解三角形经典练习试题集锦(附答案解析)
数学-解三角形大题解析版
解三角形大题(1)证明:sinsin BD ABDC ACαβ⋅=⋅;(2)若D为靠近B的三等分点,在ABC 中,由余弦定理得:2222b a c =+-a b c h AE +=+≥ ,即(c h +41123h c ∴<+≤1413tan2C ∴<≤,3tan 42C ∴≤222sincos 2tan22sin sin cos 1tan 22C C C C C ==++设tan2C t =,3,14t ⎡⎫∈⎪⎢⎣⎭,1t t +1252,12t t ⎛⎤∴+∈ ⎥⎝⎦,即1tan tan 2C +24sin 125C ∴≤<9.在ABC 中,3,AB AC ==(1)若3BC =,求CD 与AD ;因为AD 平分BAC ∠,所以因此32BD CD =,又3BC =,所以在ABC 中,3,AB BC AC ==在ACD 中,由余弦定理可得(2)如下图所示:因为AD 平分BAC ∠,DAC ∠所以60,120B C θθ=︒-=︒-()()sin 120sin 60AB ACθθ=︒-︒-展开并整理得333cos sin 22θ-10.ABC 中,,D E 是边BC (1)若3BC =,求ABC 面积的最大值;则()()0,0,3,0B C ,设(),A x y ,则2222(3)3x y x y -+=⨯+,整理得到:即点A 的轨迹是以3,02⎛⎫- ⎪⎝⎭圆心,故ABC 的BC 边上的高的最大值为在APC △中,由正弦定理可得故133cos 22α⎛- ⎝因为α为锐角,故故P 存在且sin ABP ∠法二:如图,设∠同理30PCA ∠=︒-而3sin sin CPAPC α=∠在PBC 中,由余弦定理可得:整理得到:4cos =所以24cos 4sin α+整理得到:38tan =但α为锐角,故tan 故P 存在且sin ABP ∠11.在ABC 中,内角(1)求sin C 的值;(2)在边BC 上取一点D ,使得cos ∠【答案】(1)5sin 5C =;(2)tan DAC ∠【分析】(1)方法一:利用余弦定理求得(2)[方法一]:两角和的正弦公式法由于4cos 5ADC ∠=-,,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以由于,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以0,2C π⎛⎫∈ ⎪⎝⎭,所以所以()sin sin DAC DAC π∠=-∠(sin ADC =∠在(1)的方法二中可得1,2,AE CE AC ==由4cos 5ADC ∠=-,可得4cos ,sin 5ADE ∠=∠在Rt ADE △中,5,sin 3AE AD DE ADE ===∠由(1)知5sin 5C =,所以在Rt CDG △中,11515AG AC CG =-=.[方法4]:坐标法以D 为坐标原点,DC 为设BDC α∠=,则(5cos B 从而2(05cos )AB α=-+cos sin 1cos ADB α∠==-(2)[方法1]:【通性通法】余弦定理在BCD △,由(1)得,225(22)2522=+-⨯⨯[方法2]:【最优解】利用平面几何知识作BF DC ⊥,垂足为F ,易求,【整体点评】(1)方法一:根据题目条件已知两边和一边对角,利用正弦定理和平方关系解三角形,属于通性通法;方法二:根据题目条件已知两边和一边对角,利用余弦定理解三角形,也属于通性通法;方法三:根据题意利用几何知识,解直角三角形,简单易算.方法四:建立坐标系,通过两点间的距离公式,将几何问题转化为代数问题,这是解析思想的体现.(2)方法一:已知两边及夹角,利用余弦定理解三角形,是通性通法.方法二:利用几何知识,解直角三角形,简单易算.19.在锐角△ABC 中,角(I )求角B 的大小;(II )求cos A +cos B +cos C 【答案】(I )3B π=;(II )【分析】(I )方法二:首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定角(1)求cos C及线段BC的长;(2)求ADEV的面积.【答案】(1)1cos4C=,BC(2)3158【分析】(1)利用二倍角正弦公式结合正弦定理推出(2)求出15sin4C=,即可求出【详解】(1)由题意在ABC【整体点评】(1)方法一:正弦定理是解三角形的核心定理,与三角形内角和相结合是常用的方法;方法二:方程思想是解题的关键,解三角形的问题可以利用余弦值确定角度值;方法三:由正弦定理结合角度关系可得内角的比例关系,从而确定角的大小(2)方法一:由题意结合角度的范围求解面积的范围是常规的做法;方法二:将面积问题转化为边长的问题,然后求解边长的范围可得面积的范围;方法三:极限思想和数形结合体现了思维的灵活性,要求学生对几何有深刻的认识和灵活的应用25.ABC中,sin2A-sin(1)求A;(2)若BC=3,求ABC【答案】(1)23π;(2)3【分析】(1)利用正弦定理角化边,配凑出(2)方法一:利用余弦定理可得到而2b ac =,即sin sin ADB ∠=故有ADB ABC ∠=∠,从而∠由2b ac =,即b c a b =,即CA CB 故AD AB AB AC =,即23b c c b=,又2b ac =,所以23c a =,则2227cos c a b ABC +-==∠由2AD DC =,得,3c DE EC =在BED 中,2(3cos BED =∠在ABC 中2cos 2a BC c A +=∠因为cos cos ABC BED ∠=-∠所以22222()(332223a c a c b a ac ++-=-⋅由(1)知,3BD b AC ===设()(),33B x y x -<<,则2x 由2b ac =知,BA BC AC ⋅=即222(2)(1)x y x y ++⋅-+联立⑤⑥解得74x =-或72x =代入⑥式得36||,2a BC c ==由余弦定理得cos a ABC ∠=则11sin 122ADC S AD DC ADC =⋅∠=⨯ 在ABD △中,2π3ADB ∠=,由余弦定理得35.记ABC 的内角,,A B C (1)求bc ;(2)若cos cos 1cos cos a B b A b a B b A c--=+,求【答案】(1)1(2)34【分析】(1)根据余弦定理即可解出;(2)由(1)可知,只需求出【详解】(1)因为22a b =+37.如图,在锐角ABC 中,角(1)求ABC 面积的最大值;(2)若AB 边上的点D 满足2AD DB =,求线段【答案】(1)934(2)3+1【分析】(1)利用余弦定理结合基本不等式求出(2)根据2AD DB =得到13CD CA = 求出222222442||1⎛⎫+ ⎪++⎝⎭==+-⎛⎫+ ⎪⎝⎭b a b ab a CD a b ab b a 角形,得到311,32⎛⎫=+=+∈ ⎪⎝⎭b m t a ,从而利用基本不等式,求出线段【详解】(1)由余弦定理得:cos 60︒所以222212992+-⋅=⇒=+a b ab a b ∴9ab ≤,当且仅当3a b ==时取“=”∴1393sin 244==≤△ABC S ab C ab ,∴ABC 面积的最大值为934.(2)由2AD DB =,可得:23AD AB =(1)求角A ;(2)若D 为线段BC 延长线上一点,且∠【答案】(1)3A π=(2)963--【分析】(1)运用正弦定理以及诱导公式求解;(2)根据条件运用正弦定理求解.【详解】(1)由条件及正弦定理可得:()sin sin cos sin cos sin cos B C A A B A C +--即sin cos cos sin sin cos cos B A B A C A -+-故()()sin sin 0B A C A -+-=,则有sin 又()(),,,B A C A ππππ-∈--∈-,故有。
三角形经典测试题含答案解析
A.2B. C. D.
【答案】C
【解析】
【分析】
【详解】
解:如图,连结EG并向两端延长分别交AB、CD于点M、N,连结HF,
【答案】B
【解析】
∵等腰三角形有两个角相等,
∴只要能判断出有两个角相等就行了,
将原图各角标上后显示如左下:
因此,所有三角形都是等腰三角形,
只要判断出有哪几个三角形就可以了.
如右上图,三角形有如下几个:
①,②,③;①+②,③+②,①+④,③+④;①+②+③+④;共计8个.
故选:B.
点睛:本题考查了等腰三角形的判定与性质、三角形内角和定理以及三角形外角的性质,此题难度不大,解题的关键是求得各角的度数,掌握等角对等边与等边对等角定理的应用.
∴添加BC=EF,利用SAS可得△ABC≌△DEF;
∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;
故选D.
点睛:本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.
18.如图,AA',BB'表示两根长度相同的木条,若O是AA',BB'的中点,经测量AB=9 cm,则容器的内径A'B'为()
故选A.
