第二章习题指导
第二章 习题答案
第二章 需求、供给和均衡价格2. 假定表2—1(即教材中第54页的表2—5)是需求函数Q d =500-100P 在一定价格范围内的需求表:表2—1某商品的需求表 价格(元) 1 2 3 4 5需求量 400 300 200 100 0(1)求出价格2元和4元之间的需求的价格弧弹性。
(2)根据给出的需求函数,求P =2元时的需求的价格点弹性。
(3)根据该需求函数或需求表作出几何图形,利用几何方法求出P =2元时的需求的价格点弹性。
它与(2)的结果相同吗?解答:(1)根据中点公式e d =-ΔQ ΔP ·P 1+P 22,Q 1+Q 22),有e d =2002·2+42,300+1002)=1.5(2)由于当P =2时,Q d =500-100×2=300,所以,有e d =-d Q d P ·P Q =-(-100)·2300=23(3)根据图2—4,在a 点即P =2时的需求的价格点弹性为e d =GB OG =200300=23或者 e d =FO AF =23图2—4显然,在此利用几何方法求出的P =2时的需求的价格点弹性系数和(2)中根据定义公式求出的结果是相同的,都是e d =23。
3. 假定表2—2(即教材中第54页的表2—6)是供给函数Q s =-2+2P 在一定价格范围内的供给表:表2—2某商品的供给表 价格(元) 2 3 4 5 6供给量 2 4 6 8 10(1)求出价格3元和5元之间的供给的价格弧弹性。
(2)根据给出的供给函数,求P =3元时的供给的价格点弹性。
(3)根据该供给函数或供给表作出几何图形,利用几何方法求出P =3元时的供给的价格点弹性。
它与(2)的结果相同吗?解答:(1)根据中点公式e s =ΔQ ΔP ·P 1+P 22,Q 1+Q 22),有e s =42·3+52,4+82)=43(2)由于当P =3时,Q s =-2+2×3=4,所以,e s =d Q d P ·P Q =2·34=1.5。
第2章随机过程习题及答案
第2章随机过程习题及答案第二章随机过程分析1.1学习指导1.1.1要点随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。
1.随机过程的概念随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。
可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。
2.随机过程的分布函数和概率密度函数如果ξ(t)是一个随机过程,则其在时刻t1取值ξ(t1)是一个随机变量。
ξ(t1)小于或等于某一数值某1的概率为P[ξ(t1)≤某1],随机过程ξ(t)的一维分布函数为F1(某1,t1)=P[ξ(t1)≤某1](2-1)如果F1(某1,t1)的偏导数存在,则ξ(t)的一维概率密度函数为F1(某1,t1)f1(某1,t1)(2-2)某1对于任意时刻t1和t2,把ξ(t1)≤某1和ξ(t2)≤某2同时成立的概率F2(某1,某2;t1,t2)P(t1)某1,(t2)某2(2-3)称为随机过程(t)的二维分布函数。
如果2F2(某1,某2;t1,t2)f2(某1,某2;t1,t2)(2-4)某1某2存在,则称f2(某1,某2;t1,t2)为随机过程(t)的二维概率密度函数。
对于任意时刻t1,t2,…,tn,把Fn(某1,某2,,某n;t1,t2,,tn)P(t1)某1,(t2)某2,称为随机过程(t)的n维分布函数。
如果,(tn)某n(2-5)nFn(某1,某2,,某n;t1,t2,,tn)fn(某1,某2,,某n;t1,t2,,tn)(2-6)某1某2某n存在,则称fn(某1,某2,…,某n;t1,t2,…,tn)为随机过程(t)的n维概率密度函数。
3.随机过程的数字特征随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。
随机过程(t)在任意给定时刻t的取值(t)是一个随机变量,其均值为E(t)某f1(某,t)d某(2-7)其中,f1(某,t)为(t)的概率密度函数。
第二章课后习题及解析
第二章 词法分析
2.8 构造一个DFA,它接收Σ={a, b}上所有不含子串abb
的字符串。 【解答】 本题对应的正规表达式为b*( a∣ab )*,对应 的NFA如图2-23所示。
b X ε a 1 a Y b
பைடு நூலகம்
图2-23 正规式b*( a|ab )*对应的NFA
第二章 词法分析
用子集法将图2-23所示的NFA确定化为DFA,如图2-24
图2-17 习题2.6的最简DFA
第二章 词法分析
2.7 已知正规式((a | b)*| aa)*b和正规式(a | b)*b。
(1) 试用有限自动机的等价性证明这两个正规式是等价 的; (2) 给出相应的正规文法。 【解答】 (1) 正规式((a | b)*| aa)*b对应的NFA如图2-18 所示。
第二章 词法分析
图2-2 DFA M
第二章 词法分析
2.2 什么是扫描器?扫描器的功能是什么?
【解答】 扫描器就是词法分析器,它接受输入的源程 序,对源程序进行词法分析并识别出一个个单词符号,其输 出结果是单词符号,供语法分析器使用。通常把词法分析器 作为一个子程序,每当语法分析器需要一个单词符号时就调 用这个子程序。每次调用时,词法分析器就从输入串中识别 出一个单词符号交给语法分析器。 2.3 设M=({x,y}, {a,b}, f, x, {y})为一非确定的有限自动 机,其中f定义如下: f(x,a)={x,y} f(y,a)= Φ f{x,b}={y} f{y,b}={x,y}
第二章 词法分析
(4) 状态转换图(见图2-1)接受的字集为 _______。
A.以0开头的二进制数组成的集合 B.以0结尾的二进制数组成的集合 C.含奇数个0的二进制数组成的集合 D.含偶数个0的二进制数组成的集合
第二章 思考题与习题解答
第二章思考题与习题解答2-1 判断正确(√)与错误(×)。
电路的静态是指:(1)输入交流信号的幅值不变时的电路状态。
( )(2)输入交流信号的频率不变时的电路状态。
( )(3)输入交流信号且幅值为零时的状态。
( )(4)输入端开路时的状态。
( )(5)输入直流信号时的状态。
( )目的澄清静态的概念。
解(1) ×。
因为这是动态概念。
(2) ×。
理由与(1)相同。
U=时的状态,也就是正弦波过零点对应的状态就是静态。
(3) √。
即当i0U=的条件,可能有干扰信号从输入端窜(4) ×。
输入端开路时不能保证i0入,因此不能保证静态。
(5) ×。
这仍然是动态概念。
2-2 试判断图题2-2(a)~(i)所示各电路对交流正弦电压信号能不能进行正常放大,并说明理由。
图题2-2目的 检查放大电路是否能正常放大。
分析 一个能正常工作的放大电路应该同时满足四个原则,缺一不可。
这就是:①e 结正偏,c 结反偏。
由直流电源CC V 与BB V 保证。
②信号能输入。
③信号能输出。
④波形基本不失真。
由合适的工作点保证。
检查一个电路,只要有一个原则不满足就不能正常放大。
解 图(a)不能正常放大。
因为BB V 的极性接反了,使e 结反偏。
图(b)不能放大。
原因是CC V 极性接反了,使c 结正偏。
图(c)不能放大。
因为b R =0,使信号i U 通过短路线以及CC V 对地交流短路,加不到晶体管上,从而o U =0。
图(d)不能放大。
因为e 结处于零偏置。
图(e)能正常工作。
因为四个原则均满足。
图(f)不能放大。
因为电容C 有隔直作用,使BB V 不能在b R 上产生偏置电流,即BQ I =0,工作点不合理。
图(g)不能放大。
因为BB V 将信号i U 对地直接短路,不能输入到晶体管上。
图(h)不能放大。
因为c R =0,信号不能输出。
图(i)能放大。
四个原则均满足。
其中二极管起温度补偿作用。
第二章 习题参考答案(修正)
第二章 需求、供给与均衡价格(题目及习题解答)一、判断题1.需求曲线描述了:其它条件不变,市场需求量与价格之间的关系。
解答:√。
知识点:课本第14页倒数第3行。
2.以纵轴代表价格,横轴代表数量,如果两条需求曲线通过同一点,则在那一点处,较陡的那条的弹性更大。
解答:×。
知识点:(考察弹性的几何意义)课本21页公式2.6和22页6-15行。
应该是“较陡的那条的弹性更小”。
理由:图中,直线AC 、BD 分别为需求曲线1和需求曲线2,AC 比BD 陡峭。
AC 之上的E 点弹性等于|AE|/|CE|,而BD 之上的E 点弹性等于|BE|/|DE|。
不难判定,|BE|>|AE|,而|DE|<|CE|,所以|AE|/|CE|<|BE|/|DE|,即“在那一点处,较陡的那条的弹性更小”。
3.如果需求是一条倾斜的直线,则价格水平越高,需求的价格弹性(绝对值)越大。
解答:√。
知识点:两种解法。
第一种是利用弹性的几何意义,课本22页6-7行。
如左下图所示:D 点价格大于B 点,D 点弹性=|AD|/|CD|>B 点弹性=|AB| /|BC|;第二种利用21页公式2.6。
因为B 点和D 点都在同一条直线上,所以dQ/dP 都相同,而P2<P 1,Q 2>Q1。
2121E E B D P P dQ dQ dP Q dP Q =⋅<=⋅ 4.如供给是一条直线,则供给的价格弹性为常数。
解答:×。
26页2.10b 。
“供给的价格弹性不确定”。
设供给函数为P=a+b ·Q s ,则dQ s /dP=-1/b 2,5.需求曲线越陡峭,则供给的变化对价格的影响越大。
P=a 1+b 1·Q s ,需求曲线P=a 2-b 2·Q d 。
令Q *=Q s =Q d ,得P *=(a 1b 2+b 1a 2)/(b 1+b 2)。
需求曲线a 1变化而b 1不变(平行移动)。
第二章课后习题答案
第二章课后习题答案第二章牛顿定律2-1如图(a)所示,质量为m的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为()(A)ginθ(B)gcoθ(C)gtanθ(D)gcotθ分析与解当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力FT(其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a,如图(b)所示,由其可解得合外力为mgcotθ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2-2用水平力FN把一个物体压着靠在粗糙的竖直墙面上保持静止.当FN逐渐增大时,物体所受的静摩擦力Ff的大小()(A)不为零,但保持不变(B)随FN成正比地增大(C)开始随FN增大,达到某一最大值后,就保持不变(D)无法确定分析与解与滑动摩擦力不同的是,静摩擦力可在零与最大值μFN范围内取值.当FN增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2-3一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率()μgR(B)必须等于μgR(C)不得大于μgR(D)还应由汽车的质量m决定(A)不得小于分析与解由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μFN.由此可算得汽车转弯的最大速率应为v=μRg.