九年级圆全章教案

合集下载

九年级数学全章教案(优秀7篇)

九年级数学全章教案(优秀7篇)

九年级数学全章教案(优秀7篇)九年级数学优秀教案篇一教学目标1、理解用配方法解一元二次方程的基本步骤。

2、会用配方法解二次项系数为1的一元二次方程。

3、进一步体会化归的思想方法。

重点难点重点:会用配方法解一元二次方程。

难点:使一元二次方程中含未知数的项在一个完全平方式里。

教学过程(一)复习引入1、用配方法解方程x2+x-1=0,学生练习后再完成课本P.13的“做一做”。

2、用配方法解二次项系数为1的一元二次方程的基本步骤是什么?(二)创设情境现在我们已经会用配方法解二次项系数为1的一元二次方程,而对于二次项系数不为1的一元二次方程能不能用配方法解?怎样解这类方程:2x2-4x-6=0(三)探究新知让学生议一议解方程2x2-4x-6=0的方法,然后总结得出:对于二次项系数不为1的一元二次方程,可将方程两边同除以二次项的系数,把二次项系数化为1,然后按上一节课所学的方法来解。

让学生进一步体会化归的思想。

(四)讲解例题1、展示课本P.14例8,按课本方式讲解。

2、引导学生完成课本P.14例9的填空。

3、归纳用配方法解一元二次方程的基本步骤:首先将方程化为二次项系数是1的一般形式;其次加上一次项系数的一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里;最后将配方后的一元二次方程用因式分解法或直接开平方法来解。

(五)应用新知课本P.15,练习。

(六)课堂小结1、用配方法解一元二次方程的基本步骤是什么?2、配方法是一种重要的数学方法,它的重要性不仅仅表现在一元二次方程的解法中,在今后学习二次函数,高中学习二次曲线时都要经常用到。

3、配方法是解一元二次方程的通法,但是由于配方的过程要进行较繁琐的运算,在解一元二次方程时,实际运用较少。

4、按图1—l的框图小结前面所学解一元二次方程的算法。

(七)思考与拓展不解方程,只通过配方判定下列方程解的情况。

(1)4x2+4x+1=0;(2)x2-2x-5=0;(3)–x2+2x-5=0;[解]把各方程分别配方得(1)(x+)2=0;(2)(x-1)2=6;(3)(x-1)2=-4由此可得方程(1)有两个相等的实数根,方程(2)有两个不相等的实数根,方程(3)没有实数根。

《圆》的全章教案圆

《圆》的全章教案圆

图23.1.1我们是用圆规画出一个圆,再将圆划分成一个个扇形,上图23.1.1就是反映学校学生上学方式的扇子形统计、说出上右图中的圆心解、优弧、劣弧。

1、将图形23.1.3中的扇形AOB 绕点O 逆时针旋转某个角度,得到图23.1.4中的图形,同学们可以通过比较前后两个图形,发现AOB =∠,AB AB =。

实质上,AOB ∠确定了扇形AOB 的大小,所以,在同一个圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等。

图23.1.3图23.1.43)如图,在⊙AB ︵=AC ︵,∠B =70(第4题)=CD ︵=DE ︵,∠本节课我们通过实验得到了圆不仅是中心对称图形,而由圆的对称性又得出许多圆的许多性)同一个圆中,相等的圆心角所对弧相等,所)在同一个圆中,如果弧相等,那么所对的圆心角,所对的弦相等。

(3)在同一个圆中,如果弦相等,那么所对的圆心角,所对的弧相等。

圆心角、弧、弦关系图 23.1.5图 23.1.6试一试如图23.1.7,如果在图形纸片上任意画一条垂直于直径CD 垂足为P ,再将纸片沿着直径CD 对折,比较AP 与PB 、AC ︵与你能发现什么结论?你的结论是:_________________________________________ ________________________________________________ 这就是我们这节课要研究的问题。

例截面如图示,如果油面宽是谈一下本节课的收获?还有何困惑?究竟什么样的角是圆周角呢?像图(3)中的解就叫做圆周角,而图(2)、(4)、(5)中的角都不是圆周角。

同学们可以通过讨论归纳如何判断一个角是不是圆周角。

(顶(第1题)图23.1.9图23.1.10圆心角的度数的一半。

由上述操作可以猜想:在一个圆中,一条弧所对的任意一个圆周角的大小都等于该弧所对的圆心角的一半。

为了验证这个猜想,如图使折痕经过圆心况:(1)折痕是圆周角的一条边,内部,(3)折痕在圆周角的外部。

九年级下册《圆》教案

九年级下册《圆》教案

一、教学目标1. 知识与技能:(1)理解圆的定义、圆心、半径等基本概念;(2)掌握圆的周长、面积的计算公式及应用;(3)学会用圆规和直尺画圆。

2. 过程与方法:(1)通过观察、思考、讨论,培养学生的空间想象能力和抽象思维能力;(2)运用合作探究的学习方式,提高学生解决问题的能力;(3)培养学生运用数学知识解决实际问题的能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生勇于探索、积极向上的精神风貌;(3)培养学生团队协作、相互帮助的良好品质。

二、教学内容1. 圆的定义及基本概念;2. 圆的周长、面积的计算公式及应用;3. 用圆规和直尺画圆的方法。

三、教学重点与难点1. 教学重点:(1)圆的定义及基本概念;(2)圆的周长、面积的计算公式及应用;(3)用圆规和直尺画圆的方法。

2. 教学难点:(1)圆的周长、面积公式的推导过程;(2)圆规和直尺画圆的技巧。

四、教学方法1. 采用问题驱动法,引导学生主动探究圆的相关知识;2. 利用多媒体辅助教学,直观展示圆的定义和画圆的过程;3. 采用合作学习法,让学生在小组内讨论、交流,共同解决问题;4. 实践操作法,让学生动手操作,加深对圆的认识和理解。

