10 11 RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51
(3)一致性比率(用于确定A的不一致性的容许范围)
所对应的特征向量分别为:
0 .082
W (3) 2
0 .236
0 .682
W
( 3
3
)
0 .429 0.429
,
W (3) 4
0 .633 0 .193
,
W
( 5
3
)
0 .166 0 .166
.
0 .142
0 .175
0 .668
17
(4)一致性检验
1 1/ 2 4 3 3
1 1/ 3 3 1
2
231
1 1
A的最大特征值 max6.35, 相应的特征向量为:
W (2 ) (0 .1,0 .6 1,0 .9 1,0 .9 0,0 .5 1,0 .2 3)T 0
23
假设3名候选人关于6个标准的判断矩阵为:
层次分析法
层次分析法在大学生就业择业问题中的应用2607080225 时博(长安大学地质工程与测绘学院安全工程系西安 710064)摘要:现在又是大学生开始找工作的时候,有时候同时面临多个工作选择,而究竟怎么选择呢?层次分析法给了我们一个科学的选择方法,下面就择业问题进行分析。
关键词:层次分析法、大学生就业、递阶层次结构、判断矩阵、最大特征根、一致性检验、权重。
AHP IN THE EMPLOYMENT OF UNIVERSITYSTUDENTS CAREER PROBLEM2607080225 ShiBo(Geological Engineering and Geomatics Chang'an University, School of SafetyEngineering, Xi'an 710064)Abstract: It is when student s st art looking for work, sometimes while facing multiple choice, and how do people choose? AHP has given us a scientific selection method, the following analysis on career issues. Keywords: AHP, empl oyment of universit y student s, hierarchical structure, to determine the matrix, the largest eigenvalue, consistency test, the weight.一、层次分析法的基本原理及步骤1、基本原理层次分析法是美国数学家T.L.Saaty教授于1980年在他的《层次分析法AHP》一书中第一次提出来的。
它是一种灵活、实用的多目标决策方法,能将主、客观因素有机地结合起来。
多目标决策模型:层次分析法(AHP)、代数模型、离散模型
程中常是定性的。 例如:经济好,身体好的人:会将景色好作为第一选择; 中老年人:会将居住、饮食好作为第一选择; 经济不好的人:会把费用低作为第一选择。 而层次分析方法则应给出确定权重的定量分析方法。 (S3)将方案后对准则层的权重,及准则后对目标层的权重进行综合。 (S4)最终得出方案层对目标层的权重,从而作出决策。 以上步骤和方法即是 AHP 的决策分析方法。 三、确定各层次互相比较的方法——成对比较矩阵和权向量 在确定各层次各因素之间的权重时,如果只是定性的结果,则常常不容易被别人接受,因 而 Santy 等人提出:一致矩阵法 ..... 即:1. 不把所有因素放在一起比较,而是两两相互比较 2. 对此时採用相对尺度,以尽可能减少性质不同的诸因素相互比较的困难,提高准确度。 因素比较方法 —— 成对比较矩阵法: 目的是,要比较某一层 n 个因素 C1 , C 2 , , C n 对上一层因素 O 的影响(例如:旅游决策解 中,比较景色等 5 个准则在选择旅游地这个目标中的重要性) 。 採用的方法是:每次取两个因素 C i 和 C j 比较其对目标因素 O 的影响,并用 aij 表示,全部 比较的结果用成对比较矩阵表示,即:
分析:
W1 W2 若重量向量 W 未知时, 则可由决策者对物体 M 1 , M 2 , , M n 之间两两相比关系, W n 主观作出比值的判断,或用Delphi(调查法)来确定这些比值,使 A 矩阵(不一定有一致性)
