矩阵基本运算
矩阵的基本运算
如果 AT A 则矩阵A称为反对称矩阵.
由此可知,反对称矩阵旳对角元必为零,即 aii = 0
0 5 4
例如
B
5
0 1 是3阶反对称矩阵.
4 1 0
例 设列矩阵 X x1, x2 , , xn T 满足 X T X 1,
E为n阶单位矩阵, H E 2XX T , 证明 H是对称矩阵, 且HH T E.
(i 1, 2, m; j 1, 2, , n)
把此乘积记作 C AB
例如
C 2 1
4 2
222 3
4
16
?
32
622 8 16 22
1 0
例
若
A
1
1
0 5
求AB.
1 3 1
2
0
4
0
B
1
3
1
3 2 1 2
4
1
1
1
解
因
A
aij
,B
34
bij
证 因为 H T (E 2 XX T )T ET 2( XX T )T E 2XX T H
所以H 是对称矩阵. HH T H 2 (E 2 XX T )2
E 4XX T 4( XX T )( XX T ) E 4XX T 4X ( X T X )X T E 4XX T 4XX T E
(3) (AB)( A)B A(B) (其中为常数)
(4) AE EA A
注 矩阵乘法不满足互换律,即 AB BA
例如
设
A
1
1
,
B
1
1
1 1
1 1
两个非零矩阵旳 乘积可能是零矩阵
则
矩阵的运算知识点总结
矩阵的运算知识点总结一、矩阵的定义在开始讨论矩阵的运算知识点之前,首先需要了解矩阵的定义。
矩阵是由数个数按矩形排列组成的数组。
一般地,我们定义一个m×n矩阵A为一个m行n列的数组,其中每个元素aij(i行j列的元素)都是一个实数。
数学上通常用大写字母A、B、C、...表示矩阵。
例如,一个3×2矩阵可以表示为:A = [a11 a12a21 a22a31 a32]其中,a11、a12、a21、a22、a31、a32是矩阵的元素。
二、矩阵的基本运算1. 矩阵的加法当两个矩阵具有相同的行数和列数时,它们可以相加。
矩阵相加是将对应位置的元素相加得到新的矩阵。
例如,对于矩阵A和矩阵B相加,结果矩阵C的第i行第j列元素为:cij = aij + bij。
2. 矩阵的减法矩阵的减法定义与加法类似,对应位置的元素相减得到新的矩阵。
例如,对于矩阵A和矩阵B相减,结果矩阵C的第i行第j列元素为:cij = aij - bij。
3. 矩阵的数量乘法矩阵与一个实数相乘,是将矩阵的每个元素都乘以该实数。
例如,对于矩阵A和实数k相乘,结果矩阵B的元素为:bij = k * aij。
4. 矩阵的转置矩阵的转置是将矩阵的行列互换得到新的矩阵。
例如,对于矩阵A的转置矩阵AT,有AT 的第i行第j列元素为A的第j行第i列元素。
5. 矩阵的乘法矩阵的乘法是矩阵运算中最重要的部分。
两个矩阵的乘法只有在满足第一个矩阵的列数等于第二个矩阵的行数时才能进行。
如果A是一个m×p的矩阵,B是一个p×n的矩阵,它们的乘积为一个m×n的矩阵C。
矩阵的乘法运算过程中,结果矩阵C的第i行第j列元素为:cij = a(i,1)b(1,j) + a(i,2)b(2,j) + ... + a(i,p)b(p,j)。
以上就是矩阵的基本运算,矩阵运算的内容很广泛,包括了基本运算,特殊矩阵运算和矩阵运算的性质定理等。
线性代数:矩阵的基本运算及性质
0 0 ......k
数量矩 阵
等……
5
●矩阵的乘法
a11
设
A
i行
am1
c11
则
AB
C
cm1
a1t
b11
amt
B
mt
bt1
b1n j 列
btn tn
c1n
左矩阵
A的列数
右矩阵 B的行数
cmn
mn
其中 cij ai1b1 j ai2b2 j ... aitbtj
D (i k) ai1Ak1 ai2 Ak 2 ain Akn 0 (i k)
a1 j A1s a2 j A2s
anj s)
18
2、设有行列式 2 1 3 2 3322
(5)0A 0, A0 0
或 BA CA BC
7
若 A 是方阵,则乘积 AA......A 有意义,记作 Ak
称为 A 的 k 次幂。
性质 Ak Al Akl
Ak l Akl
●矩阵A的转置
a11
如果
A
am1
AT 或 At , A
a1n
a11
,则
AT
amn
a1n
am1
A为反对称矩阵
aij a ji
10
10 方阵的行列式
定义 n阶方阵A (aij )的行列式A(或det A)是 按如下规则确定的一个数:
当n 1时, A a11 a11;
当n 1时, a11 a12 a1n
A
a21
a22
a2n
an1 an2 ann
(1)11 a11M11 (1)12 a12M12 (1)1n a1n M1n
矩阵的基本运算
例如
1 3 5
2 2 8
19316
6 0
8 不存在. 1
乘积AB 维的关系
A
B
m n
n s
C ms
=
A
8
注 两个矩阵相乘, 乘积有可能是一个数.
1
2
3
3 2
1 3 2 2 3 1 10.
1
练习 计算下列矩阵的乘积,并观察结果.
1
1 2 1 4 1 2 1 4
1
5
8
0
2
5
8
0
2
13310 1 3 734 10 1 3 7 34
1
1 2 1 4
5
10
8 1
0 3
2 734
1
1
A
1
144
5 10
2 8
1
1 0 3
4
2
7
9
34
1
2
a11 a12 L a1s
a21
a22
L
a2s
O M M M M
nnnan1
an2
L
2an2
L na1n
L
na2n
M M
L
nann
nn
A
11
a1
b1
a2
b2
O
O
an nn
bn nn
a1b1
a2b2 O
anbn nn
结论 两个n 阶对角阵之积仍为n 阶对角阵.
结论 两个n阶上(下)三角阵A之积仍为n阶上(下)三角阵12 .