五、教学步骤1. 导入新课:(1)复习相关平面几何知识,如点、线、角等;(2)提问:我们生活中有哪些物体是圆形的?引发学生对圆的思考。

2. 自主学习:(1)学生自主阅读教材,了解圆的定义及基本概念;(2)学生通过观察、思考,总结圆的特点。

3. 课堂讲解:(1)讲解圆的定义及基本概念;(2)推导圆的周长、面积公式;(3)演示用圆规和直尺画圆的方法。

4. 课堂练习:(1)学生独立完成教材中的相关练习题;(2)学生互相讨论、交流,解决练习题中的问题。

5. 拓展与应用:(1)学生运用圆的知识解决实际问题;(2)学生进行小组讨论,分享解题心得。

6. 课堂小结:(1)教师总结本节课的主要内容;(2)学生分享学习收获。

湘教版最新九年级数学圆全章精品教案

湘教版最新九年级数学圆全章精品教案

第三章圆单元要点分析教学内容1.本单元数学的主要内容.(1)圆有关的概念:垂直于弦的直径,弧、弦、圆心角、圆周角.(2)与圆有关的位置关系:点和圆的位置关系,直线与圆的位置关系,•圆和圆的位置关系.(3)弧长和扇形面积:弧长和扇形面积,圆锥的侧面积和全面积.2.本单元在教材中的地位与作用.学生在学习本章之前,已通过折叠、对称、平移旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验.本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线──圆的有关性质.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中的数学学习,尤其是圆锥曲线的学习的基础性工程.教学目标1.知识与技能(1)了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、•弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理.(2)探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,•探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.(3)熟练掌握弧长和扇形面积公式及其它们的应用;•理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.2.过程与方法(1)积极引导学生从事观察、测量、平移、旋转、推理证明等活动.•了解概念,理解等量关系,掌握定理及公式.(2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流.(3)在探索圆周角和圆心角之间的关系的过程中,•让学生形成分类讨论的数学思想和归纳的数学思想.(4)通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,•使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.(5)探索弧长、扇形的面积、•圆锥的侧面积和全面积的计算公式并理解公式的意义、理解算法的意义.3.情感、态度与价值观经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望.教学重点1.平分弦(不是直径)的直径垂直于弦,•并且平分弦所对的两条弧及其运用.2.在同圆或等圆中,相等的圆心角所对的弧相等,•所对的弦也相等及其运用.3.在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半及其运用.4.半圆(或直径)所对的圆周角是直角,90•°的圆周角所对的弦是直径及其运用.5.不在同一直线上的三个点确定一个圆.6.直线L和⊙O相交⇔d<r;直线L和圆相切⇔d=r;直线L和⊙O相离⇔d>r及其运用.7.圆的切线垂直于过切点的半径及其运用.8.•经过半径的外端并且垂直于这条半径的直线是圆的切线并利用它解决一些具体问题.9.两圆的位置关系:d 与r 1和r 2之间的关系:外离⇔d>r 1+r 2;外切⇔d=r 1+r 2;相交⇔│r 2-r 1│<d<r 1+r 2;内切⇔d=│r 1-r 2│;内含⇔d<│r 2-r 1│. 10、n °的圆心角所对的弧长为L=180n R π,n °的圆心角的扇形面积是S扇形=2360n R π及其运用这两个公式进行计算.12.圆锥的侧面积和全面积的计算. 教学难点1.垂径定理的探索与推导及利用它解决一些实际问题.2.弧、弦、圆心有的之间互推的有关定理的探索与推导,•并运用它解决一些实际问题. 3.有关圆周角的定理的探索及推导及其它的运用. 4.点与圆的位置关系的应用.5.三点确定一个圆的探索及应用. 6.直线和圆的位置关系的判定及其应用. 7.切线的判定定理与性质定理的运用. 8.圆和圆的位置关系的判定及其运用. 9. n 的圆心角所对的弧长L=180n R π及S扇形=2360n R π的公式的应用.10.圆锥侧面展开图的理解.教学关键1.积极引导学生通过观察、测量、折叠、平移、旋转等数学活动探索定理、•性质、“三个”位置关系并推理证明等活动.2.关注学生思考方式的多样化,注重学生计算能力的培养与提高.3.在观察、操作和推导活动中,使学生有意识地反思其中的数学思想方法,•发展学生有条理的思考能力及语言表达能力.单元课时划分本单元教学时间约需13课时,具体分配如下:3.1 圆 4课时 3.2 点、直线与圆的位置关系,圆的切线 4课时 3.3 圆与圆的位置关系 2课时3.4 弧长和扇形面积,圆锥的侧面展开图 4课时 3.5 平行投影和中心投影 1课时 3.6 三视图 3课时 教学活动、习题课、小结 3课时3.1 圆3.1.1 圆的对称性(第一课时)教学目标了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念.利用操作几何的方法,理解圆是旋转对称图形和中心对称图形及圆是轴对称图形,过圆心的直线都是它的对称轴.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.通过对圆的图形的认识,使学生认识新的几何图形的对称美,体会所体现出的完美性,培养学生美的感受,激发学习兴趣.重难点、关键1.重点:垂径定理及其运用.2.难点与关键:探索并证明垂径定理及利用垂径定理解决一些实际问题.教学过程Ⅰ.创设现实情境,引入新课[师]前面我们已经学习过两种常见的几何图形,三角形、四边形.大家回忆一下我们是通过一些什么方法研究了它们的性质?[师]好!大家总结得很详细,今天我们继续运用这些方法来学习和研究小学已接触过的另一种常见的几何图形——圆.和三角形、四边形一样,圆的性质与应用同样需要通过轴反射、平移、旋转、推理证明等方法去学习和探究.Ⅱ.讲授新课[师]日常生活中同学们经常见到的汽车、摩托车、自行车等一些交通运输工具的车轮是什么形状的?[师]请同学们思考一个问题,为什么车轮要做成圆形呢?能否做成长方形或正方形?老师这里有两个车轮模具,一个是圆形,一个是正方形.我们一起观察一下这两个车轮在行进中有些什么特点?大家讨论.讨论如下图:[师]通过我们平常乘坐汽车,或骑自行车感受到,圆形的车轮只要路面平整,车子就不会上下颠簸,人坐在车上就感到平稳、舒服.假如车轮是方形的,那么车子在行进中,就会对人产生一种上下颠簸,坐着不舒服的感觉.下面我们一起来探讨一下,是什么原因导致车轮要做成圆形,不能做成方形.看P图,A、B表示车83轮边缘上的两点,点O表示车轮的轴心,A、O之间的距离与B、O之间的距离有什么关系?用什么方法可以判断,大家动手做一做.[师]同学们做得很好.大家通过不同的方法,得到的结果是什么?[生]OA=OB.[师]刚才是两个特殊点,现在我们在车轮边缘上任意取一点C,要使车轮能够平稳地滚动,C、O之间的距离与A、O之间的距离应有什么关系?[生]CO=AO.这样才能保证车轮平稳地滚动.[师]同学们以前画过圆,画一个圆很简单.将圆规的一个脚固定,另一个带有铅笔头的脚转一圈,一个圆就画出来了.固定的那一点称为圆心.所画得的圆圈叫圆周.从画圆的过程中可以看到,圆规两个脚之间的长度始终保持不变,也就是说圆心到圆周上任意一点的距离都相等.这是圆的一个重要而又最基本的性质.人们就是用圆的这种性质来制造车轮的,车轴总是安装在车轮的圆心位置上,这样,车轴到车轮边缘的距离处处相等.也就是说,车子在行进中,车轴离路面的距离总是一样的.车子在平路上行走较平稳,假如是方形的,车轴到路面的距离时大时小,车子就会产生颠簸.2、圆的定义:平面内到一定点的距离等于定长的所有点组成的图形叫做圆(circle).其中,定点称为圆心(Centre of a circle),定长称为半径(radius).以点O为圆心的圆记作⊙O,读作“圆O”.注意:确定一个圆需要两个要素,一是位置,二是大小.圆心确定其位置,半径确定其大小.只有圆心没有半径,虽圆的位置固定,但大小不定,因而圆不确定;只有半径而没有圆心,虽圆的大小固定,但圆心的位置不定,因而圆也不确定.只有圆心和半径都固定,圆才被唯一确定.问: 1.体育教师想利用一根3m长的绳子在操场上画一个半径为3m的圆,你能帮他想想办法吗?答:将绳子的一端A固定,然后拉紧绳子的另一端B,并绕A在地上转一圈,B所经过的路径就是所希望的圆.小结:圆也可以看成平面内一动点绕一个定点旋转一周所形成的图形。

初中圆一章教案

初中圆一章教案

初中圆一章教案教学目标:1. 理解圆的概念,掌握圆的基本性质和公式。

2. 学会使用圆规和直尺画圆,并能应用圆的知识解决实际问题。

3. 培养学生的空间想象能力和逻辑思维能力。

教学内容:1. 圆的概念和性质2. 圆的周长和面积公式3. 圆的画法4. 应用题教学步骤:一、导入(5分钟)1. 引入圆的概念,让学生举例说明生活中常见的圆形物体。

2. 引导学生思考圆的特性,如圆心、半径等。

二、圆的性质(15分钟)1. 介绍圆的性质,如圆是对称图形、圆的直径等于半径的两倍等。

2. 通过实物演示或图形展示,让学生理解和掌握圆的性质。

三、圆的周长和面积公式(15分钟)1. 介绍圆的周长公式C=2πr和面积公式A=πr²。

2. 让学生通过实际操作,使用圆规和直尺测量圆的周长和面积。

3. 引导学生理解公式中的π的意义和应用。

四、圆的画法(10分钟)1. 介绍圆的画法,如使用圆规和直尺画圆。

2. 演示圆的画法,并让学生动手实践,尝试自己画出一个圆。

五、应用题(10分钟)1. 提供一些实际问题,让学生应用圆的知识解决问题。

2. 引导学生运用圆的性质和公式,进行计算和解答。

六、总结与评价(5分钟)1. 对本节课的内容进行总结,让学生巩固所学知识。

2. 鼓励学生提出问题,解答学生的疑问。

教学评价:1. 课堂讲解的清晰度和连贯性。

2. 学生参与课堂活动的积极性和主动性。

3. 学生对圆的概念和性质的理解程度。

4. 学生对圆的周长和面积公式的掌握程度。

5. 学生解决实际问题的能力和逻辑思维能力。

教学资源:1. 圆的模型或实物道具。

2. 圆规和直尺。

3. 教学PPT或黑板。

4. 应用题练习题。

教学建议:1. 在教学中,注重引导学生通过观察和思考,自己发现圆的性质和公式。

2. 鼓励学生动手实践,通过实际操作来加深对圆的理解。

3. 提供多样化的应用题,让学生在不同情境下运用圆的知识。

4. 注重培养学生的空间想象能力和逻辑思维能力,引导学生将圆的知识与实际生活相结合。

九年级圆复习教案5篇

九年级圆复习教案5篇

九年级圆复习教案5篇教案在书写的时候,我们需要考虑联系实际,制定教案是一件值得深思的事情,我们要保持清晰的思路,下面是作者为您分享的九年级圆复习教案5篇,感谢您的参阅。

九年级圆复习教案篇1第一单元第一课一复习生词二背诵最后一段(共两句,最后是省略号)三课文中作者的感情是自豪、赞美,体现了民族团结的精神。

四、抄写窗外安静的句子。

(读书读得认真)五、字音、字形傣昌戴(戈)舞()六、这是一所什么样的学校?(美丽、团结)第二课一、生词二、课文感情:热爱大自然,大自然给我的们生活带来了乐趣。

三、课文写了哪两件事?(第一件:哥俩在草地上玩耍,互相往对方脸上吹蒲公英的绒毛。

第二件:我发现了草地会变色及其变色的原因)四、草地为什么会变色?(花朵张开时,它是金色的,草地也是金色的;花朵合拢时,金色的花瓣被包住,草地就变成绿色的了。

)五、一本正经:很庄严,很严肃。

引人注目:引起人的注意。

第三课一、读课文,读准字音二、生词三、背诵课文第二自然段,这段写了什么?(天都峰又高又陡)四、老爷爷和我爬上天都峰后,为什么要互相道谢?(能从他人身上汲取力量,善于向他人学习,他们个人的奋斗和努力。

)五、多音字si似乎互相似相shi似的相片园地一、我的发现真假好人发现晃眼朝阳假放假好爱好发头发晃摇晃朝朝向二、背《小儿垂钓》三、记住“读读认认”里的生字四、用下面两个词造句十分:好像:第二单元第五课一、读课文二、写生词三、注意易错的字:步胸或低四、把课文描写灰雀的句子背下来(公园里有一棵高大的……非常惹人喜爱)五、列宁是怎样对待小男孩儿的,小男孩是一个怎样的人?(列宁尊重、爱护小男孩,小男孩是一个诚实天真的人)第六课一、读课文,读准字音二、会写生词三、易听写的词:摆弄清准备胶卷杂志社四、高尔基是一个怎样的人?小男是一个怎样的人?(高尔基关心爱护小男孩,小男孩崇敬、热爱高尔基)五、小男孩摆弄了很久很久,说明什么?(从高尔基和小男孩两个方面去回答)六、高尔基的三步曲:童年在人间我的大学第七课1、熟读课文2、听写词语3、容易错的字:旅考遗4、李四光是怎么提问题的?(这么重的大石头从天上掉下来,力量一定非常大。