因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2-4一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则()(A)它的加速度方向永远指向圆心,其速率保持不变(B)它受到的轨道的作用力的大小不断增加(C)它受到的合外力大小变化,方向永远指向圆心(D)它受到的合外力大小不变,其速率不断增加分析与解由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力FN作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(mgcoθ)使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程v2FNmginθm可判断,随θ角的不断增大过程,轨道支持力FN也将不R断增大,由此可见应选(B).2-5图(a)示系统置于以a=1/4g的加速度上升的升降机内,A、B两物体质量相同均为m,A所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为()(A)58mg(B)12mg(C)mg(D)2mg分析与解本题可考虑对A、B两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A、B两物体受力情况如图(b)所示,图中a′为A、B两物体相对电梯的加速度,ma′为惯性力.对A、B两物体应用牛顿第二定律,可解得FT=5/8mg.故选(A).讨论对于习题2-5这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度aA和aB均应对地而言,本题中aA和aB的大小与方向均不相同.其中aA应斜向上.对aA、aB、a和a′之间还要用到相对运动规律,求解过程较繁.有兴趣的读者不妨自己尝试一下.2-6图示一斜面,倾角为α,底边AB长为l=2.1m,质量为m的物体从题2-6图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短?其数值为多少?解取沿斜面为坐标轴O某,原点O位于斜面顶点,则由牛顿第二定律有mginαmgμcoαma(1)又物体在斜面上作匀变速直线运动,故有l11at2ginαμcoαt2coα22则t2l(2)gcoαinαμcoα为使下滑的时间最短,可令dt0,由式(2)有dαinαinαμcoαcoαcoαμinα0则可得tan2α1o,49μ此时t2l0.99gcoαinαμcoα2-7工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m1=2.00某102kg,乙块质量为m2=1.00某102kg.设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的张力以及乙块对甲块的作用力:(1)两物块以10.0m·s-2的加速度上升;(2)两物块以1.0m·s-2的加速度上升.从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?解按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy轴正方向(如图所示).当框架以加速度a上升时,有FT-(m1+m2)g=(m1+m2)a(1)FN2-m2g=m2a(2)解上述方程,得FT=(m1+m2)(g+a)(3)FN2=m2(g+a)(4)(1)当整个装置以加速度a=10m·s-2上升时,由式(3)可得绳所受张力的值为FT=5.94某103N乙对甲的作用力为F′N2=-FN2=-m2(g+a)=-1.98某103N(2)当整个装置以加速度a=1m·s-2上升时,得绳张力的值为FT=3.24某103N此时,乙对甲的作用力则为F′N2=-1.08某103N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2-8如图(a)所示,已知两物体A、B的质量均为m=3.0kg物体A以加速度a=1.0m·s-2运动,求物体B与桌面间的摩擦力.(滑轮与连接绳的质量不计)分析该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的.解分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A、B及滑轮列动力学方程,有mAg-FT=mAa(1)F′T1-Ff=mBa′(2)F′T-2FT1=0(3)考虑到mA=mB=m,FT=F′T,FT1=F′T1,a′=2a,可联立解得物体与桌面的摩擦力Ffmgm4ma7.2N2讨论动力学问题的一般解题步骤可分为:(1)分析题意,确定研究对象,分析受力,选定坐标;(2)根据物理的定理和定律列出原始方程组;(3)解方程组,得出文字结果;(4)核对量纲,再代入数据,计算出结果来.2-9质量为m′的长平板A以速度v′在光滑平面上作直线运动,现将质量为m的木块B轻轻平稳地放在长平板上,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板取得共同速度?分析当木块B平稳地轻轻放至运动着的平板A上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板移动的距离即可求出.解1以地面为参考系,在摩擦力Ff=μmg的作用下,根据牛顿定律分别对木块、平板列出动力学方程Ff=μmg=ma1F′f=-Ff=m′a2a1和a2分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a=a1+a2,木块相对平板以初速度-v′作匀减速运动直至最终停止.由运动学规律有-v′2=2a由上述各式可得木块相对于平板所移动的距离为mv22μgmm解2以木块和平板为系统,它们之间一对摩擦力作的总功为W=Ff(+l)-Ffl=μmg式中l为平板相对地面移动的距离.由于系统在水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有m′v′=(m′+m)v″由系统的动能定理,有μmg由上述各式可得11mv2mmv222mv22μgmm2-10如图(a)所示,在一只半径为R的半球形碗内,有一粒质量为m的小钢球,当小球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高?分析维持钢球在水平面内作匀角速度转动时,必须使钢球受到一与向心加速度相对应的力(向心力),而该力是由碗内壁对球的支持力FN的分力来提供的,由于支持力FN始终垂直于碗内壁,所以支持力的大小和方向是随ω而变的.取图示O某y坐标,列出动力学方程,即可求解钢球距碗底的高度.解取钢球为隔离体,其受力分析如图(b)所示.在图示坐标中列动力学方程FNinθmanmRω2inθ(1)Rh(3)且有coθR由上述各式可解得钢球距碗底的高度为hR可见,h随ω的变化而变化.gω22-11火车转弯时需要较大的向心力,如果两条铁轨都在同一水平面内(内轨、外轨等高),这个向心力只能由外轨提供,也就是说外轨会受到车轮对它很大的向外侧压力,这是很危险的.因此,对应于火车的速率及转弯处的曲率半径,必须使外轨适当地高出内轨,称为外轨超高.现有一质量为m的火车,以速率v沿半径为R的圆弧轨道转弯,已知路面倾角为θ,试求:(1)在此条件下,火车速率v0为多大时,才能使车轮对铁轨内外轨的侧压力均为零?(2)如果火车的速率v≠v0,则车轮对铁轨的侧压力为多少?分析如题所述,外轨超高的目的欲使火车转弯的所需向心力仅由轨道支持力的水平分量FNinθ提供(式中θ角为路面倾角).从而不会对内外轨产生挤压.与其对应的是火车转弯时必须以规定的速率v0行驶.当火车行驶速率v≠v0时,则会产生两种情况:如图所示,如v>v0时,外轨将会对车轮产生斜向内的侧压力F1,以补偿原向心力的不足,如v<v0时,则内轨对车轮产生斜向外的侧压力F2,以抵消多余的向心力,无论哪种情况火车都将对外轨或内轨产生挤压.由此可知,铁路部门为什么会在每个铁轨的转弯处规定时速,从而确保行车安全.解(1)以火车为研究对象,建立如图所示坐标系.据分析,由牛顿定律有v2FNinθm(1)解(1)(2)两式可得火车转弯时规定速率为v0gRtanθ(2)当v>v0时,根据分析有v2FNinθF1coθm(3)RFNcoθF1inθmg0(4)解(3)(4)两式,可得外轨侧压力为v2F1mcoθginθR当v<v0时,根据分析有v2FNinθF2coθm(5)RFNcoθF2inθmg0(6)解(5)(6)两式,可得内轨侧压力为v2F2mginθcoθR2-12一杂技演员在圆筒形建筑物内表演飞车走壁.设演员和摩托车的总质量为m,圆筒半径为R,演员骑摩托车在直壁上以速率v作匀速圆周螺旋运动,每绕一周上升距离为h,如图所示.求壁对演员和摩托车的作用力.分析杂技演员(连同摩托车)的运动可以看成一个水平面内的匀速率圆周运动和一个竖直向上匀速直线运动的叠加.其旋转一周所形成的旋线轨迹展开后,相当于如图(b)所示的斜面.把演员的运动速度分解为图示的v1和v2两个分量,显然v1是竖直向上作匀速直线运动的分速度,而v2则是绕圆筒壁作水平圆周运动的分速度,其中向心力由筒壁对演员的支持力FN的水平分量FN2提供,而竖直分量FN1则与重力相平衡.如图(c)所示,其中φ角为摩托车与筒壁所夹角.运用牛顿定律即可求得筒壁支持力的大小和方向解设杂技演员连同摩托车整体为研究对象,据(b)(c)两图应有FN1mg0(1)FN2v2m(2)Rv2vcoθv2πR2πR2h2(3)22FNFN1FN2(4)以式(3)代入式(2),得FN2m4π2R2v24π2Rmv222(5)2222R4πRh4πRh将式(1)和式(5)代入式(4),可求出圆筒壁对杂技演员的作用力(即支承力)大小为22FNFN1FN224π2Rv22mg4π2R2h2与壁的夹角φ为FN24π2Rv2arctanarctan222FN14πRhg讨论表演飞车走壁时,演员必须控制好运动速度,行车路线以及摩托车的方位,以确保三者之间满足解题用到的各个力学规律.2-13一质点沿某轴运动,其受力如图所示,设t=0时,v0=5m·s-1,某0=2m,质点质量m=1kg,试求该质点7s末的速度和位置坐标.分析首先应由题图求得两个时间段的F(t)函数,进而求得相应的加速度函数,运用积分方法求解题目所问,积分时应注意积分上下限的取值应与两时间段相应的时刻相对应.解由题图得0t52t,Ft5t7355t,由牛顿定律可得两时间段质点的加速度分别为a2t,0t5a355t,5t7对0<t<5s时间段,由adv得dtvtv00dvadt积分后得v5t再由v2d某得dtd某vdt某00某t积分后得某25tt将t=5s代入,得v5=30m·s-1和某5=68.7m对5s<t<7s时间段,用同样方法有133dvv0vt5a2dt得v35t2.5t82.5t再由得某=17.5t2-0.83t3-82.5t+147.87将t=7s代入分别得v7=40m·s-1和某7=142m2-14一质量为10kg的质点在力F的作用下沿某轴作直线运动,已知F =120t+40,式中F的单位为N,t的单位的s.在t=0时,质点位于某=5.0m处,其速度v0=6.0m·s-1.求质点在任意时刻的速度和位置.分析这是在变力作用下的动力学问题.由于力是时间的函数,而加速度a=dv/dt,这时,动力学方程就成为速度对时间的一阶微分方程,解此微分方程可得质点的速度v(t);由速度的定义v=d某/dt,用积分的方法可求出质点的位置.解因加速度a=dv/dt,在直线运动中,根据牛顿运动定律有2某某5d某vdt5t120t40mdvdt依据质点运动的初始条件,即t0=0时v0=6.0m·s-1,运用分离变量法对上式积分,得vv0dv12.0t4.0dt0tv=6.0+4.0t+6.0t2又因v=d某/dt,并由质点运动的初始条件:t0=0时某0=5.0m,对上式分离变量后积分,有d某6.04.0t6.0tdt某t2某00某=5.0+6.0t+2.0t2+2.0t32-15轻型飞机连同驾驶员总质量为1.0某103kg.飞机以55.0m·s-1的速率在水平跑道上着陆后,驾驶员开始制动,若阻力与时间成正比,比例系数α=5.0某102N·s-1,空气对飞机升力不计,求:(1)10s后飞机的速率;(2)飞机着陆后10s内滑行的距离.分析飞机连同驾驶员在水平跑道上运动可视为质点作直线运动.其水平方向所受制动力F为变力,且是时间的函数.在求速率和距离时,可根据动力学方程和运动学规律,采用分离变量法求解.