函数图像变换ppt课件
合集下载
函数y=Asin(ωx+φ)图像变换优质课课件
振动控制
在振动控制领域,函数y=asin(ωx+φ)可以用于设计振动控制器。通过调整控制器的参数, 可以实现振动的有效抑制或放大,提高机械设备的稳定性和可靠性。
振动信号处理
在振动信号处理中,函数y=asin(ωx+φ)可以用于信号的调制和解调。通过对信号进行变换, 可以实现信号的增强、降噪和特征提取,为故障诊断和状态监测提供依据。
控制系统稳定性分析
利用函数y=asin(ωx+φ)可以分析控制系统的稳定性。通过分析系统的极点和零点分布,可以判断系统的稳定性和动态性 能,为控制系统校正和优化提供指导。
控制系统校正与优化
在控制系统设计中,函数y=asin(ωx+φ)可以用于控制系统校正与优化。通过调整控制器的参数,可以提 高系统的性能指标,如响应速度、超调和稳态误差等,使系统更好地适应实际应用需求。
ω<0的周期变换
无界周期
当ω<0时,函数y=asin(ωx+φ)的周 期是无界的,这意味着函数在x轴上的 移动是无限循环的。
波形变化
随着ω的减小,函数的波形会变得更加 平缓或尖锐,这取决于绝对值的大小。
04 振幅变换
A>1的振幅变换
总结词
当振幅系数A大于1时,函数y=asin(ωx+φ)的图像将呈现放大 的效果。
φ=0的相位变换
总结词
当相位φ等于0时,函数图像不发生平移。
详细描述
当相位φ的值等于0时,函数y=asin(ωx+φ)就变成了标准正弦函数y=asin(ωx),图 像没有发生平移。这是因为此时函数的周期性没有改变,所以图像在x轴方向上没有 移动。
03 周期变换
ω>1的周期变换
周期缩短
在振动控制领域,函数y=asin(ωx+φ)可以用于设计振动控制器。通过调整控制器的参数, 可以实现振动的有效抑制或放大,提高机械设备的稳定性和可靠性。
振动信号处理
在振动信号处理中,函数y=asin(ωx+φ)可以用于信号的调制和解调。通过对信号进行变换, 可以实现信号的增强、降噪和特征提取,为故障诊断和状态监测提供依据。
控制系统稳定性分析
利用函数y=asin(ωx+φ)可以分析控制系统的稳定性。通过分析系统的极点和零点分布,可以判断系统的稳定性和动态性 能,为控制系统校正和优化提供指导。
控制系统校正与优化
在控制系统设计中,函数y=asin(ωx+φ)可以用于控制系统校正与优化。通过调整控制器的参数,可以提 高系统的性能指标,如响应速度、超调和稳态误差等,使系统更好地适应实际应用需求。
ω<0的周期变换
无界周期
当ω<0时,函数y=asin(ωx+φ)的周 期是无界的,这意味着函数在x轴上的 移动是无限循环的。
波形变化
随着ω的减小,函数的波形会变得更加 平缓或尖锐,这取决于绝对值的大小。
04 振幅变换
A>1的振幅变换
总结词
当振幅系数A大于1时,函数y=asin(ωx+φ)的图像将呈现放大 的效果。
φ=0的相位变换
总结词
当相位φ等于0时,函数图像不发生平移。
详细描述
当相位φ的值等于0时,函数y=asin(ωx+φ)就变成了标准正弦函数y=asin(ωx),图 像没有发生平移。这是因为此时函数的周期性没有改变,所以图像在x轴方向上没有 移动。
03 周期变换
ω>1的周期变换
周期缩短
函数图像的变换PPT
总结词
当函数图像在y轴方向上伸缩时,其形状和位置会发生变化,但对称性保持不变。
详细描述
沿y轴伸缩是指保持x轴不变,只改变y轴的长度。当y增大时,整个函数图像向上平移;当y减小时, 整个函数图像向下平移。这种变换不会改变函数的值,只是改变了图像在y轴上的位置。
同时沿x轴和y轴伸缩
总结词
当函数图像在x轴和y轴方向上都发生 伸缩时,其形状和位置会发生变化, 但对称性保持不变。
03
伸缩变换
沿x轴伸缩
总结词
当函数图像在x轴方向上伸缩时,其 形状和位置会发生变化,但对称性保 持不变。
详细描述
沿x轴伸缩是指保持y轴不变,只改变x 轴的长度。当x增大时,整个函数图像 向右平移;当x减小时,整个函数图像 向左平移。这种变换不会改变函数的 值,只是改变了图像在x轴上的位置。
沿y轴伸缩
详细描述
旋转角度的大小对函数图像的形状和位置有 直接影响。例如,当一个正弦函数图像顺时 针旋转90度时,它将变成一个余弦函数图像 ;而当它逆时针旋转90度时,它将变成一个 正切函数图像。此外,旋转角度也会影响图 像的位置,例如,当图像逆时针旋转30度时 ,图像上的所有点都会沿着顺时针方向移动
30度。
旋转变换实例
总结词
旋转变换是指函数图像绕原点旋转的过程。
详细描述
旋转变换可以通过将直角坐标转换为极坐标 来实现。例如,函数$y = f(x)$的图像绕原 点逆时针旋转$theta$角度后,新的函数可 以表示为$y = f(rcostheta), x = rsintheta$。
复合变换实例
总结词
复合变换是指同时进行平移、伸缩和旋转变换的过程 。
与顺时针旋转相反,如果函数图像按照逆时针方向旋转 ,那么图像上的每一个点都会沿着顺时针方向移动。例 如,如果一个函数图像是关于x轴对称的,那么当它逆时 针旋转90度时,原来的对称轴将变成垂直轴,而原来的y 轴将变成水平轴。