初中九年级数学教案:圆

初中九年级数学教案:圆

初中九年级数学教案:圆教学目标1.理解圆的定义;2.熟练掌握圆的相关术语;3.掌握圆的周长和面积的计算方法;4.能够应用圆的知识解决实际问题。

教学重点1.圆的定义及相关术语;2.圆的周长和面积公式。

教学难点1.圆周率的概念及计算方法;2.圆形图形的面积计算。

教学过程第一步:引入教师通过出示大型圆形物品(如篮球、乒乓球等)或手绘的圆形图形来引出圆的概念,并解释圆与其他几何图形的区别。

第二步:圆的定义及相关术语•圆:以某点为圆心,以某线段为半径所确定的点集,称为圆。

•圆心:圆心是圆上的一个点,它到圆的任意一点的距离都相等,通常用字母O表示。

•半径:以圆心为中心,与圆相切的线段的长度,通常用字母r表示。

•直径:通过圆心的线段,长度是两个切点之间的最大距离,通常用字母d表示。

•弧:圆上两点间的部分,通常用字母AB表示。

•圆周:圆形的边界线称为圆周,通常用字母C表示。

教师通过多次演示和练习,确保学生能够正确理解和掌握以上术语的含义。

第三步:周长和面积的计算1. 圆周长教师出示圆和直径的关系图,让学生通过推理得出圆周长的公式:C = πd,其中π为圆周率,约等于3.14。

然后教师引导学生通过圆的半径推导同样的公式:C = 2πr。

2. 圆面积教师出示圆和半径的关系图,让学生通过推理得出圆面积的公式:S = πr^2。

然后让学生根据圆和直径的关系推导同样的公式:S = π(d/2)^2。

第四步:应用教师出示应用题材料,让学生运用所学知识进行计算,例如:小明买了一块圆形木板,直径是40cm,他准备在木板上画一个小圆圆,圆心距离圆心的距离是10cm。

请你算一下,他剩余的木板面积是多少?教师引导学生从已知条件出发推导出所需计算的参数,然后应用圆的面积公式进行计算。

第五步:归纳教师让学生回顾本节课所学内容,做好笔记,然后引导他们发表自己对圆的理解和认识,以加深学生对此知识点的领会和掌握。

课堂小结通过本节课,学生掌握了圆的定义以及相关术语,熟练运用圆的周长和面积的计算公式,也能够应用学到的知识解决实际问题。

鲁教版数学九年级下册第五章《圆》教学设计

鲁教版数学九年级下册第五章《圆》教学设计

鲁教版数学九年级下册第五章《圆》教学设计一. 教材分析鲁教版数学九年级下册第五章《圆》是整个初中数学的重要内容,主要介绍了圆的定义、性质、圆的度量、弧度制、圆的方程等基本知识。

本章内容在学生的数学知识体系中占有重要地位,为学生进一步学习高中数学和从事相关领域的工作奠定了基础。

二. 学情分析九年级的学生已经具备了一定的几何基础,对图形的认知和推理能力有一定的提高。

但是,对于圆的相关概念和性质,学生可能还存在一定的困惑,特别是圆的方程和弧度制的理解。

因此,在教学过程中,需要关注学生的认知水平,引导学生逐步理解和掌握圆的相关知识。

三. 教学目标1.了解圆的定义和性质,掌握圆的标准方程和一般方程。

2.理解弧度制的概念,熟练进行角度与弧度的互换。

3.能够运用圆的知识解决实际问题,提高学生的数学应用能力。

4.培养学生的逻辑思维能力和团队协作能力。

四. 教学重难点1.圆的定义和性质2.圆的标准方程和一般方程的推导3.弧度制的理解和应用4.圆的方程在实际问题中的应用五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究和解决问题。

2.利用多媒体和实物模型,直观展示圆的性质和方程。

3.采用合作学习的方式,培养学生的团队协作能力。

4.注重学生的个体差异,给予学生个性化的指导。

六. 教学准备1.多媒体教学设备2.圆的相关模型和教具3.教学课件和教案4.练习题和测试题七. 教学过程1.导入(5分钟)利用多媒体展示生活中的圆形物体,引导学生关注圆的形状和特点。

提问:你们对这些圆形物体有什么认识?什么是圆?2.呈现(10分钟)介绍圆的定义和性质,引导学生通过观察和思考,总结圆的特点。

展示圆的标准方程和一般方程,解释弧度制的概念。

3.操练(10分钟)让学生分组讨论,运用圆的知识解决实际问题。

例如,计算圆的周长和面积,将角度转换为弧度等。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)呈现一些有关圆的练习题,让学生独立完成。

第二十四章 圆全章教案

第二十四章 圆全章教案

定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角引导学生在建立关系时注意弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部.若土∠C=∠G = 呢?中,直径AB为10厘米,弦和BD的长.(1) (2) (3)的大小关系是()∠3<∠2∠3=∠2CD,DA是⊙O的弦,且.100° B.110° C.120° D.130°切线的判定定理;切线的性质定理及其运用它们解决一些具体的题目.切线的判定定理;切线的性质定理及其运用它们解决一些具体的题目.CD=且垂直于这条半径的直线是圆的(2)ABCDE中,对角线APB的度数是().B.60°C.72的一段弧长等于半径为则这段弧所对的圆心角为(B.36°C.72.已知正六边形边长为a,则它的内切圆面积为)这头牛吃草的最大活动区域有多大?)如果这头牛只能绕柱子转过n°角,那么它的最大活动区域有多大?)这头牛吃草的最大活动区域是一个以)如果这头牛只能绕柱子转过n°角,那么它的最大活动区域应该是°圆心角所对的弧所围成的圆的一部分的图形,如图分析:要求弧长和扇形面积,只要有圆心角,半径的已知量便可求,本题已满足.我们学过圆柱的侧面积是沿着它的母线展开成长方形,点和底面圆上任意一点的线段叫做圆锥的母线.(学生分组讨论,提问二三位同学)沿母锥一条母线将圆锥侧面剪开并展平,圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽,已知纸帽的底面周长为顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到与扇形OCD叠放在一起,,则圆中阴影部分的面积为()(直接做在教材上)同弧所对的圆周角相等(第5题图)页复习题24第10题。

九年级数学上册《圆的有关概念》教案、教学设计

九年级数学上册《圆的有关概念》教案、教学设计
三、教学重难点和教学设想
(一)教学பைடு நூலகம்难点
1.重点:圆的基本概念、性质及计算方法,包括圆心、半径、直径、弧、弦、切线等;圆的周长、面积公式的应用。
2.难点:圆的性质的理解和应用,尤其是弦、切线等特殊线段的性质;解决实际问题时,圆的相关知识与其他数学知识的综合运用。
(二)教学设想
1.教学方法:
-采用情境教学法,以生活中的实际例子引入圆的概念,让学生感受圆的无处不在,激发学习兴趣;
3.圆的周长和面积:讲解圆的周长和面积公式,推导过程注重学生的参与,让学生理解公式的来源。
4.圆的应用:结合实际例子,展示圆的相关知识在生活中的应用,提高学生的学习兴趣。
(三)学生小组讨论
在这一环节,我会将学生分成若干小组,每组4-6人。针对以下问题进行讨论:
1.圆的性质有哪些?它们在实际生活中有何应用?
2.圆的周长和面积公式是如何推导出来的?如何运用这些公式解决实际问题?
3.你还能想到哪些与圆相关的有趣现象或问题?
讨论过程中,我会巡回指导,关注每个小组的讨论情况,及时解答学生的问题,引导他们深入思考。
(四)课堂练习
课堂练习环节,我会设计以下几类题目:
1.基础题:针对圆的基本概念和性质,让学生巩固所学知识。
5.能够运用圆的相关知识,解决一些简单的几何问题,如求圆的切线、弦长等。
(二)过程与方法
在本章节的教学过程中,教师将采用以下方法:
1.采用直观演示法,通过展示圆的实际物体,让学生感知圆的特点,引导学生从生活中发现圆的美;
2.运用探究式教学法,引导学生主动探究圆的性质,培养学生的逻辑思维能力和几何直观;
-利用直观演示法,通过教具、多媒体课件等展示圆的性质,帮助学生形成直观的认识;