❖矩阵乘法的运算规律 (1 )结 合 律 :(A B )C A (B C )
矩阵的运算与性质
矩阵的运算与性质矩阵是线性代数中的基本概念,广泛应用于各个学科领域。
本文将介绍矩阵的运算及其性质,探讨在不同情况下矩阵的特点和应用。
一、矩阵的定义与分类1. 矩阵的定义:矩阵是一个按照矩形排列的数表,由m行n列的数构成,通常用大写字母表示,如A、B等。
2. 矩阵的分类:根据行数和列数的不同,矩阵可以分为行矩阵、列矩阵、方阵、零矩阵等。
二、矩阵的基本运算1. 矩阵的加法:对应位置元素相加,要求两个矩阵的行数和列数相等。
2. 矩阵的数乘:一个矩阵的所有元素乘以一个常数。
3. 矩阵的乘法:矩阵乘法不满足交换律,要求左边矩阵的列数等于右边矩阵的行数。
4. 矩阵的转置:将矩阵的行和列互换得到的新矩阵,记作A^T。
三、矩阵的性质和特点1. 矩阵的单位矩阵:对角线上元素为1,其余元素为0的方阵。
2. 矩阵的逆矩阵:若矩阵A存在逆矩阵A^-1,满足A·A^-1 = A^-1·A = I,其中I为单位矩阵。
3. 矩阵的行列式:方阵A经过运算得到的一个标量值,记作det(A)或|A|,用于判断矩阵是否可逆及求解线性方程组等。
4. 矩阵的秩:矩阵中线性无关的行或列的最大个数。
5. 矩阵的特征值与特征向量:对于方阵A,存在数值λ和非零向量x,使得A·x = λ·x,λ为A的特征值,x为对应的特征向量。
四、矩阵的应用1. 线性方程组的求解:通过矩阵的运算和性质,可以将线性方程组表示为矩阵的形式,从而求解出方程组的解。
2. 矩阵在图像处理中的应用:利用矩阵的运算,可以对图像进行变换、旋转、缩放等操作。
3. 矩阵在经济学中的应用:使用矩阵可以模拟经济系统,进行量化分析、预测等。
总结:矩阵作为线性代数中的基本概念,具有丰富的运算规则和性质。
通过矩阵的加法、数乘、乘法、转置等基本运算,可以推导出矩阵的逆矩阵、行列式、秩、特征值等重要概念。
矩阵在不同学科领域有着广泛的应用,如线性方程组求解、图像处理、经济学分析等。
矩阵常见运算
矩阵的基本运算公式加法,减法,数乘,转置,共轭和共轭转置。
1、矩阵的加法满足A+B=B+A;(A+B)+C=A+(B+C)。
在两个数的加法运算中,在从左往右计算的顺序,两个加数相加,交换加数的位置,和不变。
A+B+C=A+C+B。
加法定理一个是指概率的加法定理,讲的是互不相容事件或对立事件甚至任意事件的概率计算方面的公式;另一个是指三角函数的加法定理。
2、把矩阵A的行和列互相交换所产生的矩阵称为A的转置矩阵,这一过程称为矩阵的转置。
设A为m×n阶矩阵(即m行n列),第i 行j 列的元素是a(i,j),即:A=a(i,j)定义A的转置为这样一个n×m阶矩阵B,满足B=b(j,i),即a(i,j)=b (j,i)(B的第i行第j列元素是A的第j 行第i列元素),记A'=B。
3、矩阵乘法是一种根据两个矩阵得到第三个矩阵的二元运算。
二元运算属于数学运算的一种。
二元运算需要三个元素:二元运算符以及该运算符作用的两个变量。
如四则运算的加、减、乘、除均属于二元运算。
如在运算1 + 2之中,二元运算符为“+”,而该运算符作用的操作数分别为1与2。
二元运算只是二元函数的一种,由于它被广泛应用于各个领域,因此受到比其它函数更高的重视。
第三讲矩阵的基本运算
• 矩阵特征值和特征向量 • E=eig(A) 求特征值 • [V,D]=eig(A) D是特征值构成的对角阵;V是 特征向量阵,列为特征向量。 • 对称正定阵的cholesky分解 • R=chol(A) A对称正定,R为上三角阵,R’*R=A
• • • • • 方阵的QR分解 [Q,R]=qr(A) Q为正交矩阵,R为上三角阵,Q*R=A 可逆阵的 LU分解 [L,U]=lu(A) L是下三角阵,U是上三角阵 这些对解线性方程组还是很有利的。
3.1.5 矩阵的转置和共轭转置
复矩阵的共轭转置:B=A’ or B=ctranspose(A);
复矩阵的转置:B=A.’ or B=transpose(A)
注意:共轭转置是指先每个元素求共轭,再把矩 阵转置;转置运算是点运算。 3.1.6 矩阵的函数运算 1. 常用函数见P59函数表,是对每个元素求函数 值 记住一些常用函数格式!!!