解以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,有dvαtdtvtαtdvv00mdtα2t得vv02mFmam因此,飞机着陆10s后的速率为v=30m·s-1又tα2d某vdt某0002mt某故飞机着陆后10s内所滑行的距离某某0v0tα3t467m6m2-16质量为m的跳水运动员,从10.0m高台上由静止跳下落入水中.高台距水面距离为h.把跳水运动员视为质点,并略去空气阻力.运动员入水后垂直下沉,水对其阻力为bv2,其中b为一常量.若以水面上一点为坐标原点O,竖直向下为Oy轴,求:(1)运动员在水中的速率v与y的函数关系;(2)如b/m=0.40m-1,跳水运动员在水中下沉多少距离才能使其速率v减少到落水速率v0的1/10?(假定跳水运动员在水中的浮力与所受的重力大小恰好相等)分析该题可以分为两个过程,入水前是自由落体运动,入水后,物体受重力P、浮力F和水的阻力Ff的作用,其合力是一变力,因此,物体作变加速运动.虽然物体的受力分析比较简单,但是,由于变力是速度的函数(在有些问题中变力是时间、位置的函数),对这类问题列出动力学方程并不复杂,但要从它计算出物体运动的位置和速度就比较困难了.通常需要采用积分的方法去解所列出的微分方程.这也成了解题过程中的难点.在解方程的过程中,特别需要注意到积分变量的统一和初始条件的确定.解(1)运动员入水前可视为自由落体运动,故入水时的速度为v02gh运动员入水后,由牛顿定律得P-Ff-F=ma由题意P=F、Ff=bv2,而a=dv/dt=v(dv/dy),代入上式后得-bv2=mv(dv/dy)考虑到初始条件y0=0时,v0t2gh,对上式积分,有vdvmdy0v0vbvv0eby/m2gheby/m(2)将已知条件b/m=0.4m-1,v=0.1v0代入上式,则得ymvln5.76mbv0某2-17直升飞机的螺旋桨由两个对称的叶片组成.每一叶片的质量m=136kg,长l=3.66m.求当它的转速n=320r/min 时,两个叶片根部的张力.(设叶片是宽度一定、厚度均匀的薄片)分析螺旋桨旋转时,叶片上各点的加速度不同,在其各部分两侧的张力也不同;由于叶片的质量是连续分布的,在求叶片根部的张力时,可选取叶片上一小段,分析其受力,列出动力学方程,然后采用积分的方法求解.解设叶片根部为原点O,沿叶片背离原点O的方向为正向,距原点O为r处的长为dr一小段叶片,其两侧对它的拉力分别为FT(r)与FT(r+dr).叶片转动时,该小段叶片作圆周运动,由牛顿定律有dFTFTrFTrdr由于r=l时外侧FT=0,所以有m2ωrdrltFTrdFTlrmω2rdrlmω2222πmn222FTrlrlr2ll上式中取r=0,即得叶片根部的张力FT0=-2.79某105N负号表示张力方向与坐标方向相反.2-18一质量为m的小球最初位于如图(a)所示的A点,然后沿半径为r 的光滑圆轨道ADCB下滑.试求小球到达点C时的角速度和对圆轨道的作用力.分析该题可由牛顿第二定律求解.在取自然坐标的情况下,沿圆弧方向的加速度就是切向加速度at,与其相对应的外力Ft是重力的切向分量mginα,而与法向加速度an相对应的外力是支持力FN和重力的法向分量mgcoα.由此,可分别列出切向和法向的动力学方程Ft=mdv/dt和Fn=man.由于小球在滑动过程中加速度不是恒定的,因此,需应用积分求解,为使运算简便,可转换积分变量.倡该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度,方法比较简便.但它不能直接给出小球与圆弧表面之间的作用力.解小球在运动过程中受到重力P和圆轨道对它的支持力FN.取图(b)所示的自然坐标系,由牛顿定律得Ftmginαmdv(1)dtmv2FnFNmgcoαm(2)R由vdrdαrdα,得dt,代入式(1),并根据小球从点A运动到点Cdtdtv的始末条件,进行积分,有vv0vdvα90orginαdα得v则小球在点C的角速度为2rgcoαωv2gcoα/rrmv2mgcoα3mgcoα由式(2)得FNmr由此可得小球对圆轨道的作用力为FN3mgcoαFN负号表示F′N与en反向.2-19光滑的水平桌面上放置一半径为R的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦因数为μ,开始时物体的速率为v0,求:(1)t时刻物体的速率;(2)当物体速率从v0减少到12v0时,物体所经历的时间及经过的路程.解(1)设物体质量为m,取图中所示的自然坐标,按牛顿定律,有mv2FNmanRFfmatdvdt由分析中可知,摩擦力的大小Ff=μFN,由上述各式可得v2dvμRdt取初始条件t=0时v=v0,并对上式进行积分,有t0dtRvdvμv0v2vRv0Rv0μt(2)当物体的速率从v0减少到1/2v0时,由上式可得所需的时间为t物体在这段时间内所经过的路程Rμv0vdt0tt0Rv0dtRv0μtRln2μ2-20质量为45.0kg的物体,由地面以初速60.0m·s-1竖直向上发射,物体受到空气的阻力为Fr=kv,且k=0.03N/(m·s-1).(1)求物体发射到最大高度所需的时间.(2)最大高度为多少?分析物体在发射过程中,同时受到重力和空气阻力的作用,其合力是速率v的一次函数,动力学方程是速率的一阶微分方程,求解时,只需采用分离变量的数学方法即可.但是,在求解高度时,则必须将时间变量通过速度定义式转换为位置变量后求解,并注意到物体上升至最大高度时,速率应为零.解(1)物体在空中受重力mg和空气阻力Fr=kv作用而减速.由牛顿定律得mgkvmdv(1)dt某2-25如图(a)所示,电梯相对地面以加速度a竖直向上运动.电梯中有一滑轮固定在电梯顶部,滑轮两侧用轻绳悬挂着质量分别为m1和m2的物体A和B.设滑轮的质量和滑轮与绳索间的摩擦均略去不计.已知m1>m2,如以加速运动的电梯为参考系,求物体相对地面的加速度和绳的张力.分析如以加速运动的电梯为参考系,则为非惯性系.在非惯性系中应用牛顿定律时必须引入惯性力.在通常受力分析的基础上,加以惯性力后,即可列出牛顿运动方程来.解取如图(b)所示的坐标,以电梯为参考系,分别对物体A、B作受力分析,其中F1=m1a,F2=m2a分别为作用在物体A、B上的惯性力.设ar为物体相对电梯的加速度,根据牛顿定律有m1gm1aFT1m1ar(1)m2gm2aFT2m2ar(2)FT2FT2(3)由上述各式可得arm1m2gam1m22m1m2gam1m2FT2FT2由相对加速度的矢量关系,可得物体A、B对地面的加速度值为a1aram1m2g2m2am1m22m1am1m2gm1m2a2araa2的方向向上,a1的方向由ar和a的大小决定.当ar<a,即m1g-m2g-2m2a>0时,a1的方向向下;反之,a1的方向向上.某2-26如图(a)所示,在光滑水平面上,放一质量为m′的三棱柱A,它的斜面的倾角为α.现把一质量为m的滑块B放在三棱柱的光滑斜面上.试求:(1)三棱柱相对于地面的加速度;(2)滑块相对于地面的加速度;(3)滑块与三棱柱之间的正压力.分析这类问题可应用牛顿定律并采用隔离体法求解.在解题的过程中必须注意:(1)参考系的选择.由于牛顿定律只适用于惯性系,可选择地面为参考系(惯性系).因地面和斜面都是光滑的,当滑块在斜面上下滑时,三棱柱受到滑块对它的作用,也将沿地面作加速度为aA的运动,这时,滑块沿斜面的加速度aBA,不再是它相对于地面的加速度aB了.必须注意到它们之间应满足相对加速度的矢量关系,即aB=aA+aBA.若以斜面为参考系(非惯性系),用它求解这类含有相对运动的力学问题是较为方便的.但在非惯性系中,若仍要应用牛顿定律,则必须增添一惯性力F,且有F=maA.(2)坐标系的选择.常取平面直角坐标,并使其中一坐标轴方向与运动方向一致,这样,可使解题简化.(3)在分析滑块与三棱柱之间的正压力时,要考虑运动状态的影响,切勿简单地把它视为滑块重力在垂直于斜面方向的分力mgcoα,事实上只有当aA=0时,正压力才等于mgcoα.解1取地面为参考系,以滑块B和三棱柱A为研究对象,分别作示力图,如图(b)所示.B受重力P1、A施加的支持力FN1;A受重力P2、B施加的压力FN1′、地面支持力FN2.A的运动方向为O某轴的正向,Oy轴的正向垂直地面向上.设aA为A对地的加速度,aB为B对的地加速度.由牛顿定律得FN1inαmaA(1)FN1inαmaB某(2)FN1coαmgmaBy(3)FN1FN1(4)设B相对A的加速度为aBA,则由题意aB、aBA、aA三者的矢量关系如图(c)所示.据此可得aB某aAaBAcoα(5)aByaBAinα(6)解上述方程组可得三棱柱对地面的加速度为aAmginαcoα2mminαmginαcoαmmin2α滑块相对地面的加速度aB在某、y轴上的分量分别为aB某aBymmgin2αmmin2α则滑块相对地面的加速度aB的大小为aBaa2B某2Bym22mmm2in2αginαmmin2α其方向与y轴负向的夹角为amcotαθarctanB某arctanaBymmA与B之间的正压力FN1mmgcoα2mminα解2若以A为参考系,O某轴沿斜面方向[图(d)].在非惯性系中运用牛顿定律,则滑块B的动力学方程分别为mginαmaAcoαmaBA(1)mgcoαFN1maAinα0(2)又因FN1inαmaA0(3)FN1FN1(4)由以上各式可解得aAaBAmginαcoαmmin2αmmginαmmin2α由aB、aBA、aA三者的矢量关系可得m22mmm2in2αaBginαmmin2α以aA代入式(3)可得FN1mmgcoαmmin2α。
管理会计课后习题学习指导书习题答案(第二章)
第二章书本习题思考题1.管理会计对成本是如何分类的?各种分类的主要目的是什么?答:(1)按经济用途可以分为制造成本和非制造成本两大类。
其分类结果主要用来确定存货成本和期间损益,满足对外财务报告的需要。
(2)按性态可以分为固定成本、变动成本和混合成本三类。
其分类结果主要用来分析和决策,满足对内管理的需要。
(3)其他成本概念及分类,如机会成本,边际成本,沉没成本与付现成本等等。
其结果主要用来分析决策。
2.按成本性态划分,成本可以分为几类?各自的含义、构成和相关范围是什么?答:成本性态也称为成本习性,是指成本的总额对业务总量(产量或销售量)的依存关系。
按成本性态可以分为固定成本、变动成本和混合成本三类。
(1)固定成本是指其总额在一定期间和一定业务量范围内,不受业务量变动的影响而保持固定不变的成本。
符合固定成本概念的支出在“固定性”的强弱上还是有差别的,所以固定成本又细分为酌量性固定成本和约束性固定成本。
酌量性固定成本也称为选择性固定成本或者任意性固定成本,是指管理者的决策可以改变其支出数额的固定成本。
约束性固定成本与酌量性固定成本相反,是指管理者的决策无法改变其支出数额的固定成本,因而也称为承诺性固定成本,它是企业维持正常生产经营能力所必须负担的最低固定成本,其支出的大小只取决于企业生产经营的规模与质量,因而具有很大的约束性,企业管理者不能改变其数额。
固定成本的“固定性”不是绝对的,而是有限定条件的,表现为一定的期间范围和一定的空间范围。
就期间范围而言,固定成本表现为在某一特定期间内具有固定性。
从较长时间看,所有成本都具有变动性,即使“约束性”很强的约束性固定成本也是如此。
随着时间的推移,一个正常成长的企业,其经营能力无论是从规模上还是从质量上均会发生变化:厂房势必扩大、设备势必更新、行政管理人员也可能增加,这些均会导致折旧费用、财产保险费、不动产税以及行政管理人员薪金的增加。
经营能力的逆向变化也会导致上述费用发生变化。
机械制图答案_江西出版社出版_第2章习题指导
2-46 求两平面的交线,并判断可见性。
2-47 求两平面的交线,并判断可见性。
2-48 求两平面的交线,并判断可见性。
2-49 求两平面的交线,并判断可见性。
2-50 求两平面的交线,并判断可见性。
2-51 用三面共点法求两平面的交线。
2-52 过点A作直线与BC 和DE 两直线都相交。
2-60 已知等腰三角形ABC的底边BC,顶点A 在BC的前下方,补全ABC 的投影。
2-61 已知菱形ABCD 的一对角线AC,顶点B 在H 面 上,距V 面25mm,完成菱形的投影。