17.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,若添加下列一个条件后,仍然不能证明△ABC≌△DEF,则这个条件是()
A.∠A=∠DB.BC=EFC.∠ACB=∠FD.AC=DF
三角函数与解三角形_测试题(有解析、答案)
三角函数与解三角形 测试题(有解析、答案)(时间120分钟,满分150分) 第Ⅰ卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一 项是符合题目要求的)1.已知α∈(π2,π),sin α=35,则tan(α+π4)等于 ( )A.17 B .7 C .-17 D .-7 解析:由α∈(π2,π),sin α=35,得tan α=-34,tan(α+π4)=1+tan α1-tan α=17.答案:A2.sin45°·cos15°+cos225°·sin15°的值为 ( )A .-32 B .-12 C.12 D.32解析:sin45°cos15°+cos225°sin15°=sin45°cos15°-cos45°sin15°=sin(45°-15°)=sin30° =12. 答案:C3.要得到y =sin(2x -π3)的图像,只要将y =sin2x 的图像 ( )A .向左平移π3个单位B .向右平移π3个单位C .向左平移π6个单位D .向右平移π6个单位解析:∵y =sin(2x -π3)=sin2(x -π6),∴只要将y =sin2x 的图像向右平移π6个单位便得到y =sin(2x -π3)的图像.答案:D4.在△ABC 中,若sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3 解析:∵sin 2A +sin 2B -sin A sin B =sin 2C , ∴a 2+b 2-ab =c 2,∴cos C =a 2+b 2-c 22ab =12,∴C =60°,∴S △ABC =12ab sin C =12×4×32= 3.答案:D5.有一种波,其波形为函数y =sin(π2x )的图像,若在区间[0,t ]上至少有2个波峰(图像的最高点),则正整数t 的最小值是 ( ) A .3 B .4 C .5 D .6 解析:由T =2πω=2ππ2=4,可知此波形的函数周期为4,显然当0≤x ≤1时函数单调递增, x =0时y =0,x =1时y =1,因此自0开始向右的第一个波峰所对的x 值为1,第二个 波峰对应的x 值为5,所以要区间[0,t ]上至少两个波峰,则t 至少为5. 答案:C6.若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为 ( )A .1B .2 C.3+1 D.3+2 解析:f (x )=(1+3tan x )cos x =cos x +3sin x =2sin(x +π6),∵0≤x <π2,∴f (x )max =2.答案:B7.使奇函数f (x )=sin(2x +θ)+3cos(2x +θ)在[-π4,0]上为减函数的θ 值为 ( )A .-π3B .-π6 C.5π6 D.2π3解析:由已知得:f (x )=2sin(2x +θ+π3),由于函数为奇函数,故有θ+π3=kπ⇒θ=kπ-π3(k ∈Z),可淘汰BC 选项,然后分别将A和D 选项代入检验,易知当θ=2π3时,f (x )=-2sin2x 其在区间[-π4,0]上递减. 答案:D8.若向量a =(sin(α+π6),1),b =(4,4cos α-3),若a ⊥b ,则sin(α+4π3)等于 ( )A .-34 B.34 C .-14 D.14解析:∵a ⊥b ,∴a ·b =0, ∴4sin(α+π6)+4cos α-3=0,∴sin αcos π6+cos αsin π6+cos α=34,∴12sin α+32cos α=14,∴sin(α+π3)=14,∴sin(α+4π3)=-sin(α+π3)=-14.答案:C9.函数y =sin(ωx +φ)(x ∈R ,ω>0,0≤φ<2π)的部分图像如图,则 ( )A .ω=π2,φ=π4B .ω=π3,φ=π6C .ω=π4,φ=π4D .ω=π2,φ=5π4解析:T 4=3-1=2,∴T =8,ω=2πT =π4令π4×1+φ=π2,得φ=π4. 答案:C10.设函数f (x )=A sin(ωx +φ),(A ≠0,ω>0,-π2<φ<π2)的图像关于直线x =2π3对称,它的周期是π,则 ( ) A .f (x )的图像过点(0,12)B .f (x )的图像在[5π12,2π3]上递减C .f (x )的最大值为AD .f (x )的一个对称中心是点(5π12,0)解析:T =π,∴ω=2.∵图像关于直线x =2π3对称,∴sin(2π3ω+φ)=±1即2π3×2+φ=π2+kπ,k ∈Z 又∵-π2<φ<π2∴φ=π6∴f (x )=A sin(2x +π6).再用检验法.答案:D第Ⅱ卷(非选择题,共100分)二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知α是第二象限角,sin α=12,则sin2a 等于________解析:由已知得cos α=-32,则sin2α=2sin αcos α=2×12×(-32)=-32.答案:-3212.已知函数f (x )=2sin(ωx +φ)的图像如下图所示,则f (7π12)=________.解析:由图像知,函数的周期为32×T =π,∴T =2π3.∵f (π4)=0,∴f (7π12)=f (π4+π3)=f (π4+T 2)=-f (π4)=0.答案:013.计算:cos10°+3sin10°1-cos80°=________.解析:cos10°+3sin10°1-cos80°=2cos(10°-60°)2sin 240°=2cos50°2sin40°= 2. 答案: 214.设函数y =2sin(2x +π3)的图像关于点P (x 0,0)成中心对称,若x 0∈[-π2,0],则x 0=________.解析:因为图像的对称中心是与x 轴的交点,所以由y =2sin(2x +π3)=0,x 0∈[-π2,0]得x 0=-π6.答案:-π615.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c 且a cos B -b cos A =35c .则tan A tan B的值为________.解析:由a cos B -b cos A =35c 及正弦定理可得sin A cos B -sin B cos A =35sin C ,即sin A cos B-sin B cos A =35sin(A +B ),即5(sin A cos B -sin B cos A )=3(sin A cos B +sin B cos A ),即sin A cos B =4sin B cos A ,因此tan A =4tan B ,所以tan Atan B=4. 答案:4三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分12分)已知:0<α<π2<β<π,cos(β-π4)=13,sin(α+β)=45.(1)求sin2β的值;(2)设函数f (x )=cos x -sin x ,试求f (α)的值.解:(1)∵cos(β-π4)=13,∴cos(2β-π2)=2cos 2(β-π4)-1=2×19-1=-79,即sin2β=-79.(2)∵0<α<π2<β<π,∴π4<β-π4<3π4,π2<α+β<3π2,∴sin(β-π4)>0,cos(α+β)<0,∴sin(β-π4)=223,cos(α+β)=-35.∴f (α)=cos α-sin α=2cos(α+π4) =2cos[(α+β)-(β-π4)]=2[cos(α+β)cos(β-π4)+sin(α+β)sin(β-π4)]=2(-35×13+45×223)=16-3215.17.(本小题满分12分)如图,点A ,B 是单位圆上的两点,A ,B点分别在第一、二象限,点C 是圆与x 轴正半轴的交点,△AOB 是正三角形,若点A 的坐标为(35,45),记∠COA =α.(1)求1+sin2α1+cos2α的值;(2)求|BC |2的值.解:(1)∵A 的坐标为(35,45),根据三角函数的定义可知,sin α=45,cos α=35,∴1+sin2α1+cos2α=1+2sin αcos α2cos 2α=4918.(2)∵△AOB 为正三角形,∴∠AOB =60°.∴cos ∠COB =cos(α+60°)=cos αcos60°-sin αsin60°=35×12-45×32=3-4310, ∴|BC |2=|OC |2+|OB |2-2|OC |·|OB |cos ∠COB =1+1-2×3-4310=7+435. 18.(本题满分13分)(2010·黄冈模拟)△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且lg a-lg b =lgcos B -lgcos A ≠0. (1)判断△ABC 的形状;(2)设向量m =(2a ,b ),n =(a ,-3b ),且m ⊥n ,(m +n )·(-m +n )=14,求a ,b ,c . 解:由题lg a +lgcos A =lg b +lgcos B ,故a cos A =b cos B . 由正弦定理sin A cos A =sin B cos B ,即sin2A =sin2B . 又cos A >0,cos B >0,故A ,B ∈(0,π2),2A,2B ∈(0,π)因a ≠b ⇒A ≠B ,故2A =π-2B . 即A +B =π2,故△ABC 为直角三角形.(2)由于m ⊥n ,所以2a 2-3b 2=0 ① 且(m +n )·(-m +n )=n 2-m 2=14,即8b 2-3a 2=14 ② 联立①②解得a 2=6,b 2=4,故在直角△ABC 中,a =6,b =2,c =10.19.(本小题满分12分)已知a =(sin x ,32),b =(cos x ,-1).(1)当a 与b 共线时,求2cos 2x -sin2x 的值; (2)求f (x )=(a +b )·b 在[-π2,0]上的值域.解:(1)∵a 与b 共线, ∴32cos x +sin x =0.∴tan x =-32. 故2cos 2x -sin2x =2cos 2x -2sin x cos x sin 2x +cos 2x=2-2tan x 1+tan 2x =2013. (2)∵a +b =(sin x +cos x ,12),∴f (x )=(a +b )·b =(sin x +cos x ,12)·(cos x ,-1).∴sin x cos x +cos 2x -12=12(sin2x +cos2x )=22sin(2x +π4). ∵-π2≤x ≤0,∴-3π4≤2x +π4≤π4, ∴-1≤sin(2x +π4)≤22,∴f (x )的值域为[-22,12]. 20.(本小题满分13分)已知函数f (x )=A sin(ωx +φ)+B (A >0,ω>0)的一系列对应值如下表:(1)根据表格提供的数据求函数f (x )的一个解析式; (2)根据(1)的结果,若函数y =f (kx )(k >0)周期为2π3,当x ∈[0,π3]时,方程f (kx )=m 恰 有两个不同的解,求实数m 的取值范围. 解:(1)设f (x )的最小正周期为T ,得 T =11π6 -(-π6)=2π, 由T =2πω,得ω=1.又⎩⎪⎨⎪⎧ B +A =3B -A =-1,解得⎩⎪⎨⎪⎧A =2B =1. 令ω·5π6+φ=π2,即5π6+φ=π2,解得φ=-π3,∴f (x )=2sin(x -π3)+1.(2)∵函数y =f (kx )=2sin(kx -π3)+1的周期为2π3,又k >0,∴k =3. 令t =3x -π3,∵x ∈[0,π3],∴t ∈[-π3,2π3]如图sin t =s 在[-π3,2π3]上有两个不同的解的充要条件是s ∈[32,1),∴方程f (kx )=m 在x ∈[0,π3]时恰好有两个不同的解的充要条件是m ∈[3+1,3),即实数m 的取值范围是[3+1,3). 21.(本小题满分13分)已知函数y =|cos x +sin x |.(1)画出函数在x ∈[-π4,7π4]上的简图;(2)写出函数的最小正周期和在[-π4,3π4]上的单调递增区间;试问:当x 在R 上取何值时,函数有最大值?最大值是多少?(3)若x 是△ABC 的一个内角,且y 2=1,试判断△ABC 的形状. 解:(1)∵y =|cos x +sin x |=2|sin(x +π4)|,∴当x ∈[-π4,7π4]时,其图像如图所示.(2)函数的最小正周期是π,在[-π4,3π4]上的单调递增区间是[-π4,π4];由图像可以看出,当x =kπ+π4(k ∈Z)时,该函数有最大值,最大值是 2.(3)若x 是△ABC 的一个内角,则有0<x <π, ∴0<2x <2π.由y 2=1,得|cos x +sin x |2=1⇒1+sin2x =1. ∴sin2x =0,∴2x =π,x =π2,故△ABC 为直角三角形.。