当函数图像在y轴方向上伸缩时,其形状和位置会发生变化,但对称性保持不变。
详细描述
沿y轴伸缩是指保持x轴不变,只改变y轴的长度。当y增大时,整个函数图像向上平移;当y减小时, 整个函数图像向下平移。这种变换不会改变函数的值,只是改变了图像在y轴上的位置。
同时沿x轴和y轴伸缩
总结词
当函数图像在x轴和y轴方向上都发生 伸缩时,其形状和位置会发生变化, 但对称性保持不变。
03
伸缩变换
沿x轴伸缩
总结词
当函数图像在x轴方向上伸缩时,其 形状和位置会发生变化,但对称性保 持不变。
详细描述
沿x轴伸缩是指保持y轴不变,只改变x 轴的长度。当x增大时,整个函数图像 向右平移;当x减小时,整个函数图像 向左平移。这种变换不会改变函数的 值,只是改变了图像在x轴上的位置。
沿y轴伸缩
详细描述
旋转角度的大小对函数图像的形状和位置有 直接影响。例如,当一个正弦函数图像顺时 针旋转90度时,它将变成一个余弦函数图像 ;而当它逆时针旋转90度时,它将变成一个 正切函数图像。此外,旋转角度也会影响图 像的位置,例如,当图像逆时针旋转30度时 ,图像上的所有点都会沿着顺时针方向移动
30度。
旋转变换实例
总结词
旋转变换是指函数图像绕原点旋转的过程。
详细描述
旋转变换可以通过将直角坐标转换为极坐标 来实现。例如,函数$y = f(x)$的图像绕原 点逆时针旋转$theta$角度后,新的函数可 以表示为$y = f(rcostheta), x = rsintheta$。
复合变换实例
总结词
复合变换是指同时进行平移、伸缩和旋转变换的过程 。
与顺时针旋转相反,如果函数图像按照逆时针方向旋转 ,那么图像上的每一个点都会沿着顺时针方向移动。例 如,如果一个函数图像是关于x轴对称的,那么当它逆时 针旋转90度时,原来的对称轴将变成垂直轴,而原来的y 轴将变成水平轴。
函数图像的变换课件
函数图像的变换
平移变换—水平平移
f(x+2)=(x+2)2
y
f(x)=x2
f(x-2)=(x-2)2
-2 O
2
x
平移变换—水平平移
小结: y=f(x) y=f(x+a) 当a>0时,向左平移 a个单位 当a<0时,向右平移 |a|个单位 规律:左加右减
沿x轴
平移变换—竖直平移 y
2 y=x
2、
y x2 4 x 3
y
0,3
4 y x2 4x 3 3 2 1
注意区分
y
y x2 4x 3
4 3 2
2,1 1,0
2
3,0
3 4
y f ( x )与 y f ( x) 的表
x
0,3
-4
-3 -2
-1
0 1 -1 -2 -3
现形式哦!
y f ( x)
关于x 轴对称
y f ( x)
关于直线 y=x对称
反函数
y f ( x)
关于原点对称
y f ( x)
y f ( x)
2、用图像变换法画函数图像时,往往要找出该函数的基本初等函数,分析其 通过怎样变换得到所求函数图像,有时要先对解析式进行适当变形。 3、利用函数的图像判定单调性、求方程根的个数、解不等式、求最值等,体现 了数形结合的数学思想。
-4
-3 -2
-1
2
3
4
1 y ( ) 2
0 1 2 1 ,1 2 -1 1,1 -2 1 ,2
2
3
4
x
x
y log2 1
平移变换—水平平移
f(x+2)=(x+2)2
y
f(x)=x2
f(x-2)=(x-2)2
-2 O
2
x
平移变换—水平平移
小结: y=f(x) y=f(x+a) 当a>0时,向左平移 a个单位 当a<0时,向右平移 |a|个单位 规律:左加右减
沿x轴
平移变换—竖直平移 y
2 y=x
2、
y x2 4 x 3
y
0,3
4 y x2 4x 3 3 2 1
注意区分
y
y x2 4x 3
4 3 2
2,1 1,0
2
3,0
3 4
y f ( x )与 y f ( x) 的表
x
0,3
-4
-3 -2
-1
0 1 -1 -2 -3
现形式哦!
y f ( x)
关于x 轴对称
y f ( x)
关于直线 y=x对称
反函数
y f ( x)
关于原点对称
y f ( x)
y f ( x)
2、用图像变换法画函数图像时,往往要找出该函数的基本初等函数,分析其 通过怎样变换得到所求函数图像,有时要先对解析式进行适当变形。 3、利用函数的图像判定单调性、求方程根的个数、解不等式、求最值等,体现 了数形结合的数学思想。
-4
-3 -2
-1
2
3
4
1 y ( ) 2
0 1 2 1 ,1 2 -1 1,1 -2 1 ,2
2
3
4
x
x
y log2 1
指数函数图像的变换(采用)ppt课件
x x ( 2 ) 当 x 0 时,总有 a b 1 ;
x x ( 3 ) 当 x 0 时,总有 0 a b 1 ;
以上时a>1时的情况,那0<a<1是什么样的呢? x x x 0 . 2,y 0 . 3 与 y 0 . 5 图像, 画出 y 并比较0<a<1 时a对函数图象变化的影响.
特别当x<0时,指数函数的底数越小,函数值减少越快 即0<a<1时,a越小,图像越 “陡”.