2-62 已知等腰三角形ABC 的顶点A在直线DE上, 求作ABC 的投影。
2-63 在平面CDE上作一直线与直线AB 垂直相交。
2-1 已知A(30,20,15)、B(20,30,0)、 C(0,0,25)三点坐标,求作其三面投影。
2-2 已知A、B、C 三点的两面投影,求其第三面投影。
2-3 已知点A到V面的距离为25mm,点B到H面距离为 30mm,点C到V面和H面距离相等,补全A、B、C三点的二面 投影。 Z =30 Y =25
2-11 判别直线AB是否与直线CD平行;AB是否与 直线EF相交。
因为AD 与BC是交叉两直线,所以AB 与CD不平行。 因为11b’ 与21f’ 不平行,所以AB 与EF 不相交。
2-12 判别交叉两直线AB、CD上重影点的可见性。
2-13 求点C 到直线AB 的距离。
△YCD
实长 c’d’
2-23 求平面△ABC 对H 面的倾角。
2-24 在平面ABC上取点K,K点在H 面上,到V 面 距离为30mm。
2-25 求作点A两次换面的新投影。
2-26 求直线AB 的实长及对H 面和V 面的倾角α、β。
操作系统第二章作业讲解
操作系统第二章作业讲解第二章习题讲解1、进程之间存在着哪几种制约关系?各是什么原因引起的?下列活动分别属于哪种制约关系?(1)若干同学去图书馆借书;(2)两队举行篮球比赛;(3)流水线生产的各道工序;(4)商品生产和社会消费。
答:进程之间存在着直接制约与间接制约这两种制约关系,其中直接制约(同步)是由于进程间的相互合作而引起的,而间接制约(互斥)则是由于进程间共享临界资源而引起的。
(1)若干同学去图书馆借书,是间接制约,其中书是临界资源;(2)两队举行篮球比赛,是间接制约,其中蓝球是临界资源;(3)流水线生产的各道工序,是直接制约,各道工序间需要相互合作,每道工序的开始都依赖于前一道工序的完成;(4)商品生产和社会消费,是直接制约,两者也需要相互合作:商品生产出来后才可以被消费;商品被消费后才需要再生产。
2、试写出相应的程序来描述下图所示的前趋图vara,b,c,d,e,f:semaphore:=0,0,0,0,0,0;begin S1; signal(a); signal(b);signal(c); end;begin wait(a); S2; end;begin wait(b); S3; signal(d); end; begin wait(c); S4; end;begin wait(d); S5; signal(e); signal(f); end; begin wait(e); S6; end;begin wait(f); S7; end;3、已知一个求值公式(A2+3B)/(B+5A),若A、B已赋值,试画出该公式求值过程的前趋图,并使用信号量描述这些前趋关系。
答:根据求值公式,假设:S1: X1=A*AS2: X2=3*BS3: X3=5*AS4: X4=X1+X2S5: X5=B+X3S6: X6=X4/X5var a,b,c,d,e:semaphore:=0,0,0,0,0;begin S1; signal(a); end;begin S2; signal(b); end;begin S3; signal(c); end;begin wait(a); wait(b); S4; signal(d); endbegin wait(c); S5; signal(e); endbegin wait(d); wait(e); S6; end4、桌上有一只能容纳一个水果的盘子;爸爸专向盘子中放苹果(apple),妈妈专向盘子中放桔子(orange),一个儿子专等吃盘子中的桔子,一个女儿专等吃盘子里的苹果,1)试用信号量实现他们的同步关系;2)如果有两个家庭的爸爸、妈妈、儿子、女儿和二只盘子呢?会需要专门的实现吗?var empty,apple,orange:semaphore:= 1,0,0;说明:empty与apple表示盘子为空与盘子中放入了苹果,用于表示爸爸与女儿间的同步关系;empty与orange表示盘子为空与盘子中放入了桔子,用于表示妈妈与儿子间的同步关系;答案:1)使用记录型信号量father:beginrepeatproducer an apple;wait(empty);Put an apple to the dish;signal(apple);Until falseend daughter:beginrepeatwait(apple);Get an apple from dish;signal(empty);Eat an apple; Until falseendmother:beginrepeatproducer an orange;wait(empty);Put an orange to the dish;signal(orange); Until falseend son:beginrepeatwait(orange);Get an orange from dish;signal(empty);Eat an orange; Until falseend2)使用记录型信号量varmutex,empty,apple,orange:semaphore:=1,2,0,0;dish: array[0,1] of fruit;in, out:integer:= 0,0;father:beginrepeatproducer an apple;wait(empty);wait(mutex);if dish[in]==apple or dish[in]==orange thenin:=(in+1) mod 2;disk[in]:=apple;in:=(in+1) mod 2;signal(mutex);signal(apple);Until falseend daughter:begin repeatwait(apple);wait(mutex);ifdish[out]==orange thenout:=(out+1) mod 2;get an apple from dish[out];out:=(out+1) mod 2;signal(mutex);signal(empty);Eat an apple; Until falseEndmother:beginrepeatproducer an orange;wait(empty);wait(mutex);if dish[in]==apple or dish[in]==orange thenin:=(in+1) mod 2;disk[in]:=orange;in:=(in+1) mod 2;signal(mutex);signal(orange);Until falseend son:beginrepeatwait(orange);wait(mutex);ifdish[out]==apple thenout:=(out+1) mod 2;get an orange from dish[out];out:=(out+1) mod 2;signal(mutex);signal(empty);Eat an apple; Until falseend5、试用信号量实现课件92页,司机与售票员进程的同步关系var stop, door :semaphore:=0,0;driver:beginrepeatdrive a bus; arrive at bus station; signal(stop);rest;wait(door);Until falseend conductor:begin repeatsell tickets;wait(stop);Open the door;Close the doorsignal(door); Until falseend6、试用信号量解决读者—写者问题,使得写者与读者优先级根据到达顺序确定。
大学物理化学 第二章 热力学第二定律学习指导及习题解答
3.熵可以合理地指定
Sm$
(0K)
0
,热力学能是否也可以指定
U
$ m
(0K)
0
呢?
答:按能斯特热定理,当温度趋于0K,即绝对零度时,凝聚系统中等温变化过
程的熵变趋于零,即
, 只要满足此式,我们就可以任意
选取物质在0K时的任意摩尔熵值作为参考值,显然 Sm$ (0K) 0 是一种最方便的
选择。但0K时反应的热力学能变化并不等于零,
(2)变温过程
A.等压变温过程 始态 A(p1,V1,T1) 终态 B(p 1,V2,T2)
S
T2
δQ R
T T1
T2 Cp d T T T1
Cp
ln
T2 T1
B.等容变温过程 始态 A(p1,V1,T1) 终态 B(p2,V1,T2)
S
T2
δQ R
T T1
C.绝热过程
T2 CV d T T T1
,所以不
能指定
U
$ m
(0K)
0
。
4.孤立系统从始态不可逆进行至终态S>0,若从同一始态可逆进行至同
一终态时,则S=0。这一说法是否正确?
答:不正确。熵是状态函数与变化的途径无关,故只要始态与终态一定S
必有定值,孤立系统中的不可逆过程S>0,而可逆过程S=0 是毋庸置疑的,
问题是孤立系统的可逆过程与不可逆过程若从同一始态出发是不可能达到相同
4.熵 (1)熵的定义式
dS δ QR T
或
S SB SA
B δ QR AT
注意,上述过程的热不是任意过程发生时,系统与环境交换的热量,而必须是在
可逆过程中系统与环境交换的热。
第二章 习题及参考答案
第二章习题及参考答案
2-1.什么叫直接启动?直接启动有何优缺点?在什么条件下可允许交流异步电动机直接启动?
答:所谓的直接启动把电源电压直接加到电动机的接线端,这种控制线路结构简单,成本低,仅适合于实践电动机不频繁启动,不可实现远距离的自动控制。
满足此式可以直接启动,否则不允许。
在一般情况下,7.5KW以下电动机可以直接启动。
2-2.什么叫减压启动?有哪几种方法?各有什么特点及适用场合?
答:所谓减压起动是指利用起动设备将电压适当降低后加到电动机的定子绕组上进行起动,待电动机起动运转后,再使其电压恢复到额定值正常运行。
减压起动方法有四种:
(1)定子绕组中串接电阻降压起动
(2)Y/△减压起动
(3)自耦变压器减压起动
答:
1.熔断器FU1、FU2烧毁或接触不良;
2.按钮SB1、SB2损坏或触点接触不良;
3.热继电器FR故障或常闭触点断开;
4.交流接触器故障;
5.线路故障
2-8. 画出下列继电器的图形符号:
A.断电延时打开常闭触点;
B.通电延时打开常开触点;
C.复合按钮;
D.热继电器常闭触点。
2-9. 试设计一个三相异步电动机用接触器控制的直接起动电路。
(1)要求画出主电路和控制电路;
(2)体现绘制原理图的原则与要求。
第2章 习题提示和答案
2−10 空 气 在 某 压 气 机 中 被 压 缩 , 压 缩 前 空 气 的 参 数 是 : p1 = 0.1MPa ,
v1 = 0.845 m3 kg 。压缩后的参数是 p2 = 0.1MPa ,v2 = 0175 m3 kg 。设在压缩过程中每 kg
空气的热力学能增加 146.5kJ 同时向外放出热量 50kJ。压气机每分钟产生压缩空气 10kg。求: (1)压缩过程中对每 kg 气体所作的体积变化功;(2)每生产 1kg 的压缩空气所需的功(技 术功);(3)带动此压气机要用多大功率的电动机?
氨进入和离开锅炉时的焓分别为 h1 = h ' = −396.2kJ/kg、h2 =h" = −223.2kJ/kg ,氨离开过热 器时的焓为 h = −25.1kJ/kg 。
提示和答案:氨在锅炉和过热器中过程均近似为定压过程,换热量等于焓差。
Φ g
=
0.865kW
, Φs
=
0.991kW
。
2−15 向大厦供水的主管线在地下 5m进入时,管内压力 600kPa。经水泵加压,在距地 面 150m高处的大厦顶层水压仍有 200kPa,假定水温为 10℃,流量为 10kg/s,忽略水热力学 能差和动能差,假设水的比体积为 0.001m3/kg,求水泵消耗的功率。
8
第二章 热力学第一定律
进口处蒸汽为 70m/s,出口处速度为 140m/s 时对汽轮机的功率有多大的影响;(4)蒸汽进 出、口高度并差是 1.6m 时,对汽轮机的功率又有多大影响?