为已知的,并记此主观判断作出的矩阵为(主观)判断矩阵 A ,并且此 A (不一致)在不一致 的容许范围内,再依据: A 的特征根或和特征向量 W 连续地依赖于矩阵的元素 aij ,即当 aij 离 一致性的要求不太远时, A 的特征根 i 和特征值(向量)W 与一致矩阵 A 的特征根 和特征向 量 W 也相差不大的道理:由特征向量 W 求权向量 W 的方法即为特征向量法,并由此引出一致 性检查的方法。 问题:Remark 以上讨论的用求特征根来求权向量 W 的方法和思路,在理论上应解决以下问题: 1. 一致阵的性质 1 是说:一致阵的最大特征根为 n (即必要条件) ,但用特征根来求特征向量 时, 应回答充分条件: 即正互反矩阵是否存在正的最大特征根和正的特征向量?且如果正互 反矩阵 A 的最大特征根 max n 时, A 是否为一致阵? 2. 用主观判断矩阵 A 的特征根 和特征向量 W 连续逼近一致阵 A 的特征根 和特征向量 W 时,即: 由 lim k
层次分析法步骤解析—根法、和法、幂法
层次分析法(AHP)AHP(Analytic Hierarchy Process)方法,是由20世纪70年代由美国著名运筹学学家T.L.Satty 提出的。
它是指将决策问题的有关元素分解成目标、准则、方案等层次,在此基础上进行定性分析和定量分析的一种决策方法。
这一方法的特点,是在对复杂决策问题的本质、影响因素及其内在关系等进行深入分析之后,构建一个层次结构模型,然后利用较少的定量信息,把决策的思维过程数学化,从而为求解多准则或无结构特性的复杂决策问题提供了一种简便的决策方法。
AHP 十分适用于具有定性的,或定性定量兼有的决策分析。
这是一种十分有效的系统分析和科学决策方法,现在已广泛地应用在企业信用评级、经济管理规划、能源开发利用与资源分析、城市产业规划、企业管理、人才预测、科研管理、交通运输、水资源分析利用等方面。
一、递阶层次结构的建立一般来说,可以将层次分为三种类型:(1)最高层:只包含一个元素,表示决策分析的总目标,因此也称为总目标层。
(2)中间层:包含若干层元素,表示实现总目标所涉及的各子目标,包含各种准则、约束、策略等,因此也称为目标层。
(3)最低层:表示实现各决策目标的可行方案、措施等,也称为方案层。
典型的递阶层次结构如下:m 一个好的递阶层次结构对解决问题极为重要,因此在建立递阶层次结构时,应注意到:(1)从上到下顺序地存在支配关系,用直线段(作用线)表示上一层次因素与下一层次因素之间的关系,同一层次及不相邻元素之间不存在支配关系。
(2)整个结构不受层次限制。
(3)最高层只有一个因素,每个因素所支配元素一般不超过9个,元素过多可进一步分层。
(4)对某些具有子层次结构可引入虚元素,使之成为典型递阶层次结构。
二、构造比较判断矩阵设有m 个目标(方案或元素),根据某一准则,将这m 个目标两两进行比较,把第i 个目标(i=1,2,…,m )对第j 个目标的相对重要性记为a ij ,(j=1,2,…,m),这样构造的m 阶矩阵用于求解各个目标关于某准则的优先权重,成为权重解析判断矩阵,准则1准则2 准则3 准则m 1子准则1子准则2 子准则3子准则m 2方案1 方案2 方案3 方案n总目标简称判断矩阵,记作A=(a ij )m ×m 。
层次分析法步骤介绍
层次分析法步骤介绍 Last updated on the afternoon of January 3, 2021层次分析法整个计算过程包括以下五个部分。
(1)建立递阶层次结构应用AHP解决实际问题,首先明确目标;接下来分析影响目标决策的各个因素,并将它们之间的关系条理化、层次化;最后,用线将各个层次、各个因素间的关系连接起来就构成了递阶层次结构。
[25]通常,递阶层次结构包括以下三个基本层次:1.目标层:通过分析,明确目标是什么,将其作为最高层的元素,必须是唯一的,如:选择最合适的供应商2.准则层:即中间层,元素包含所有可能影响目标实现的准则,且会随着问题的复杂程度增多。
这时,需要详细分析各准则元素间的相互关系(是同级关系还是隶属关系)。
如果是隶属关系,则需要构建子准则层甚至更下一层准则。
3.措施层:即方案层。
分析解决问题的方案有哪些,并将其作为最底层因素。
(2)构造判断矩阵并赋值1.构造判断矩阵:将每一个具有向下隶属关系的元素作为判断矩阵的第一个元素(位于左上角),隶属于它的各个元素依次排列在其后的第一行和第一列。
2.填写判断矩阵:最常用的方法是咨询专家,将两个元素两两比较,按照重要性程度表赋值(见下表)。