综上总结, ya中 ,指数 x 与底数 a 满足以下
x
即a>1时,a越大,图像越“陡”. 即0<a<1时,a越小,图像越 “陡”.
x x
同一 x 下,比较 y a与 y b的大小方法
x
x 正半轴(即 x 0 ),同一 x 下, a 越大, y a 的值
f( x m ) )与 y 推广:比较函数 y f (x 的关系
向左平行移动m个单位长度 y f ( x ) 当m>0时,
yf( x m )
) 向右平行移动|m|个单位长度 yf( x m ) 当m<0时, y fቤተ መጻሕፍቲ ባይዱ(x
作业:
P A 组第 3 题, B 组第 2 题 77
ya中 ,指数 x 与底数 a 满足以下规律
x
即a>1时,a越大,图像越“陡”. 即0<a<1时,a越小,图像越 “陡”.
x x
同一 x 下,比较 y a与 y b的大小方法
x
x 正半轴(即 x 0 ),同一 x 下, a 越大, y a 的值
x x 负半轴(即 x 0 ),同一 x 下, a 越大, y a 的值 .
x x ( 3 ) 当 x 0 时,总有 0 a b 1 ;
以上时a>1时的情况,那0<a<1是什么样的呢? x x x 0 . 2,y 0 . 3 与 y 0 . 5 图像, 画出 y 并比较0<a<1 时a对函数图象变化的影响.
特别当x<0时,指数函数的底数越小,函数值减少越快 即0<a<1时,a越小,图像越 “陡”.
综上总结, ya中 ,指数 x 与底数 a 满足以下
x
即a>1时,a越大,图像越“陡”. 即0<a<1时,a越小,图像越 “陡”.
x x
同一 x 下,比较 y a与 y b的大小方法
x
x 正半轴(即 x 0 ),同一 x 下, a 越大, y a 的值
f( x m ) )与 y 推广:比较函数 y f (x 的关系
向左平行移动m个单位长度 y f ( x ) 当m>0时,
yf( x m )
) 向右平行移动|m|个单位长度 yf( x m ) 当m<0时, y fቤተ መጻሕፍቲ ባይዱ(x
作业:
P A 组第 3 题, B 组第 2 题 77
ya中 ,指数 x 与底数 a 满足以下规律
x
即a>1时,a越大,图像越“陡”. 即0<a<1时,a越小,图像越 “陡”.
x x
同一 x 下,比较 y a与 y b的大小方法
x
x 正半轴(即 x 0 ),同一 x 下, a 越大, y a 的值
x x 负半轴(即 x 0 ),同一 x 下, a 越大, y a 的值 .
函数图像ppt课件
03
描点法
根据函数表达式,在坐标 系中逐个描出对应的点(x, y),然后用平滑的曲线将 这些点连接起来。
计算法
利用数学软件或计算器, 输入函数表达式,自动生 成函数图像。
表格法
根据函数表达式和已知数 据,制作表格,然后在坐 标系中根据表格数据绘制 出函数图像。
函数图像的观察与分析
观察图像形状
通过观察函数的图像,可以初 步判断函数的类型(如一次函 数、二次函数、三角函数等)
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
06
复合函数的图像
复合函数的定义与性质
总结词
理解复合函数的定义与性质是绘制和分 析其图像的基础。
VS
详细描述
复合函数是由两个或多个函数的组合而成 的函数。它具有一些特殊的性质,如复合 函数的导数、极限等。了解这些性质有助 于更好地绘制和分析复合函数的图像。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
二次函数的图像
二次函数的定义与性质
总结词
二次函数的定义、性质和 表达式
二次函数的定义
二次函数是指形式为 y=ax^2+bx+c(其中a、 b、c为常数,且a≠0)的 函数。
二次函数的性质
二次函数具有开口方向、 顶点、对称轴等性质,这 些性质决定了函数图像的 形状和位置。
复合函数图像的绘制
总结词
掌握绘制复合函数图像的方法是理解其性质 和应用的必要手段。
详细描述
绘制复合函数图像需要使用数学软件或绘图 工具,如Matlab、GeoGebra等。在绘制 过程中,需要注意函数的定义域、值域以及 函数的单调性、奇偶性等性质。
函数图像专题PPT课件图文
答案 B
2.(2011·福州质检)函数y=log2|x|的图象大致是( ) 答案 C 解析 函数y=log2|x|为偶函数,作出x>0时y=log2x的图象,图象关于y轴对称,应选C.
答案 A
4.(08·山东)设函数f(x)=|x+1|+|x-a|的图象关于直线x=1对称,则a的值为( ) A.3 B.2 C.1 D.-1 答案 A 解析 ∵函数f(x)图象关于直线x=1对称,∴f(1+x)=f(1-x),∴f(2)=f(0).即3+|2-a|=1+|a|,用代入法知选A.
思考题1 将函数y=lg(x+1)的图象沿x轴对折,再向右平移一个单位,所得图象的解析式为________. 【答案】 y=-lgx
题型二 知式选图或知图选式问题 例2 (2011·合肥模拟)函数f(x)=loga|x|+1(0<a<1)的图象大致为( )
【解析】 首先分析奇偶性,知函数为偶函)=1,∴选A.
1.函数图象的三种变换 (1)平移变换:y=f(x)的图象向左平移a(a>0)个单位,得到y=f(x+a)的图象;y=f(x-b)(b>0)的图象可由y=f(x)的图象向右平移b个单位而得到;y=f(x)的图象向下平移b(b>0)个单位,得到y=f(x)-b的图象;y=f(x)+b(b>0)的图象可由y=f(x)的图象向上平移b个单位而得到.总之,对于平移变换,记忆口诀为:左加右减上加下减.
【答案】 C
题型三 函数图象的对称性 例3 (1)已知f(x)=ln(1-x),函数g(x)的图象与f(x)的图象关于点(1,0)对称,则g(x)的解析式为________________. (2)设函数y=f(x)的定义域为实数集R,则函数y=f(x-1)与y=f(1-x)的图像关于( ) A.直线y=0对称 B.直线x=0对称 C.直线y=1对称 D.直线x=1对称
2.(2011·福州质检)函数y=log2|x|的图象大致是( ) 答案 C 解析 函数y=log2|x|为偶函数,作出x>0时y=log2x的图象,图象关于y轴对称,应选C.