人教版九年级第二十四章《圆》整章教案

人教版九年级第二十四章《圆》整章教案

人教版九年级第二十四章《圆》整章教案五、课后记:24.1.2 垂直于弦的直径教学目标知识技能探索圆的对称性,进而得到垂直于弦的直径所具有的性质;能够利用垂直于弦的直径的性质解决相关实际问题.数学思考在探索问题的过程中培养学生的动手操作能力,使学生感受圆的对称性,体会圆的一些性质,经历探索圆的对称性及相关性质的过程.解决问题进一步体会和理解研究几何图形的各种方法;培养学生独立探索,相互合作交流的精神.情感态度使学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神.重点垂直于弦的直径所具有的性质以及证明.难点利用垂直于弦的直径的性质解决实际问题.教学过程一、创设问题情境,激发学生兴趣,引出本节内容活动1:用纸剪一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?(课件:探究圆的性质)学生活动设计:学生动手操作,观察操作结果,可以发现沿着圆的任意一条直径对折,直径两旁的部分能够完全重合,由此可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.教师活动设计:在学生归纳的过程中注意学生语言的准确性和简洁性.二、问题引申,探究垂直于弦的直径的性质,培养学生的探究精神活动2:按下面的步骤做一做:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;第二步,得到一条折痕CD;第三步,在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中点M是两条折痕的交点,即垂足;第四步,将纸打开,新的折痕与圆交于另一点B,如图1.图1 图2在上述的操作过程中,你发现了哪些相等的线段和相等的弧?为什么?学生活动设计:如图2所示,连接OA 、OB ,得到等腰△OAB ,即OA =OB .因CD ⊥AB ,故△OA M 与△OB M 都是直角三角形,又O M 为公共边,所以两个直角三角形全等,则A M =B M .又⊙O 关于直径CD 对称,所以A 点和B 点关于CD 对称,当圆沿着直径CD 对折时,点A 与点B 重合,AC 与BC 重合.因此AM =B M ,AC =BC ,同理得到AD BD =.在学生操作、分析、归纳的基础上,引导学生归纳垂直于弦的直径的性质:(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.活动3:如图3,AB 所在圆的圆心是点O ,过O 作OC⊥AB 于点D ,若CD =4 m ,弦AB =16 m ,求此圆的半径.学生活动设计:学生观察图形,利用垂直于弦的直径的性质分析图形条件,发现若OC ⊥AB ,则有AD =BD ,且△ADO 是直角三角形,在直角三角形中可以利用勾股定理构造方程.教师活动设计:在学生解决问题的基础上引导学生进行归纳:弦长、半径、拱形高、弦心距(圆心到弦的距离)四个量中,只需要知道两个量,其余两个量就可以求出来.〔解答〕设圆的半径为R ,由条件得到OD =R -4,AD =8,在R t △ADO 中222AO OD AD =+,即222(4)8R R =-+. 解得 R =10(m ).答:此圆的半径是10 m . 图4活动4:如图4,已知AB ,请你利用尺规作图的方法作出AB 的中点,说出你的作法.师生活动设计:根据基本尺规作图可以发现不能直接作出弧的中点,但是利用垂径定理只需要作出弧所对的弦的垂直平分线,垂直平分线与弧的交点就是弧的中点.〔解答〕1.连接AB ;2.作AB 的中垂线,交 于点C ,点C 就是所求的点.三、拓展创新,培养学生思维的灵活性以及创新意识.活动5 解决下列问题1.如图5,某条河上有一座圆弧形拱桥ACB ,桥下面水面宽度AB 为7.2米,桥的最高处点C 离水面的高度2.4米.现在有一艘宽3米,船舱顶部为方形并高出水面2米的货船要经过这里,问:这艘船是否能够通过这座拱桥?说明理由.图3BA AB A M E A B G H F图5 图6学生活动:学生根据实际问题,首先分析题意,然后采取一定的策略来说明能否通过这座拱桥,这时要采取一定的比较量,才能说明能否通过,比如,计算一下在上述条件下,在宽度为3米的情况下的高度与2米作比较,若大于2米说明不能经过,否则就可以经过这座拱桥.〔解答〕如图6,连接AO 、GO 、CO ,由于弧的最高点C 是弧AB 的中点,所以得到 OC ⊥AB ,OC ⊥G F ,根据勾股定理容易计算OE =1.5米,OM =3.6米.所以ME =2.1米,因此可以通过这座拱桥.2.银川市某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图7所示,污水水面宽度为60 cm ,水面至管道顶部距离为10 cm ,问修理人员应准备内径多大的管道?图7 图8师生活动设计:让学生在探究过程中,进一步把实际问题转化为数学问题,掌握通过作辅助线构造垂径定理的基本结构图,进而发展学生的思维.〔解答〕如图8所示,连接OA ,过O 作OE ⊥AB ,垂足为E ,交圆于F ,则AE =21AB = 30 cm .令⊙O 的半径为R , 则OA =R ,OE =OF -EF =R -10.在R t △AEO 中,OA 2=AE 2+OE 2,即R 2=302+(R -10)2.解得R =50 cm .修理人员应准备内径为100 cm 的管道.四、归纳小结、布置作业1、小结:垂直于弦的直径的性质,圆对称性.2、作业:第88页练习,习题24.1 第1题,第8题,第9题.五、课后记:24.1.3 弧、弦、圆心角教学过程设计二、创设问题情境,激发学生兴趣,引出本节内容活动11.按下面的步骤做一做:(1)在两张透明纸上,作两个半径相等的⊙O和⊙O′,沿圆周分别将两圆剪下;(2)在⊙O和⊙O′上分别作相等的圆心角∠AOB和∠A′O′B′,如图1所示,圆心固定.注意:在画∠AOB与∠A′O′B′时,要使OB相对于OA的方向与O′B′相对于O′A′的方向一致,否则当OA与OA′重合时,OB与O′B′不能重合.图1(3)将其中的一个圆旋转一个角度.使得OA 与O ′A ′重合.通过上面的做一做,你能发现哪些等量关系?同学们互相交流一下,说一说你的理由. (课件:探究三量关系)师生活动设计:教师叙述步骤,同学们一起动手操作. 由已知条件可知∠AOB =∠A ′O ′B ′;由两圆的半径相等,可以得到∠OAB =∠OBA =∠O ′A ′B ′=∠O ′B ′A ′;由△AOB ≌△A ′O ′B ′,可得到AB =A ′B ′;由旋转法可知''AB A B =.在学生分析完毕后,教师指出在上述做一做的过程中发现,固定圆心,将其中一个圆旋转一个角度,使半径OA 与O ′A ′重合时,由于∠AOB =∠A ′O ′B ′.这样便得到半径OB 与O ′B ′重合.因为点A 和点A ′重合,点B 和点B ′重合,所以AB 和''A B 重合,弦AB 与弦A ′B ′重合,即''AB A B =,AB =A ′B ′.进一步引导学生语言归纳圆心角、弧、弦之间相等关系定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.2.根据对上述定理的理解,你能证明下列命题是正确的吗?(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等.师生活动设计: 本问题由学生在思考的基础上讨论解决,可以证明上述命题是真命题. 二、主体活动,巩固新知,进一步理解三量关系定理.活动2: 1. 如图2,在⊙O 中,AB AC =,∠ACB =60°, 求证:∠AOB =∠AOC =∠BOC .图2学生活动设计:学生独立思考,根据对三量定理的理解加以分析.由AB AC =,得到AB AC =,△ABC 是等腰三角形,由∠ACB =60°,得到△ABC 是等边三角形,AB =AC =BC ,所以得到∠AOB =∠AOC =∠BOC .教师活动设计:这个问题是对三量关系定理的简单应用,因此应当让学生独立解决,在必要时教师可以进行适当的启发和提醒,最后学生交流自己的做法.OB C〔证明〕∵AB AC∴AB=AC,△ABC是等腰三角形.又∠ACB=60°,∴△ABC是等边三角形,AB=BC=CA.∴∠AOB=∠AOC=∠BOC.图 3 图42.如图3,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且BC=CD=DA,求∠BOD的度数.三、拓展创新、应用提高,培养学生的应用意识和创新能力活动3:定理“在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等”中,可否把条件“在同圆或等圆中”去掉?为什么?如图4所示,虽然∠AOB=∠A′O′B′,但AB≠A′B′,弧AB≠弧A′B′.教师进一步引导学生用同样的思路考虑命题:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等中的条件“在同圆和等圆中”是否能够去掉.四、归纳小结、布置作业活动4:小结:弦、圆心角、弧三量关系.作业:课本第90页练习2.习题24.1 第2、3题,第10题.五、课后记:24.1.4 圆周角教学任务分析教学目标知识技能1.了解圆周角与圆心角的关系.2.探索圆周角的性质和直径所对圆周角的特征.3.能运用圆周角的性质解决问题.数学思考1.通过观察、比较,分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.2.通过观察图形,提高学生的识图能力.3.通过引导学生添加合理的辅助线,培养学生的创造力.解决问题学生在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想、转化的数学思想解决问题.情感态度引导学生对图形的观察发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.重点探索圆周角与圆心角的关系,发现圆周角的性质和直径所对圆周角的特征.难点发现并论证圆周角定理.教学教程:一、创设情境:[活动1 ] 演示课件或图片:问题1如图:同学甲站在圆心O的位置,同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角(AOB∠和ACB∠)有什么关系?问题2如果同学丙、丁分别站在其他靠墙的位置D和E,他们的视角(ADB∠和AEB∠)和同学乙的视角相同吗?教师演示课件或图片:展示一个圆柱形的海洋馆.教师解释:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗AB观看窗内的海洋动物.教师出示海洋馆的横截面示意图,提出问题.教师结合示意图,给出圆周角的定义.利用几何画板演示,让学生辨析圆周角,并引导学生将问题1、问题2中的实际问题转化成数学问题:即研究同弧(AB)所对的圆心角(AOB∠)与圆周角(ACB∠)、同弧所对的圆周角(ACB∠、ADB∠、AEB∠等)之间的大小关系.教师引导学生进行探究.二、自主探索:[活动2]:问题1同弧(弧AB)所对的圆心角∠AOB与圆周角∠ACB的大小关系是怎样的?问题2,同弧(弧AB)所对的圆周角∠ACB与圆周角∠ADB的大小关系是怎样的?B O A CDE O B A C教师提出问题,引导学生利用度量工具(量角器或几何画板)动手实验,进行度量,发现结论.由学生总结发现的规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.教师利用几何画板课件“圆周角定理”,从动态的角度进行演示,验证学生的发现.教师可从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的关系有无变化.1.拖动圆周角的顶点使其在圆周上运动;2.改变圆心角的度数;3.改变圆的半径大小.三、合作探究:[活动3]问题1,在圆上任取一个圆周角,观察圆心与圆周角的位置关系有几种情况? (课件:折痕与圆周角的关系)教师引导学生,采取小组合作的学习方式,前后四人一组,分组讨论.问题2,当圆心在圆周角的一边上时,如何证明活动2中所发现的结论?教师巡视,请学生回答问题.回答不全面时,请其他同学给予补充.教师演示圆心与圆周角的三种位置关系.问题3,另外两种情况如何证明,可否转化成第一种情况呢?学生采取小组合作的学习方式进行探索发现,教师观察指导小组活动.启发并引导学生,通过添加辅助线,将问题进行转化.四、自主探索:[活动4]问题1:如图1.半圆(或直径)所对的圆周角是多少度?(课件:圆周角定理推论) A O BC 1C 2C 3图1 图2 图3问题2:90°的圆周角所对的弦是什么?问题3: 在半径不等的圆中,相等的两个圆周角所对的弧相等吗?问题4:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么? DO A C问题5:如图2,点A、B、C、D在同一个圆上,四边形ABCD的对角线把4个内角分成8个角,这些角中哪些是相等的角?问题6:如图3,⊙O的直径AB 为10 cm,弦AC 为6 cm,∠ACB的平分线交⊙O 于D,求BC、AD、BD的长.五、小结与作业:小结:问题通过本节课的学习你有哪些收获?作业:教科书94页习题24.1第2、3、4、5题.六、课后记:24.2.1点与圆的位置关系图1 A D C B A D C B A D C B 一、问题情境爱好运动的小华、小强、小兵三人相邀搞一次掷飞镖比赛。