第三讲内容介绍
目标:进一步了解MATLAB,能够
熟练掌握矩阵的各种基本运算法
则。
3.1 MATLAB矩阵的代数运算
3.1.1 加法和减法运算
C=A+B或 C=plus(A,B)
C=A-B或C=minus(A,B) 注意:加减运算要求A、B同构,即大小一样 特别地,标量可以和任意大小的矩阵进行加减 例题3.1.1显然略讲 3.1.2 乘法运算 普通矩阵乘法:C=A*B或C=mtimes(A,B)
3.4.2 两个集合的并集 格式:c=union(a,b)
%返回a,b的并集,即c=a
b
C=union(A,B,’rows’) %返回矩阵A,B不同行向量构成的大矩阵, 其中相同行向量只取其一。 [c,ia,ib]=union(…) % ia,ib分别表示c中行向量在原矩阵(向量)中的位置。 >> A=[1,2,3,4]; >> B=[2,4,5,8]; >> C=union(A,B) 则结果为: C= 1 2 3 4 5 8 >> A=[1,2,3,4;1,2,4,6]; >> B=[1,2,3,8;1,1,4,6]; >> [C,IA,IB]=union(A,B,'rows') C= 1 1 4 6 1 2 3 4 1 2 3 8 1 2 4 6 IA = 1
矩阵运算规则
矩阵运算规则在数学中,矩阵是一个非常常见且重要的概念。
矩阵运算规则是指在矩阵之间进行各种数学运算时需要遵循的规则和原则。
本文将详细介绍矩阵的基本运算规则,包括矩阵的加法、减法、乘法以及转置等。
1. 矩阵的加法和减法矩阵的加法和减法都是按照对应位置上的元素进行运算的。
即对于两个相同大小的矩阵A和B,它们的和C和差D分别为:C = A + B,D = A - B。
加法运算的规则是,对应位置上的元素相加。
例如,如果A = [1 2;3 4],B = [5 6; 7 8],则矩阵C的元素为:C = [1+5 2+6; 3+7 4+8] = [6 8; 10 12]。
减法运算的规则与加法类似,也是对应位置上的元素相减。
2. 矩阵的乘法矩阵的乘法是一种较为复杂的运算,需要满足一定的规则。
具体来说,对于两个矩阵A和B进行乘法运算(记为C = AB),要求A的列数等于B的行数。
乘法运算的规则是,矩阵C的第i行第j列的元素等于矩阵A的第i 行与矩阵B的第j列对应元素的乘积之和。
换句话说,C的第i行第j列的元素等于A的第i行的元素与B的第j列的元素对应相乘后再求和。
例如,如果A = [1 2; 3 4],B = [5 6; 7 8],则矩阵C的元素为:C = [1*5+2*7 1*6+2*8; 3*5+4*7 3*6+4*8] = [19 22; 43 50]。
需要注意的是,矩阵乘法不满足交换律,即AB不一定等于BA。
3. 矩阵的转置矩阵的转置是指将矩阵的行和列互换得到的新矩阵。
对于一个矩阵A,它的转置矩阵记为AT。
转置的规则是,A的第i行第j列的元素等于AT的第j行第i列的元素。
换句话说,转置后矩阵的行变为原矩阵的列,列变为原矩阵的行。
例如,如果A = [1 2 3; 4 5 6],则矩阵AT为:AT = [1 4; 2 5; 3 6]。
矩阵的转置有一些常见的性质,如(AB)T = BTAT,(A + B)T = AT + BT等。
矩阵的基本运算法则
矩阵的基本运算法则矩阵是线性代数中的重要概念,广泛应用于多个学科领域。
矩阵的基本运算法则包括矩阵加法、矩阵乘法、矩阵转置和矩阵求逆等。
下面将详细介绍这些基本运算法则。
一、矩阵加法矩阵加法是指将两个具有相同维度的矩阵相加的运算。
设有两个m行n列的矩阵A和B,它们的和记作C,那么矩阵C的第i行第j列元素等于矩阵A和B对应位置的元素之和,即:C(i,j)=A(i,j)+B(i,j)其中,1≤i≤m,1≤j≤n。
矩阵加法满足以下性质:1.交换律:A+B=B+A,对任意矩阵A和B都成立。
2.结合律:(A+B)+C=A+(B+C),对任意矩阵A、B和C都成立。
3.零元素:存在一个全0矩阵,记作O,满足A+O=A,对任意矩阵A 都成立。
4.负元素:对于任意矩阵A,存在一个矩阵-B,使得A+B=O,其中O 为全0矩阵。
二、矩阵乘法矩阵乘法是指将两个矩阵相乘的运算。
设有两个m行n列的矩阵A和n行k列的矩阵B,它们的乘积记作C,那么矩阵C的第i行第j列元素等于矩阵A的第i行与矩阵B的第j列对应元素相乘再求和,即:C(i,j)=Σ(A(i,k)*B(k,j))其中,1≤i≤m,1≤j≤k,1≤k≤n。
矩阵乘法满足以下性质:1.结合律:(A*B)*C=A*(B*C),对任意矩阵A、B和C都成立。
2.分配律:A*(B+C)=A*B+A*C,并且(A+B)*C=A*C+B*C,对任意矩阵A、B和C都成立。
3.乘法单位元素:对于任意矩阵A,存在一个m行m列的单位矩阵I,使得A*I=I*A=A,其中单位矩阵I的主对角线上的元素全为1,其他元素全为0。
4.矩阵的乘法不满足交换律,即A*B≠B*A,对一些情况下,AB和BA的结果甚至可能维度不匹配。
三、矩阵转置矩阵转置是指将矩阵的行和列互换的运算。
设有一个m行n列的矩阵A,它的转置记作A^T,那么矩阵A^T的第i行第j列元素等于矩阵A的第j行第i列元素,即:A^T(i,j)=A(j,i)其中,1≤i≤n,1≤j≤m。
矩阵的运算的所有公式
矩阵的运算的所有公式矩阵是高等代数中的重要概念,它们是一种高效的数学工具,用于处理多维数据和线性方程组。
矩阵的运算是矩阵理论中的基础内容,包括加法、减法、乘法、转置、逆运算等多个方面。
下面是矩阵的运算的所有公式:加法和减法矩阵加法和减法是类似的,它们的定义如下:A +B = C其中,C的第i行、第j列元素为(Cij)= (Aij) + (Bij)A -B = D其中,D的第i行、第j列元素为(Dij)= (Aij) - (Bij)注意:矩阵加法和减法只有在矩阵的维度相同的情况下才能进行。
乘法矩阵乘法是矩阵运算中的另一个重要内容。
它的定义如下:设A是一个m×p的矩阵,B是一个p×n的矩阵,则A与B的乘积C是一个m×n的矩阵,它的(i,j)元素是:cij = ai1 × b1j + ai2 × b2j + …. + aim × bmj即:C的第i行、第j列元素等于A的第i行元素与B的第j列元素的乘积之和。
转置矩阵转置是将矩阵的行列互换的一种操作。
它的定义如下:设A是一个m×n的矩阵,它的转置矩阵为AT,则AT是一个n×m 的矩阵,它的(i,j)元素是:(AT)ij = (Aji)即:AT的第i行、第j列元素等于A的第j行元素与第i列元素的乘积之和。
伴随矩阵矩阵伴随是通过对矩阵进行一些列的变换得到的另一种矩阵。
它的定义如下:设A是一个n×n的矩阵,则A的伴随矩阵是n×n的矩阵,它的(i,j)元素是:(adj A)ij = (-1)i+j × (adj A)ji其中,(adj A)ji表示A的伴随矩阵的第i行、第j列元素。
另外,(adj A)代表A的行列式的倒数。
逆矩阵矩阵逆是矩阵的一种重要的运算方式。