答案 A
4.(08·山东)设函数f(x)=|x+1|+|x-a|的图象关于直线x=1对称,则a的值为( ) A.3 B.2 C.1 D.-1 答案 A 解析 ∵函数f(x)图象关于直线x=1对称,∴f(1+x)=f(1-x),∴f(2)=f(0).即3+|2-a|=1+|a|,用代入法知选A.
思考题1 将函数y=lg(x+1)的图象沿x轴对折,再向右平移一个单位,所得图象的解析式为________. 【答案】 y=-lgx
题型二 知式选图或知图选式问题 例2 (2011·合肥模拟)函数f(x)=loga|x|+1(0<a<1)的图象大致为( )
【解析】 首先分析奇偶性,知函数为偶函)=1,∴选A.
1.函数图象的三种变换 (1)平移变换:y=f(x)的图象向左平移a(a>0)个单位,得到y=f(x+a)的图象;y=f(x-b)(b>0)的图象可由y=f(x)的图象向右平移b个单位而得到;y=f(x)的图象向下平移b(b>0)个单位,得到y=f(x)-b的图象;y=f(x)+b(b>0)的图象可由y=f(x)的图象向上平移b个单位而得到.总之,对于平移变换,记忆口诀为:左加右减上加下减.
【答案】 C
题型三 函数图象的对称性 例3 (1)已知f(x)=ln(1-x),函数g(x)的图象与f(x)的图象关于点(1,0)对称,则g(x)的解析式为________________. (2)设函数y=f(x)的定义域为实数集R,则函数y=f(x-1)与y=f(1-x)的图像关于( ) A.直线y=0对称 B.直线x=0对称 C.直线y=1对称 D.直线x=1对称
函数的图象(精品课件)
解:(1)汽车从出发到最后停止共经历了24分钟,它的最高速度是90千米/时.
三、认真观察 学会识图:
1.汽车在行驶的过程中,速度往往是变化的,下图表示一辆汽车的速度 随时间变化而变化的情况. (2)汽车在哪些时间段保持匀速行驶?时速分别是多少?
解:(2)在2分钟到6分钟,18分钟到22分钟之间汽车匀速行驶,速度分 别是30千米/时和90千米/时.
S 0 0.25 1 2.25 4 6.25 9 12.25 16 描点:在直角坐标系中,画出表格中各对数
值所对应的点.
连线:把所描出的各点用平滑
S
16
的曲线连接起来.
接下来怎么办呢?
9
4 1 O 1234 x
一般地,对于一个函数,如果把自变 量与函数的每对对应值分别作为点的横、 纵坐标,那么坐标平面内由这些点组成的 图形,就是这个函数的图象.
0-8分钟,离家越来越远;8-25分钟,离家 距离不变,为0.6千米;25-28分钟,离家距离由 0.6千米增加到0.8千米;28-58分钟,离家0.8千 米;58-68分钟,离家越来越近,直至回家.
解答
(1)食堂离小明家多远?小明从家到食堂用了多少 时间? 食堂离小明家0.6km;小明从家到食堂用了8min. (2)小明吃早餐用了多长时间? 25-8=17 小明吃早餐用了17min.
5.温度在零度以下的时间长呢?还是在零度以上
的时间长?
温度在零度以上的时间长
随堂练习
1、下图是某一天北京与上海的气温随时间变 化的图象.
(1)这一天内,上海与北京何时气温相同? (2)这一天内,上海在哪段时间比北京气温高?在 哪段时间比北京气温低?
(1)7,12 (2)高:0~7,12~24 低:7~12
三、认真观察 学会识图:
1.汽车在行驶的过程中,速度往往是变化的,下图表示一辆汽车的速度 随时间变化而变化的情况. (2)汽车在哪些时间段保持匀速行驶?时速分别是多少?
解:(2)在2分钟到6分钟,18分钟到22分钟之间汽车匀速行驶,速度分 别是30千米/时和90千米/时.
S 0 0.25 1 2.25 4 6.25 9 12.25 16 描点:在直角坐标系中,画出表格中各对数
值所对应的点.
连线:把所描出的各点用平滑
S
16
的曲线连接起来.
接下来怎么办呢?
9
4 1 O 1234 x
一般地,对于一个函数,如果把自变 量与函数的每对对应值分别作为点的横、 纵坐标,那么坐标平面内由这些点组成的 图形,就是这个函数的图象.
0-8分钟,离家越来越远;8-25分钟,离家 距离不变,为0.6千米;25-28分钟,离家距离由 0.6千米增加到0.8千米;28-58分钟,离家0.8千 米;58-68分钟,离家越来越近,直至回家.
解答
(1)食堂离小明家多远?小明从家到食堂用了多少 时间? 食堂离小明家0.6km;小明从家到食堂用了8min. (2)小明吃早餐用了多长时间? 25-8=17 小明吃早餐用了17min.
5.温度在零度以下的时间长呢?还是在零度以上
的时间长?
温度在零度以上的时间长
随堂练习
1、下图是某一天北京与上海的气温随时间变 化的图象.
(1)这一天内,上海与北京何时气温相同? (2)这一天内,上海在哪段时间比北京气温高?在 哪段时间比北京气温低?
(1)7,12 (2)高:0~7,12~24 低:7~12
高中数学人教A版必修1《函数的图象变换》PPT
例:作出下列函数的图象. (1)y=12|x|;(2)y=|log2(x+1)|;(3)y=2xx--11.
分析:作函数图象的方法有:列表描点法(列表, 描点,连线)和图象变换法(平移变换、对称变换、 翻折变换)
解析:(1)作出 y=12x 的图象,保留 y=12x 图象中 x≥0 部分,加上 y=12x 的图象中 x>0 部分关于 y 轴的对称部分,
答案:A
课堂总结:
本节课从特殊到一般的思路学习函数图 象的三种变换(平移变换、对称变换、翻 折变换)及其应用。利用图象变换解题, 关键是理清图象变换的过程,掌握好基本 初等函数的图象及变换的实质(要通过具 体的实例作为载体来理解掌握三种变换)。 在后续的学习中我们将进一步学习它的应 用。
谢谢!!!