人教版九年级第二十四章《圆》整章教案

人教版九年级第二十四章《圆》整章教案

24.1.1 圆教学目标知识技能探索圆的两种定义,理解并掌握弧、弦、优弧、劣弧、半圆等基本概念,能够从图形中识别.数学思考体会圆的不同定义方法,感受圆和实际生活的联系.解决问题培养学生把实际问题转化为数学问题的能力.情感态度在解决问题过程中使学生体会数学知识在生活中的普遍性.重点圆的两种定义的探索,能够解释一些生活问题.难点圆的运动式定义方法【教学过程】一、创设问题情境,激发学生兴趣,引出本节内容活动1:如图1,观察下列图形,从中找出共同特点.图1学生活动设计:学生观察图形,发现图中都有圆,然后回答问题,此时学生可以再举出一些生活中类似的图形.教师活动设计:让学生观察图形,感受圆和实际生活的密切联系,同时激发学生的学习渴望以及探究热情.二、问题引申,探究圆的定义,培养学生的探究精神活动2:如图2,观察下列画圆的过程,你能由此说出圆的形成过程吗?(课件:画圆)图2学生活动设计:学生小组合作、分组讨论,通过动画演示,发现在一个平面内一条线段OA绕它的一个端点O旋转一周,另一个端点形成的图形就是圆.教师活动设计:在学生归纳的基础上,引导学生对圆的一些基本概念作一界定:圆:在一个平面内,一条线段OA绕它的一个端点O旋转一周,另一个端点A所形成的图形叫作圆;圆心:固定的端点叫作圆心;半径:线段OA的长度叫作这个圆的半径.圆的表示方法:以点O为圆心的圆,记作“⊙O”,读作“圆O”.图3同时从圆的定义中归纳:(1)圆上各点到定点(圆心)的距离都等于定长(半径);(2)到定点的距离等于定长的点都在同一个圆上.于是得到圆的第二定义:所有到定点的距离等于定长的点组成的图形叫作圆.活动3:讨论圆中相关元素的定义.如图3,你能说出弦、直径、弧、半圆的定义吗?学生活动设计:学生小组讨论,讨论结束后派一名代表发言进行交流,在交流中逐步完善自己的结果.教师活动设计:在学生交流的基础上得出上述概念的严格定义,对于学生的不准确的叙述,可以让学生讨论解决.弦:连接圆上任意两点的线段叫作弦;直径:经过圆心的弦叫作直径;弧:圆上任意两点间的部分叫作圆弧,简称弧;AB弧的表示方法:以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”;半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫作半圆.优弧:大于半圆的弧叫作优弧,用三个字母表示,如图3中的ABC;劣弧:小于半圆的弧叫作劣弧,如图3中的BC.活动4:讨论,车轮为什么做成圆形?如果做成正方形会有什么结果?学生活动设计:学生首先根据对圆的概念的理解独立思考,然后进行分组讨论,最后进行交流.教师活动设计:引导学生进行如下分析:如图4,把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳;如果做成其他图形,比如正方形,正方形的中心(对角线的交点)距离地面的距离随着正方形的滚动而改变,因此中心到地面的距离就不是保持不变,因此不稳定.图4 图5三、应用提高,培养学生的应用意识和创新能力活动5:如何在操场上画一个半径是5 m的圆?说出你的理由师生活动设计:教师鼓励学生独立思考,让学生表述自己的方法.根据圆的定义可以知道,圆是一条线段绕一个端点旋转一周,另一个端点形成的图形,所以可以用一条长5m的绳子,将绳子的一端A固定,然后拉紧绳子的另一端B,并绕A在地上转一圈.B所经过的路径就是所要的圆.活动6:从树木的年轮,可以很清楚地看出树生长的年龄.如果一棵20年树龄的红杉树的树干直径是23 cm,这棵红杉树平均每年半径增加多少?师生活动设计:首先求出半径,然后除以20即可.〔解答〕树干的半径是23÷2=11.5(cm).平均每年半径增加11.5÷20=0.575(cm).四、归纳小结、布置作业1、小结:圆的两种定义以及相关概念.2、作业:请做一个正方形的车轮,体会在车轮滚动的过程中车身的情况.五、课后记:24.1.2 垂直于弦的直径教学过程一、创设问题情境,激发学生兴趣,引出本节内容活动1:用纸剪一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?(课件:探究圆的性质)学生活动设计:学生动手操作,观察操作结果,可以发现沿着圆的任意一条直径对折,直径两旁的部分能够完全重合,由此可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.教师活动设计:在学生归纳的过程中注意学生语言的准确性和简洁性.二、问题引申,探究垂直于弦的直径的性质,培养学生的探究精神活动2:按下面的步骤做一做:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;第二步,得到一条折痕CD;第三步,在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中点M是两条折痕的交点,即垂足;第四步,将纸打开,新的折痕与圆交于另一点B,如图1.图1 图2在上述的操作过程中,你发现了哪些相等的线段和相等的弧?为什么?学生活动设计:如图2所示,连接OA 、OB ,得到等腰△OAB ,即OA =OB .因CD ⊥AB ,故△OA M 与△OB M 都是直角三角形,又O M 为公共边,所以两个直角三角形全等,则A M =B M .又⊙O 关于直径CD 对称,所以A 点和B 点关于CD 对称,当圆沿着直径CD 对折时,点A 与点B 重合,AC 与BC 重合.因此AM =B M ,AC =BC ,同理得到AD BD =.在学生操作、分析、归纳的基础上,引导学生归纳垂直于弦的直径的性质:(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.活动3:如图3,AB 所在圆的圆心是点O ,过O 作OC⊥AB 于点D ,若CD =4 m ,弦AB =16 m ,求此圆的半径.学生活动设计:学生观察图形,利用垂直于弦的直径的性质分析图形条件,发现若OC ⊥AB ,则有AD =BD ,且△ADO 是直角三角形,在直角三角形中可以利用勾股定理构造方程.教师活动设计:在学生解决问题的基础上引导学生进行归纳:弦长、半径、拱形高、弦心距(圆心到弦的距离)四个量中,只需要知道两个量,其余两个量就可以求出来.〔解答〕设圆的半径为R ,由条件得到OD =R -4,AD =8,在R t △ADO 中222AO OD AD =+,即222(4)8R R =-+.解得 R =10(m ).答:此圆的半径是10 m . 图4活动4:如图4,已知AB ,请你利用尺规作图的方法作出AB 的中点,说出你的作法.图3BA师生活动设计:根据基本尺规作图可以发现不能直接作出弧的中点,但是利用垂径定理只需要作出弧所对的弦的垂直平分线,垂直平分线与弧的交点就是弧的中点.〔解答〕1.连接AB ; 2.作AB 的中垂线,交 于点C ,点C 就是所求的点.三、拓展创新,培养学生思维的灵活性以及创新意识.活动5 解决下列问题1.如图5,某条河上有一座圆弧形拱桥ACB ,桥下面水面宽度AB 为7.2米,桥的最高处点C 离水面的高度2.4米.现在有一艘宽3米,船舱顶部为方形并高出水面2米的货船要经过这里,问:这艘船是否能够通过这座拱桥?说明理由.图5 图6学生活动:学生根据实际问题,首先分析题意,然后采取一定的策略来说明能否通过这座拱桥,这时要采取一定的比较量,才能说明能否通过,比如,计算一下在上述条件下,在宽度为3米的情况下的高度与2米作比较,若大于2米说明不能经过,否则就可以经过这座拱桥.〔解答〕如图6,连接AO 、GO 、CO ,由于弧的最高点C 是弧AB 的中点,所以得到 OC ⊥AB ,OC ⊥G F ,根据勾股定理容易计算OE =1.5米, ABABO A BOM=3.6米.所以ME=2.1米,因此可以通过这座拱桥.2.银川市某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图7所示,污水水面宽度为60 cm,水面至管道顶部距离为10 cm,问修理人员应准备内径多大的管道?图7 图8师生活动设计:让学生在探究过程中,进一步把实际问题转化为数学问题,掌握通过作辅助线构造垂径定理的基本结构图,进而发展学生的思维.〔解答〕如图8所示,连接OA,过O作OE⊥AB,垂足为E,交圆于F,1AB = 30 cm.令⊙O的半径为R,则AE=2则OA=R,OE=OF-EF=R-10.在R t△AEO中,OA2=AE2+OE2,即R2=302+(R-10)2.解得R =50 cm.修理人员应准备内径为100 cm的管道.四、归纳小结、布置作业1、小结:垂直于弦的直径的性质,圆对称性.2、作业:第88页练习,习题24.1 第1题,第8题,第9题.五、课后记:24.1.3 弧、弦、圆心角教学过程设计二、创设问题情境,激发学生兴趣,引出本节内容活动11.按下面的步骤做一做:(1)在两张透明纸上,作两个半径相等的⊙O和⊙O′,沿圆周分别将两圆剪下;(2)在⊙O和⊙O′上分别作相等的圆心角∠AOB和∠A′O′B′,如图1所示,圆心固定.注意:在画∠AOB与∠A′O′B′时,要使OB相对于OA的方向与O′B′相对于O′A′的方向一致,否则当OA与OA′重合时,OB与O′B′不能重合.图1(3)将其中的一个圆旋转一个角度.使得OA与O′A′重合.通过上面的做一做,你能发现哪些等量关系?同学们互相交流一下,说一说你的理由.(课件:探究三量关系)师生活动设计:教师叙述步骤,同学们一起动手操作.由已知条件可知∠AOB=∠A′O′B′;由两圆的半径相等,可以得到∠OAB=∠OBA=∠O′A′B′=∠O′B′A′;由△AOB≌△A′O′B′,可得到AB=A′B′;由旋转法可知''=.AB A B在学生分析完毕后,教师指出在上述做一做的过程中发现,固定圆心,将其中一个圆旋转一个角度,使半径OA与O′A′重合时,由于∠AOB=∠A′O′B′.这样便得到半径OB与O′B′重合.因为点A和点A′重合,点B和点B′重合,所以AB和''A B重合,弦AB与弦A′B′重合,即''AB A B=,AB=A′B′.进一步引导学生语言归纳圆心角、弧、弦之间相等关系定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等. 2.根据对上述定理的理解,你能证明下列命题是正确的吗?(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等; (2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等.师生活动设计:本问题由学生在思考的基础上讨论解决,可以证明上述命题是真命题. 二、主体活动,巩固新知,进一步理解三量关系定理.活动2:1.如图2,在⊙O 中,AB AC =,∠ACB =60°, 求证:∠AOB =∠AOC =∠BOC .图2学生活动设计:学生独立思考,根据对三量定理的理解加以分析.由AB AC =,得到AB AC =,△ABC 是等腰三角形,由∠ACB =60°,得到△ABC 是等边三角形,AB =AC =BC ,所以得到∠AOB =∠AOC =∠BOC .教师活动设计:这个问题是对三量关系定理的简单应用,因此应当让学生独立解决,在必要时教师可以进行适当的启发和提醒,最后学生交流自己的做法.〔证明〕∵ AB AC =∴ AB =AC ,△ABC 是等腰三角形. 又 ∠ACB =60°,∴ △ABC 是等边三角形,AB =BC =CA .OABC∴∠AOB=∠AOC=∠BOC.图3 图4 2.如图3,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且BC=CD=DA,求∠BOD 的度数.三、拓展创新、应用提高,培养学生的应用意识和创新能力活动3:定理“在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等”中,可否把条件“在同圆或等圆中”去掉?为什么?如图4所示,虽然∠AOB=∠A′O′B′,但AB≠A′B′,弧AB≠弧A′B′.教师进一步引导学生用同样的思路考虑命题:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等中的条件“在同圆和等圆中”是否能够去掉.四、归纳小结、布置作业活动4:小结:弦、圆心角、弧三量关系.作业:课本第90页练习2.习题24.1 第2、3题,第10题.五、课后记:24.1.4 圆周角教学任务分析标数学思考1.通过观察、比较,分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.2.通过观察图形,提高学生的识图能力.3.通过引导学生添加合理的辅助线,培养学生的创造力.解决问题学生在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想、转化的数学思想解决问题.情感态度引导学生对图形的观察发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.重点探索圆周角与圆心角的关系,发现圆周角的性质和直径所对圆周角的特征.难点发现并论证圆周角定理.教学教程:一、创设情境:[活动1 ] 演示课件或图片:问题1如图:同学甲站在圆心O的位置,同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角(AOB∠和ACB∠)有什么关系?问题2如果同学丙、丁分别站在其他靠墙的位置D和E,他们的视角(ADB∠和AEB∠)和同学乙的视角相同吗?教师演示课件或图片:展示一个圆柱形的海洋馆.教师解释:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗AB 观看窗内的海洋动物.教师出示海洋馆的横截面示意图,提出问题.教师结合示意图,给出圆周角的定义.利用几何画板演示,让学生辨析圆周角,并引导学生将问题1、问题2中的实际问题转化成数学问题:即研究同弧(AB )所对的圆心角(AOB ∠)与圆周角(ACB ∠)、同弧所对的圆周角(ACB ∠、ADB ∠、AEB ∠等)之间的大小关系.教师引导学生进行探究. 二、自主探索:[活动2]:问题1同弧(弧AB )所对的圆心角∠AOB 与圆周角∠ACB 的大小关系是怎样的?问题2,同弧(弧AB )所对的圆周角∠ACB 与圆周角∠ADB 的大小关系是怎样的?BOA C D E OBAC教师提出问题,引导学生利用度量工具(量角器或几何画板)动手实验,进行度量,发现结论.由学生总结发现的规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.教师利用几何画板课件“圆周角定理”,从动态的角度进行演示,验证学生的发现.教师可从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的关系有无变化.1.拖动圆周角的顶点使其在圆周上运动;2.改变圆心角的度数; 3.改变圆的半径大小.三、合作探究: [活动3]问题1,在圆上任取一个圆周角,观察圆心与圆周角的位置关系有几种情况? (课件:折痕与圆周角的关系)教师引导学生,采取小组合作的学习方式,前后四人一组,分组讨论.问题2,当圆心在圆周角的一边上时,如何证明活动2中所发现的结论? 教师巡视,请学生回答问题.回答不全面时,请其他同学给予补充. 教师演示圆心与圆周角的三种位置关系.问题3,另外两种情况如何证明,可否转化成第一种情况呢?学生采取小组合作的学习方式进行探索发现,教师观察指导小组活动.启发并引导学生,通过添加辅助线,将问题进行转化.四、自主探索:[活动4]问题1:如图1.半圆(或直径)所对的圆周角是多少度?(课件:圆周角定理推论)AOBC 1C 2C 3图1 图2 图3问题2:90°的圆周角所对的弦是什么?问题3: 在半径不等的圆中,相等的两个圆周角所对的弧相等吗?DOAC问题4:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?问题5:如图2,点A、B、C、D在同一个圆上,四边形ABCD的对角线把4个内角分成8个角,这些角中哪些是相等的角?问题6:如图3,⊙O的直径AB 为10 cm,弦AC 为6 cm,∠ACB的平分线交⊙O 于D,求BC、AD、BD的长.五、小结与作业:小结:问题通过本节课的学习你有哪些收获?作业:教科书94页习题24.1第2、3、4、5题.六、课后记:图124.2.1点与圆的位置关系一、问题情境爱好运动的小华、小强、小兵三人相邀搞一次掷飞镖比赛。