表3重要性标度含义表设填写后的判断矩阵为A=(a ij )n×n ,判断矩阵具有如下三个性质: 1. a ii =1 2. a ji =1/a ij 3. a ij >0(3) 层次单排序与检验 1.层次单排序利用数学方法将专家填写后的判断矩阵进行层次排序。
层次单排序是将每一个因素对于其准则的重要性进行排序,实际就是计算权向量。
计算权向量有特征根法、和法等,以下详细介绍特征根法的计算方法。
A.计算判断矩阵每一行元素的乘积∏==nj ij i a M 1式中:M i 第i 行各元素的乘积a ij 第i 个元素与第j 个元素的关系比值B. 计算Mi 的n 次方根n i i M W =式中:W i 第i 行各元素的乘积的n 次方根 M i 第i 行各元素的乘积 C.对向量正规化(归一化处理)∑==ni iii W W W 1式中:i W特征向量W i 第i 行各元素的乘积的n 次方根 D.计算判断矩阵的特征根j n j ij i W a ∑-=1λ式中: λi 第i 个特征根a ij 第i 个元素与第j 个元素的关系比值 W j 第j 个特征向量 E.计算判断矩阵的最大特征根∑=⨯=ni iiW n 1max λλ 式中: λmax 最大特征根 λi 特征根n判断矩阵的阶数W特征向量2.层次单排序一致性检验需要特别注意:在层层排序中,要对判断矩阵进行一致性检验。
多目标决策层次分析法介绍
由上表,可得成对比较矩阵
1
2 1
1
2 1 1
4 7 1
3
5 1
3
5 1
A 4 7
2 3
1
3 1
1
5 1
2 3
1 1
1
1
3 5
旅游问题的成对比较矩阵共有6个(一个5阶,5个3阶)。
问题:两两进行比较后,怎样才能知道,下层各因素对上 层某因素的影响程度的排序结果呢?
若上层的每个因素都支配着下一层的所有因素,或被下一层所 有因素影响,称为完全层次结构,否则称为不完全层次结构。
例3 层次结构模型
目标层
合理选择科研课题A
准则层1 成果贡献B1
人才培养B2
课题可行性B3
财政支持 研究周期 难易程度
科学意义 应用价值
准则层2
c1
c2
方案层
课题D1
课题D2
c3
c4
c5
课题D3
假期旅游,是去风光秀丽的苏州,还是去迷人的北 戴河,或者是去山水甲天下的桂林,一般会依据景色、 费用、食宿条件、旅途等因素选择去哪个地方。
例3 择业
面临毕业,可能有高校、科研单位、企业等单位可以去 选择,一般依据工作环境、工资待遇、发展前途、住房条 件等因素择业。
例4 科研课题的选择
由于经费等因素,有时不能同时开展几个课题,一般依 据课题的可行性、应用价值、理论价值、被培养人才等因素 进行选题。
m
a jbij
j 1
Bn : a1bn1 a2bn2 ambnm
A B
A1, A2 ,, Am
a1, a2 ,, am
B层的层次 总排序
层次分析法判断矩阵求权值以及一致性检验程序
层次分析法判断矩阵求权值以及一致性检验程序以下是一种基于层次分析法的判断矩阵求权值以及一致性检验的程序:第一步:确定目标和准则层首先,明确分析的目标以及需要进行比较和排序的准则。
例如,在选择旅游目的地的决策中,目标可以是选择最适合个人喜好的目的地,而准则可以包括交通便利性、旅游景点的丰富程度、美食水平等。
第二步:构建判断矩阵根据目标和准则,构建判断矩阵,矩阵的大小为n*n,其中n是准则的个数。
判断矩阵中的元素对应于两两准则之间的比较结果。
例如,对于两个准则i和j,可以使用1-9的尺度来表示它们之间的重要程度,其中1表示相同重要,9表示极端重要。
如果准则i相对于准则j更重要,则在判断矩阵的(i,j)位置上填写9、判断矩阵的对角线元素全为1,因为每个准则相对于自身的重要性是相同的。
第三步:求判断矩阵的权值利用判断矩阵求解初始权值的过程主要分为两个步骤:特征根法和一致性检验。
1.特征根法求解判断矩阵的特征值和对应的特征向量,通过特征向量的归一化,得到各个准则的权重。
2.一致性检验判断矩阵是否具有一致性,即各个准则的权重是否合理。
这里使用一致性指标CI(Consistency Index)和一致性比例CR(Consistency Ratio)来进行检验。
CR的计算公式为CR = CI/RI,其中RI是一个随着准则个数n而变化的随机一致性指数,可以在AHP的标准表格中查找。
第四步:一致性检验与调整如果CR小于一些事先设定的阈值(通常为0.1),则认为判断矩阵通过一致性检验,各个准则的权重是合理的;否则,需要对判断矩阵进行调整。