翻折到y轴左侧,便得到g(x) x2 2 | x | f (| x |)的图象,
(2)画函数h(x) | x2 2x |的图象,并说由函数
f (x) x2 2x的图象怎样变换而得到?
解析:h(
x)
x2
x
2
2x (x 2x (0
0或x x
2) 2)
保留f (x) x2 2x图象在x轴上方部分,把位于x轴下
5
f (x) x2
4
3
2
h(x) x2 - 2
1
又h(x) f (x) 2
-4 -3 -2 -1 o 1 2 3 4 x
g (x) x2 2的图象是由f (x) x2的图象向上平移2个单位得到, h(x) x2 - 2的图象是由f (x) x2的图象向下平移2个单位得到。
平移变换—竖直平移
A.向右平行移动 2 个单位长度 B.向右平行移动 1 个单位长度 C.向左平行移动 2 个单位长度 D.向左平行移动 1 个单位长度
高中数学《函数图象的变换》课件
将y = f(x)在 x 轴上方的图 象保留,下方的图象以 x 轴为对 称轴翻折到上方可得到 y =|f(x)| 的图象.(保上方,下方翻上方)
翻折变换
y = f(x) 的图象
y =|f( x )| 的图象
将y = f(x)在 x 轴上方的图 象保留,下方的图象以 x 轴 为对称轴翻折到上方可得到 y =|f(x)|的图象.
平移变换
左上 右下 平平 移移
对称变换
关关关 于于于 x y原 轴轴点
翻折变换
上左 下右 翻翻 折折
归纳总结
平 y = f(x) 左移 h (h>0) y = f(x + h)
移 的图象 个 单 位
的图象
变 换
y = f(x) 右移 h (h>0) y = f(x - h)
的图象 个 单 位
的图象
问题与思考——复习
1、在同一坐标系中作下列函数 的图象,并说明每组两函数图象间的 关系.
(1) y = |log2x| (2) y = x2 - 2x,y = |x2 - 2x|
yy= log2 x
o
o
1
x
1
x
将 y = log2x 在 x 轴上方的图象保留, 下方的图象以 x 轴为对称轴翻折到上方可
翻 的图象 折 变 换
y =f( |x| ) 的图象
?
谢 谢
翻折变换
问题与思考:
2、在同一坐标系中作下列函数 的图象,并说明每组两函数图象间的 关系.
(1) y = 2x,y = 2|x| (2) y = x2 - 2x,y = |x|2 - 2|x|
y
y
y = 2x 11
o x
y = 2|x| 1
翻折变换
y = f(x) 的图象
y =|f( x )| 的图象
将y = f(x)在 x 轴上方的图 象保留,下方的图象以 x 轴 为对称轴翻折到上方可得到 y =|f(x)|的图象.
平移变换
左上 右下 平平 移移
对称变换
关关关 于于于 x y原 轴轴点
翻折变换
上左 下右 翻翻 折折
归纳总结
平 y = f(x) 左移 h (h>0) y = f(x + h)
移 的图象 个 单 位
的图象
变 换
y = f(x) 右移 h (h>0) y = f(x - h)
的图象 个 单 位
的图象
问题与思考——复习
1、在同一坐标系中作下列函数 的图象,并说明每组两函数图象间的 关系.
(1) y = |log2x| (2) y = x2 - 2x,y = |x2 - 2x|
yy= log2 x
o
o
1
x
1
x
将 y = log2x 在 x 轴上方的图象保留, 下方的图象以 x 轴为对称轴翻折到上方可
翻 的图象 折 变 换
y =f( |x| ) 的图象
?
谢 谢
翻折变换
问题与思考:
2、在同一坐标系中作下列函数 的图象,并说明每组两函数图象间的 关系.
(1) y = 2x,y = 2|x| (2) y = x2 - 2x,y = |x|2 - 2|x|
y
y
y = 2x 11
o x
y = 2|x| 1
高中数学:131《三角函数图像的变换》课件必修
这些操作包括平移、伸缩、翻折和旋转等,可以单独或组合使用。
变换的目的是为了更好地理解三角函数的性质,解决实际问题,以及进行图像处理 等。
变换的种类和特点
01
02
03
04
平移变换
将图像沿x轴或y轴方向移动 ,保持图像形状不变。
伸缩变换
通过改变x轴和y轴的比例来 改变图像的大小,可以横向或
纵向伸缩。
翻折变换
利用伸缩变换的性质求解函数的极值
例如,利用正弦函数的伸缩性质,可以求解y=sin(3x)在x=π/9处的极小值为1。
利用对称变换的性质求解函数的对称轴或对称中心
例如,利用正弦函数的对称性质,可以求解y=sin(x)的对称轴为x=kπ+π/2,k∈Z。
变换在实际问题中的应用
物理学中的应用
三角函数图像的综合变换在物理学中有广泛的应用,如振 动和波动现象、交流电等。通过变换可以更好地理解物理 现象和解决实际问题。
x轴缩短为原来的1/2,则图像的 周期变为原来的2倍。
01
03
02 04
总结词:影响相位
详细描述:沿x轴伸缩不仅改变 了图像的周期,还会影响函数的 相位。例如,将x轴缩短为原来 的1/2,相当于将相位滞后了π。
沿y轴伸缩
总结词:改变振幅
详细描述:沿y轴伸缩是 指保持x轴不变,通过改 变y轴的长度来改变整个 图像的振幅。例如,将y 轴放大为原来的2倍,则 图像的振幅变为原来的2 倍。
翻折变换
旋转变换