专题解三角形大题(含答案)
专题解三角形大题(含答案)靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。
今天,你,做数学题了吗?1.在△ABC中,已知bcosA+a=c,求B的大小和△ABC的面积。
根据正弦定理和余弦定理,可以得到sinBcosA+sinA=sinC和cosB=(c-a2-b2)/2ab。
代入已知条件,解得B=π/3,S△ABC=absinB=√3/4.2.在△ABC中,已知(b-a)sinB+asinA=csinC,且c=2,求角C的度数和△ABC面积的最大值。
同样利用正弦定理和余弦定理,可以得到a2+b2-c2=ab和cosB=(c-a2-b2)/2ab。
解得C=π/3,S△ABC=absinC=√3.3.在△ABC中,已知a+b+c=2,求sinC和如果△ABC是钝角三角形,求其面积。
根据余弦定理,可以得到cosC=(a2+b2-c2)/2ab。
代入已知条件,解得sinC=√3/2,若△ABC是钝角三角形,面积为0.4.在△ABC中,已知2cosC(acosB+bcosA)=c,求角C和如果c=2,求△ABC面积的最大值。
根据余弦定理,可以得到cosC=(a2+b2-c2)/2ab。
代入已知条件,解得C=π/3,S△ABC=absinC=√3.当c=2时,代入面积公式,解得S△ABC=√3.5.在四边形ABCD中,已知∠D=2∠B,且AD=2,CD=6,cosB=1/3,求△ACD的面积和AB的长。
根据余弦定理,可以得到AC2=40-24cosB=32,再根据海龙公式和正弦定理,可以解得S△ACD=8√3和AB=2√7.6.在△ABC中,已知bsin(A+C)=asinC,且a=2c,求sinB和△ABC的周长。
代入正弦定理和已知条件,解得sinB=1/2,周长为3c。
1.由$a^2+b^2-c^2=ab$,得到$ab+4=a^2+b^2$。
由不等式$a^2+b^2\geq 2ab$,得到$ab+4\geq 2ab$,因此$ab\leq 4$。
高中数学解三角形精选题目(附答案)
高中数学解三角形精选题目(附答案)一、解三角解三角形的常见类型及方法(1)已知三边:先由余弦定理求出两个角,再由A+B+C=π,求第三个角.(2)已知两边及其中一边的对角:先用正弦定理求出另一边的对角,再由A +B+C=π,求第三个角,最后利用正弦定理或余弦定理求第三边.(3)已知两边及夹角:先用余弦定理求出第三边,然后再利用正弦定理或余弦定理求另两角.(4)已知两角及一边:先利用内角和求出第三个角,再利用正弦定理求另两边.1.设锐角△ABC的内角A,B,C的对边分别为a,b,c,且有a=2b sin A.(1)求B的大小;(2)若a=33,c=5,求b.1.解:(1)由a=2b sin A,根据正弦定理得sin A=2sin B sin A,所以sin B=1 2,由于△ABC是锐角三角形,所以B=π6.(2)根据余弦定理,得b2=a2+c2-2ac cos B=27+25-45=7,所以b=7.注:利用正、余弦定理来研究三角形问题时,一般要综合应用三角形的性质及三角函数关系式,正弦定理可以用来将边的比和对应角正弦值的比互化,而余弦定理多用来将余弦值转化为边的关系.2.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A=()A.30°B.60°C.120°D.150°解析:选A 由正弦定理可知c =23b ,则cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32,所以A =30°,故选A.3.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3B.932C.332 D .33解析:选C ∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.①∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a =1,b =3,则B =________.解析:依题意得,由正弦定理知:1sin π6=3sin B ,sin B =32,又0<B <π,b >a ,可得B =π3或2π3.答案:π3或2π35.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C );(2)若a ,b ,c 成等比数列,求cos B 的最小值.解:(1)证明:∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B .∵sin B =sin[π-(A +C )]=sin(A +C ),∴sin A +sin C =2sin(A +C ).(2)∵a ,b ,c 成等比数列,∴b 2=ac .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac≥2ac -ac 2ac =12, 当且仅当a =c 时等号成立.∴cos B 的最小值为12.二、三角形的形状判定三角形中的常用结论(1)A +B =π-C ,A +B 2=π2-C 2. (2)在三角形中大边对大角,反之亦然.(3)任意两边之和大于第三边,任意两边之差小于第三边.6.在△ABC 中,a ,b ,c 分别表示三个内角A ,B ,C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断该三角形的形状.[解] ∵(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),∴a 2[sin(A -B )-sin(A +B )]=b 2[-sin(A +B )-sin(A -B )],∴2a 2cos A sin B =2b 2sin A cos B .法一:(化边为角)由正弦定理得2sin 2A cos A sin B =2sin 2B sin A cos B , 即sin 2A ·sin A sin B =sin 2B ·sin A sin B .∵0<A <π,0<B <π,∴sin 2A =sin 2B ,∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2.∴△ABC 是等腰三角形或直角三角形.法二:(化角为边)2a 2cos A sin B =2b 2cos B sin A ,由正弦、余弦定理得a 2b ·b 2+c 2-a 22bc =b 2a ·a 2+c 2-b 22ac ,∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),即(a 2-b 2)(c 2-a 2-b 2)=0.∴a =b 或c 2=a 2+b 2,∴△ABC 为等腰三角形或直角三角形.注:根据所给条件判断三角形的形状的途径(1)化边为角.(2)化角为边,转化的手段主要有:①通过正弦定理实现边角转化;②通过余弦定理实现边角转化;③通过三角变换找出角之间的关系;④通过对三角函数值符号的判断以及正、余弦函数的有界性来确定三角形的形状.7.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:选D ∵c -a cos B =(2a -b )cos A ,C =π-(A +B ),∴由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,∴sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ,∴cos A (sin B -sin A )=0,∴cos A =0或sin B =sin A ,∴A =π2或B =A 或B =π-A (舍去).故△ABC 为直角三角形或等腰三角形.8.在△ABC 中,已知3b =23a sin B ,且A ,B ,C 成等差数列,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形解析:选C ∵A ,B ,C 成等差数列,∴A +C =2B ,即3B =π,解得B =π3.∵3b =23a sin B ,∴根据正弦定理得3sin B =23sin A sin B .∵sin B ≠0,∴3=23sin A ,即sin A =32,即A =π3或2π3,当A =2π3时,A +B =π不满足条件.∴A =π3,C =π3.故A =B =C ,即△ABC 的形状为等边三角形.9.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理,a 2=b 2+c 2-2bc cos A ,∴bc =-2bc cos A ,cos A =-12. 又0<A <π,∴A =2π3.(2)由(1)知sin 2A =sin 2B +sin 2C +sin B sin C ,∴sin 2A =(sin B +sin C )2-sin B sin C .又sin B +sin C =1,且sin A =32,∴sin B sin C =14,因此sin B =sin C =12.又B ,C ∈⎝ ⎛⎭⎪⎫0,π2,故B =C . 所以△ABC 是等腰的钝角三角形.三、实际应用(1)仰角与俯角是相对水平线而言的,而方位角是相对于正北方向而言的.(2)利用方位角或方向角和目标与观测点的距离即可唯一确定一点的位置.10.如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.[解] (1)依题意,∠BAC =120°,AB =12海里,AC =10×2=20(海里),∠BCA =α.在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ×AC ×cos ∠BAC =122+202-2×12×20×cos 120°=784.解得BC =28海里.∴渔船甲的速度为BC 2=14(海里/小时).(2)在△ABC 中,AB =12海里,∠BAC =120°,BC =28海里,∠BCA =α,由正弦定理,得AB sin α=BC sin 120°.即sin α=AB sin 120°BC=12×3228=3314.故sin α的值为33 14.注:应用解三角形知识解决实际问题的步骤(1)读题.分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、方位角等;(2)图解.根据题意画出示意图,并将已知条件在图形中标出;(3)建模.将所求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)验证.检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.11.要测量底部不能到达的电视塔AB的高度,如图,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为()A.10 2 m B.20 mC.20 3 m D.40 m解析:选D设电视塔的高度为x m,则BC=x,BD=3x.在△BCD中,根据余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x =40或x=-20(舍去).故电视塔的高度为40 m.12.北京国庆阅兵式上举行升旗仪式,如图,在坡度为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,且第一排和最后一排的距离为10 6 m,则旗杆的高度为________m.解析:设旗杆高为h m,最后一排为点A,第一排为点B,旗杆顶端为点C,则BC=hsin 60°=233h.在△ABC中,AB=106,∠CAB=45°,∠ABC=105°,所以∠ACB=30°,由正弦定理,得106sin 30°=233hsin 45°,故h=30(m).答案:3013.某高速公路旁边B处有一栋楼房,某人在距地面100米的32楼阳台A处,用望远镜观测路上的车辆,上午11时测得一客车位于楼房北偏东15°方向上,且俯角为30°的C处,10秒后测得该客车位于楼房北偏西75°方向上,且俯角为45°的D处.(假设客车匀速行驶)(1)如果此高速路段限速80千米/小时,试问该客车是否超速?(2)又经过一段时间后,客车到达楼房的正西方向E处,问此时客车距离楼房多远?解:(1)在Rt△ABC中,∠BAC=60°,AB=100米,则BC=1003米.在Rt△ABD中,∠BAD=45°,AB=100米,则BD=100米.在△BCD中,∠DBC=75°+15°=90°,则DC=BD2+BC2=200米,所以客车的速度v=CD10=20米/秒=72千米/小时,所以该客车没有超速.(2)在Rt△BCD中,∠BCD=30°,又因为∠DBE=15°,所以∠CBE=105°,所以∠CEB=45°.在△BCE中,由正弦定理可知EBsin 30°=BCsin 45°,所以EB=BC sin 30°sin 45°=506米,即此时客车距楼房506米.巩固练习:1.