判断矩阵的调整可以通过以下步骤进行:1.计算判断矩阵的平均列向量2.计算平均列向量的加权平均向量3.计算调整后的判断矩阵4.重复进行一致性检验和调整,直至通过一致性检验为止第五步:权值的应用经过一致性检验和调整后,各个准则的权重即为最终结果。
可以将权重应用于具体的决策问题中,进行多个准则的比较和排序。
数学建模常见评价模型简介
数学建模常见评价模型简介Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998常见评价模型简介评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。
主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。
层次分析模型层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。
其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。
运用层次分析法进行决策,可以分为以下四个步骤:步骤1 建立层次分析结构模型深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。
步骤2构造成对比较阵对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵;步骤3计算权向量并作一致性检验由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。
步骤4计算组合权向量(作组合一致性检验)组合权向量可作为决策的定量依据通过一个具体的例子介绍层次分析模型的应用。
例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。
步骤1 建立系统的递阶层次结构将决策问题分为3个层次:目标层O ,准则层C ,方案层P ;每层有若干元素,各层元素间的关系用相连的直线表示。
图1 选择旅游地的层次结构步骤2构造比较矩阵标度值 含义1 两因素相比,具有同等重要性 3 两因素相比,前者比后者稍重要 5 两因素相比,前者比后者明显重要 7 两因素相比,前者比后者强烈重要 9 两因素相比,前者比后者极端重要2、4、6、8表示上述相邻判断的中间值以上各数值的倒数若指标i 与指标j 比较相对重要性用上述之一数值标度,则指标j 与指标i 的相对重要性用上述数值的倒数标度表1 1~9标度的含义设要比较各准则n C C C ,,,21 对目标O 的重要性,记判断矩阵为A显然,A 是正互反阵。
层次分析法(AHP)解析
层次分析法(AHP)对于草地农业生态系统这个涉及复杂的社会、经济、生态问题的系统,过去的系统分析与设计常常凭经验,靠主观判断进行,缺乏应有的科学性,因而往往造成重大失误。
层次分析法是一种新的定性分析与定量分析相结合的系统分析方法,是将人的主观判断用数量形式表达和处理的方法,简称AHP(The Analytic Hierarchy Process)法。
近年来,层次分析法在草地农业生态系统的系统分析、设计与决策中日益受到重视。
1层次分析法的基本方法和步骤层次分析法是把复杂问题分解成各个组成因素,又将这些因素按支配关系分组形成递阶层次结构。
通过两两比较的方式确定各个因素相对重要性,然后综合决策者的判断,确定决策方案相对重要性的总排序。
运用层次分析法进行系统分析、设计、决策时,可分为4个步骤进行;(1)分析系统中各因素之间的关系,建立系统的递阶层次结构;(2)对同一层次的各元素关于上一层中某一准则的重要性进行两两比较,构造两两比较的判断矩阵;(3)由判断矩阵计算被比较元素对于该准则的相对权重;(4)计算各层元素对系统目标的合成权重,并进行排序,2递阶层次结构的建立首先把系统问题条理化、层次化,构造出一个层次分析的结构模型。
在模型中,复杂问题被分解,分解后各组成部分称为元素,这些元素又按属性分成若干组,形成不同层次。
同一层次的元素作为准则对下一层的某些元素起支配作用,同时它又受上面层次元素的支配。
层次可分为三类;(1)最高层:这一层次中只有一个元素,它是问题的预定目标或理想结果,因此也叫目标层;(2)中间层:这一层次包括要实现目标所涉及的中间环节中需要考虑的准则。
该层可由若干层次组成,因而有准则和子准则之分,这一层也叫准则层;(3)最底层:这一层次包括为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。