$y = -f(-x)$ 或 $y = f(x)$,前者表示沿x 轴翻折,后者表示沿y轴翻折。
$x = xcostheta - ysintheta$ 和 $y = xsintheta + ycostheta$,其中$theta$为 旋转角度。
变换的目的是为了更好地理解三角函数的性质,解决实际问题,以及进行图像处理 等。
变换的种类和特点
01
02
03
04
平移变换
将图像沿x轴或y轴方向移动 ,保持图像形状不变。
伸缩变换
通过改变x轴和y轴的比例来 改变图像的大小,可以横向或
纵向伸缩。
翻折变换
利用伸缩变换的性质求解函数的极值
例如,利用正弦函数的伸缩性质,可以求解y=sin(3x)在x=π/9处的极小值为1。
利用对称变换的性质求解函数的对称轴或对称中心
例如,利用正弦函数的对称性质,可以求解y=sin(x)的对称轴为x=kπ+π/2,k∈Z。
变换在实际问题中的应用
物理学中的应用
三角函数图像的综合变换在物理学中有广泛的应用,如振 动和波动现象、交流电等。通过变换可以更好地理解物理 现象和解决实际问题。
x轴缩短为原来的1/2,则图像的 周期变为原来的2倍。
01
03
02 04
总结词:影响相位
详细描述:沿x轴伸缩不仅改变 了图像的周期,还会影响函数的 相位。例如,将x轴缩短为原来 的1/2,相当于将相位滞后了π。
沿y轴伸缩
总结词:改变振幅
详细描述:沿y轴伸缩是 指保持x轴不变,通过改 变y轴的长度来改变整个 图像的振幅。例如,将y 轴放大为原来的2倍,则 图像的振幅变为原来的2 倍。
翻折变换
旋转变换
$y = -f(-x)$ 或 $y = f(x)$,前者表示沿x 轴翻折,后者表示沿y轴翻折。
$x = xcostheta - ysintheta$ 和 $y = xsintheta + ycostheta$,其中$theta$为 旋转角度。
函数图像的变换课件
向右平移
总结词
图像沿x轴正方向移动
数学表达式
y=f(x-a)
详细描述
对于函数y=f(x),若图像向右平移a个单位,则新的函数 解析式为y=f(x-a)。
举例
函数y=cos(x)的图像向右平移π/2个单位后,得到新的函 数y=cos(x-π/2),其图像与原图像相比沿x轴正方向移动 了π/2个单位。
双向伸缩
总结词
同时改变x轴和y轴的长度。
详细描述
当函数图像在x轴和y轴方向上都发生伸缩时,x轴和y轴的长度都会发生变化。这 种变换可以通过将函数中的x和y都替换为其倍数来实现,例如将f(2x)/3替换为 f(x)会使x轴压缩为原来的一半,同时y轴拉伸为原来的三倍。
04
函数图像的旋转变换
逆时针旋转
关于y轴对称
总结词
函数图像关于y轴对称时,图像在y轴两侧对称分布,x值 不变,y值相反。
详细描述
当一个函数图像关于y轴对称时,图像在y轴两侧呈现出 对称分布的特点。这意味着对于任意一个点$(x, y)$在图 像上,关于y轴对称的点$(x, -y)$也在图像上。这种对称 变换不会改变x值,只是将y值取反。例如,函数$f(x) = x^3$的图像关于y轴对称,因为$f(-y) = (-y)^3 = -y^3 = -f(y)$。
任意角度旋转
总结词
任意角度旋转是指将函数图像按照任意角度进行旋转。
详细描述
任意角度旋转函数图像是指将图像上的每个点都按照任意指定的角度进行旋转。这种旋转可以通过参数方程或极 坐标系来实现,其中参数方程为$x = x cos theta - y sin theta$,$y = x sin theta + y cos theta$,极坐标系 下的表示为$x = r cos theta$,$y = r sin theta$。
《函数的图像》PPT课件
y/米
y/米
y/米
y/米
1500
1500
1500
1500
1000
1000
1000
1000
500
500
x/分 O 10 20 30 40 50
x/分 O 10 20 30 40 50
500
x/分 O 10 20 30 40 50
500
x/分 O 10 20 30 40 50
A.
B.
C.
D.
3.李华和弟弟进行百米赛跑,李华比弟弟跑得快,如果两人同 时起跑,李华肯定赢.现在李华让弟弟先跑若干米,图中,分 别表示两人的路程与李华追赶弟弟的时间的关系,由图中信息
可知,下列结论中正确的是( B ) .
A.李华先到达终点 B.弟弟的速度是8米/秒 C.弟弟先跑了10米 D.弟弟的速度是10米/秒
s/米
t/秒
中考实战
甲,乙两同学骑自行车从A地沿同一条路到B地,已知
乙比甲先出发.他们离出发地的距离s/km和骑行时间
t/h之间的函数关系如图所示,给出下列说法:
A.他们都骑了20km;
(1)注水、加热和淋浴分别用了多少 时间? (2)水箱的最大贮水量是多少升? (3)当淋浴开始后15min,水箱中还 有水多少升?
2.小芳今天到学校参加初中毕业会考,从家里出 发走10分到离家500米的地方吃早餐,吃早餐用 了20分;再用10分赶到离家1000米的学校参加考 试.下列图象中,能反映这一过程的是 ( D ).
3.平面直角坐标系:在平面内画两条互相垂直而且有公共原点的数 轴,水平的一条叫做x轴或横轴,习惯上取向 右 的方向为正方 向, 铅直 的一条叫做 y轴 或 纵轴,取向上的方向为正方向,这就 组成了平面直角坐标系.