在△ABC中,若a=7,b=3,c=8,则其面积等于()A.12 B.21 2C.28D.63解析:选D由余弦定理得cos A=b2+c2-a22bc=32+82-722×3×8=12,所以sin A=32,则S△ABC=12bc sin A=12×3×8×32=6 3.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.若3a=2b,则2sin2B-sin2Asin2A的值为()A.19 B.13C.1 D.7 2解析:选D由正弦定理可得2sin2B-sin2Asin2A=2b2-a2a2=2·⎝ ⎛⎭⎪⎫32a2-a2a2=72.3.在△ABC中,已知AB=2,BC=5,△ABC的面积为4,若∠ABC=θ,则cos θ等于()A.35B.-35C.±35D.±45解析:选C∵S△ABC =12AB·BC sin∠ABC=12×2×5×sin θ=4.∴sin θ=45.又θ∈(0,π),∴cos θ=±1-sin2θ=±3 5.4.某人从出发点A向正东走x m后到B,向左转150°再向前走3 m到C,测得△ABC的面积为334m2,则此人这时离开出发点的距离为()A.3 m B. 2 mC.2 3 m D. 3 m解析:选D在△ABC中,S=12AB×BC sin B,∴334=12×x×3×sin 30°,∴x= 3.由余弦定理,得AC=AB2+BC2-2AB×BC×cos B=3+9-9=3(m).5.在△ABC中,A=60°,AB=2,且△ABC的面积S△ABC=32,则边BC的边长为()A.3B.3C.7D.7解析:选A∵S△ABC =12AB·AC sin A=32,∴AC=1,由余弦定理可得BC2=AB2+AC2-2AB·AC cos A=4+1-2×2×1×cos 60°=3,即BC= 3.6.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B =a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析:选B∵b cos C+c cos B=b·b2+a2-c22ab+c·c2+a2-b22ac=b2+a2-c2+c2+a2-b22a=2a22a=a=a sin A,∴sin A=1.∵A∈(0,π),∴A=π2,即△ABC是直角三角形.7.在△ABC中,B=60°,b2=ac,则△ABC的形状为____________.解析:由余弦定理得b2=a2+c2-2ac cos B,即ac=a2+c2-ac,∴(a-c)2=0,∴a=c.又∵B=60°,∴△ABC为等边三角形.答案:等边三角形8.在△ABC中,a=b+2,b=c+2,又知最大角的正弦等于32,则三边长为________.解析:由题意知a边最大,sin A=32,∴A=120°,∴a2=b2+c2-2bc cos A.∴a2=(a-2)2+(a-4)2+(a-2)(a-4).∴a2-9a+14=0,解得a=2(舍去)或a=7.∴b=a-2=5,c=b-2=3.答案:a=7,b=5,c=39.已知三角形ABC的三边为a,b,c和面积S=a2-(b-c)2,则cos A=________.解析:由已知得S=a2-(b-c)2=a2-b2-c2+2bc=-2bc cos A+2bc.又S=12bc sin A,∴12bc sin A=2bc-2bc cos A.∴4-4cos A=sin A,平方得17cos2A-32cos A+15=0.∴(17cos A-15)(cos A-1)=0.∴cos A=1(舍去)或cos A=15 17.答案:15 1710.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cos A=23,sin B=5cos C.(1)求tan C的值;(2)若a=2,求△ABC的面积.解:(1)因为0<A<π,cos A=2 3,所以sin A=1-cos2A=5 3,又5cos C=sin B=sin(A+C)=sin A cos C+cos A sin C=53cos C+23sin C,所以253cos C=23sin C,tan C= 5.(2)由tan C=5得sin C=56,cos C=16,于是sin B =5cos C =56. 由a =2及正弦定理a sin A =c sin C 得c =3,所以△ABC 的面积S △ABC =12ac sinB =12×2×3×56=52. 11.如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ;(2)求BD ,AC 的长.解:(1)在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin(∠ADC -∠B )=sin ∠ADC cos B -cos ∠ADC sin B=437×12-17×32=3314.(2)在△ABD 中,由正弦定理得BD =AB ·sin ∠BAD sin ∠ADB =8×3314437=3. 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+52-2×8×5×12=49. 所以AC =7.12.已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,c =2,C =π3,求△ABC 的面积.解:(1)证明:∵m∥n,∴a sin A=b sin B,∴a·a=b·b,即a2=b2,a=b,∴△ABC为等腰三角形.(2)由m⊥p,得m·p=0,∴a(b-2)+b(a-2)=0,∴a+b=ab.由余弦定理c2=a2+b2-2ab cos C,得4=a2+b2-ab=(a+b)2-3ab,即(ab)2-3ab-4=0,解得ab=4(ab=-1舍去),∴S△ABC =12ab sin C=12×4×sinπ3= 3.。
三角函数与解三角形_测试题(有解析、答案)
三角函数与解三角形 测试题(时间120分钟,满分150分) 第Ⅰ卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一 项是符合题目要求的)1.已知α∈(π2,π),sin α=35,则tan(α+π4)等于 ( )A.17 B .7 C .-17D .-7 2.sin45°·cos15°+cos225°·sin15°的值为 ( )A .-32 B .-12 C.12 D.323.要得到y =sin(2x -π3)的图像,只要将y =sin2x 的图像 ( )A .向左平移π3个单位B .向右平移π3个单位C .向左平移π6个单位D .向右平移π6个单位4.在△ABC 中,若sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3 5.有一种波,其波形为函数y =sin(π2x )的图像,若在区间[0,t ]上至少有2个波峰(图像的最高点),则正整数t 的最小值是 ( ) A .3 B .4 C .5 D .6 6.若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为 ( )A .1B .2 C.3+1 D.3+2 7.使奇函数f (x )=sin(2x +θ)+3cos(2x +θ)在[-π4,0]上为减函数的θ 值为 ( )A .-π3B .-π6 C.5π6 D.2π38.若向量a =(sin(α+π6),1),b =(4,4cos α-3),若a ⊥b ,则sin(α+4π3)等于 ( )A .-34 B.34 C .-14 D.149.函数y =sin(ωx +φ)(x ∈R ,ω>0,0≤φ<2π)的部分图像如图,则 ( )A .ω=π2,φ=π4B .ω=π3,φ=π6C .ω=π4,φ=π4D .ω=π2,φ=5π410.设函数f (x )=A sin(ωx +φ),(A ≠0,ω>0,-π2<φ<π2)的图像关于直线x =2π3对称,它的周期是π,则 ( ) A .f (x )的图像过点(0,12)B .f (x )的图像在[5π12,2π3]上递减C .f (x )的最大值为AD .f (x )的一个对称中心是点(5π12,0)二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上) 11.已知α是第二象限角,sin α=12,则sin2a 等于________12.已知函数f (x )=2sin(ωx +φ)的图像如下图所示,则f (7π12)=________.13.计算:cos10°+3sin10°1-cos80°=________.14.设函数y =2sin(2x +π3)的图像关于点P (x 0,0)成中心对称,若x 0∈[-π2,0],则x 0=________.15.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c 且a cos B -b cos A =35c .则tan A tan B的值为________. 答案:4三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分12分)已知:0<α<π2<β<π,cos(β-π4)=13,sin(α+β)=45.(1)求sin2β的值;(2)设函数f (x )=cos x -sin x ,试求f (α)的值.17.(本小题满分12分)如图,点A ,B 是单位圆上的两点,A ,B点分别在第一、二象限,点C 是圆与x 轴正半轴的交点,△AOB 是正三角形,若点A 的坐标为(35,45),记∠COA =α.(1)求1+sin2α1+cos2α的值;(2)求|BC |2的值.18.(本题满分13分)(2010·黄冈模拟)△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且lg a-lg b =lgcos B -lgcos A ≠0. (1)判断△ABC 的形状;(2)设向量m =(2a ,b ),n =(a ,-3b ),且m ⊥n ,(m +n )·(-m +n )=14,求a ,b ,c .19.(本小题满分12分)已知a =(sin x ,32),b =(cos x ,-1).(1)当a 与b 共线时,求2cos 2x -sin2x 的值; (2)求f (x )=(a +b )·b 在[-π2,0]上的值域.20.(本小题满分13分)已知函数f (x )=A sin(ωx +φ)+B (A >0,ω>0)的一系列对应值如下表:(1)根据表格提供的数据求函数f(x)的一个解析式;(2)根据(1)的结果,若函数y=f(kx)(k>0)周期为2π3,当x∈[0,π3]时,方程f(kx)=m恰有两个不同的解,求实数m的取值范围.21.(本小题满分13分)已知函数y=|cos x+sin x|.(1)画出函数在x∈[-π4,7π4]上的简图;(2)写出函数的最小正周期和在[-π4,3π4]上的单调递增区间;试问:当x在R上取何值时,函数有最大值?最大值是多少?(3)若x是△ABC的一个内角,且y2=1,试判断△ABC的形状.。
解三角形专题练习【附答案】
解三角形专题(高考题)练习【附答案】1、在ABC ∆中,已知内角3A π=,边BC =.设内角B x =,面积为y .(1)求函数()y f x =的解析式和定义域; (2)求y 的最大值.8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当13,4==c a ,求△ABC 的面积。
2、已知ABC ∆中,1||=AC ,0120=∠ABC ,θ=∠BAC ,…记→→•=BC AB f )(θ,(1)求)(θf 关于θ的表达式; (2)(2)求)(θf 的值域;3、在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.21222ac b c a =-+ (1)求B CA 2cos 2sin 2++的值; (2)若b =2,求△ABC 面积的最大值. 4、在ABC ∆中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,向量(2sin ,m B =,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。
(I )求锐角B 的大小; (II )如果2b =,求ABC ∆的面积ABC S ∆的最大值。
5、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cos B 的值; (II )若2=⋅,且22=b ,求c a 和b 的值. 6、在ABC ∆中,cos A =cos 10B =. —(Ⅰ)求角C ; (Ⅱ)设AB =,求ABC ∆的面积.7、在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量(1,2sin )m A =,A B C120°θ(sin ,1cos ),//,3.n A A m n b c a =++=满足 (I )求A 的大小;(II )求)sin(6π+B 的值.8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当13,4==c a ,求△ABC 的面积。