它的定义如下:设A是一个n×n的方阵,如果存在一个n×n的方阵B,使得:AB=BA=I,其中I是n×n的单位矩阵,那么B称为A的逆矩阵,记作:B=A-1。
矩阵的运算的所有公式
矩阵的运算的所有公式矩阵是线性代数中非常重要的一种数学工具,它广泛应用于各个领域,如物理学、工程学、计算机科学等。
矩阵的运算包括加法、减法、乘法、转置以及求逆等操作。
下面将详细介绍这些矩阵运算的公式。
一、矩阵的加法和减法设有两个矩阵A和B,它们都是m行n列的矩阵,即A和B的大小相同。
矩阵的加法和减法操作定义如下:1.加法:A+B=C,其中C是一个和A、B大小相同的矩阵,其每个元素的计算公式为:C(i,j)=A(i,j)+B(i,j),其中i表示矩阵的行数,j表示矩阵的列数。
2.减法:A-B=D,其中D是一个和A、B大小相同的矩阵,其每个元素的计算公式为:D(i,j)=A(i,j)-B(i,j)。
二、矩阵的乘法设有两个矩阵A和B,A是m行n列的矩阵,B是n行p列的矩阵。
矩阵的乘法操作定义如下:1.乘法:A×B=C,其中C是一个m行p列的矩阵。
计算C的方法如下:C(i,j)=A(i,1)×B(1,j)+A(i,2)×B(2,j)+...+A(i,n)×B(n,j),其中i表示C的行数,j表示C的列数。
需要注意的是,两个矩阵相乘的条件是第一个矩阵的列数等于第二个矩阵的行数。
三、矩阵的转置给定一个矩阵A,它是m行n列的矩阵。
矩阵的转置操作定义如下:1.转置:A',表示矩阵A的转置。
即将A的行变为列,列变为行。
例如,如果A是一个3行2列的矩阵,那么A的转置A'是一个2行3列的矩阵。
四、矩阵的求逆对于一个非奇异的n阶矩阵A,它的逆矩阵记作A^{-1}。
求逆的公式如下:1.A×A^{-1}=I,其中I是单位矩阵。
即矩阵A与其逆矩阵相乘等于单位矩阵。
需要注意的是,只有方阵(行数等于列数)并且满秩的矩阵才有逆矩阵。
五、矩阵的幂运算给定一个n阶矩阵A,A的幂运算定义如下:1.A^k=A×A×...×A(共k个A相乘),其中A^k表示A的k次幂,k是一个正整数。
矩阵运算公式大全
矩阵运算公式大全矩阵运算是线性代数中的重要内容,它在数学、物理、工程等领域都有着广泛的应用。
矩阵运算公式是矩阵运算的基础,掌握这些公式对于理解矩阵运算的原理和应用至关重要。
本文将为大家详细介绍矩阵运算的各种公式,希望能够帮助大家更好地理解和运用矩阵运算。
一、矩阵的加法和减法。
1. 矩阵加法,设矩阵A、B的阶数相同,即都是m×n阶矩阵,则矩阵A、B 的和记作A+B,即A+B=(a_ij+b_ij)。
2. 矩阵减法,矩阵A、B的减法定义为A-B=A+(-B),即A-B=(a_ij-b_ij)。
二、矩阵的数乘。
1. 数乘的定义,设k为数,A为m×n矩阵,则kA=(ka_ij)。
2. 数乘的性质,数乘满足分配律和结合律,即k(A+B)=kA+kB,(k+m)A=kA+mA。
三、矩阵的乘法。
1. 矩阵乘法的定义,设A为m×n矩阵,B为n×p矩阵,则矩阵AB的乘积为一个m×p矩阵C,其中C的元素c_ij为c_ij=a_i1b_1j+a_i2b_2j+...+a_inb_nj。
2. 矩阵乘法的性质,矩阵乘法满足结合律,但不满足交换律,即AB≠BA。
四、矩阵的转置。
1. 矩阵的转置定义,设A为m×n矩阵,记作A^T,其中A^T的元素a_ij为a_ji。
2. 转置的性质,(A^T)^T=A,(kA)^T=kA^T,(A+B)^T=A^T+B^T,(AB)^T=B^TA^T。
五、矩阵的逆。
1. 矩阵可逆的定义,设A为n阶方阵,若存在n阶方阵B,使得AB=BA=E,其中E为单位矩阵,则称A可逆,B为A的逆矩阵,记作A^-1。
2. 逆矩阵的性质,若A、B均为n阶可逆矩阵,则(AB)^-1=B^-1A^-1,(A^-1)^-1=A,(A^T)^-1=(A^-1)^T。
六、矩阵的行列式。
1. 行列式的定义,设A为n阶方阵,其行列式记作det(A),其中当n=1时,det(A)=a_11;当n>1时,det(A)=Σ(-1)^(i+j)a_ijM_ij,其中M_ij为A去掉第i行第j列后所得的n-1阶方阵的行列式,i、j为行列标号。
矩阵的概念和计算
矩阵的概念和计算矩阵是线性代数中一种重要的数学工具,广泛应用于各个领域,包括物理、工程、计算机科学等。
本文将详细介绍矩阵的概念,以及矩阵的基本运算和计算方法。
一、矩阵的概念矩阵是由数个数按一定的规律排列成的长方形阵列。
矩阵由m行n列元素组成,可以表示成一个m×n的形式。
其中,m表示矩阵的行数,n表示矩阵的列数。
每个元素在矩阵中由其所在的行号和列号来确定。
例如,一个3×2的矩阵可以表示为:A = [a11, a12;a21, a22;a31, a32]其中,a11, a12, a21, a22, a31, a32分别表示矩阵A中的元素。
二、矩阵的基本运算1. 矩阵的加法矩阵的加法是指对应元素相加,要求两个矩阵具有相同的行数和列数。
例如,对于两个3×2的矩阵A和B,其加法可以表示为:C = A + B = [a11 + b11, a12 + b12;a21 + b21, a22 + b22;a31 + b31, a32 + b32]2. 矩阵的减法矩阵的减法是指对应元素相减,同样需要两个矩阵具有相同的行数和列数。
例如,对于两个3×2的矩阵A和B,其减法可以表示为:C = A - B = [a11 - b11, a12 - b12;a21 - b21, a22 - b22;a31 - b31, a32 - b32]3. 矩阵的数乘矩阵的数乘是指矩阵中的每个元素都乘以一个常数。
例如,对于一个3×2的矩阵A和一个常数k,其数乘可以表示为:B = kA = [ka11, ka12;ka21, ka22;ka31, ka32]4. 矩阵的乘法矩阵的乘法是指满足前一个矩阵的列数等于后一个矩阵的行数的情况下,将相应的元素相乘再相加得到新的矩阵。
例如,对于一个m×n 的矩阵A和一个n×p的矩阵B,其乘法可以表示为:C = AB = [c11, c12, ..., c1p;c21, c22, ..., c2p;...cm1, cm2, ..., cmp]其中,cij表示矩阵C中第i行第j列的元素,其计算方法为:cij = a[i1]b[1j] + a[i2]b[2j] + ... + a[in]b[nj]三、矩阵的计算方法1. 矩阵的转置矩阵的转置指的是将矩阵的行和列互换得到的新矩阵。
线性代数矩阵论——矩阵的基本运算——加、减、取负、乘、数乘、转置 - 6DAN - 博客园