八下数学:函数的图像PPT课件
2 2.5 4 6.25
3… 9…
用平滑曲线去连接画 出的点
2 3 4 5x
这样我们就得到了一幅表示S与x关系的图. 图中每个点都代表x的值与S的值的一种对应关系。
如点(2,4)表示x=2时S=4。
归纳
函数的图象的意义:
一般地,对于一个函数,如果把自变量 与函数的每对对应值分别作为点的横坐标和 纵坐标,那么坐标平面内由这些点组 成的图形就是这个函数的图象。
函数图象可以数形结合地研究函数,给我们带来便利。
归纳
函数图象的画法:
1、列表
列出自变量与函数的对应值表。 注意:自变量的值(满足取值范围),并取适当.
2、描点 3、连线
建立直角坐标系,以自变量的值为横坐标, 相应的函数值为纵坐标,描出表格中数值 对应的各点 按照横坐标从小到大的顺序把描出的点用 平滑曲线依次连接起来
你能解释x>0这个范围是怎样确定的吗?
从式子s = x2来看,边长x越大,面积 s 也越大。能不能 用图象直观的反映出来呢?
1、列表: 2、描点:
3、连线:
S = x2(x>0)
x0
0.5
1 1.5
s 0 0.25
1 2.25
s
5
4
3
用空心圈表示不在曲
线的点
2
1
-5 -4 -3 -2 -1 0
1
-1
巩固
1、画出函数 y = x + 0.5 的图象 解: 1、列表
x … -3 -2
-1
0 1 2 3…
y … -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 …
2、描点 3、连线
请画出函数y= x+0.5的图象
函数的图象及变换省公开课获奖课件说课比赛一等奖课件
高考第一轮复习
考点16 函数旳图象及变换
一、知识要点
周期性
定义域 解析式
性质
奇偶性
单调性
x轴 y轴
原点 y=x
y=-x
x=a
直线 x=a 直线 x=a
解析:措施一:设(x1,y1)是y=f(x-a)图像 上任意一点,则y1=f(x1-a),而f(x1-a)=f[a- (2a-x1)],阐明点(2a-x1,y1)-定是函数y=f(a -x)上旳一点,而点(x1,y1)与点(2a-x1,y1)有 关直线x=a对称,所以y=f(x-a)旳图像与y=f(a -x)旳图像有关直线x=a对称,所以选D.
当a>1时,如图,要使在(1,2)上,f1(x)=(x- 1)2旳图像在f2(x)=logax旳下方,只需f1(2)≤f2(2).
即(2-1)2≤loga2,loga2≥1,∴1<a≤2.
规律措施:从常见函数旳图像入手,巧妙地 利用图像与不等式(方程)之间旳关系,将不等式 (方程)转化为求函数图像旳交点问题,数形结合 是处理此类题旳有效措施.
【预测4】 已知函数f(x)=|x2-4x+3|. (1)求函数f(x)旳单调区间; (2)求m旳取值范围,使得方程f(x)=mx有四个 不等实根.
f(x)旳图像如图所示. 函数f(x)旳单调区间有(-∞,1]、 [1,2]、[2,3]、[3,+∞), 其中增区间有[1,2]、[3,+∞), 减区间有(-∞,1]、[2,3].
答案:A
规律措施:注意从f(x),g(x)旳奇偶性、单调 性等方面寻找f(x)·g(x)旳图像特征.
【预测2】 (1)已知函数y=f(x)旳图像如图① 所示,y=g(x)旳图像如图②所示,
则函数y=f(x)·g(x)旳图像可能是下图中旳 ()
考点16 函数旳图象及变换
一、知识要点
周期性
定义域 解析式
性质
奇偶性
单调性
x轴 y轴
原点 y=x
y=-x
x=a
直线 x=a 直线 x=a
解析:措施一:设(x1,y1)是y=f(x-a)图像 上任意一点,则y1=f(x1-a),而f(x1-a)=f[a- (2a-x1)],阐明点(2a-x1,y1)-定是函数y=f(a -x)上旳一点,而点(x1,y1)与点(2a-x1,y1)有 关直线x=a对称,所以y=f(x-a)旳图像与y=f(a -x)旳图像有关直线x=a对称,所以选D.
当a>1时,如图,要使在(1,2)上,f1(x)=(x- 1)2旳图像在f2(x)=logax旳下方,只需f1(2)≤f2(2).
即(2-1)2≤loga2,loga2≥1,∴1<a≤2.
规律措施:从常见函数旳图像入手,巧妙地 利用图像与不等式(方程)之间旳关系,将不等式 (方程)转化为求函数图像旳交点问题,数形结合 是处理此类题旳有效措施.
【预测4】 已知函数f(x)=|x2-4x+3|. (1)求函数f(x)旳单调区间; (2)求m旳取值范围,使得方程f(x)=mx有四个 不等实根.
f(x)旳图像如图所示. 函数f(x)旳单调区间有(-∞,1]、 [1,2]、[2,3]、[3,+∞), 其中增区间有[1,2]、[3,+∞), 减区间有(-∞,1]、[2,3].
答案:A
规律措施:注意从f(x),g(x)旳奇偶性、单调 性等方面寻找f(x)·g(x)旳图像特征.