解三角形经典练习题集锦
解三角形经典练习题集锦解三角形一、选择题1.在△ABC中,若C=90°,a=6,B=30°,则c-b等于()A.1B.-1C.2/3D.-2/32.若A为△ABC的内角,则下列函数中一定取正值的是()A.sinAB.cosAC.XXXD.1/tanA3.在△ABC中,角A,B均为锐角,且cosA>sinB,则△ABC的形状是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为60°,则底边长为()A.2B.3/2C.3D.2/35.在△ABC中,若b=2asinB,则A等于()A.30°或60°B.45°或60°C.120°或60°D.30°或150°6.边长为5,7,8的三角形的最大角与最小角的和是()A.90°B.120°C.135°D.150°二、填空题1.在Rt△ABC中,C=90°,则sinAsinB的最大值是1/2.2.在△ABC中,若a^2=b^2+bc+c^2,则A=120°。
3.在△ABC中,若b=2,B=30°,C=135°,则a=2√3.4.在△ABC中,若5.在△ABC中,AB=6-2,C=30°,则AC+BC的最大值是2√7.三、解答题1.在△ABC中,若acosA+bcosB=ccosC,则△ABC为等腰三角形。
2.在△ABC中,证明:a/b-cosBcosA/a-c=b/a-c。
3.在锐角△ABC中,证明:XXX>XXX。
4.在△ABC中,设a+c=2b,A-C=π/3,则sinB=1/2.5.在△ABC中,若(a+b+c)(b+c-a)=3bc,则A的度数为()A.90B.60C.135D.150解析:根据余弦定理,有$b^2+c^2-2bc\cos A=a^2$,代入$(a+b+c)(b+c-a)=3bc$中,整理得$\cos A=-\frac{1}{2}$,即$A=120^\circ$,选项B正确。
经典解三角形练习题(含答案)
解三角形练习题一、选择题1、在△ABC 中,a =3,b =7,c =2,那么B 等于()A . 30°B .45°C .60°D .120° 2、在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( )A .310+B .()1310-C .13+D .3103、在△ABC 中,a =32,b =22,B =45°,则A 等于()A .30°B .60°C .60°或120°D . 30°或150° 4、在△ABC 中,a =12,b =13,C =60°,此三角形的解的情况是( )A .无解B .一解C . 二解D .不能确定 5、在△ABC 中,已知bc c b a ++=222,则角A 为()A .3π B .6πC .32πD . 3π或32π 6、在△ABC 中,若B b A a cos cos =,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形 7、已知锐角三角形的边长分别为1,3,a ,则a 的范围是()A .()10,8B .()10,8C .()10,8D .()8,108、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形9、在△ABC 中,已知===B b x a ,2, 60°,如果△ABC 两组解,则x 的取值范围是()A .2>xB .2<xC .3342<<x D . 3342≤<x 10、在△ABC 中,周长为7.5cm ,且sinA :sinB :sinC =4:5:6,下列结论:①6:5:4::=c b a ②6:5:2::=c b a ③cm c cm b cm a 3,5.2,2=== ④6:5:4::=C B A 其中成立的个数是 ( ) A .0个 B .1个 C .2个 D .3个 11、在△ABC 中,3=AB ,1=AC ,∠A =30°,则△ABC 面积为 ( )A .23B .43C .23或3 D .43 或23 12、已知△ABC 的面积为23,且3,2==c b ,则∠A 等于 ( )A .30°B .30°或150°C .60°D .60°或120°13、已知△ABC 的三边长6,5,3===c b a ,则△ABC 的面积为 ( )A . 14B .142C .15D .15214、某市在“旧城改造”中计划内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( )A . 450a 元B .225 a 元C . 150a 元D . 300a 元15、甲船在岛B 的正南方A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去,当甲,乙两船相距最近时,它们所航行的时间是( )A .7150分钟 B .715分钟 C .21.5分钟 D .2.15分钟16、飞机沿水平方向飞行,在A 处测得正前下方地面目标C 得俯角为30°,向前飞行10000米,到达B 处,此时测得目标C 的俯角为75°,这时飞机与地面目标的距离为( ) A . 5000米B .50002 米C .4000米D .24000 米17、在△ABC 中,10sin =a °,50sin =b °,∠C =70°,那么△ABC 的面积为( )A .641B .321 C .161 D .81 18、若△ABC 的周长等于20,面积是310,A =60°,则BC 边的长是( ) A . 5 B .6 C .7 D .819、已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是( ) A .51<<x B .135<<x C .50<<x D .513<<x20、在△ABC 中,若cCb B a A sin cos cos ==,则△ABC 是( ) A .有一内角为30°的直角三角形 B .等腰直角三角形C .有一内角为30°的等腰三角形D .等边三角形 二、填空题21、在△ABC 中,若∠A:∠B:∠C=1:2:3,则=c b a :: 22、在△ABC 中,===B c a ,2,33150°,则b =23、在△ABC 中,A =60°,B =45°,12=+b a ,则a = ;b = 24、已知△ABC 中,===A b a ,209,181121°,则此三角形解的情况是25、已知三角形两边长分别为1和3,第三边上的中线长为1,则三角形的外接圆半径为 26、在△ABC 中,()()()6:5:4::=+++b a a c c b ,则△ABC 的最大内角的度数是20米30米150°三、解答题27、在△ABC 中,已知210=AB ,A =45°,在BC 边的长分别为20,3320,5的情况下,求相应角C 。
解三角形》基础练习题(精编-详答附后)
解三角形》基础练习题(精编-详答附后)1.此处缺少公式的解释和图示,建议添加。
2.此处公式的变形应该用换行分开,方便阅读。
3.三角形面积公式的解释应该放在公式下方,方便理解。
4.此处缺少解题过程,建议添加。
5.此处缺少解题过程,建议添加。
6.此处缺少解题过程,建议添加。
7.此处缺少解题过程,建议添加。
8.此处缺少解题过程,建议添加。
9.此处缺少解题过程,建议添加。
10.此处缺少解题过程,建议添加。
11.此处缺少解题过程,建议添加。
解三角形常用公式1.正弦定理:frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$$ 其中,$R$为三角形外接圆半径。
正弦定理的变形:a=2R\sin A$$sin A=\frac{a}{2R}$$frac{a}{\sin A}=2R$$a:b:c=\sin A:\sin B:\sin C$$2.余弦定理:a^2=b^2+c^2-2bc\cos A$$余弦定理的变形:cos A=\frac{b^2+c^2-a^2}{2bc}$$ cos A=\frac{b^2+c^2-a^2}{2bc}$$ cos A=\frac{b^2+c^2-a^2}{2bc}$$ a+b-c=2\sqrt{bc}\cos A$$b+c-a=2\sqrt{bc}\cos A$$3.三角形面积公式:S_{\Delta}=\frac{1}{2}ab\sin C=\frac{1}{4}\sqrt{(a^2+b^2-c^2)(a^2+c^2-b^2)(b^2+c^2-a^2)}$$4.角度公式:A+B+C=180^{\circ}$$A+B=180^{\circ}-C$$A+C=180^{\circ}-B$$B+C=180^{\circ}-A$$sin(A+B)=\sin A\cos B+\cos A\sin B$$cos(A+B)=\cos A\cos B-\sin A\sin B$$sin 2A=2\sin A\cos A$$cos 2A=\cos^2 A-\sin^2 A$$解题练1.在 $\triangle ABC$ 中,若 $C=90^{\circ}$,$a=6$,$B=30^{\circ}$,则 $c-b$ 等于:A。
解三角形(总结+题+解析)
解三角形一.正弦定理:A a sin =B b sin =C csin =2R ,其中R 是三角形外接圆半径.正弦定理的如下变形常在解题中用到1.(1) a=2RsinA(2) b=2RsinB(3) c=2RsinC2.(1) sinA=a/2R(2) sinB=b/2R(3) sinC=c/2R3.a :b :c=sinA :sinB:sinC适用类型(1)AAS(2)SSA二.余弦定理:1. a^2 = b^2 + c^2 - 2·b ·c ·cosA2. b^2 = a^2 + c^2 - 2·a ·c ·cosB3. c^2 = a^2 + b^2 - 2·a ·b ·cosC余弦定理的如下变形常在解题中用到1. cosC = (a^2 + b^2 - c^2) / (2·a ·b)2. cosB = (a^2 + c^2 - b^2) / (2·a ·c)3. cosA = (c^2 + b^2 - a^2) / (2·b ·c )适用类型1.SSA2.SAS3.SSS三.余弦定理和正弦定理的面积公式S △ABC =21absinC=21bcsinA=21acsinB(常用类型:已知三角形两边及其夹角)判断解的个数判断三角形的形状有两种途径:(1)将已知的条件统一化成边的关系,用代数求和法求解(2)将已知的条件统一化成角的关系,用三角函数法求解三.解三角形的实际应用测量中相关的名称术语仰角:视线在水平线以上时,在视线所在的垂直平面内,视线与水平线所成的角叫做仰角。
俯角:视线在水平线以下时,在视线所在的垂直平面内,视线与水平线所成的角叫俯角方向角:从指定方向线到目标方向的水平角测距离的应用测高的应用(一)已知两角及一边解三角形例1已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.∠B=180°-30°-45°=105°a=10sin45°/sin30°=10√2sin105°=sin(60+45)=√2/2(√3/2+1/2)=(√6+√2)/41/sin105=√6-√2b=10sin45°/sin105°=5√2(√6-√2)=10(√3-1)(二)已知两边和其中一边对角解三角形例2在△ABC中,已知角A,B,C所对的边分别为a,b,C,若a=2√3,b =√6,A=45°,求边长C由余弦定理,得b²+c²-2bccosA-a²=06+c²-2√3c-12=0c²-2√3c-6=0根据求根公式,得c=√3±3又c>0所以c=3+√3(三)已知两边及夹角,解三角形例3△ABC中,已知b=3,c=33,B=30°,求角A,角C和边a.解:由余弦定理得∴a2-9a+18=0,得a=3或6当a=3时,A=30°,∴C=120°当a=6时,由正弦定理∴A=90°∴C=60°。
三角形真题汇编附答案解析