提示和答案:(1)
p 1
=
p e ,1
+
p b
=
9.1MPa
、
p2
=
第二章牛顿定律习题分析与解答
2-13轻型飞机连同驾驶员总质量为1.0×103kg,飞机以 55.0m•s-1的速率在水平跑道上着陆后,驾驶员开始制动, 若阻力与时间成正比,比例系数α =5.0×102 N•s-1,求 (1)10s后飞机的速率;(2)飞机着陆后10s内滑行的距离. 飞机连同驾驶员在水平跑道上运动可视为质 点作直线运动,其水平方向所受制动力F为变力, 且是时间的函数,在求速率和距离时,可根据动 力学方程和运动学规律,采用分离变量法求解. 以地面飞机滑行方向为坐标正方向,由牛顿定 律及初始条件,有:
为使下滑时间最短,可令 dt / d 0,由上式得:
sin (sin cos ) cos (cos sin ) 0
则可得:
此时:
tg 2 1 / ,
tmin
490
2l 0.99s g cos (sin cos )
第二章 牛顿定律部分习题分析与解答
FT (r )
dr
FT (r dr)
o
r
设叶片根部为原点O,沿叶片背离原点O的方 向,距原点O为r处为dr一小段叶片,其两侧对 它的拉力分别为FT(r)与FT(r+dr)叶片转 动时,该小段叶片作圆周运动,由牛顿定律有
m 2 dFT FT (r ) FT (r dr ) rdr l
2GmE v0 2 gR R
2 9.80 6.4010 11.2 10 m s
6 3
1
第二章 牛顿定律部分习题分析与解答
2-16 质量为45.0kg的物体,由地面以初速60.0m•s-1
竖直向上发射,物体受到空气的阻力为Fr=kv,且
k=0.03N/m•s-1. (1)求物体发射到最大高度所需的
第二章课后习题与答案
第2章人工智能与知识工程初步1. 设有如下语句,请用相应的谓词公式分别把他们表示出来:s(1)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。
解:定义谓词dP(x):x是人L(x,y):x喜欢y其中,y的个体域是{梅花,菊花}。
将知识用谓词表示为:(∃x )(P(x)→L(x, 梅花)∨L(x, 菊花)∨L(x, 梅花)∧L(x, 菊花))(2)有人每天下午都去打篮球。
解:定义谓词P(x):x是人B(x):x打篮球A(y):y是下午将知识用谓词表示为:a(∃x )(∀y) (A(y)→B(x)∧P(x))(3)新型计算机速度又快,存储容量又大。
解:定义谓词NC(x):x是新型计算机F(x):x速度快B(x):x容量大将知识用谓词表示为:(∀x) (NC(x)→F(x)∧B(x))(4)不是每个计算机系的学生都喜欢在计算机上编程序。
解:定义谓词S(x):x是计算机系学生L(x, pragramming):x喜欢编程序U(x,computer):x使用计算机将知识用谓词表示为:¬(∀x) (S(x)→L(x, pragramming)∧U(x,computer))(5)凡是喜欢编程序的人都喜欢计算机。
解:定义谓词P(x):x是人L(x, y):x喜欢y将知识用谓词表示为:(∀x) (P(x)∧L(x,pragramming)→L(x, computer))2请对下列命题分别写出它们的语义网络: (1) 每个学生都有一台计算机。
解:(2) 高老师从3月到7月给计算机系学生讲《计算机网络》课。
解:(3) 学习班的学员有男、有女、有研究生、有本科生。
解:参例2.14(4) 创新公司在科海大街56号,刘洋是该公司的经理,他32岁、硕士学位。
解:参例2.10(5) 红队与蓝队进行足球比赛,最后以3:2的比分结束。
解:2.19 请把下列命题用一个语义网络表示出来: (1) 树和草都是植物; 解:(2) 树和草都有叶和根; 解:(3) 水草是草,且生长在水中; 解:(4) 果树是树,且会结果; 解:(5) 梨树是果树中的一种,它会结梨。
第二章 复变函数钟玉泉版习题解答提示
第二章 习题解答提示(一)1.(定理)设连续曲线[]βα,),(:∈=t t z z C ,有[]),(0)(00βα∈≠'t t z ,则(试证)曲线C 在点)(0t z 有切线。
分析 1)在)(0t z 的某去心领域内能联结割线()(10t z t z ; 2)割线的极限位置就是切线。
证1),0>∃δ使}{\),(0001t t t t δδ+-∈∀,有)()(01t z t z ≠,即C 在)(0t z 的 对应去心领域内无重点,即能够连接割线()(10t z t z ,否则就存在数列{},01t t n →使)()(01t z t z n =。
于是0)()(lim )(0101001=--='→t t t z t z t z n n t t n ,这与假设矛盾。
2)01001),(t t t t t >⇒+∈δ,[],)()(arg )()(arg010101t z t z t t t z t z -=--[])()(arg lim 010t z t z t t -∴→(对)(0t z 割线)()(10t z t z 倾角的极限)⎥⎦⎤⎢⎣⎡--=--=→→01010101)()(lim arg )()(arglim 0101t t t z t z t t t z t z t t t t )(a r g0t z '=。
因此,割线确实有极限位置,即曲线C 在点)(0t z 的切线存在,其 倾角为)(arg 0t z '.3. 设 ⎪⎩⎪⎨⎧=≠+==+++-.0,0;0,)(223333)(z iy x z z f y x y x i y x试证)(z f 在原点满足..R C -条件,但却不可微. 证 1) 有公式(2.5)及(2.6)有;1)0()(lim0i z f z f iv u x y x x +=-=+→=.1)0()(lim0+=-=+-→=i zf z f v iu y x y y2) 但z 当沿直线0)0(→≠=m mx y 时,zf z f z )0()(lim-→随m 而变.4. 试证下列函数在z 平面上任何点都不解析: (1) z ; (2) y x +; (3) z Re ; (4)z1. 分析 由于孤立的可微点不是解析点,故只须证明各函数 个别点外处处不满足解析的必要条件:..R C -条件.证 (1) 当0≠z 时,即y x ,至少有一0≠时,或有,y x v u ≠ 或有.x x v u -≠故z 至多在原点可微;(2) 在上处处不满足..R C -条件;(3) 的结论同(2); (4),122y x iy x zz z z ++==除原点外,..R C -条件处处不成立. 5. 判断下列函数的可微性和解析性: (1) ;)(22y ix xy z f += (2) ;22iy x +(3) ;32)(33iy x z f += (4) ).3(33223y xy i xy x -+- 分析 如只在孤立点或只在直线上可微,都未形成由可微点构成的圆邻域,故都在其上不解析;利用推论2.3考查可微性,然后应用解析的定义.解 (1) .),(,),(22y x y x v xy y x u == 仅当0==y x 时,22,22xy v u xy x v u y x y y x -=-=====且此四偏导数在原点连续,故)(z f 只在原点可微,且.0)2()()0()0,0(2)0,0(===+='xyi x iv u f x x6. 若函数)(z f 在区域D 内解析,且满足下列条件之一,试 证)(z f 在D 内必为常数.(1) 在D 内;0)(='z f (2))(z f 在D 内解析; (3) )(z f 在D 内为常数;(4) )(Re z f 或)(Im z f 在D 内为常数. 分析 分别由各题设条件及..R C -条件得:在D 内,0====y x y x v v u u 从而v u ,在D 内为常数.引理* 在区域D 内0====y x y x v v u u(A)⇒在D 内v u ,为常数.事实上,1) 设000iy x z +=为D 内一定点.)(00y y i x x iy x z ∆++∆+=+=是D 内任一点.若这两点能用全含于D 内的直线段z z 0来联结, 则有:),(),(0000y x u y y x x u u -∆+∆+=∆ x y y x x u x ∆∆+∆+=),(00θθ).10(),(00<<∆∆+∆++θθθy y y x x u y )(B这是因为,”若令),10(,00≤≤∆+=∆+=t y t y y x t x x 则有),,()(00y t y x t x u t F ∆+∆+= x y t y x t x u t F x ∆∆+∆+='),()(00 .),(00y y t y x t x u y ∆∆+∆++而.,y dtdy x dt dx ∆=∆= 由数学分析中的微分中值定理得)()01)(()0()1(θθF F F F '=-'=-).10(<<θ于是)(B 式成立.”从而由)(A 知,0=∆u 即),(),(00y x u y x u =.即在D 内u 为常数.同理,在D 内v 为常数.2) 若联结两点0z 与z 的直线段不全含于D 内,由区域的连通性知,可用全含在D 内的折线段将0z 与z 连接.若111iy x z +=是折线上0z 后面的一个顶点,则在)1段中u ∆的表达式)(B 中, 令,1010,y y y x x x =∆+=∆+立即得).,(),(0011y x u y x u =如此逐步推算,由一顶点至另一顶点,最后可得()().,,00y x u y x u =即在D 内u 为常数. 同理,在D 内v 为常数.引理*证毕. 证(1)...)(0,y y x x iu v R C iv u z f D iy x z --+='=∈+=∀(2) 由题设条件iv u +及iv u -在D 内解析,再由..R C -条件可推得0====y x y x v v u u 最后有引理*可得证.(3) 由题设,在D 内=)(z f 常数C . 1) .0)(0≡⇒=z f C 2) .0)(0≠⇒≠z f C证一 )()()(2z f C z f C z f =⇒=在D 内解析,于是由题(2)得知D z f 在)(内为常数.证二 ,0222≠=+C v u 分别对y x ,微分,再应用..R C - 条件,讨论解二元一次方程组,即得在D 内.0====y x y x v v u u(4) 由..R C -条件推得,在D 内.0====y x y x v v u u 8. 试证下列函数在z 平面上解析,并分别求出其导函数. (1) ;33)(3223i y xy yi x x z f --+=(2) );sin cos ()sin cos ()(y x y y ie y y y x e z f xx ++-= (3) ;cos sin )(xshy i xchy z f += (4) ;sin cos )(xshy i xchy z f -= 证 应用定理2.5及求导公式(2.7).),2cos(2sin 21sin )cos()cos(cos nb a b bn nb a b a a ++=+++++ (1)及).2sin(2sin 21sin )sin()sin(sin nb a b bn nb a b a a ++=+++++ (2)证一 分别证明(1)和(2).按定义将正,余弦函数表成指数函数,再等比级数求和的公式简化.注 由于a 和b 是复数,不能从(1)+i (2)着手化简后,再比较实,虚部. 证二 先将(1)和(2)式两端各乘2sin b去分母后,再应用三角函数中积化和差的公式,代入左端化简.16. 试证:(1)ishz iz =)sin(;(2)chz iz =)cos(;(3)z i iz sh sin )(=;(4)z iz ch cos )(=; (5)ithz iz tg =)(;(6)itgz iz th =)(.证 (1)、(2)应用定义2.5及2.7;(3)由(1);(4)由(2);(5)、(6)由定义2.6、及2.7及(1)、(2). 17. 试证:(1)122=-z sh z ch ;(2)1sec 22=+z th z h ;(3)212121)(shz shz chz chz z z ch +=+.证 (1)由16题(1)、(2);(2)由本题(1);(3)由16题(1)、(2). 18. 若,iy x z +=试证:(1)xshy i xchy z cos sin sin +=; (2)xshy i chy z sin cos cos -=;(3)y sh x z 222sin sin +=; (4)y sh x z222cos cos +=.证 (1)、(2)应用16题(1)、(2);(3)、(4)分别应用本题(1)、(2)及17题(1). 20. 试解方程:(4)0sin cos =+z z ;(5)i tgz 21+=. 解 (4).0)sin 21cos 21(2=+z zππk z +-=4(k 为整数).(5)Arc z =)21(1)21(121)21(i i i i Lni i tg +-++=+=+-=5221i Ln i⎥⎦⎤⎢⎣⎡-+=21)12(21arctg k z π +).,1,0(5ln 4±=k i21. 设θi re z =,试证[])cos 21ln(21)1ln(Re 2θr r z -+=-. 证 设ϕρi e z =-1,则[]ρln )1ln(Re =-z .22. 设3z w =确定在从原点0=z 起沿正实轴割破了的z 平面上,并且i i w -=)(,试求)(i w -之值.解一 32)(3)()(πθk z ik ez r z w +=,(G z ∈:πθ2)(0<<z ;2,1,0=k )1) 利用i i w -=)(定)2;2,=k k 求)(2i w -. 解二 作图2.0.13)(z z f =3arg 31)(arg π=∆=∆⇒z z f c c .再由公式(2.25)计算).)((6i ei f π-=-23. 设3z w =确定在从原点0=z 起沿负实轴割破了的z 平面上,并且32)2(-=-w (这是边界上岸点对应的函数值),试求)(i w 之值.解一 .,222ππii e i e ==-由32)2(-=-w 定,1,=k k 从而.)(651i ei w π=解二 作图2.0.2.3)(z z f =,而[].arg )2(arg 3π=-=-z f又∆ .6arg 31)(arg ,2arg ππ-=∆=∆-=z z f z c c 再应用公式(2.25)计算))((65i e i f π=.24. 已知1)(4+=z z f 在ox 轴上A 点(1>=R OA )的初值为14++R ,令z 由A 起沿正向再以原点为中心的圆周上走41圆周而至oy 轴的B 点,问)(z f 在B 点的终值为何?分析 题设的函数1)(4+=z z f 是具有四个有限支点的二值函数,讨论起来比较繁难,而经过变数代换4z w =后,就简化成具有单有限支点-1的二值函数1+=w w .解 z 在z 平面上沿以0=z 为心,1>R 为半径的圆周c 从A 走到B ,经过变换4z w =,其象点w 在w 平面上w=0为心,14>R 为半径的象圆周Γ从'A 走到B ',刚好绕1+=w w 的交点-1转一整周.故它在B '的值为1+-w .因此1|)(|)(4+-=-=R z f z f A B . 25. 试证:在将z 平面适当割开后,函数32)1()(z z z f -=能分出三个单值解析分支.并求出在点2=z 取负值的那个分支在i z =的值.分析 仿例2.3.14,2.3.15及2.3.16解之.证 )(z f 的支点是,1,0=z 在沿]1,0[割开的z 平面的区域D 内,)(z f 能分出三个单值解析分支.证一 令11r z =-1θi e ,2r z = 2θi e当2=z 时,2,1,0,2121====r r θπθ.由已知π)(arg z f k 定1,=k k .然后计算i ei f 127612)(π-=32232121)]()[()(πθθk ik ez r z r z f ++=证二 作图2.0.4.由2到i ,取路线1C .,127)(arg 1π=∆z f c 再按公式(2.25)计算)(i f 证三 作图2.0.4.由2到I ,取路线2C ,π1217)(arg 2-=∆z f c .再按(2.25)计算)(i f .(二)1.设21)(z z z f -=,试证().1,0)()(Re <>⎥⎦⎤⎢⎣⎡'z z f z f z证2224221I m (2111)()(zz i z z z z f z f z -=-=-+='.2.设zzz f -=1)(,试证 ().1,0)()(1Re <>⎥⎦⎤⎢⎣⎡'''+z z f z f z 证3.若函数在上半平面内解析,试证函数在下半平面内解析. 证一设z z 、0分别为下半z 平面内的定点及动点,可证)()()(lim0000z f z z z f z f z z '=--→.由0z 的任意性及解析的定义得证.证二),(),()(y x iv y x u z f +=在上半平面)0(>y 内解析⇒1)),(),,(y x v y x u 在0>y 可微,且2)yy x v x y x u ∂∂=∂∂),(),(, )0(),(),(>∂∂-=∂∂y xy x v y y x u ()* 考查)0)(,(),()(<--=y y x iv y x u z f ,则可证:1)),(),,(y x v y x u ---在0<y 内可微,且由()*式有 2)[][]yy x v x y x u y ∂--∂*∂-∂>-),()(,)0(, [][]xy x v y y x u ∂--∂-=∂-∂),()(,. 4.(形式导数)(1)设二元函数),(y x u 有偏导数.此函数可以写成iy x z +=及z 的函数).2,2(izz z z u u -+= 试证(形式地)⎪⎪⎭⎫⎝⎛∂∂+∂∂=∂∂⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂y u i x u z u y u i x u z u 21,21 (2)设复变函数),(),()(y x iv y x u z f +=,且),(y x u 和),(y x v 都有偏导数.试证(形式地):对于)(z f ,柯西—黎曼(Cauchy-Riemann)条件可以写成0=∂∂+∂∂=∂∂zvi z u z f (由此可见,解析函数是以条件0=∂∂zf为其特征的.因此,我们不妨说,一个解析函数与z 无关,而是z 一数的函数.)证 (形式地)(1)由于)(21),(21z z iy z z x -=+=. 这里视z z ,为两个独立变量.根据复合函数求偏导的法则,即可形式地得证。
第二章 习题(讲解)
Ml 3EI
0
考虑: P ql,Q ql 4 解之得: M 0.1448ql2
-4-
船海学院
第二章 单跨梁弯曲理论
习题讲解
查附表 A-2 得梁中点的挠度为:
v( l ) 2
Pl 3 6EI
3 4
1 2
1
9 16
1 4
1 64
Ql 3 180EI
4、有下图所示的弹性基础梁 a,b, c,试判定:它们中,梁中点挠度最大者为 ,最小者
8P EI
lR
P EI
2l R
4P EI/2
lR
图(a)
为 ,判定的依据为:
图(b)
图(c)
。(93. 交大考研)
分析:1)、无弹性基础时,其它条件不变各梁中点的挠度为:
a 图:v( l ) 8Pl3 Pl3 ; 2 48EI 6EI
2)、左端边界条件: x 0 时
v0 0 v0 0
①
v0 0 0 0
②
右边边界条件: x 2l 时
v2l 0 M0 2N0l R2l 0
③
EI EI EI
EIv '''2l P 0 N0 R P 0
右边边界条件同方法 1
(2)
解方程得: v0 ...... ; 0 ...... ; M 0 ...... ; N0 ......