【预测2】 (1)已知函数y=f(x)旳图像如图① 所示,y=g(x)旳图像如图②所示,
则函数y=f(x)·g(x)旳图像可能是下图中旳 ()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
横坐标取相反数 纵坐标不变
y=f(x)与y=f(-x)图象关
横坐标、纵坐标 同时取相反数
y=f(x)与y=-f(-x)图象
对 称 变 换Biblioteka 于y轴对称关于原点对称
问题2:说出下列函数的图象与指数函数y=2x的 图象的关系,并画出它们的示意图. (4)y=log2x (3)y=-2-x (1)y=2-x (2)y=-2x
2 x (x1 )1 1 1 y x 1 x 1 x1
1 y x x换成x-1
1 y x 1
向右平移1个单位
y
O
1 -1
(1,-1)
x
向下平移1个单位
1 y 1 x 1
例3.已知函数y=|2x-2| (1)作出函数的图象; (2)指出函数 的单调区间; (3)指出x取何值时,函数有最值。
y y y y
1
O
1 1 x
O
1 x -1
O
-1
x
O1
x
(x,y)和(-x,y) 关于y轴对称! (x,y)和(y,x) y 轴y=x 与和 y=f(-x) 的图象关于 对称; 关于直线 对 ( x,y)和(-x,-y) 对 (1)y=f(x) (x,y) (x,-y) 称! 关于原点对称! x 轴 对称; 与 y=-f(x) 的图象关于 关于x 轴对称! 称 (2)y=f(x) 变 (3)y=f(x)与y=-f(-x)的图象关于 原 点 对称;
y=f(x-1) 1 -1 O 1
x
y=f(x)-1 -1
a>0,向左平移a个单位 y=f(x+a)左右平移 a<0,向右平移|a|个单位 k>0,向上平移k个单位 y=f(x)+k 上下平移 k<0,向下平移|k|个单位
同步练习:
①若函数f(x)恒过定点(1,1),则函数f(x-4)-2恒过 定点
x
0
x
0
x
A
B
C
D
⑦ .将
y2
x
的图象( D )
(B)先向右平移1个单位 (D)先向下平移1个单位
(A)先向左平移1个单位
(C)先向上平移1个单位
log ( x 1 ) 再作直线y=x对称的图象,可得函数 y 2
的图象.
l o g( 1 ) 2 x 解: y 求反函数
求反函数
y 2x 1
换 (4)y=f(x)与y=f -1(x)的图象关于 直线y=x 对称.
问题3:分别在同一坐标系中作出下列各组函 数的图象,并说明它们之间有什么关系?
(1)y=2x与y=2|x|
y
(2)y=log2x与y=|log2x|
y
|x| y=2 y=2x
y=log x y=|log2x|
O
1
O
1
x
x
(5)由y=f(x)的图象作 y=f(|x|)的图象:
下移1个单位
y2
x
向上平移1个单位
二﹑对称变换 1 3﹑设f(x)= _ (x>0),说出函数y=-f(x)、 y=f(-x)、 x y=-f(-x) 与y=f(x)的图象关系。
y y y
y=f(x) y=f(-x) y=f(x) y=f(x)
o
1
x
o
1
x
o
y=-f(-x)
1
x
y=-f(x)
横坐标不变 纵坐标取相反数 y=f(x)与y=-f(x)图象 关于x轴对称
y
y=2x
y=|2x-2|
y=2x-2
1
O
函数图像变换
函数图象是研究 函数的重要工具,它能 为所研究函数的数量 关系及其图象特征提 供一种”形”的直观 体现,是利用”数形结 合”解题的重要基础.
描绘函数图象的两种基本方法: ①描点法;(通过列表﹑描点﹑连线三个步骤完成) ②图象变换;(即一个图象经过变换得到另一个与 之相关的函数图象的方法) 函数图象的四大变换方法
例1.将函数y=lgx的图象向左平移1个单位,再作关于 原点对称的图形后.求所得图象对应的函数解析式.
向左平移1个单位
y=lgx
x 换成 x+1
Y=lg(x+1)
关于原点对称
x换成-x y换成-y
Y=-lg(-x+1)
-Y=lg(-x+1)
2 x 例 2 . 画出 y 函 数 的图 . 象 x 1
(5,-1) .
②若函数f(x)关于直线x=1对称,则函数f(x-4)-2
关于直线 x=5 对称. ③若奇函数f(x)=kax-a-x(a>0,a 1)在R上是增函数, 那么g(x)=㏒a(x+k)的大致图象是( C )
y y 2 01 2 x y
y
0 1
x
-1
0 x
-1 0
x
A
B
C
D
同步练习:
保留y=f(x)中y轴 右侧部分,再加上这部 分关于y轴对称的图形.
(6)由y=f(x)的图象作 y=|f(x)|的图象: 保留y=f(x)中x轴上 方部分,再加上这部分 关于x轴对称的图形.
函数图象的平移变换规律: a>0,向左平移a个单位 (1)y=f(x) y=f(x+a) 左右平移 a<0,向右平移|a|个单位 (2)y=f(x) y=f(x)+k上下平移 k>0,向上平移k个单位 k<0,向下平移|k|个单位 函数图象的对称变换规律: (1)y=f(x)与y=-f(x)的图象关于 x轴 对称; (2)y=f(x)与y=f(-x)的图象关于 y轴 对称; (3)y=f(x)与y=-f(-x)的图象关于 原点 对称; (4)y=f(x)与y=f -1 (x)的图象关于直线y=x 对称. (5)由y=f(x)的图象作y=f(|x|)的图象:保留y=f(x) 中 y轴右侧 部分,再加上这部分关于 y轴 对称的图 形.由y=f(x)的图象作y=|f(x)|的图象:保留y=f(x) (6) 中 x轴上方 部分,再加上这部分关于 x轴 对称的图 形.
平移
伸缩
对称
翻折
一﹑平移变换
问题1:如何由f(x)=x2的图象得到下列各函 y 数的图象? y=f(x)+1
(1)f(x-1)=(x-1)2 (2)f(x+1)=(x+1)2 (3)f(x)+1=x2+1 (4)f(x) -1=x2-1 函数图象的平移变换: y=f(x) y=f(x)
y=f(x+1)
④.将函数y=lgx的图象向左平移1个单位,再作关于原点对
称的图形后.则所得图象对应的函数解析式 y=-lg(-x+1) 左 为 . 3 ⑤.y=lg(2x+6) 的图象可看成是由y=lg(2x)的图象向 平行 移动 个单位而得到. C
⑥.函数y=-log0.5(x-1)的图象是(
y
y
) y
y
0
x
0