人教版九年级数学上册第二十四章:圆(教案)

人教版九年级数学上册第二十四章:圆(教案)
-圆的方程:熟练掌握圆的标准方程((x-a)² + (y-b)² = r²)和一般方程(x² + y² + Dx + Ey + F = 0),并能够根据给定条件正确写出圆的方程。
-圆与直线、圆与圆的位置关系:识别并理解相离、外切、相交、内切、内含五种位置关系,以及对应的几何特征和计算方法。
-实际应用题:运用圆的相关知识解决实际问题,如计算弓形面积、弧长和扇形面积等。
-弓形面积和弧长的计算:这部分涉及到圆的扇形和弓形的相关计算,学生需要理解并掌握相应的计算公式。
-解决实际应用题:将圆的知识应用于解决综合性问题,如涉及多个圆或圆与其他几何图形的组合问题。
举例:在讲解圆与圆的位置关系时,难点在于如何通过比较两圆半径之和与圆心距离的大小来判断它们的位置关系。教师需要通过图示和具体例子来帮助学生理解和记忆这个判定方法。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调圆的基本性质和圆的方程这两个重点。对于难点部分,如圆的一般方程推导,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆相关的实际问题,如圆的面积和周长的计算。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用绳子画圆,演示圆的基本原理。

2024年人教版九年级数学上册教案及教学反思全册第24章 圆(教案)24.1.2 垂直于弦的直径教案

2024年人教版九年级数学上册教案及教学反思全册第24章 圆(教案)24.1.2 垂直于弦的直径教案

24.1 圆的有关性质24.1.2 垂直于弦的直径一、教学目标【知识与技能】1.通过观察实验,使学生理解圆的轴对称性.2.掌握垂径定理及其推论.理解其证明,并会用它解决有关的证明与计算问题.【过程与方法】通过探索垂径定理及其推论的过程,进一步体会和理解研究几何图形的各种方法.【情感态度与价值观】1.结合本课特点,向学生进行爱国主义教育和美育渗透.2.激发学生探究、发现数学问题的兴趣和欲望.二、课型新授课三、课时1课时。