线性代数矩阵论——矩阵的基本运算——加、减、取负、乘、数乘、转置- 6DAN - 博客园线性代数矩阵论——矩阵的基本运算——加、减、取负、乘、数乘、转置1. 矩阵加法前提条件:同型矩阵操作数:两个m*n矩阵A=[aij],B=[bij]基本动作:元素对应相加2. 矩阵减法前提条件:同型矩阵操作数:两个m*n矩阵A=[aij],B=[bij]基本动作:元素对应相减3. 矩阵取负前提条件:无操作数:任意一个m*n矩阵A=[aij]基本动作:元素对应取负4. 矩阵乘法前提条件:左矩阵A的列数与右矩阵B的行数相等操作数:m*n矩阵A=[aij],n*m矩阵B=[bij],A是具有m行的行矩阵,,B是具有n列的列矩阵,基本动作:行列积5. 矩阵数乘前提条件:无操作数:任意一个m*n矩阵A=[aij],数k基本动作:数k乘以每一个元素6. 矩阵转置前提条件:无,任意一个m*n矩阵A=[aij]基本动作:行列互换,第i行第j列的元素换为第j行第i列的元素,m*n的矩阵转置后为n*m矩阵,矩阵运算不满足交换律和消去率Matlab实现<table class="MsoNormalTable"style="border-collapse:collapse;border:none;mso-border-a lt:solid black .5pt;mso-yfti-tbllook:1184;mso-padding-alt:0cm 5.4pt 0cm 5.4pt;mso-border-insideh:.5pt solid black;mso-border-insidev:.5pt solid black" border="1" cellpadding="0" cellspacing="0">矩阵运算<td style="width:40.9pt;border:solid black 1.0pt;border-left:none;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">算符<td style="width:71.75pt;border:solid black 1.0pt;border-left:none;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">形式<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵加法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">+<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">A+B<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵减法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">-<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm5.4pt 0cm 5.4pt" valign="top" width="96">A-B<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵取负<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">-<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">-A<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵乘法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">*<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">A*B<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵数乘<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">*<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">A*k或k*A<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵转置<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">’<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">A’<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵乘方<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">^<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">A^N<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">数组加法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">+<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">X+Y<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">数组减法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">-<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">X-Y<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">数组乘法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55"><td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">X.*Y<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">数组除法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top"width="55">./或.\<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">X./Y或X.\Y<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">数组乘方<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">.^<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">X.^N。
矩阵的简单运算公式
矩阵的简单运算公式矩阵是线性代数中一个非常重要的概念,广泛应用于各个领域,如数学、物理、工程等。
矩阵的运算是对矩阵进行各种操作的过程,包括加法、减法、乘法等。