三角形真题汇编附答案解析一、选择题1.如图,D 、E 分别是ABC V 边AB 、BC 上的点,2AD BD =,点E 为BC 中点,设ADF V 的面积为1S ,CEF △的面积为2S ,若ABC S =V 9,则12S S -=( )A .12B .1C .32D .2【答案】C【解析】【分析】根据12S S -=ABE BCD S S -V V ,根据三角形中线的性质及面积求解方法得到ABE S V ,BCD S △,故可求解.【详解】∵点E 为BC 中点∴ABE S V =12ABC S =V 4.5 ∵2AD BD = ∴BCD S △=13ABC S =V 3 ∵ABE BCD S S -V V =()()ADF CEF BEFD BEFD S S S S +-+V V 四边形四边形=ADF CEF S S -V V∴12S S -=4.5-3=32故选C .【点睛】此题主要考查三角形的面积求解,解题的关键是熟知中线的性质.2.AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F .S △ABC =7,DE=2,AB=4,则AC 长是( )A .4B .3C .6D .2【答案】B【解析】【分析】首先由角平分线的性质可知DF=DE=2,然后由S △ABC =S △ABD +S △ACD 及三角形的面积公式得出结果.【详解】解:AD 是△ABC 中∠BAC 的平分线,∠EAD=∠FADDE ⊥AB 于点E ,DF ⊥AC 交AC 于点F ,∴DF=DE ,又∵S △ABC =S △ABD +S △ACD ,DE=2,AB=4, 11742222AC ∴=⨯⨯+⨯⨯ ∴AC=3.故答案为:B【点睛】本题主要考查了角平分线的性质,熟练掌握角平分线的性质、灵活运用所学知识是解题的关键.3.如图,△ABC 中,AB =AC =10,BC =12,D 是BC 的中点,DE ⊥AB 于点E ,则DE 的长为( )A .65B .85C .125D .245【答案】D【解析】【分析】连接AD ,根据已知等腰三角形的性质得出AD ⊥BC 和BD=6,根据勾股定理求出AD ,根据三角形的面积公式求出即可.【详解】解:连接AD∵AB=AC,D为BC的中点,BC=12,∴AD⊥BC,BD=DC=6,在Rt△ADB中,由勾股定理得:AD=22221068AB BD=+=,∵S△ADB=12×AD×BD=12×AB×DE,∴DE=8624105 AD BDAB⨯⨯==,故选D.【点睛】本题考查了等腰三角形的性质(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)、勾股定理和三角形的面积,能求出AD的长是解此题的关键.4.等腰三角形两边长分别是 5cm 和 11cm,则这个三角形的周长为()A.16cm B.21cm 或 27cm C.21cm D.27cm【答案】D【解析】【分析】分两种情况讨论:当5是腰时或当11是腰时,利用三角形的三边关系进行分析求解即可.【详解】解:当5是腰时,则5+5<11,不能组成三角形,应舍去;当11是腰时,5+11>11,能组成三角形,则三角形的周长是5+11×2=27cm.故选D.【点睛】本题主要考查了等腰三角形的性质, 三角形三边关系,掌握等腰三角形的性质, 三角形三边关系是解题的关键.5.如图,11∥l2,∠1=100°,∠2=135°,则∠3的度数为()A.50°B.55°C.65°D.70°【答案】B【解析】【分析】如图,延长l2,交∠1的边于一点,由平行线的性质,求得∠4的度数,再根据三角形外角性质,即可求得∠3的度数.【详解】如图,延长l2,交∠1的边于一点,∵11∥l 2,∴∠4=180°﹣∠1=180°﹣100°=80°,由三角形外角性质,可得∠2=∠3+∠4,∴∠3=∠2﹣∠4=135°﹣80°=55°,故选B .【点睛】本题考查了平行线的性质及三角形外角的性质,熟练运用平行线的性质是解决问题的关键.6.如图,在ABC ∆中,33B ∠=︒,将ABC ∆沿直线m 翻折,点B 落在点D 的位置,则12∠-∠的度数是( )A .33︒B .56︒C .65︒D .66︒【答案】D【解析】【分析】 由折叠的性质得到∠D=∠B ,再利用外角性质即可求出所求角的度数.【详解】解:如图,由折叠的性质得:∠D=∠B=33°,根据外角性质得:∠1=∠3+∠B ,∠3=∠2+∠D ,∴∠1=∠2+∠D+∠B=∠2+2∠B=∠2+66°,∴∠1-∠2=66°.故选:D.【点睛】此题考查了翻折变换以及三角形外角性质的运用,熟练掌握折叠的性质是解本题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.图中的三角形被木板遮住了一部分,这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能【答案】D【解析】从图中,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个直角,故选D.8.如图,赵爽弦图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形两条直角边长分别为a和b.若8ab ,大正方形的边长为5,则小正方形的边长为()A.1 B.2 C.3 D.4【答案】C【解析】【分析】由题意可知:中间小正方形的边长为a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:12ab=12×8=4,∴根据4×12ab+(a﹣b)2=52=25,得4×4+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3(舍负),故选:C.【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.9.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4 B.8 C.6 D.10【答案】B【解析】【分析】【详解】解:设AG与BF交点为O,∵AB=AF,AG平分∠BAD,AO=AO,∴可证△ABO≌△AFO,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF∥BE,∴可证△AOF≌△EOB,AO=EO,∴AE=2AO=8,故选B.【点睛】本题考查角平分线的作图原理和平行四边形的性质.10.如图,正方体的棱长为6cm,A是正方体的一个顶点,B是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A爬到点B的最短路径是()A.9 B.310C.326D.12【答案】B【解析】【分析】将正方体的左侧面与前面展开,构成一个长方形,用勾股定理求出距离即可.【详解】解:如图,AB=22(36)3310++= .故选:B .【点睛】此题求最短路径,我们将平面展开,组成一个直角三角形,利用勾股定理求出斜边就可以了.11.对于图形的全等,下列叙述不正确的是( )A .一个图形经过旋转后得到的图形,与原来的图形全等B .一个图形经过中心对称后得到的图形,与原来的图形全等C .一个图形放大后得到的图形,与原来的图形全等D .一个图形经过轴对称后得到的图形,与原来的图形全等【答案】C【解析】A. 一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;B. 一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;C. 一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;D. 一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意, 故选C.【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.12.如图,在平面直角坐标系中,已知点A (﹣2,0),B (0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的正半轴于点C ,则点C 的横坐标介于( )A .0和1之间B .1和2之间C .2和3之间D .3和4之间【答案】B【解析】【分析】 先根据点A ,B 的坐标求出OA ,OB 的长度,再根据勾股定理求出AB 的长,即可得出OC 的长,再比较无理数的大小确定点C 的横坐标介于哪个区间.【详解】∵点A ,B 的坐标分别为(﹣2,0),(0,3),∴OA =2,OB =3,在Rt △AOB 中,由勾股定理得:AB =222+313= ∴AC =AB =13 ,∴OC =13﹣2,∴点C 的坐标为(13﹣2,0),∵3134<< ,∴11322<-< ,即点C 的横坐标介于1和2之间,故选:B .【点睛】本题考查了弧与x 轴的交点问题,掌握勾股定理、无理数大小比较的方法是解题的关键.13.如图,在ABC ∆中,90C ∠=︒,2AC =,点D 在BC 上,5AD =,ADC 2B ∠=∠,则BC 的长为( )A 51B 51C 31D 31【答案】B【解析】【分析】根据ADC 2B ∠=∠,可得∠B=∠DAB ,即BD AD ==Rt △ADC 中根据勾股定理可得DC=1,则1.【详解】解:∵∠ADC 为三角形ABD 外角∴∠ADC=∠B+∠DAB∵ADC 2B ∠=∠∴∠B=∠DAB∴BD AD ==在Rt △ADC 中,由勾股定理得:DC 1===∴1故选B【点睛】 本题考查勾股定理的应用以及等角对等边,关键抓住ADC 2B ∠=∠这个特殊条件.14.下列几组线段中,能组成直角三角形的是( )A .2,3,4B .3,4,6C .5,12,13D .2,5,5【答案】C【解析】【分析】要验证是否可以组成直角三角形,根据勾股定理的逆定理,只要验证三边的关系是否满足两边平方是否等于第三边的平方即可,分别验证四个选项即可得到答案.【详解】A .222234+≠,故不能组成直角三角形;B. 222346+≠,故不能组成直角三角形;C .22251213+=,故可以组成直角三角形;D .222255+≠,故不能组成直角三角形;故选C .【点睛】本题主要考查了勾股定理的逆定理(如果三角形两边的平方等于第三边的平方,那么这个三角形是直角三角形),掌握勾股定理的逆定理是解题的关键.15.如图,Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于D ,若AD =5cm ,CD =3cm ,则点D 到AB 的距离DE 是( )A.5cm B.4cm C.3cm D.2cm【答案】C【解析】∵点D到AB的距离是DE ,∴DE⊥AB,∵BD平分∠ABC,∠C =90°,∴把Rt△BDC沿BD翻折后,点C在线段AB上的点E处,∴DE=CD,∵CD =3cm,∴DE=3cm.故选:C.16.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是()A.25°B.40°C.25°或40°D.50°【答案】C【解析】∵等腰三角形有一个是50°∴有两种可能①是三个角为50°、50°、80°;②是三个角为50°、65°、65°分情况说明如下:①当三个角为50°、50°、80°时,根据图①,可得其一条腰上的高与底边的夹角∠DAB=40°;②当三个角为50°、65°、65°,根据图②,可得其一条腰上的高与底边的夹角∠DAB=25°故故选:C① ②点睛:本题主要考查三角形内角和定理:三角形内角和为180°.17.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,若添加下列一个条件后,仍然不能证明△ABC≌△DEF,则这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF【答案】D【解析】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选D.点睛:本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS 和HL是解题的关键.18.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=12AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个【答案】D【解析】试题解析:在△ABD与△CBD中,{AD CDAB BCDB DB===,∴△ABD≌△CBD(SSS),故③正确;∴∠ADB=∠CDB,在△AOD与△COD中,{AD CDADB CDB OD OD=∠=∠=,∴△AOD ≌△COD (SAS ),∴∠AOD=∠COD=90°,AO=OC ,∴AC ⊥DB ,故①②③正确;故选D .考点:全等三角形的判定与性质.19.如图,已知AB=AE,AC=AD,下列条件中不能判定△ABC ≌△AED 的是( )A .BC=EDB .∠BAD=∠EAC C .∠B=∠ED .∠BAC=∠EAD【答案】C【解析】 解:A .∵AB =AE ,AC =AD ,BC =ED ,∴△ABC ≌△AED (SSS ),故A 不符合题意; B . ∵∠BAD =∠EAC ,∴∠BAC =∠EAD .∵AB =AE ,∠BAC =∠EAD ,AC =AD , ∴△ABC ≌△AED (SAS ),故B 不符合题意;C .不能判定△ABC ≌△AED ,故C 符合题意.D .∵AB =AE , ∠BAC =∠EAD ,AC =AD ,∴△ABC ≌△AED (SAS ),故D 不符合题意. 故选C .20.如图,长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,∠BAF=600,那么∠DAE 等于( )A .45°B .30 °C .15°D .60°【答案】C【解析】【分析】先根据矩形的性质得到∠DAF=30°,再根据折叠的性质即可得到结果.【详解】解:∵ABCD是长方形,∴∠BAD=90°,∵∠BAF=60°,∴∠DAF=30°,∵长方形ABCD沿AE折叠,∴△ADE≌△AFE,∴∠DAE=∠EAF=12∠DAF=15°.故选C.【点睛】图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.。
解三角形练习题附答案