上层元素对下层元素的支配关系所形成的层次结构被称为递阶层次结构。
当然,上一层元素可以支配下层的所有元素,但也可只支配其中部分元素。
层次分析法评价模型
层次分析法评价模型评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。
主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。
层次分析模型层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。
其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。
运用层次分析法进行决策,可以分为以下四个步骤:步骤1 建立层次分析结构模型深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。
步骤2构造成对比较阵对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵;步骤3计算权向量并作一致性检验由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。
步骤4计算组合权向量(作组合一致性检验)组合权向量可作为决策的定量依据通过一个具体的例子介绍层次分析模型的应用。
例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。
步骤1 建立系统的递阶层次结构将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。
图1 选择旅游地的层次结构步骤2构造比较矩阵元素之间两两对比,对比采用美国运筹学家A.L.Saaty 教授提出的1~9比率标度法(表1)对不同指标进行两两比较,构造判断矩阵。
层次分析法
层次分析法层次分析法(Analytic Hierarchy Process)简称AHP )是将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。
该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
一、 基本步骤:(1) 分析系统中各因素之间的关系,建立系统的递阶层次结构,一般层次结构分为三层,第一层为目标层,第二层为准则层,第三层为方案层; (2) 构造两两比较矩阵(判断矩阵),对于同一层次的各因素关于上一层中某一准则(目标)的重要性进行两两比较,构造出两两比较的判断矩阵; (3) 由比较矩阵计算被比较因素对每一个准则的相对权重,并进行判断矩阵的一致性检验;(4) 计算方案层对目标层的组合权重的组合一致性检验,并进行排序。
二、层次结构图最高层为目标层()O :问题决策的目标或理想结果,只要一个元素。
中间层为准则层()C :包括为实现目标所涉及的中间环节各因素,每一个因素为一准则,当准则多于9个时可分为若干个子层。
最低层为方案层()P :方案层是为实现目标而供选择的各种措施,即为决策方案。
一般来说,各层次之间的各因素,有的相关联,有的不一定相关联;各层次的因素个数也未必一定相同。
实际中,主要是根据问题的性质和各相关因素的类别来确定。
层次结构图·········三、构造比较矩阵设要比较.n .个元素12,,,n C C C 对上一层(如目标层)O 的影响程度,即要确定它在O 中所占的比重,对任意两个因素i C 和j C 对O 的影响程度之比,按1~9的比例标度来度量(,1,2,,)ij a i j n =。
五层次分析法(AHP法汇总
判断矩阵元素aij的标度方法
标度 1 3 含义 表示两个因素相比,具有同样重要性 表示两个因素相比,一个因素比另一个因素稍微重要
5 7
9 2, 4, 6, 8
表示两个因素相比,一个因素比另一个因素明显重要 表示两个因素相比,一个因素比另一个因素强烈重要
表示两个因素相比,一个因素比另一个因素极端重要 上述两相邻判断的中值
例 2
旅游
假期旅游,是去风光秀丽的苏州,还是
去凉爽宜人的北戴河,或者是去山水甲天下
的桂林?通常会依据景色、费用、食宿条件、 旅途等因素选择去哪个地方。
例 3
择业
面临毕业,可能有高校、科研单位、企
业等单位可以去选择,一般依据工作环境、
工资待遇、发展前途、住房条件等因素择业。
例 4
科研课题的选择
例1. 选择旅游地
目标层
如何在3个目的地中按照景色、 费用、居住条件等因素选择.