-2-
船海学院
第二章 单跨梁弯曲理论
梁的挠曲线方程: v x .......
小结:①作用在左支座的外载荷可视为边界条件,也可视为作用在梁上的外载荷; ②作用于右端支座的外载荷只能视为边界条件。
《基础会计》练习题及参考答案与指导 02第二章 应用练习题参考答案与指导
第二章财务会计基本原理(下)练习题参考答案与指导一、判断题答题要求:根据各题给出的说法判断正误,你认为正确的,在题后的括号中打“√”,你认为错误的打“×”。
1.会计要素是根据交易或事项的经济特征对会计对象的基本分类。
( √ )解题指导:概括地说,财务会计对象即资金运动,而资金运动又具体表现为资产、负债、所有者权益、收入、费用和利润等具体形式,是资金运动的基本构成内容。
因而,可以认为,会计要素是会计对象分类而形成的。
2.企业的一台设备因操作不当,烧毁了核心部件,并无修复可能,但其实体仍然保持完整,因而可以继续将其确认为企业的资产。
( × ) 解题指导:如果被烧毁的设备没有再修复的可能,虽然其实体仍保持完整存在,但预期已不能为企业带来经济利益,不符合资产定义的本质特征,因而不能继续将其确认为企业的资产。
3.当收到投资者投资时,会导致经济利益流入企业,对这种经济利益流入应确认为企业的收入。
( × ) 解题指导:企业收到投资者投资时,会导致经济利益流入企业,但这种经济利益流入不是企业的日常活动所形成的,而是来自于投资者的直接投资,与收入无关,因而不能确认为企业的收入。
4.流动资产是指企业不能在一年或者超过一年的一个营业周期内变现或耗用的资产。
( × ) 解题指导:企业的资产按其流动性可分为流动资产和非流动资产两类,是我国《企业会计准则》的规定。
其中的流动资产就是指企业能够在一年或者超过一年的一个营业周期内变现或耗用的资产。
5.企业资本公积的来源之一是由投资者投入的资本。
( √ )解题指导:企业的资本公积中有些是投资者在投资过程中形成的,有些是其他方式所形成的。
因此,资本公积只是企业的来源之一。
6.主营业务成本是属于与主营业务收入相配比的费用。
( √ )解题指导:主营业务成本与主营业务收入之间存在密切的配比关系,通过二者的比较,可以考核企业在其主营活动方面创造的经营成果。
第二章 解析函数习题及解答
第二章解析函数习题及解答2.1 研究下列函数在任一点处的可导性、解析性,若可导求其导数值.1); 2); 3); 4). 2.2 证明 如果在区域内解析且满足下列条件之一,则必为一常数.1)在内为实值. 2)在内解析.3)在内为常数.4)在内为一常数.5)在内有,其中,,是不全为0的实常数.6)或在内为常数.7)在内有.2.3 证明在极坐标系下的柯西-黎曼条件为【提示:另一证明方法,可利用,然后根据复合函数求导证明】2.4 设在内解析.证明.2.5 证明解析函数的实、虚部所确定的曲线族与在的点处是正交的.(,为任意实数)2.6 已知下列调和函数求复势表达式.并写成关于的表达式.1), 2),2.7设,求之值,使为一调和函数,并求一解析函数.2.8 计算下列复数1) 2),其中; 3); 4); 5); 6)Ln(1+i) 2.9 求解方程 2.10 解下列方程1) 2)2.11 证明,对任何数(复数、实数),方程均有解. 2.12 求,使对任意,有.2.13 若某解析函数的实部等于虚部的平方,证明该解析函数必为常数.(提示:参考例2.6.1即可证明,这是该例的一个特殊情况)本章计算机编程实践与思考()33i y x z f -=()z z f =()z z f =()y y z f x x sin ie cos e +=()()()y x v y x u z f ,i ,+=D ()z f ()z f D ()z f D ()z f D ()z f arg D D ()()c y x bv y x au =+,,a b c ()()z f Re ()()z f Im D D ()0='z f 11, u u r ρϕρρϕ∂∂∂∂==-∂∂∂∂v v cos ,sin x y ρϕρϕ==()()()y x v y x u z f ,i ,+=D ()()2222224z f z f y x '=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂()()()y x v y x u z f ,i ,+=()C y x u =,()B y x v =,()0≠'z f C B ()()()y x v y x u z f ,i ,+=z ()()12,-=x y y x u ()i 2-=f ()x yy x v arctan,=0>x ()y y x v pxsin e ,=p v ()()()y x v y x u z f ,i ,+=()ii 1+z 1y x z i +=()i ln -i 1i +()2ln -sin cos 0z z +=0sin =z 0e 1=+zωω=z cos ωz ()zz sin sin =+ω(说明:读者可参考第五部分 计算机仿真编程实践)2.14 计算机编程计算2.15 计算机编程计算2.16 计算机编程解方程 2.17 计算机编程计算2.18 计算机求解方程2.19 计算机仿真(Matlab,Mathcad,Mathmatic )绘出 的图形. 2.20 对于下列解析函数,分别用计算机仿真方法(Matlab,Mathcad,Mathmatic )绘出其实部和虚部的等值曲线图.(如等势线、电力线)本章习题解答2.1 研究下列函数在任一点处的可导性、解析性.1); 2); 3); 4).解 1)故,;,,,显见,,在全平面有连续一阶偏导,故,全平面处处可微,又令得,即即,当且仅当时,C-R 方程成立.所以仅在处可导,其他任何点不可导.由解析的定义可知,于全平面处处不解析.注 由此结果可见,复变函数可存在孤立的甚至唯一的可导点,而无孤立的解析点.2),对任一,考虑极限即对任一,上述极限不存在,由可导定义知,于任一点处不可导.故全平面不解析.3)其中,.所以,当时,有π1i i i1234, (1i), i z ez z z -===+=12Ln(34i), ln(i 1)z z =-+=-sin 2z =tan(1i)Arc +10ze +=sin , cos , tan , ctan z z z z23(1)(); (2)()f z z f z z ==()33i y x z f -=()z z f =()z z f =()y y z f x x sin ie cos e +=()()()y x v y x u y x z f ,i ,i 33+=-= ()3,x y x u =()3,y y x v -=23x x u =∂∂0≡∂∂y u 0≡∂∂x v 23y y v -=∂∂u v()y x u ,()y x v ,⎪⎪⎩⎪⎪⎨⎧∂∂-=∂∂∂∂=∂∂y u xv y vx u 2233y x -=0022==⇔=+y x y x 0==y x ()z f 0=z ()z f ()y x z z f i -==0z ()()⎩⎨⎧≠∆=∆-=∆≠∆=∆+∆∆-∆=∆-∆+→∆→∆0,0,10,0,1i i lim lim0000y x y x y x y x z z f z z f z z0z ()z z f =0z ()()()y x v y x u y x z z f ,i ,22+=+==()22,y x y x u +=()0,≡y x v ()()0,0,≠y x,,因此,对,C-R 方程不成立.而当时,由于不存在,即不存在,同理,不存在,故在处不可导.于是,于全平面处处不可导,不解析.注 在本题讨论中,仍然采用检验可导充要条件的方法,由于时,,,,均连续,故,可微,但C-R 方程处处不成立.对,从偏导定义出发,得知与不存在,从而在处不可微,故对平面任一点,可导的充要条件不满足.4),,,且,于全平面连续,故于全平面处处可导,全平面处处解析.又,因此有注 1.这里用区域解析的充分条件得到结论; 2.本题中的是一性质极好的函数:不仅全平面解析,且具有特性,它正是实指数函数在复平面的推广,即.但应注意这一推广产生的新性质:1) 由于与以为周期,使得以的整数倍为周期.2) 可取到除0以外的任意复值,包括负值.这两点是值得注意的.2.2 证明 如果在区域内解析且满足下列条件之一,则必为一常数.1)在内为实值. 2)在内解析.3)在内为常数.4)在内为一常数.22y x x xu +=∂∂22y x yyu +=∂∂0≡∂∂=∂∂yu x v ()()0,0,≠∀y x ()()0,0,=y x ()()x x x x x u x u x x x 0200limlim 0,00,lim →→→=-=-()x u ∂∂0,0()y u ∂∂0,0()z z f =0=z ()zz f =()()0,0,≠y x x u∂∂y u ∂∂x v ∂∂y v∂∂u v ()()0,0,=y x x u ∂∂y u∂∂()y x u ,()0,0()()()y x v y x u y y z f xx ,i ,sin ie cos e +=+=()y y x u x cos e ,=()y y x v x sin e ,=y v y x u x ∂∂==∂∂cos e x v y y u x ∂∂-=-=∂∂sin e x u ∂∂y u ∂∂()z f ()x vx u z f ∂∂+∂∂='i ()()z f y y z f xx =+='sin ie cos e ()f z ()()z f z f ='x e ()ecos ie sin exp e xx zf z y y z '=+==ycos y sin πk 2z e i 2πz e ()()()y x v y x u z f ,i ,+=D ()z f ()z f D ()z f D ()z f D ()z f arg D5)在内有,其中,,是不全为0的实常数.6)或在内为常数.7)在内有.证 首先,由条件在内解析a ),均在内可微,且b )在内处处成立.1)因为在内取实值,即,.于是,.将此结果代入C-R 方程b ),得,.所以..即(为一常数)2)于在内解析.因而除条件a ),b )成立之外,条件c )成立.联立b ),c )得,即,.又由b )或c )得.所以在内,恒有,.即为常数.3)由于,.若,则,,.若,则由,两端分别关于,求偏导得:e )将b )代入e )得D ()()c y x bv y x au =+,,a b c ()()z f Re ()()z f Im D D ()0='z f ()()()y x v y x u z f ,i ,+=D ⇔u v D ⎪⎪⎩⎪⎪⎨⎧∂∂-=∂∂∂∂=∂∂x v yu y v x u D ()z f D ()0,≡y x v ()D y x ∈,0≡∂∂=∂∂y v x v ()D y x ∈,0≡∂∂=∂∂y u x u ()D y x ∈,()A y x u =,()D y x ∈,()A z f =D z ∈A ()()()()()[]y x v y x u y x v y x u z f ,i ,,i ,-+=-=D ()()⎪⎪⎩⎪⎪⎨⎧∂∂=∂-∂-=∂∂∂∂-=∂-∂=∂∂x v x v yu y v y v x u y v y v ∂∂-=∂∂x vx v ∂∂-=∂∂0=∂∂=∂∂y v x u ()D y x ∈,0=∂∂=∂∂y ux u D ()A y x u =,()B y x v =,()B A z f i +=()()()Cy x v y x u z f ≡+=,,22()D y x ∈, 10=C ()0≡z f ()0≡⇔∈z f D z D z ∈ 20≠C ()()0,,222≠≡+C y x v y x u x y ⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00y v v y u u x v v xuu ()D y x ∈,由得 ,代入b )得,于是, 即, (,为任意实常数)3)因为常数,,由主值支的表达式得f )常数,及, 若,则 归为1)的情形,得证.