一、选择题1.在锐角△ABC中,角A,B所对的边长分别为a,b.若2a sin B=b,则角A等于()A. B. C. D.2.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为()A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定二、填空题3.已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sin A-sin B)=(c-b)·sin C,则△ABC面积的最大值为________.4.在△ABC中,角A,B,C的对边分别为a,b,c,已知4sin2-cos 2C=,且a+b=5,c=,则△ABC的面积为________.5.如图,在△ABC中,已知点D在BC边上,AD⊥AC,sin∠BAC=,AB=3,AD=3,则BD的长为________.6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A-cos2B=sin A cos A-sin B cos B.(1)求角C的大小;(2)若sin A=,求△ABC的面积.7.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知4sin2+4sin A sin B=2+.(1)求角C的大小;(2)已知b=4,△ABC的面积为6,求边长c的值.8.在△ABC中,a、b、c分别为角A、B、C所对的边,且c=-3bcosA,tanC=.(1) 求tanB的值;(2) 若c=2,求△ABC的面积.9.在△ABC中,设角A、B、C的对边分别为a、b、c,且a cos C+c=b.(1) 求角A的大小;(2) 若a=,b=4,求边c的大小.10.在△ABC中,角A,B,C的对边分别为a,b,c,且=.(1)求角的值;(2)若角,边上的中线=,求的面积.11.在△ABC中,角A,B,C对应的边分别是a,b,c.已知cos 2A-3cos(B+C)=1.(1)求角A的大小;(2)若△ABC的面积S=5,b=5,求sin B sin C的值.12.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cos A=,sin B=cos C.(1)求tan C的值;(2)若a=,求△ABC的面积.13.如图,在△ABC中,∠B=,AB=8,点D在BC边上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.答案解析1.【答案】A【解析】本题主要考查锐角三角形的定义、正弦定理与解三角方程,意在考查考生的转化能力与三角变换能力.由正弦定理可得,2a sin B=b可化为2sin A sin B=sin B,又sin B≠0,所以sin A=,又△ABC为锐角三角形,得A=.2.【答案】B【解析】本题考查正弦定理和两角和的正弦公式的逆用.依据题设条件的特点,由正弦定理,得sin B cos C+cos B sin C=sin2A,有sin(B+C)=sin2A,从而sin(B+C)=sin A=sin2A,解得sin A=1,∴A =,故选B3.【答案】【解析】∵===2R,a=2,又(2+b)(sin A-sin B)=(c-b)sin C可化为(a+b)(a-b)=(c-b)·c,∴a2-b2=c2-bc,∴b2+c2-a2=bc.∴===cos A,∴A=60°.∵△ABC中,4=a2=b2+c2-2bc·cos 60°=b2+c2-bc≥2bc-bc=bc(“=”当且仅当b=c时取得),∴S△ABC=·bc·sin A≤×4×=.4.【答案】【解析】因为4sin2-cos 2C=,所以2[1-cos(A+B)]-2cos2C+1=,2+2cos C-2cos2C+1=,cos2C-cos C+=0,解得cos C=.根据余弦定理,有cos C==,则ab=a2+b2-7,故3ab=a2+b2+2ab-7=(a+b)2-7=25-7=18,所以ab =6,所以△ABC的面积S△ABC=ab sin C=×6×=.5.【答案】【解析】题考查诱导公式、余弦定理等基础知识,意在考查考生的转化和化归能力、运算求解能力.因为sin∠BAC=,且AD⊥AC,所以sin=,所以cos∠BAD=,在△BAD中,由余弦定理得,BD===.6.【答案】(1);(2)【解析】(1)由题意得-=sin 2A-sin 2B,即sin 2A-cos 2A=sin 2B-cos 2B,sin=sin.由a≠b,得A≠B.又A+B∈(0,π),得2A-+2B-=π,即A+B=,所以C=.(2)由c=,sin A=,=,得a=.由a<c,得A<C,从而cos A=,故sin B=sin(A+C)=sin A cos C+cos A sin C=,所以,△ABC的面积为S=ac sin B=.7.【答案】(1);(2).【解析】(1)由已知得2[1-cos(A-B)]+4sin A sin B=2+,化简得-2cos A cos B+2sin A sin B=,故cos(A+B)=-,所以A+B=,从而C=.(2)因为S△ABC=ab sin C,由S△ABC=6,b=4,C=,得a=3.由余弦定理c2=a2+b2-2ab cos C,得c=.8.【答案】(1);(2).【解析】(1) 由正弦定理,得sinC=-3sinBcosA,即sin(A+B)=-3sinBcosA.所以sinAcosB+cosAsinB=-3sinBcosA.从而sinAcosB=-4sinBcosA.因为cosAcosB≠0,所以=-4.又tanC=-tan(A+B)=,由(1)知,=,解得tanB=.(2) 由(1),得sinA=,sinB=,sinC=.由正弦定理,得a===.所以△ABC的面积为acsinB=××2×=.9.【答案】(1);(2)2±.【解析】(1) 用正弦定理,由a cos C+c=b,得sin A cos C+sin C=sin B.∵ sin B=sin(A+C)=sin A cos C+cos A sin C,∴sin C=cos A sin C.∵ sin C≠0,∴ cos A=.∵ 0<A<π,∴A=.(2) 用余弦定理,得a2=b2+c2-2bc cos A.∵a=,b=4,∴ 15=16+c2-2×4×c×.即c2-4c+1=0.则c=2±.10.【答案】(1);(2)【解析】(1)因为,由正弦定理得,即=sin(A+C) .因为B=π-A-C,所以sin B=sin(A+C),所以.因为B∈(0,π),所以sin B≠0,所以,因为,所以.(2)由(1)知,所以,.设,则,又在△AMC中,由余弦定理得即解得x=2.故11.【答案】(1);(2)【解析】(1)由cos 2A-3cos(B+C)=1,得2cos2A+3cos A-2=0,即(2cos A-1)(cos A+2)=0,解得cos A=或cos A=-2(舍去).因为0<A<π,所以A=.(2)由S=bc sin A=bc·=bc=5,得bc=20.又b=5,知c=4.由余弦定理得a2=b2+c2-2bc cos A=25+16-20=21,故a=.又由正弦定理得sin B sin C=sin A·sin A=sin2A=×=.12.【答案】(1);(2)【解析】(1)因为0<A<π,cos A=,得sin A==.又cos C=sin B=sin (A+C)=sin A cos C+cos A sin C=cos C+sin C.所以tan C=.(2)由tan C=,得sin C=,cos C=.于是sin B=cos C=.由a=及正弦定理=,得c=.设△ABC的面积为S,则S=ac sin B=.13.【答案】(1)(2)7【解析】(1)在△ADC中,因为cos∠ADC=,所以sin∠ADC=.所以sin∠BAD=sin(∠ADC-∠B)=sin∠ADC cos B-cos∠ADC sin B =×-×=.(2)在△ABD中,由正弦定理得BD===3.在△ABC中,由余弦定理得AC2=AB2+BC2-2AB·BC·cos B=82+52-2×8×5×=49.所以AC=7.。
高三数学复习专题练习题:解三角形(含答案)
⾼三数学复习专题练习题:解三⾓形(含答案)⾼三数学复习专题练习:解三⾓形(含答案)⼀. 填空题(本⼤题共15个⼩题,每⼩题5分,共75分)1.在△ABC 中,若2cosBsinA=sinC,则△ABC ⼀定是三⾓形.2.在△ABC 中,A=120°,AB=5,BC=7,则CBsin sin 的值为 . 3.已知△ABC 的三边长分别为a,b,c,且⾯积S △ABC =41(b 2+c 2-a 2),则A= . 4.在△ABC 中,BC=2,B=3π,若△ABC 的⾯积为23,则tanC 为 . 5.在△ABC 中,a 2-c 2+b 2=ab,则C= .6.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则C= .7.在△ABC 中,⾓A ,B ,C 所对的边分别为a,b,c ,若a=1,b=7,c=3,则B= . 8.在△ABC 中,若∠C=60°,则c b a ++ac b+= . 9.如图所⽰,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km, 灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为 km.10.⼀船⾃西向东匀速航⾏,上午10时到达⼀座灯塔P 的南偏西75°距塔68海⾥的M 处,下午2时到达这座灯塔的东南⽅向的N 处,则这只船的航⾏速度为海⾥/⼩时. 11. △ABC 的内⾓A 、B 、C 的对边分别为a 、b 、c ,若c=2,b=6,B=120°,则a= .12. 在△ABC 中,⾓A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tanB=3ac ,则⾓B 的值为 . 13. ⼀船向正北航⾏,看见正西⽅向有相距10 海⾥的两个灯塔恰好与它在⼀条直线上,继续航⾏半⼩时后,看见⼀灯塔在船的南偏西600,另⼀灯塔在船的南偏西750,则这艘船是每⼩时航⾏________ 海⾥.14.在△ABC 中,A=60°,AB=5,BC=7,则△ABC 的⾯积为 .15.在△ABC 中,⾓A 、B 、C 所对的边分别为a 、b 、c.若(3b-c )cosA=acosC ,则cosA= .(资料由“⼴东考神”上传,如需更多⾼考复习资料,请上 tb ⽹搜“⼴东考神”)⼆、解答题(本⼤题共6个⼩题,共75分)1、已知△ABC 中,三个内⾓A ,B ,C 的对边分别为a,b,c,若△ABC 的⾯积为S ,且2S=(a+b )2-c 2,求tanC 的值. (10分)2、在△ABC 中,⾓A ,B ,C 所对的边分别为a,b,c ,并且a 2=b(b+c). (11分)(1)求证:A=2B ;(2)若a=3b,判断△ABC 的形状.3、在△ABC 中,a 、b 、c 分别是⾓A ,B ,C 的对边,且C B cos cos =-ca b+2. (12分)(1)求⾓B 的⼤⼩;(2)若b=13,a+c=4,求△ABC 的⾯积.4、△ABC 中,⾓A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-a 2+bc=0. (12分) (1)求⾓A 的⼤⼩;(2)若a=3,求bc 的最⼤值;(3)求cb C a --?)30sin(的值.5、已知△ABC 的周长为)12(4+,且sin sin B C A +=. (12分)(1)求边长a 的值;(2)若A S ABC sin 3=?,求A cos 的值.6、在某海岸A 处,发现北偏东 30⽅向,距离A 处)(13+n mile 的B 处有⼀艘⾛私船在A 处北偏西 15的⽅向,距离A 处6n mile 的C 处的缉私船奉命以35n mile/h 的速度追截⾛私船. 此时,⾛私船正以5 n mile/h 的速度从B 处按照北偏东 30⽅向逃窜,问缉私船⾄少经过多长时间可以追上⾛私船,并指出缉私船航⾏⽅向. (12分)ACB3015· ·参考答案:⼀、填空题:1、等腰;2、53;3、45°;4、33;5、60°;6、45°或135°;7、65π;8、1;9、3a ;10、2617;11、2;12、3π或32π;13、10;14、103;15、33。
(完整版)解三角形经典练习题集锦(附答案)
解三角形一、选择题1.在△ABC 中,若030,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D .Atan 13.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( ) A .2 B .23C .3D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或 B .006045或 C .0060120或 D .0015030或 6.边长为5,7,8的三角形的最大角与最小角的和是( )A .090 B .0120 C .0135 D .0150二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。
2.在△ABC 中,若=++=A c bc b a 则,222_________。