O(选择旅游地)
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
方案层
P1 桂林
P2 黄山
P3 北戴河
例2
大学毕业生就业选择问题 获得大学毕业学位的毕业生,在“双向选择” 时,用人单位与毕业生都有各自的选择标准和要求。 就毕业生来说选择单位的标准和要求是多方面的, 例如: ①能发挥自己才干作出较好贡献(即工作岗位适 合发挥自己的专长); ②工作收入较好(待遇好); ③生活环境好(大城市、气候等工作条件等); ④单位名声好(声誉等); ⑤工作环境好(人际关系和谐等) ⑥发展晋升机会多(如新单位或前景好)等。
比较同一层次中每个因素关于上一层次 的同一个因素的相对重要性
在确定各层次各因素之间的权重时,如果只是 定性的结果,则常常不容易被别人接受,因而 Saaty等人提出构造:成对比较矩阵A = (aij)nn,即: 1. 不把所有因素放在一起比较,而是两两相互比 较。 2. 对此时采用相对尺度,以尽可能减少性质不同 的诸因素相互比较的困难,以提高准确度。 成对比较矩阵是表示本层所有因素针对上一层某一个 因素的相对重要性的比较。判断矩阵的元素aij用 Saaty的1—9标度方法给出。
关于层次分析法的例题与解
关于层次分析法的例题与解旅游发展水平评价摘要为了研究和比较两个旅游城市的旅游发展水平,建立了层次分析法[数学模型,对两个旅游城市的旅游发展水平进行了评价.首先,通过对本课题中图1和表1的分析和讨论,按照层次分析法,建立了四个层次:目标层a、准则层b、子准则层c和方案层d,通过比较同一层目标之间的重要度,得到判断矩阵,每个判断矩阵用MATLAB[1]编程求解。
其次,利用MATLAB软件计算决策组合向量,然后比较决策组合向量的大小。
以“最大决策组合向量”为目标,Y市的决策组合向量为0.4325,Q市的决策组合向量为0.5675。
最后,通过比较q市和y市旅游发展水平的决策组合向量,得出q市旅游发展水平较高的结论。
层次分析法MATLAB旅游发展水平;决策组合向量11.问题重述本文要求对Y和Q两个旅游城市的旅游发展水平进行分析,并对两个城市的各种因素进行比较,如城市规模和密度、经济条件、交通条件、生态环境条件、宣传监督、旅游规格、空气质量、城市规模、人口密度、人均国内生产总值、人均住房面积、第三产业增加值占国内生产总值的比重、税收国内生产总值、对外贸易依存度、城市内外交通、人均绿地等。
污水集中处理率、环境噪声、国内外游客数量、索赔金额、立案数量、甲级景区数量、旅行社数量、星级酒店数量。
建立数学模型来解决这个问题。
2.问题分析本文要求对Y、Q旅游城市的旅游业发展水平进行分析。
在对Y和Q 旅游城市的分析中,发现有许多因素需要考虑。
首先,城市规模和密度,包括城市规模和人口密度。
第二,经济条件,包括对外贸易依存度,人均国内生产总值,人均住房面积,第三产业增加值占国内生产总值的比重,税收占国内生产总值的比重。
第三,运输条件,包括内部运输和外部运输。
第四,生态环境条件包括空气质量、人均绿地面积、污水处理能力和环境噪声。
第五,宣传和监督,包括国内外游客人数,以及游客投诉的数量。
第六,旅游指标,包括甲类景区的数量、旅行社的数量、星级酒店的数量,用层次分析法来估计各指标的权重,并对最优方案进行评价。
管理数量方法习题与解答
timu1、某企业拟用剩余生产能力开发新产品。
现有四个品种可供选择,市场销路有好、中、差三种情况,销售状态概率及每一品种在不同状态下的收益如表所示:2、某企业有三种方案可供选择:方案S1是对原厂进行扩建;方案S2是对原厂进行技术改造;方案S3是建新厂,而未来市场可能出现滞销(E1)、一般(E2)和畅销(E3)三种状态,其收益矩阵如表所示。
试分别按以下决策准则确定最优方案:(1)悲观准则;(2)乐观准则;(3)折衷准则(乐观系数α=0.6);(4)后悔值准则;(5)等概率准则。
3、某石油公司拟在某地钻井,可能的结果有三:无油(θ1),贫油(θ2)和富油(θ3),估计可能的概率为P(θ1)=0.5,P(θ2)=0.3,P(θ3)=0.2。
已知钻井费为7万元,若贫油可收入12万元,若富油可收入27万元。
为了科学决策拟先进行勘探,勘探的可能结果是:地质构造差(I1)、构造一般(I2)和构造好(I3)。
根据过去的经验,(1)是否值得先勘探再钻井?(2)根据勘探结果是否值得钻井?4、某企业拟购置1台设备,希望性能好、价格低、易维护。