若,对c )两端分别关于,求偏导得 即将b )代入得,再由b )即得 ,从而得,(,为任意实常数)5),,且,,是不全为0的实常数.所以有.于是对上式两端分别关于,求偏导得⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂-∂∂00y u u xu v y u v x uu ()D y x ∈,()()0,,222≠≡+C y x v y x u 0≡∂∂=∂∂y u x u ()D y x ∈,0≡∂∂=∂∂y vx v ()D y x ∈,()A y x u ≡,()B y x v ≡,()B A z f i +=D z ∈A B ()≡z f arg D z ∈ωarg ()()≡y x u y x v ,,arctan C =()()0,,222≠≡+C y x v y x u ()D y x ∈, 10=C ()()⎩⎨⎧>≡0,0,y x u y x v ()D y x ∈, 20≠C x y ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+∂∂-∂∂=+∂∂-∂∂002222v u y u v y v u v u x u v x vu ()022≠+v u ⎪⎪⎩⎪⎪⎨⎧=∂∂-∂∂=∂∂-∂∂00y u v yvu x u v x v u ⎪⎪⎩⎪⎪⎨⎧=∂∂-∂∂=∂∂-∂∂00x u u xv v x u v x vu ()D y x ∈,()()0,,22≠+y x v y x u 0=∂∂=∂∂∴x vx u 0=∂∂y v 0=∂∂y u ()B A z f i +=D z ∈A B ()()c y x bv y x u =+,,a ()D y x ∈,a b c 022≠+b a x y将b )代入得因为,故得 再由条件b )即得,.于是得,(,为任意实常数)6)若,则在内取实值.即1)所证.若即,则,,,代入b ),即得,.,, (,为任意实常数) 若,即,则,,则由b )知,,即,7)由于.所以若在内有,则,, 由条件b )即得,. 所以, (,为任意实常数).注 以上各命题的论证均是在于区域上解析的前提下进行的,否则结论不一定成立.例如,为一实值函数,满足条件1).但它于全平面不解析(见1-26题,3).显然在任何区域上不可能取常数值,即无题中的结论. 2.3 证明在极坐标系下的柯西-黎曼条件为【提示:另一证明方法,可利用,然后根据复合函数求导证明】⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00y v b yu a x v b x ua ⎪⎪⎩⎪⎪⎨⎧=∂∂-∂∂=∂∂+∂∂00x v a x u b x v b x ua 022≠+b a ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00xv x u()D y x ∈,0=∂∂y v 0=∂∂y u ()B A z f i +≡D z ∈A B1()()0Im =≡C z f ()z f D ()()0Im ≠≡C z f ()C y x v ≡,()D y x ∈,0≡∂∂x v0≡∂∂y v ()D y x ∈,0≡∂∂x u0≡∂∂y u ()D y x ∈,()B A z f i +=∴ D z ∈A B 2()()C z f ≡Re ()C y x u ≡,()D y x ∈,0≡∂∂x u 0≡∂∂x u 0≡∂∂x v0≡∂∂y v ()B A z f i += D z ∈()x v x u z f ∂∂+∂∂='i D ()0='z f 0=∂∂x u 0=∂∂x v()D y x ∈,0=∂∂y u 0=∂∂y v()D y x ∈,()B A z f i +=D z ∈A B ()z f D ()zz f =()zz f =D 11, u u r ρϕρρϕ∂∂∂∂==-∂∂∂∂v v cos ,sin x y ρϕρϕ==2.4 设在内解析.证明.证 令则(1) 同理得(2) 并注意在内解析.所以有即且,均为调和函数,即.于是(1)+(2)得注 本题证明中用到解析函数三条性质:(1)实、虚部满足C-R 方程.(2).(3)实部、虚部均为调和函数.即,.2.5 证明解析函数的实、虚部所确定的曲线族与在的点处是正交的.(,为任意实数)证 因为在的点,曲线族在该点处的切线斜率为.曲线族在该点处的切线斜率为.所以.即曲线族与曲线族正交.(2)对使得,的点,曲线族在该点处的切线为铅直线(∵),而曲线族在该点处的切线为水平线(∵),故二者正交,同理,当,时,二者也正交.注 1.本题证明中用到曲线与曲线正交即为二者在交点处切线的正交这一概念; 2.本题的结论是解析函数在处的又一性质.2.6 已知下列调和函数求复势表达式.并写成关于的表达式.()()()y x v y x u z f ,i ,+=D ()()2222224z f z f y x '=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂()()()()y x G y x v y x u z f ,,,222=+=⎥⎥⎦⎤⎢⎢⎣⎡∂∂+∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=∂∂222222222x v v x u u x v x u x G ⎥⎥⎦⎤⎢⎢⎣⎡∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂=∂∂222222222y v v y u u y v y u y G ()z f D ()y u y v x v x u z f ∂∂-∂∂=∂∂+∂∂='i i ()22222⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂='y v y u x v x u z f u v 0=∆=∆v u ()222224zf y G x G '=∂∂+∂∂()y u y v x v x u z f ∂∂-∂∂=∂∂+∂∂='i i 0=∆u 0=∆v ()()()y x v y x u z f ,i ,+=()C y x u =,()B y x v =,()0≠'z f C B ()0≠'z f ()y x ,()C y x u =,x v x u y u x u x y k ∂∂∂∂=∂∂∂∂-==d d 1()B y x v =,x uxvy v xvx y k ∂∂∂∂-=∂∂∂∂-==d d 2121-=k k ()C y x u =,()B y x v =,0≠∂∂x u 0=∂∂x v ()y x ,()C y x u =,0d d =y x ()B y x v =,0d d =x y0≠∂∂x v 0=∂∂x u ()0≠'z f ()()()y x v y x u z f ,i ,+=z1), 2), 解 由于解析,所以,满足C-R 方程.1),故.由此得,这里为的任一可导函数.又由得所以,为任一实常数. 于是. 令,即得 ∴ 于是,满足条件的解析函数为所以2)在极坐标系下,C-R 方程为形式. 令(则由得),有,,所以得,即解得 为的任一可导函数. 又由得.为任一实常数. 所以注意,得2.7设,求之值,使为一调和函数,并求一解析函数.解 因为,所以 ,,,()()12,-=x y y x u ()i 2-=f ()x yy x v arctan,=0>x ()()()y x v y x u z f ,i ,+=()y x u ,()y x v ,()()12,-=x y y x u yx u y v 2=∂∂=∂∂()()x C y y x v +=2,()x C x y ux v ∂∂-=∂∂()()12--='x x C ()122C x x x C ++-=1C ()1222,C x x y y x v ++-=2=z ⎩⎨⎧==02y x ()i i 21-==C f 11-=C ()()()12i 1222-+-+-=x x y x y z f ()()21i --=z z f ⎪⎪⎩⎪⎪⎨⎧∂∂=∂∂∂∂-=∂∂r u r v r v r uθθθ==x y v arctan 0>x ⎪⎭⎫ ⎝⎛-∈2,2ππθ1=∂∂θv 0=∂∂r v 1=∂∂r u r r r u 1=∂∂()()θθC r r u +=ln ,()θC θ()0=∂∂-='=∂∂r v r C u θθ()1C C =θ1C ()1ln ,C r r u +=θ()()()θθθi ln ,i ,1++=+=C r r v r u z f z r =()0arg arctan >==x z x yθ()1arg i ln C z z z f ++=()y y x v pxsin e,=p v ()()()y x v y x u z f ,i ,+=()y y x v pxsin e ,=y p x v px sin e =∂∂y p x v px sin e 222=∂∂y y v px cos e =∂∂y y v px sin e -=∂∂由,得. (1)当时,.由1-32题的方法易求出调和函数,则为所求解析函数,其中为任意实常数.(2)当时,.可求得调和函数.(为任一实常数).于是所求的解析函数为(全平面解析)2.8 计算下列复数1) 2),其中; 3); 4);5)解 1)(为整数)2)当时得3)4);5) 注 (i ).以上各题均由定义求得;(ii). 值得注意的是,1只是无穷多个值中的一个值(对应于),这与实变量函数中的概念不同.2.9 求解方程【解】2.10 解下列方程1) 2)解2) ∵∴ ,即由对数函数定义得∴ ,为任意整数. 3)由得由对数函数定义得为任意整数[]1sin e 22222=-=∂∂+∂∂=∆p y y vx v v px 1±=p 1=p ()y y x v xsin e ,=()c y y x u x +=cos e ,()C y C y z f z x x +=++=e sin ie cos e C 1-=p ()y y x v x sin e ,-=()1cos e ,C y y x u x +-=-1C ()()()[]111e sin i cos e sin ie cos e C C y y y C y z f x z x x +-=+-+--=++-=----()ii 1+z 1y x z i +=()i ln -i 1i +()2ln -()()2iln 2412i 4i 2ln i i 1iln i ee e i 1+⎪⎭⎫⎝⎛+-⎥⎦⎤⎢⎣⎡+++===+πππk k k ()()()x k x k yk y y x z ππππ2sin i 2cos e e 11k 22i i x i +===-++() ,2,1,0±±=k 0=k 11=z()()πππk k 2i 2i2i i iarg i ln i ln +-=+-+-=-() ,2,1,0±±=k ()() ,2,1,0ie k 22/1±±=+k π()() ,2,1,012i 2ln ±±=++k k πz10=k sin cos 0z z +=(2)2sin cos 0(1)(1)2211/4, (0,1,2,)iz iz iz iziz iz i n iz e e e e z z e i e i i i e i eiz n n ππππ-----++=+=∴-=-++=-=-=-∴=-=±±0sin =z 0e 1=+zi 2e e sin i i =-=-zz z z z i i e e -=1e 2i =zπk z 2i 1ln 2i ==πk z k=k 01e =+z 1e -=z()()π12i 1ln +=-=k z k k主值为2.11 证明,对任何数(复数、实数),方程均有解.