本文将介绍矩阵的简单运算公式,并给出相应的例子,以帮助读者更好地理解矩阵运算的基本原理。
一、矩阵的加法矩阵的加法是指将两个矩阵的对应元素相加,依次得到一个新的矩阵。
加法的具体操作如下:设A和B为两个相同阶数的矩阵,即A和B的行数和列数相等。
则它们的和记作C=A+B,C的每个元素ci,j等于A和B相应元素的和,即ci,j = ai,j + bi,j。
举个例子,假设有两个矩阵:A = [1 2 3][4 5 6]B = [7 8 9][10 11 12]则A和B的和矩阵C为:C = A + B = [1+7 2+8 3+9][4+10 5+11 6+12]二、矩阵的减法矩阵的减法是指将两个矩阵的对应元素相减,得到一个新的矩阵。
减法的操作与加法类似,不同之处在于相减而非相加。
设A和B为两个相同阶数的矩阵,即A和B的行数和列数相等。
则它们的差记作D=A-B,D的每个元素di,j等于A和B相应元素的差,即di,j = ai,j - bi,j。
继续以上面的矩阵A和B为例,它们的差矩阵D为:D = A - B = [1-7 2-8 3-9][4-10 5-11 6-12]三、矩阵的数乘矩阵的数乘是指将一个矩阵的每个元素都乘以一个常数,得到一个新的矩阵。
数乘的具体操作如下:设A为一个矩阵,k为一个常数。
则A乘以k的结果记作E=kA,E 的每个元素ei,j等于A相应元素的k倍,即ei,j = k * ai,j。
继续以上面的矩阵A为例,假设k=2,则矩阵A乘以2的结果E为:E = 2A = [2*1 2*2 2*3][2*4 2*5 2*6]四、矩阵的乘法矩阵的乘法是指将一个矩阵与另一个矩阵相乘,得到一个新的矩阵。
乘法的操作稍微复杂一些,需要满足一定的条件。
设A是一个m×n的矩阵,B是一个n×p的矩阵,则AB的结果是一个m×p的矩阵。
矩阵的基本运算
矩阵的基本运算矩阵是线性代数中的重要概念之一,被广泛应用于数学、工程、物理等领域。
矩阵的基本运算包括矩阵的加法、减法、乘法以及数量乘法等,本文将从这四个方面分析并论述矩阵的基本运算。
1. 矩阵的加法矩阵的加法是指两个矩阵进行逐元素相加的运算。
假设有两个矩阵A和B,它们的维度相同(即行数和列数相等),那么它们的加法定义如下:C = A + B,其中矩阵C的第(i, j)个元素等于矩阵A和B对应元素的和。
2. 矩阵的减法矩阵的减法与加法类似,也是逐元素进行运算。
与加法不同的是,减法是将第二个矩阵的每个元素从第一个矩阵的对应元素中减去。
设两个矩阵A和B,它们的维度相同,那么它们的减法定义如下:C = A - B,其中矩阵C的第(i, j)个元素等于矩阵A和B对应元素的差。
3. 矩阵的乘法矩阵的乘法是指两个矩阵按照一定规则进行运算,得到一个新的矩阵。
设两个矩阵A和B,它们的乘法定义如下:C = A * B,其中矩阵C的第(i, j)个元素等于矩阵A的第i行与矩阵B的第j列的乘积之和。
矩阵A的列数必须与矩阵B的行数相等,否则乘法无法进行。
4. 矩阵的数量乘法矩阵的数量乘法是指将矩阵的每个元素与一个常数相乘得到的新矩阵。
设矩阵A和一个常数k,那么矩阵A的数量乘法定义如下:B = kA,其中矩阵B的第(i, j)个元素等于矩阵A的第(i, j)个元素与常数k的乘积。
综上所述,矩阵的基本运算包括加法、减法、乘法和数量乘法。
通过这些运算,我们可以进行复杂的矩阵计算,如求解线性方程组、矩阵的逆运算等。
熟练掌握矩阵的基本运算对于理解线性代数及其应用至关重要。
通过学习矩阵的基本运算,我们可以更好地理解矩阵的性质及其在实际问题中的应用。
矩阵运算在计算机科学、人工智能等领域也发挥着重要作用,如图像处理、模式识别等。
因此,对于矩阵的基本运算的深入理解和掌握对于我们的学习和工作都具有重要意义。
总而言之,矩阵的基本运算包括加法、减法、乘法和数量乘法,这些运算为我们应用线性代数解决实际问题提供了有力工具。
矩阵的运算法则
矩阵的运算法则矩阵是线性代数中一个重要的概念,它在各个领域中都有广泛的应用。
在进行矩阵运算时,我们需要遵循一些基本的法则,以确保运算的正确性和有效性。
本文将介绍矩阵的基本运算法则,包括矩阵的加法、减法、乘法以及转置运算。
矩阵的加法法则两个矩阵进行加法运算的法则如下:对应位置上的元素相加,得到一个新的矩阵,也称为元素级别(element-wise)的加法。
例如,给定两个矩阵A和B,它们的加法运算可以表示为:A = [[a11, a12], [a21, a22]]B = [[b11, b12], [b21, b22]]A +B = [[a11+b11, a12+b12], [a21+b21, a22+b22]]矩阵的减法法则两个矩阵进行减法运算的法则与加法相似,也是对应位置上的元素相减,得到一个新的矩阵,即元素级别的减法。
例如,给定两个矩阵A和B,它们的减法运算可以表示为:A = [[a11, a12], [a21, a22]]B = [[b11, b12], [b21, b22]]A -B = [[a11-b11, a12-b12], [a21-b21, a22-b22]]矩阵的乘法法则矩阵的乘法是矩阵运算中的一个重要操作,它的法则较为复杂。
矩阵乘法符合结合律,但不满足交换律,即两个矩阵的乘法的顺序会影响结果。
给定两个矩阵A和B,它们的乘法运算可以表示为:A = [[a11, a12], [a21, a22]]B = [[b11, b12], [b21, b22]]A *B = [[(a11*b11+a12*b21), (a11*b12+a12*b22)], [(a21*b11+a22*b21), (a 21*b12+a22*b22)]]需要注意的是,只有当矩阵A的列数与矩阵B的行数相等时,乘法运算才是可行的。
矩阵的转置运算矩阵的转置是指将矩阵的行变为列,列变为行,得到一个新的矩阵。
转置运算可以表示为A^T,其中A为原始矩阵。
矩阵乘法(一):基本运算
矩阵乘法(⼀):基本运算矩阵,是线性代数中的基本概念之⼀。
⼀个m×n的矩阵就是m×n个数排成m⾏n列的⼀个数阵。
在计算机中,⼀个矩阵实际上就是⼀个⼆维数组。
因此,可以将矩阵定义为⼀个结构体:struct Matrix{int mat[110][110]; // 存储矩阵中各元素int row,col; // 矩阵的⼤⼩,row⾏,col列};矩阵相乘是矩阵的⼀种基本运算。
设A为m×n矩阵,B为n×k矩阵,则它们的乘积AB(有时记做A·B)是⼀个m×k矩阵。
其乘积矩阵A·B的第i⾏第j列的元素为第⼀个矩阵A第i⾏上的n个数与第⼆个矩阵B第j列上的n个数对应相乘后所得的n个乘积之和。
即:需要注意的是:只有当矩阵A的列数与矩阵B的⾏数相等时,矩阵A×B才有意义。
因此,矩阵相乘不满⾜交换律。
设A是3×4矩阵,B是4×5矩阵,A与B相乘后,A·B是3×5矩阵;但B·A根本就⽆法运算。
矩阵乘法满⾜结合律。
【例1】矩阵的乘法。
输⼊矩阵a和矩阵b的数据,输出新的矩阵c=a*b。