四、教学重难点【教学重点】垂径定理及其推论,会运用垂径定理等结论解决一些有关证明,计算和作图问题.【教学难点】垂径定理及其推论.五、课前准备课件、图片、直尺等.六、教学过程(一)导入新课你知道赵州桥吗?它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37m,拱高(弧的中点到弦的距离)为7.23m,你能求出赵州桥主桥拱的半径吗?(出示课件2)(二)探索新知探究一圆的轴对称性教师问:把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?(出示课件4)学生通过自己动手操作,归纳出结论:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.出示课件5:教师问:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?学生答:圆是轴对称图形,任意一条直径所在直线都是圆的对称轴.思考:如何来证明圆是轴对称图形呢?出示课件6:已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.教师问:此图是轴对称图形吗?学生答:是轴对称图形.教师问:满足什么条件才能证明圆是轴对称图形呢?师生共同解答如下:(出示课件7)证明:连结OA、OB.则OA=OB.又∵CD⊥AB,∴直径CD所在的直线是AB的垂直平分线.∴对于圆上任意一点,在圆上都有关于直线CD的对称点,即⊙O关于直线CD对称.师生进一步认知:圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.探究二垂径定理及其推论出示课件8:如图,AB是⊙O的一条弦, 直径CD⊥AB, 垂足为E.你能发现图中有哪些相等的线段和劣弧?为什么?学生独立思考后口答:线段:AE=BE弧:AC⌒=BC⌒,AD⌒=BD⌒学生简述理由:把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A 与点B重合,AE与BE重合,重合.教师总结归纳:(出示课件9)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推导格式:∵CD是直径,CD⊥AB,∴AE=BE, AC⌒=BC⌒,AD⌒=BD⌒教师强调:垂径定理是圆中一个重要的定理,三种语言要相互转化,形成整体,才能运用自如.想一想:下列图形是否具备垂径定理的条件?如果不是,请说明为什么?(出示课件10)学生独立思考后口答:1图是;2图不是,因为没有垂直;3图是;4图不是,因为CD没有过圆心.教师强调:垂径定理的几个基本图形:(出示课件11)出示课件12:如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换一条,命题是真命题吗?①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.上述五个条件中的任何两个条件都可以推出其他三个结论吗?学生思考后教师总结:深化认知:(出示课件13)如图,①CD是直径;②CD⊥AB,垂足为E;③AE=BE;④AC⌒=BC⌒;⑤AD⌒=BD⌒.举例证明其中一种组合方法.学生思考后独立解决,并加以交流,教师加以指导,并举例.(出示课件14)如图,AB是⊙O的一条弦,作直径CD,使AE=BE.(1)CD⊥AB吗?为什么?⑵AC⌒与BC⌒相等吗?AD⌒与BD⌒相等吗?为什么?证明:⑴连接AO,BO,则AO=BO,又AE=BE,OE=OE∴△AOE≌△BOE(SSS),∴∠AEO=∠BEO=90°,∴CD⊥AB.(2)由垂径定理可得AC⌒=BC⌒,AD⌒=BD⌒教师归纳总结:(出示课件15)垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.思考:“不是直径”这个条件能去掉吗?如不能,请举出反例.教师强调:圆的两条直径是互相平分的.出示课件16:例1 如图,OE⊥AB于E,若⊙O的半径为10cm,OE=6cm,则AB=cm.学生思考后师生共同解答:连接OA,∵OE⊥AB,巩固练习:(出示课件17)如图,⊙O的弦AB=8cm,直径CE⊥AB于D,DC=2cm,求半径OC的长.学生自主思考后,独立解答如下:解:连接OA,∵CE⊥AB于D,,∴设OC=xcm,则OD=x-2,根据勾股定理,得x2=42+(x-2)2,∴22221068AE OA OE=-=-=cm.1184(cm)22AD AB==⨯=解得x=5,即半径OC的长为5cm.出示课件18:例2 已知:⊙O中弦AB∥CD,求证:学生思考后师生共同解答.证明:作直径MN⊥AB.∵AB∥CD,∴MN⊥CD.则(垂直于弦的直径平分弦所对的弧)教师强调:平行弦夹的弧相等.师生共同归纳总结:(出示课件19)解决有关弦的问题,经常是过圆心作弦的弦心距(垂线段),或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件.巩固练习:(出示课件20)如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证: 四边形ADOE是正方形.学生独立解答,一生板演.证明:∵OE⊥AC,OD⊥AB,AB⊥AC,∴∠OEA=∠EAD=∠ODA=90°.∴四边形ADOE为矩形,AE=12AC,AD=12AB.又∵AC=AB,∴AE=AD.∴四边形ADOE为正方形.出示课件21:例3 根据刚刚所学,你能利用垂径定理求出导入中赵州桥主桥拱半径的问题吗?教师引导学生分析题意,先把实际问题转化为数学问题,然后画出图形进行解答.解:如图,用AB表示主桥拱,设AB所在圆的圆心为O,半径为R.经过圆心O作弦AB的垂线OC垂足为D,与弧AB交于点C,则D是AB的中点,C 是弧AB的中点,CD就是拱高.∴AB=37m,CD=7.23m.AB=18.5m,OD=OC-CD=R-7.23.∴AD=12OA2=AD2+OD2,R2=18.52+(R-7.23)2,解得R≈27.3.即主桥拱半径约为27.3m.巩固练习:(出示课件23)如图a、b,一弓形弦长为cm,弓形所在的圆的半径为7cm,则弓形的高为_______.学生独立思考后解答:如图,分两种情况,弓形的高为5cm或12cm.教师归纳:1.涉及垂径定理时辅助线的添加方法(出示课件24)在圆中有关弦长a,半径r, 弦心距d(圆心到弦的距离),弓形高h的计算题时,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.2.弓形中重要数量关系弦a,弦心距d,弓形高h,半径r之间有以下关系:⑴d+h=r;⑵2 222ar d⎛⎫=+ ⎪⎝⎭.(三)课堂练习(出示课件25-29)1.2.已知⊙O中,弦AB=8cm,圆心到AB的距离为3cm,则此圆的半径为.3.⊙O的直径AB=20cm, ∠BAC=30°则弦AC= .4.(分类讨论题)已知⊙O的半径为10cm,弦MN∥EF,且MN=12cm,EF=16cm,则弦MN和EF之间的距离为.5.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点.你认为AC和BD有什么关系?为什么?6.如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OE⊥CD,垂足为F,EF=90m.求这段弯路的半径.参考答案:1.C2.5cm3.4.14cm或2cm5.证明:过O作OE⊥AB,垂足为E,则AE=BE,CE=DE.∴AE-CE=BE-DE.即AC=BD.6.解:连接OC.设这段弯路的半径为Rm,则OF=(R-90)m.,OE CD ⊥11600300(m)22CF CD ∴==⨯=,根据勾股定理,得222,OC CF OF =+ ()22230090.R R =+- 解得R=545.∴这段弯路的半径约为545m.(四)课堂小结通过这节课的学习,你有哪些收获和体会?(五)课前预习预习下节课(24.1.3)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.这节课的教学从利用垂径定理来解决赵州桥桥拱半径问题开始,引入课题从实验入手,得到圆的轴对称性,进而推出垂径定理及推论.教学设计中,从具体、简单、特殊到抽象、复杂、一般,层层递进,以利于提高学生的数学思维能力,同时,注意加强对学生的启发和引导,培养学生们大胆猜想,小心求证的科学研究素质.2.本课的教学方法是将垂径定理和勾股定理有机结合,将圆的问题转化为直角三角形,常作的辅助线是半径或垂直于弦的直径.。

九年级上册数学圆集体备课教案

九年级上册数学圆集体备课教案

九年级上册数学第五章《圆》集体备课教案课题 5.1圆(一) 教学目标 1、理解、掌握圆的定义. 2、经历探索点与圆的位置关系的过程,以及如何确定点和圆的三种位置关系.3、初步渗透数形结合和转化的数学思想,并逐步学会用数学的眼光和运动、集合的观点去认识世界、解决问题. 教学重难点重点:理解、掌握圆的概念. 难点:会确定点和圆的位置关系. 教具多媒体教材相关资料教法合作探究启发引导一次备课集体备课【教学过程】一、情境引入:思考:平面上的一个圆把平面上的点分成哪几部分?二、探究学习: 1.尝试:量一量(1)利用圆规画一个⊙O,使⊙O的半径r=3cm.(2)在平面内任意取一点P,点与圆有哪几种位置关系?若⊙O的半径为r,点P到圆心O的距离为d,那么:①点P在圆d r ②点P 在圆d r ③点P在圆 d2.概括总结.(1)圆是到定点距离定长的点的集合. (2)圆的内部是到的点的集合;(3)圆的外部是的点的集合。

3.典型例题:例1、已知点P、Q,且PQ=4cm,⑴画出下列图形:到点P的距离等于2cm的点的集合;到点Q的距离等于3cm的点的集合。

⑵在所画图中,到点P的距离等于2cm,且到点Q的距离等于3cm的点有几个?请在图中将它们表示出来。

⑶在所画图中,到点P的距离小于或等于2cm,且到点Q的距离大于或等于3cm的点的集合是怎样的图形?把它画出来。

例2.如图,在直角三角形ABCD中,角C为直角,AC=4,BC=3,E,F分别为AB,AC的中点。

以B为圆心,BC为半径画圆,试判断点A,C,E,F与圆B的位置关系。

4.巩固练习(1)⊙O的半径10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C与⊙O的位置关系是:点A在;点B在;点C在。

(2)⊙O的半径6cm,当OP=6时,点A在;当OP 时点P在圆内;当OP 时,点P不在圆外。

(3)正方形ABCD的边长为2cm,以A为圆心2cm为半径作⊙A,则点B在⊙A ;点C在⊙A ;点D在⊙A 。

九年级数学第三章《圆》教案

九年级数学第三章《圆》教案

第三章圆1.车轮为什么做成圆形一、学生知识状况分析学生的知识技能基础:学生在小学已认识过圆这种几何图形、画图、圆的周长、面积的公式;学生已通过折纸,对称、平移、旋转等方式认识圆的有关性质,积累了对圆的一些认识,具备了画圆和计算机周长、面积的基本技能,了解了圆是轴对称圆形和中心对称圆形等基础知识。

学生活动经验基础:在相关知识的学习过程中,学生运用圆的周长、面积公式,解决了一些简单的现实问题,感受到公式的如何运用,获得了数学知识在日常的重要性,同时,在以前的数学学习中经历了探索交流的学习过程,具有一定的经验和能力。

二、教学任务分析《车轮为什么做成圆形》这一节,主要是让学生通过实例来归纳出圆的定义,虽然小学阶段学生已经对圆的有关知识有所了解,但还没有抽象出“平面上到定点的距离等于定长的所有点组成的图形叫做圆”的概念。