现有A 、B 、C3种机型供选择,假定A 性能好,价格一般,维护要求一般;B 性能最好,价格较贵,维护要求一般;C 性能差,价格便宜,容易维护。
经过对3个对象按每一标准权衡,得到的判断矩阵依次是:假定企业对于3项标准的要求是首先性能要好,其次是易于维护,最后才是价格低。
其判断矩阵为试应用AHP 方法,对3种设备A 、B 、C 排出优先顺序。
①最早开始与最早结束时间; ②最迟开始与最迟结束时间; ③工序总时差与单时差;④找出关键路线及计算工期。
6、某种商品去年各月份在某市的销售量如下表所示。
试分别用移动平均法和指数平滑法建立线形预测模型并预测今年1月份和2月份的商品销售量(取n=3,7、用画线法找出下列博弈问题的纳什均衡。
1 0.252 4 1 8 0.5 0.125 1 1 4 0.333 0.25 1 0.125 3 8 1 1 1 0.333 1 1 0.2 3 5 1 1 5 3 0.2 1 0.333 0.333 3 189、某公司每年需某种零件10000个,假定定期订购且订购后供货单位能及时供应,每次订购费为25元,每个零件每年的存储费为0.125元。
层次分析模型(高级运筹学)
渡船D3
第九章 层次分析
二、构造判断矩阵: 上、下层之间关系被确定之后,需确定 与上层某元素Z(目标A或某个准则Z) 相联系的下层元素(x1,x2,…,xn)各 在上层元素Z之中所占的比重。 方法:每次取2个元素,如xi,xj,以aij 表示 xi 和 xj 对Z的影响之比。这里得到 的A=(aij)n×n称为两两比较的判断矩阵。
第九章 层次分析
意义(理论价值,对某科技领域的推 动作用); 在课题可行性方面考虑:难易程度 (难易程度与自身的科技力量的一致 性),研究周期(预计需要花费的时 间),财政支持(所需经费,设备及 经费来源,有关单位支持情况等)。
第九章 层次分析
目标层 准则层
合理选择科研课题A
成果贡献B1 应 用 价 值
第九章 层次分析
决策目标
准则1
子准则1
准则2
子准则2
…
准则m1
…
方案1
…
方案2
… 子准则m2 … … …
方案mr
第九章 层次分析
注:层次之间的支配关系不一定是完全 的,即可以有元素(非底层元素)并不 支配下一层次的所有元素而只支配其中 部分元素。这种自上而下的支配关系所 形成的层次结构,我们称之为递阶层次 结构。 递阶层次结构中的层次数与问题的复杂 程度及分析的详尽程度有关,一般可不 受限制。
2°A的每一行均为任意指定的另一行的正 数倍,从而A的秩为1。(即只有一个非零 特征值,其余n-1个为0特征值); 考虑第ⅰ行元素ai1,ai2,…,ain 对于第k 行元素ak1,ak2,…,akn j=1,2,…,n, aij=aik·kj a 即第ⅰ行各元素分别为第k行各元素的aik倍。
3°A的最大特征根λmax= n,其余特征根皆 为零; 证明:因为秩(A)=1,于是A只有一个非 零特征根 max 0 ,其余的特征根均为零 由于 tr ( A) a
层次分析法简介
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
方案层
P1 桂林
P2 黄山
P3 北戴河
例1 国家 实力分析
国家综合实力
国民 收入
军事 力量
科技 水平
社会 稳定
对外 贸易
美、俄、中、日、德等大国
例2 工作选择
贡 献 收 入
工作选择
发 展
声 誉
关 系
位 置
供选的岗位
例3 横渡 江河、海峡 方案的抉择
节 省 时 间 C1
过河的效益 A
经济效益 B1 当 地 商 业 C4 建 筑 就 业 C5 社会效益 B2 安 全 可 靠 C6 交 往 沟 通 C7 环境效益 B3 舒 适 C9 进 出 方 便 C1
0
收 岸 入 间 C2 商 业 C3
自 豪 感 C8
美 化 C11
桥梁 D1
隧道 D2
渡船 D3
设要比较各准则C1,C2,… , Cn对目标O的重要性
Ci : C j aij
选 择 旅 游 地
1 2 A 1/ 4 1/ 3 1/ 3
1 A (aij ) nn , aij 0, a ji aij
1/ 2 1 1/ 7 1/ 5 1/ 5 4 7 1 2 3 3 5 5 1 / 2 1 / 3 1 1 1 1 3
深入分析实际问题,将有关因素自上而下分层(目标— 准则或指标—方案或对象),上层受下层影响,而层内 各因素基本上相对独立。
2)构造成对比较阵
用成对比较法和1~9尺度,构造各层对上一层每一因素的 成对比较阵。
3)计算权向量并作一致性检验