例如,样例输⼊4 31 2 34 5 67 8 910 11 123 57 8 9 10 114 5 6 7 81 2 3 4 5样例输出18 24 30 36 4254 69 84 99 11490 114 138 162 186126 159 192 225 258(1)编程思路。
按照矩阵乘法的定义,⽤⼀个三重循环完成运算。
(2)源程序。
#include <stdio.h>#include <string.h>struct Matrix{int mat[110][110]; // 存储矩阵中各元素int row,col; // 矩阵的⼤⼩,row⾏,col列};Matrix matMul(Matrix a ,Matrix b) // 矩阵A*B{Matrix c;c.row=a.row;c.col=b.col;memset(c.mat,0,sizeof(c.mat));int i,j,k;for (i = 0; i<=a.row ; i++)for (j=0 ;j<b.col; j++)for (k = 0 ;k<a.col;k++)c.mat[i][j] += a.mat[i][k] * b.mat[k][j];return c;}int main(){int i,j,x,y;Matrix a,b,c;scanf("%d%d",&x,&y);a.row=x;a.col=y;for (i=0;i<x;i++)for (j=0;j<y;j++)scanf("%d" ,&a.mat[i][j]);scanf("%d%d",&x,&y);b.row=x;b.col=y;for (i=0;i<x;i++)for (j=0;j<y;j++)scanf("%d" ,&b.mat[i][j]);c=matMul(a,b);for (i = 0 ;i <c.row;i++){for (j=0;j<c.col;j++)printf("%5d" ,c.mat[i][j]);printf("\n");}return 0;}在实际应⽤中,我们经常会⽤到矩阵的幂运算。
矩阵的基本运算法则
矩阵的基本运算法则1、矩阵的加法矩阵加法满足下列运算规律(设A 、B 、C 都是m n ⨯矩阵,其中m 和n 均为已知的正整数):(1)交换律:+=+A B B A(2)结合律:()()++++A B C =A B C注意:只有当两个矩阵为同型矩阵(两个矩阵的行数和列数分别相等)时,这两个矩阵才能进行加法运算。
2、数与矩阵相乘数乘矩阵满足下列运算规律(设A 、B 是m n ⨯矩阵,λ和μ为数):(1)结合律:()λμλμ=A A(2)分配律:()λμλμ+=+A A A(3)分配律:()λλλ+=+A B A B注意:矩阵相加与数乘矩阵合起来,统称为矩阵的线性运算。
3、矩阵与矩阵相乘矩阵与矩阵的乘法不满足交换律、但是满足结合律和分配率(假设运算都是可行的):(1)交换律:≠AB BA (不满足)(2)结合律:()()=AB C A BC(3)结合律:()()()λλλλ==其中为数AB A B A B(4)分配律:()(),+=++=+A B C AB AC B C A BA CA4、矩阵的转置矩阵的转置满足下述运算规律(假设运算都是可行的,符号()T g 表示转置):(1)()T T =A A(2)()T T T +=+A B A B(3)()TT λλ=A A(4)()T T T =AB B A 5、方阵的行列式由A 确定A 这个运算满足下述运算法则(设A 、B 是n 阶方阵,λ为数):(1)T =A A(2)n λλ=A A(3)=AB A B6、共轭矩阵共轭矩阵满足下述运算法则(设A 、B 是复矩阵,λ为复数,且运算都是可行的):(1)+=+A B A B(2)λλ=A A(3)=AB AB7、逆矩阵方阵的逆矩阵满足下述运算规律:(1)若A 可逆,则1-A 亦可逆,且()11--=A A(2)若A 可逆,数0λ≠,则λA 可逆,且()111λλ--=A A(3)若A 、B 为同阶矩阵且均可逆,则AB 亦可逆,且()111---=AB B A参考文献:【1】线性代数(第五版),同济大学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i 1
(2)连续函数空间C[a,b]:令
C[a,b]={x(t)|x(t)是[a,b]上的连续函数}
则称C[a,b]为连续函数空间,在C[a,b]上定义
d(x,y)=max|x(t)-y(t)|
(3)平方可积函数空间L2(R): 令
L2 (R) {x(t) | |x(t) |2 dt<} R
则称 L2(R) 为平方可积函数空间 ,定义距离:
欧氏距 0.1217 0.1612 0.1720 0.2280 0.1612 0.2600 0.3162 0.4817 0.1020 0.0825 0.1612 0.0566 0.1442 0.1970 0.3945 0.1800 0.2600 0.0632
绝对距 0.1400 0.2200 0.2400 0.3200 0.1800 0.3400 0.4000 0.6800 0.1200 0.1000 0.1800 0.0800 0.2000 0.2600 0.5400 0.1800 0.2600 0.0800
d(x, y) { |x(t) y(t) |2 dt}1/2 x, y L2(R) R
(4)平方可和离散序列空间 l 2 :令
l 2 { x ( x1 , x2 , , xn , ) | |xi |2 } i1
则称l 2平方可和离散序列空间,定义距离: d( x, y) [ |xi yi |2 ]1/ 2 i1
(2)点击编辑界面上方Debug Run 于是
运行结果出现在command界面。
Mat lab
一. 矩阵与向量的基本运算
1.矩阵(向量、数组)的输入方法 矩阵的输入利用[ ],采取分行输入方法,
每个元素之间用逗号或空格,每行之间用分号.
1 5 1 0 1
例1.矩阵
A= 2
3
6 7
0 1
1 0
1 1
例8. 现测得6只Apf和9只Af蠓虫的触长,翅长数据如下:
Apf:(1.14,1.78), (1.18,1.96), (1.20,1.86), (1.26,2.00), (1.28,2.00), (1.30,1.96) Af:(1.24,1.72), (1.36,1.74), (1.38,1.64), (1.38,1.82), (1.38,1.90), (1.40,1.70), (1.48,1.82),(1.54,1.82), (1.56,2.08) 计算两类蠓虫的各自之间的欧氏、绝对、马氏距离
d1=(pdist(Apf))’; d2=(pdist(Apf,'cityblock'))’; d=[d1,d2,d3] d3=pdist(Apf,'mahal'))’;
表一.Apf蠓虫之间的距离
Apf蠓虫 欧氏距离 绝对距离
d12
0.1844
0.2200
d13
0.1000
0.1400
d14
0.2506
其中 V是一个实对称正定矩阵,通常取样
本的协方差矩阵,当V=E时即为欧氏距离.