本节主要是通过一些日常生活原例子,使学生体会圆的概念的形成过程,同时也应力圆在学习中逐步达成学生的有关情感态度目标。

为此,本节课的教学目标是:知识与技能1.圆的相关概念;2.点与圆的位置关系.过程与方法1.经历形成圆的概念的过程,经历探索点和圆位置关系的过程。

2.理解圆的概念,理解点和圆的位置关系,并能根据条件画出符合条件的点或图形,初步形成集合的现念。

情感态度与价值观1.让学生在经历圆的概念的形成过程中,通过探索与交流,进一步发展学生探索交流的能力和数学表达能力。

2.在学习中体会圆的实际应用,感受数学与现实生活的密切联系,增强学生的数学应用意识,初步培养学生的定义理论,为依据分析问题、解决问题的良好习惯。

三、教学过程分析本节课设计了六个教学环节:情境引入、探讨研究、练习理解、链接生活、课堂小结、布置作业。

第一环节:情境引入(实际生活原感受,概括定义)活动内容:录用一幅大会的开幕词,展示几种车子的图形,留心观察,车轮的形状,以及一幅游戏的画面,这几幅图从不同的角度去选用,从离自己较远的方面到涉及到自己有关的方面,逐渐引入。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十四章圆时间:2015-11-7地点:数学教研组包组领导:吕志成主备:樊堃成员:夏维库赵勇焦文正黄蓉王娅莉第二十四章圆圆的有关性质第一课时圆教学目标【知识与能力】了解圆的有关概念.【过程与方法】从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴【情感态度与价值观】培养通过动手实践发现问题的能力.渗透“观察→分析→归纳→概括”的数学思想方法.教学重难点以点的集合定义圆所具备的两个条件.观察车轮,你发现了什么观察观察画圆的过程,你能由此说出圆的形成过程吗·知识要点动态定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆(circle).如何在操场上画一个半径是5m的圆首先确定圆心,然后用5米长的绳子一端固定为圆心端,另一端系在一端尖木棒,木棒以5米长尖端划动一周,所形成的图形就是所画的圆圆心、半径固定的端点O叫做圆心(center of acircle).线段OA叫做半径(radius),一般用r表示.以点O为圆心的圆,记作“⊙O”,读作“圆O”同圆内,半径有无数条,长度都相等.确定一个圆的要素是什么一是圆心,圆心确定其位置,二是半径,半径确定其大小.圆的特点(1)图上各点到定点(圆心O)的距离都等于定长(半径r ).(2)到定点的距离等于定长的点都在同一个圆上.圆的新定义,静态定义圆心为O,半径为r的圆是所有到定点O的距离等于定长 r 的点的集合.车轮为什么圆的,而不是椭圆或其他图形把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此,当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳,这也是车轮都做成圆形的数学道理弦、直径连接圆上任意两点的线段叫做弦.经过圆心的弦叫做直径圆弧(弧)圆上任意两点间的部分叫做圆弧,简称弧.(大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.)小练习请用正确的方式表示出以点A为端点的优弧及劣弧.课堂小结1.圆动态定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆静态定义圆心为O,半径为r的圆是所有到定点O的距离等于定长r的点的集合.2.圆心、半径固定的端点O叫做圆心.线段OA叫做半径,一般用r表示.以点O为圆心的圆,记作“⊙O”,读作“圆O”3.圆的特点(1)图上各点到定点(圆心O)的距离都等于定长(半径 r).(2)到定点的距离等于定长的点都在同一个圆上.4.弦、直径连接圆上任意两点的线段叫做弦经过圆心的弦叫做直径.5.圆弧(弧)圆上任意两点间的部分叫做圆弧,简称弧随堂练习1.填空:(1)根据圆的定义,“圆”指的是_______,而不是“圆面”.(2)圆心和半径是确定一个圆的两个必需条件,圆心决定圆的_______ ,半径决定圆的_______ ,二者缺一不可.(3)______是圆中最长的弦,它是______的2倍.(4)图中有_______条直径, _______条非直径的弦,圆中以A为一个端点的优弧有_______ 条,劣弧有_______ 条.2.判断下列说法的正误(1)弦是直径(2)半圆是弧;(3)过圆心的线段是直径;(4)过圆心的直线是直径(5)半圆是最长的弧(6)直径是最长的弦;(7)圆心相同,半径相等的两个圆是同心圆;(8)半径相等的两个圆是等圆教后反思:第二课时垂直于弦的直径教学目标【知识与能力】理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题【过程与方法】通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解【情感态度与价值观】培养通过动手实践发现问题的能力.渗透“观察→分析→归纳→概括”的数学思想方法教学重难点垂径定理及其运用思考圆是否是轴对称图形,有哪些对称轴任何一条直径所在的直线都是它的对称轴.已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.上图是轴对称图形吗已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.求证:AE=BE,AC=BC,AD=BD.知识要点垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧垂径定理三角形d + h = r在a,d,r,h中,已知其中任意两个量,可以求出其它两个量实际问题赵州桥主桥拱的半径是多少你知道赵州桥吗它是1300多年前我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.,拱高(弧的中点到弦的距离)为.垂径定理的推论课堂小结1.圆是轴对称图形任何一条直径所在的直线都是它的对称轴2.垂径定理垂直于弦的直径平分弦,并且平分弦所对的两条弧.3.垂径定理的推论略4.解决有关弦的问题经常是过圆心作弦的垂线,或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件.随堂练习1.判断:(1)垂直于弦的直线平分这条弦,并且平分弦所对的两弧.(2)平分弦所对的一条弧的直径一定平分这条弦所对的另一弧.(3)经过弦的中点的直径一定垂直于弦.(4)圆的两条弦所夹的弧相等,则这两条弦平行(5)弦的垂直平分线一定平分这条弦所对的弧.2.在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.3.在直径是20cm的⊙O中,角AOB 的度数是60°,那么弦AB的弦心距是4.弓形的弦长为6cm,弓形的高为2cm,则这弓形所在的圆的半径为教后反思:第三课时弧,弦,圆心角教学目标【知识与能力】理解弦、弧等概念.初步会运用这些概念判断真假命题.【过程与方法】逐步培养阅读教材、亲自动手实践,总结出新概念的能力.进一步提高观察、比较、分析、概括知识的能力【情感态度与价值观】培养通过动手实践发现问题的能力.渗透“观察→分析→归纳→概括”的数学思想方法.教学重难点对“等圆”、“等弧”的定义中的“互相重合”这一特征的理解.学生容易把长度相等的两条弧看成是等弧圆心角顶点在圆心的角弦心距圆心到弦的距离(即圆心到弦的垂线段的距离).探究在⊙O中,分别作相等的圆心角∠AOB和∠A′OB′,将∠AOB旋转一定角度,使OA和O′A′重合.知识要点弧、弦、圆心角的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等弧、弦、圆心角关系定理的推论1.在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦相等,所对的弦的弦心距相等.2在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧相等,所对的弦的弦心距相等.3在同圆或等圆中,相等的弦心距所对的圆心角相等,所对的弧相等,所对的弦相等(在同圆或等圆中,有一组关系相等,那么所对应的其它各组关系均分别相等)课堂小结1.圆心角顶点在圆心的角2.弦心距圆心到弦的距离(即圆心到弦的垂线段的距离).3.弧、弦、圆心角的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等随堂练习1. AB、CD是⊙O的两条弦.(1)如果AB=CD,那么___________,_________________.(2)如果,那么____________,_____________.(3)如果∠AOB=∠COD,那么_____________,_________.(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗为什么教后反思:第四课时圆周角教学目标【知识与能力】理解圆周角的概念.掌握圆周角的两个特征、定理的内容及简单应用.【过程与方法】继续培养学生观察、分析、想象、归纳和逻辑推理的能力.【情感态度与价值观】渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.教学重难点圆周角的概念和圆周角定理.圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想圆周角顶点在圆上,并且两边都和圆相交的角.圆中有多少个圆周角下列圆中的是圆周角吗知识要点圆周角定理①在同圆或等圆中,同弧或等弧所对的圆周角相等.你能画出几种同弧(等弧)所对的圆周角和圆心角根据这三种情况,我们分别探究圆周角与圆心角的关系知识要点圆周角定理②:圆周角等于这条弧所对的圆心角的一半.圆周角定理的推论半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.例题:⊙O直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC、AD、BD的长.思考:在同圆或等圆中,如果两个圆周角相等,它们所对弧___________因为,在同圆或等圆中,如果圆周角相等,那么它所对的圆心角也相等,所以它所对的弧也相等课堂小结1.圆周角顶点在圆上,并且两边都和圆相交的角2.圆周角定理在同圆(或等圆)中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半3.圆周角定理的推论半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.教后反思:教学目标:1.理解点与圆的位置关系由点到圆心的距离决定.2.理解不在同一条直线上的三个点确定一个圆.3.会画三角形的外接圆,熟识相关概念.4.经历探索点与圆的位置关系的过程,体会数学分类思考的数学思想.5.通过本节课的教学,渗透数形结合的思想和运动变化的观点的教育.教学重难点:用数量关系判定点和圆的位置关系.教学过程:一.导入新课:你玩过掷飞镖吗下图中A、B、C、D、E分别是落点,你认为哪个成绩最好你是怎么判断出来的二.讲授新课:探究:由位置判断距离:⊙O的半径为r,点A、B、C、D在圆上,则OA__OB __OC__OD = ___.点E在圆内,点F在圆外,则OE __r,OF __r.由距离判断位置:⊙O的半径为5,OA=7,OB=5,OC=2,则点A在圆____,点B在圆__,点C在圆___.知识要点:点和圆的位置关系点P在圆外 d > r点P在圆上 d = r点P在圆内 d < r思考:平面上的一个圆把平面上的点分成哪几部分(圆外的点,圆上的点,圆内的点)小练习:1.A站住教室中央,若要B与A的距离为3m,那么B应站在哪里有几个位置请通过画图来说明.2.A站住教室中央,若要求B与A距离等于3m,B与C距离2m,那么B应站在哪儿有几个位置3.现在要求B与A距离3m以外,B与C距离2m以外,那么B应站在哪儿有几个位置回顾:画圆的关键是什么(确定圆心;确定半径的大小)探究:1.过一点可以作几个圆2.过两点可以作几个圆3.过不在同一条直线上的三点可以作几个圆知识要点:过已知一点可作无数个圆.过已知两点也可作无数个圆.过不在同一条直线上的三点可以作一个圆,并且只能作一个圆.外接圆、外心:经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆.外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心.思考:不在同一直线上的三个点确定一个圆.为什么要这样强调经过同一直线的三点能作出一个圆吗证明:假设经过同一直线l 的三个点能作出一个圆,圆心为O.则O应在AB的垂直平分线l1上,l1⊥l且O在BC的垂直平分线上l2上,l2⊥l所以l1、l2同时垂直于l,这与“过一点有且只有一条直线垂直于已知直线”矛盾,所以经过同一直线的三点不能作圆.反证法:假设命题的结论不成立,由此经过推理得出矛盾,由矛盾判定所作假设不正确,从而得到原命题成立,这种方法叫做反证法.例如:命题:经过同一直线的三点不能作出一个圆.假设:经过同一直线的三点能作出一个圆.矛盾:过一点有两条直线垂直于已知直线.定理:过一点有且只有一条直线垂直于已知直线探究:分别画锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,各三角形与它的外心有什么位置关系归纳:锐角三角形的外心位于三角形内.直角三角形的外心位于直角三角形斜边中点.钝角三角形的外心位于三角形外.三.课堂小结:1.点和圆的位置关系;2.三点定圆;3.外接圆、内接三角形;4.外心;5.反证法;四.随堂练习:1.判断下列说法是否正确(1)任意的一个三角形一定有一个外接圆。

相关文档
最新文档