证 在中,令,则,且,所以.且可取到任意非0值.于是,原方程即为,即.所以.(这里有两个根)故,由对数函数定义得所以.故右端对任意均有意义,得证. 注 这里的结果说明两点:(1)复变量余弦函数可取到任意值(复、实值),而不象实余弦函数取值区间仅为;(2)所得结果改变与的位置,即得).这正是的反函数.可对进行同样讨论,此略. 2.12 求,使对任意,有.解 由的定义,即求满足方程的一切值.整理化简即得 ,对任意成立.且因. 故得,即.为任意整数. 所以注 由此题结果可见,复变量正、余弦函数为周期函数,且周期与实变量正、余弦的相同. 2.13 若某解析函数的实部等于虚部的平方,证明该解析函数必为常数. 【提示,参考例2.6.1即可证明,这是该例的一个特殊情况】i0π=z ωω=z cos 2e e cos i i zz z -+=zt i e =⎪⎭⎫ ⎝⎛+=t t z 121cos ()x x t y z sin i cos e e i +==-0≠t t ω=⎪⎭⎫ ⎝⎛+t t 1210122=+-t t ω12-+=ωωt 12-ω01e 2i ≠-+=ωωz ()()1iln 1ln i 122-+-=-+=ωωωωz 012≠-+ωωω[]1,1-z ω()1iln 2-+-=z z ωz cos =ωz sin ωz ()z z sin sin =+ωz sin ()()zz z z i i i i e e e e -+-+-=-ωωω()()ωωωi i i 2i e 1e 1e e ----=-⋅z z 0e e i 2i ≠⋅ωz 0e1i =--ωπωk 2i 1ln i ==-k πωm 2=(),2,1,0±±=m。
第二章 课后习题解答
13.在生产者—消费者问题中,如果两个 .在生产者 消费者问题中 如果两个wait操 消费者问题中, 操 作即wait(mutex)和wait(empty)位置互换, 位置互换, 作即 和 位置互换 会产生什么后果? 会产生什么后果? 解答】如果两个wait操作即 操作即wait(mutex)和 【解答】如果两个 操作即 和 wait(empty)位置互换,则有可能产生死锁。 位置互换, 位置互换 则有可能产生死锁。
6
10.在创建一个进程时,所要做的工作有 .在创建一个进程时, 哪些? 哪些? 解答】 【解答】操作系统通过进程创建原语来创 建一个进程。 建一个进程。创建原语通过下述步骤创建 一个进程: 一个进程: (1)申请空白 )申请空白PCB。 。 (2)为新进程分配资源。 )为新进程分配资源。 (3)初始化进程控制块。 )初始化进程控制块。 (4)将新建进程插入就绪态队列。 )将新建进程插入就绪态队列。
8
第2章 进程管理 章
12.在生产者—消费者问题中,如果缺少了 .在生产者 消费者问题中 消费者问题中, signal(full)或signal(empty),对执行结果将 或 , 会有何影响? 会有何影响? 【解答】若缺少释放资源的原语操作,则会导致生产者或 解答】若缺少释放资源的原语操作,
消费者进程不能再继续工作。 消费者进程不能再继续工作。 如缺少了signal(full),则消费者进程可能得不到所需的临 如缺少了 , 界资源如缓冲区,不能取一件产品;同样,如果缺少signal 界资源如缓冲区,不能取一件产品;同样,如果缺少 empty),则生产者进程又可能得不到所需的资源, ),则生产者进程又可能得不到所需的资源 (empty),则生产者进程又可能得不到所需的资源,不 能存放一件产品。 能存放一件产品。
工程热力学第二章习题详解
=
1kg × 260J/(kg ⋅ K) × 300.15K 0.5×106 Pa
=
0.1561m3
代入(a)
V2 = 2V1 = 0.3122m3
c2 = 2× (54.09J/kg ×1kg ×103 − 0.1×106 Pa × 0.1561m3 ) /10kg = 87.7m/s
2-3 气体某一过程中吸收了 50J 的热量,同时,热力学能增加 84J,问此过程是膨胀过程还是 压缩过程?对外作功是多少 J?
= 979J = 0.98kJ
Q = ∆U +W = 3.90kJ + 0.98kJ = 4.88kJ
2-8 有一橡皮球,当其内部气体的压力和大气压相同,为 0.1MPa 时呈自由状态,体积为
0.3m3 。气球受火焰照射而受热,其体积膨胀一倍,压力上升为 0.15MPa ,设气球的压力与
体积成正比。试求:(1)该过程中气体作的功;(2)用于克服橡皮气球弹力所作的功,若初
解 (1) p1 = pe,1 + pb = 9MPa + 0.101325MPa = 9.1MPa
p2 = pb − pv,2 = 0.101325MPa − 0.0974MPa = 0.3925×10−2 MPa
(2) 据稳流能量方程
Q = ∆H + Wt 每小时技术功
Pt =ψ − ∆H& =ψ − qm∆h = −6.81×105 kJ/h − 40×1000kg/h × (3441− 2248)kJ/kg = 4.704×107 kJ/h
第二章 热力学第二定律
第二章 热力学第一定律
2-1 一辆汽车 1 小时消耗汽油 34.1 升,已知汽油发热量为 44000kJ/kg ,汽油密度 0.75g/cm3 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章习题指导
2-15 用蒸汽锤对金属加工,锤的质量为,打击时的速度为,
打击时间为。
求汽锤对金属的打击力。
点击查看指导
指导:
在打击中,锤因受到工件的反冲击,速度发生了变化,打击结束时速度为零,
由质点的动量定理,可求得锤受到的冲击力
,汽锤对金属的打击力与锤受到的冲击力是一对作用
力与反作用力,。
2—16 一质量为的人,以的速度跳上一辆迎面开来速度为
的小车,小车的质量为。
求人跳上小车后,人和车共同运动的速度。
点击查看指导
指导:显然,此题用动量守恒定律解,但解此题需先选定坐标轴的正方向,确定各
的指向为坐标轴的正方向,由动量守恒定律
物体速度的正负,若以人的动量
,式中,,可解出结果。
式中“-”表示方向与人上车前的速度的方向相反,而与小车原来的运动方向相同。
2-17 高空走钢丝演员的质量为,为安全起见,演员腰上系一根长的弹
性的安全带,弹性缓冲时间为,当演员不慎跌下时,在缓冲时间内安全带给演
员的平均作用力有多大?若缓冲时间为,平均作用力为多大?
点击查看指导
指导:该题分两个过程讨论,演员先从高度为处作自由落体运动,由
求出安全带刚拉直时演员的速度
,再由动量定理
求出演员所受的合力,注意,此时演员受向上的拉力
和向下的重力
作用,以速度的方向为正方向,合力
,所以
,题中要
求的平均作用力仅为安全带给演员的平均拉力为。
2-18 一静止物体,由于内部作用而炸裂成三块,其中两块质量相等,并以相同的速率
沿互相垂直的方向分开,第三块的质量
倍于其他任一块的质量。
求
第三块的速度大小和方向。
点击查看指导
指导: 物体炸裂时的内力远大于物体所受的外力重力,所
以系统动量守恒。
三块的动量和为。
可用两种方法求解, 一是解析法:以互相垂直的两块的动量方向为坐标轴的
、
轴方向,则第三块的动量 ,
得 第三块的速度大小为
,其方向用动量与 轴夹角
表示。
二是矢量法:用矢量三角形解,如图,第三块速度的方向与其他两块的速度方向均成 角,由
矢量图可得
,可求出第三
块的速度大小。
2-19 一个不遵守虎克定律的实际弹簧,它的弹性力
与形变的关系为 式中
,。
求弹簧由
伸长到
时,弹性力所作的功。
点击查看指导
指导: 这是一道典型的变力作功的问题,应用定义
代入数据即可。
2-20 一人从深的井中提水,起始时,桶中装有
的水,桶的质量为,由于水桶漏水,每升高要漏
去的水,求水桶匀速地从井中提到井口,人所作的功。
点击查看指导
指导:水桶匀速上升,由牛顿第二定律,水桶所受合力为0,人的拉力等于水桶的重
力,但因水的质量随高度减少,所以这是变力作功问题。
选井中水面为坐标轴正向,在处水桶和水的总质量为
原点,向上为
,由定义积分
,可求出人所作的功。
2-21 质量为的物体沿轴作直线运动,所受合外力,
如果在处时速度,试求该物体移动到处时速度的大小。
点击查看指导
指导:已知物体受力与位置的关系,求运动速度,可用动能定理
求解。
其中,,
故可得。
2-22 质量为的小球系于绳的
一端,另一端固接于点。
绳长。
将
小球拉至水平位置,然后放手。
求小球经
过圆弧上、、点时的(1)速度;(2)
加速度;(3)绳中的张力。
假定不计空气阻力,
并且已知
点击查看指导
指导:(1)取小球和地球为研究系统,系统所受外力为绳的拉力,但在小球运动过程
中,小球的位移与外力垂直,拉力不作功,系统机械能守恒,,即
为时刻绳与水平方向的夹角,由此可求出小球在
,
各位置的速率。
(2)由牛顿第二定律,切向力,。
法向力
,而,(3)绳中的张力。
代入数据可得小球经过、、各点时的速度、加速度和绳中的张力
2-23 质量为的子弹,在枪筒中前进时受到的合力大小为
子弹在枪口的速度是。
计算枪筒的长度。
点击查看指导
指导:此题是已知物体受力与位置的关系和物体速度变化求物体所走过的距离的
问题,可用动能定理解。
由功的定义式
求出功与距离的关系,再由
,,解出距离。
2-24 一弹簧,原长,劲度系数为,
上端固定,下端挂一质量为的物体。
先
用手托住,使弹簧保持原长。
(1) 如将物体托住慢慢放下,达静止(平衡
位置)时,弹簧的最大伸长和弹性力是多少?
(2)如突然松手释放物体,物体达到最大位移,弹簧的最大伸长和弹性力是多少?物体经平衡位置时的速度时多少?
[提示:(1)平衡位置,合力等于零;(2) 最大位移时,瞬时速度等于零,也就是动能等于零。
]
点击查看指导
指导:取弹簧、物体和地球为研究系统,系统所受合外力为0,机械能守恒。
此题中势能有两部分,一是物体、地球系统的重力势能,另一是弹簧、物体系统的弹性势能。
(1)由平衡位置合力为零,,求出物体在平衡位置时
弹性力和弹簧伸长量;
(2)由物体从突然松手时到最大位移时机械能守恒,
其中,求出弹簧的最大伸长
和弹性力;
(3)由物体从初始位置到平衡位置机械能守恒,
即,且,即求出物体经
平衡位置时的速度。
和的两个物体。
最初,它们处于静止状态,
2-25 弹簧下面悬挂质量分别为
突然剪断
和之间的连线,使脱落。
试用动能定理或功能原理计算,
的最大速率是多少?已知,
,。
点击查看指导
指导:先建坐标,若以弹簧的原长端点的位
轴正向,的初始位
置为原点,向下为
,剪断后,
置为
到达新的平衡位置时速度最大,
受力
,由动能定理
,式中,可得
最大速率。
解出
*2-26 如图所示,质量为的小球,系在绳的一端,
绳的另一端固定在点,绳长。
今将小球以水平
从点抛出,使小球在竖直平面内绕一周
初速
(不计空气阻力)。
必须满足的条件:。
(1)求证
(2)设,求小球在圆周上点
()时, 绳子对小球的拉力。
点击查看指导
指导:取小球和地球为系统,系统所受外力为绳的拉力,但在小球运动过程中,小球的位移与拉力垂直,拉力不作功,系统机械能守恒,设绳与
成
角时,小球的速度为,则,由此求出小球速度与初速度的关系。
(1)小球在最高点处有,而,从而证出,
(2)由机械能守恒代入已知条件时,在
的点,由牛顿第二定律,
在法向,可得绳子对小球的拉力。