y
X
~
N
(
1
,
2 1
),Y
~
N
(
2
,
2 2
)
A
1 0 t 2
| t 1 | | t 2 |
| t 1 | 41,| t 2 | 3 2
x | t 1 | 4,| t 2 | 3
1
2
以上距离,在Matlab (6.)中有命令: pdist
C
2 m
列
各列表示X中各行向量按如下顺序的距离
(1,2),(1,3),…(1,m),(2,3),(2,4),…(2,m),…(m-1,m)
三. 向量的均值、方差、协方差与相关矩阵
设A为m n矩阵,则有:
mean(A) — A中各列向量的均值 Var(A) — A中各列向量的方差 Std(A) — A中各列向量的标准差 Cov(A) — A中各列向量的协方差矩阵 Corrcoef(A) — A中各列向量的相关矩阵 如果计算A中各行向量的均值、方差、协方 差矩阵,相关矩阵,只需先将A转置即可.
马氏距 1.4423 2.3963 1.4225 1.5517 2.2078 2.6110 3.3635 3.3694 1.1705 0.6601 1.4345 0.8277 1.2266 1.9404 2.6612 1.7814 2.5731 0.4756
Af蠓 d37 d38 d39 d45 d46 d47 d48 d49 d56 d57 d58 d59 d67 d68 d69 d78 d79 d89
7 8 0
2 1 1
求:AB,B-1,B-AT,|A|
解:A=[1,2,3;4,5,6;7,8,0];B=[1,2,1;1,1,2;2,1,1];
a=A*B,b=inv(B),c=B-A’,d=det(A)
a = 9 7 8 b = -1/4 1/4 -3/4 c = 0 -2 -6
21 19 20 3/4 -1/4 -1/4 -1 -4 -6
n
d( , ) | xi yi | i 1
Matlab中命令:mandist(A,B)计算A中每 个行向量与B中每个列向量之间绝对距离, A的行数必须等于B的列数.
例7. 求例6中向量之间的绝对值距离.
解: mandist(a,c')=4; mandist(a,b')=8;
mandist(c,b')=12
B= 15101 37101 48011
解法二:B=[A(1,:);A(3,:);A(4,:)] 3. 矩阵的加减法、乘法、转置与求逆运算 A+B,A-B,A*B,A.^2,A’, inv(A),det(A) 分别表示:A,B的和,差,积,点乘方,转置,求逆
以及A的行列式
1 2 3
1 2 1
例5. 已知 A 4 5 6 B 1 1 2
0.0200
d46
0.0566
0.0800
d56
0.0447
0.0600
马氏距离
2.5626 0.9883 2.4942 2.5318 2.5478 2.2507 1.5470 2.0430 3.0777 1.6534 1.5873 1.6025 0.5129 1.6616 1.1764
Af蠓 d12 d13 d14 d15 d16 d17 d18 d19 d23 d24 d25 d26 d27 d28 d29 d34 d35 d36
若 a ( x1, x2 ,..., xn ),则norm(a)
n
xi2
i 1
例6 a=[1,2,3], b=[-1,5,6],c=[1,0,1], 求a,b的范数
解:norm(a)= 3.7417 , norm(b)=7.8740
练习:对例6计算:a,b夹角的余弦
解法一: dot(a/norm(a),b/norm(b)) 解法二: dot(a,b)/norm(a)/norm(b) =0.9164 思考:a,b,c三个向量那两个更接近?
设样本X是m个n维向量所组成的矩阵,则有:
Pdist(X) — 样本X中各n维向量的欧氏距离
Pdist(X,’cityblock’) — 各n维向量的绝对距离
Pdist(X,’Minkowski’,r) — 闵可夫斯基距离
Pdist(X,’mahal’) — 各n维向量的马氏距离
注意:
X
是m
n
矩阵而pdist(X)是一行
3. 向量的距离与计算 (1)欧氏距离: ( x1 , x2 , ..., xn ); ( y1 , y2 , ..., yn )
n
d( , ) ( xi yi )2 i 1
Matlab中命令:dist(A,B)计算A中每个行向 量与B中每个列向量之间欧氏距离,A的行 数必须等于B的列数.
3 7 1 0 4 8 0 1
解:A1=A(1,:) 表示矩阵A的第一行;
A2=A(:,1) 表示矩阵A的第一列;
练习:A(4,:),A(3,2),分别表示什么?
例3. 求矩阵A的第1,3,4行元素组成的矩阵.
解:首先健入a=[1,3,4];然后健入 B=A(a,:)即可
其中a=[1,3,4]称为索引向量.
解: Apf=[1.14,1.78;1.18,1.96;1.2,1.86;1.26,2.;1.28,2; 1.30,1.96] ;
Af=[1.24,1.72;1.36,1.74;1.38,1.64;1.38,1.82; 1.38,1.90 ; 1.40,1.70;1.48,1.82;1.54,1.82;1.56,2.08];
例7. a=[1,2,3],b=[-1,5,6],c=[1,0,1]求a,b,c欧氏距离 解:dist(a,b’)=4.6904, dist(a,c’)= 2.8284
dist(c,b’)= 7.3485
(2)绝对距离: ( x1, x2 ,..., xn ); ( y1, y2 ,..., yn )
Matlab输入:
4 8 0 1 1
A=[1,5,1,0,1;2,6,0,1,1;3,7,1,0,1;4,8,0,1,1];
注:; 分号的作用在于运算结果不显示.
n维行(列)向量可以看成是一个行(列) 矩阵, 因此向量的输入和矩阵一样.
2.矩阵的合成与分解
1 5 1 0
例2.矩阵A= 2 6 0 1 求A的第一行与第一列
二. 度量空间与距离 1.度量空间 定义:设X是任一集合,如果X中任意两个元素x 与y,都对应一个实数d(x,y),且满足: (1)非负性: d(x,y)≥0,当且仅当x=y时,d(x,y)=0
(2)对称性: d(x,y)= d(y, x)
(3)三角不等式:对任意的x,y,z∈X,有