3.在△ABC 中,若====a C B b 则,135,30,200_________。
4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则 C =_____________。
5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。
三、解答题1.在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?2.在△ABC 中,求证:)cos cos (aA bB c a b b a -=- 3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形一、选择题1.在△ABC 中,若0030,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D .Atan 13.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( ) A .2 B .23C .3D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或 D .0015030或 6.边长为5,7,8的三角形的最大角与最小角的和是( ) A .090 B .0120 C .0135 D .0150二、填空题1.在Rt △ABC 中,090C =,则B A s i n s i n的最大值是_______________。
2.在△ABC 中,若=++=A c bc b a 则,222_________。
3.在△ABC 中,若====a C B b 则,135,30,20_________。
4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。
5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。
三、解答题1.在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?2.在△ABC 中,求证:)cos cos (aA bB c a b b a -=-3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。
4.在△ABC 中,设,3,2π=-=+C A b c a 求B sin 的值。
解三角形一、选择题1.在△ABC 中,::1:2:3A B C =,则::a b c 等于( ) A .1:2:3 B .3:2:1 C.2 D. 2.在△ABC 中,若角B 为钝角,则sin sin B A -的值( ) A .大于零 B .小于零 C .等于零 D .不能确定 3.在△ABC 中,若B A 2=,则a 等于( )A .A b sin 2B .A b cos 2C .B b sin 2D .B b cos 2 4.在△ABC 中,若2lg sin lg cos lg sin lg =--C B A ,则△ABC 的形状是( )A .直角三角形B .等边三角形C .不能确定D .等腰三角形 5.在△ABC 中,若,3))((bc a c b c b a =-+++则A = ( ) A .090 B .060 C .0135 D .01506.在△ABC 中,若1413cos ,8,7===C b a ,则最大角的余弦是( ) A .51- B .61- C .71- D .81-7.在△ABC 中,若tan 2A B a ba b--=+,则△ABC 的形状是( ) A .直角三角形B .等腰三角形 C .等腰直角三角形 D .等腰三角形或直角三角形二、填空题1.若在△ABC中,060,13,ABC A b S ∆∠===则CB A cb a sin sin sin ++++=_______。
2.若,A B 是锐角三角形的两内角,则B A tan tan _____1(填>或<)。
3.在△ABC 中,若=+=C B C B A tan tan ,cos cos 2sin 则_________。
4.在△ABC 中,若,12,10,9===c b a 则△ABC 的形状是_________。
5.在△ABC 中,若=+===A c b a 则226,2,3_________。
6.在锐角△ABC 中,若2,3a b ==,则边长c 的取值范围是_________。
三、解答题1. 在△ABC中,0120,,ABCA c b a S =>==c b ,。
2. 在锐角△ABC 中,求证:1tan tan tan >⋅⋅C B A 。
3.在△ABC 中,求证:2cos 2cos 2cos 4sin sin sin C B A C B A =++。
4.在△ABC 中,若0120=+B A ,则求证:1=+++ca b c b a 。
5.在△ABC 中,若223coscos 222C A b a c +=,则求证:2a c b +=(数学5必修)第一章:解三角形一、选择题1.A 为△ABC 的内角,则A A cos sin +的取值范围是( ) A .)2,2( B .)2,2(- C .]2,1(- D .]2,2[- 2.在△ABC 中,若,900=C 则三边的比c ba +等于( ) A .2cos2BA +B .2cos 2B A -C .2sin 2B A +D .2sin 2BA -3.在△ABC 中,若8,3,7===c b a ,则其面积等于( ) A .12 B .221C .28D .36 4.在△ABC 中,090C ∠=,00450<<A ,则下列各式中正确的是( )A .sin cos A A >B .sin cos B A >C .sin cos A B >D .sin cos B B >5.在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( ) A .090 B .060 C .0120 D .01506.在△ABC 中,若22tan tan b a B A =,则△ABC 的形状是( ) A .直角三角形 B .等腰或直角三角形 C .不能确定 D .等腰三角形二、填空题1.在△ABC 中,若,sin sin B A >则A 一定大于B ,对吗?填_________(对或错)2.在△ABC 中,若,1cos cos cos 222=++C B A 则△ABC 的形状是______________。
3.在△ABC 中,∠C 是钝角,设,cos cos ,sin sin ,sin B A z B A y C x +=+==则z y x ,,的大小关系是___________________________。
4.在△ABC 中,若b c a 2=+,则=+-+C A C A C A sin sin 31cos cos cos cos ______。
5.在△ABC 中,若,tan lg tan lg tan lg 2C A B +=则B 的取值范围是_______________。
6.在△ABC 中,若ac b =2,则B B C A 2cos cos )cos(++-的值是_________。
三、解答题1.在△ABC 中,若)sin()()sin()(2222B A b a B A b a +-=-+,请判断三角形的形状。
1. 如果△ABC内接于半径为R的圆,且,sin )2()sin (sin 222B b a C A R -=-求△ABC 的面积的最大值。
3.已知△ABC 的三边c b a >>且2,2π=-=+C A b c a ,求::a b c4.在△ABC中,若()()3a b c a b c ac++-+=,且t a n t a 33A C +=,AB边上的高为,,A B C 的大小与边,,a b c 的长[基础训练A 组]一、选择题1.C00tan 30,tan 302bb ac b c b a=====-=2.A 0,sin 0A A π<<> 3.C cos sin()sin ,,22A AB A B ππ=->-都是锐角,则,,222A B A B C πππ->+<>4.D 作出图形5.D 012sin ,sin 2sin sin ,sin ,302b a B B A B A A ====或0150 6.B设中间角为θ,则22205871c o s ,60,182582θθ+-===-=⨯⨯为所求 二、填空题1.12 11sin sin sin cos sin 222A B A A A ==≤ 2.0120 22201cos ,12022b c a A A bc +-==-= 3.26-00sin 215,,4sin 4sin154sin sin sin 4a b b A A a A A B B ======⨯4. 0120 a ∶b ∶c =sin A ∶sin B ∶sin C =7∶8∶13,令7,8,13a k b k c k ===22201cos ,12022a b c C C ab +-==-=5. 4,,sin sin sin sin sin sin AC BC AB AC BC ABB AC B A C+===+AC BC +sin )cos22A B A BA B +-=+=max 4cos4,()42A BAC BC -=≤+= 三、解答题1. 解:co a A+sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C+=+-=cos()cos(),2cos cos 0A B A B A B -=-+= cos 0A =或cos 0B =,得2A π=或2B π=所以△ABC 是直角三角形。
2. 证明:将ac b c a B 2cos 222-+=,bc a c b A 2cos 222-+=代入右边得右边2222222222()222a c b b c a a b c abc abc ab+-+--=-=22a b a b ab b a-==-=左边,∴)cos cos (aA bB c a b b a -=- 3.证明:∵△ABC 是锐角三角形,∴,2A B π+>即022A B ππ>>->∴sin sin()2A B π>-,即s i nc o A B >;同理sin cos B C >;sin cos C A >∴C B A C B A cos cos cos sin sin sin ++>++4.解:∵2,a c b +=∴sin sin 2sin A C B +=,即2s i nc o s 4s i nc o s2222A CA CB B+-=,∴1sincos 222B A C -==,而0,22B π<<∴cos2B =∴sin 2sincos 222B B B ===839[综合训练B 组]一、选择题1.C12,,,::sin :sin :sin ::2632222A B C a b c A B C πππ======2.A ,A B A B ππ+<<-,且,A B π-都是锐角,s i n s i n ()A B B π<-=3.D sin sin 22sin cos ,2cos A B B B a b B ===4.D sin sin lglg 2,2,sin 2cos sin cos sin cos sin A AA B C B C B C===sin()2cos sin ,sin cos cos sin 0,B C B C B C B C +=-= sin()0,B C B C -==,等腰三角形5.B 22()()3,()3,a b c b c a bc b c a bc +++-=+-=222222013,cos ,6022b c a b c a bc A A bc +-+-==== 6.C 2222cos 9,3c a b ab C c =+-==,B 为最大角,1cos 7B =-7.D 2cos sinsin sin 22tan 2sin sin 2sin cos 22A B A B A B a b A B A B A Ba b A B +----===+-++, tan2tan ,tan 022tan 2A B A B A B A B ---==+,或tan 12A B += 所以A B =或2A B π+=二、填空题1.3392211sin 4,13,222ABCS bc A c c a a ∆==⨯====sin sin sin sin a b c a A B C A ++===++2.>,22A B A Bππ+>>-,即si n()2t a n t a n ()2co s ()2B A B B πππ->-=- cos 1sin tan B B B ==,1tan ,tan tan 1tan A A B B>> 3. 2 sin sin tan tan cos cos B CB C B C+=+ sin cos cos sin sin()2sin 1cos cos sin sin 2B C B C B C AB C A A +++===4. 锐角三角形 C 为最大角,cos 0,C C >为锐角5. 060222231cos 22b c a A bc +-+-====6.222222222222213,49,594a b c c a c b c c c c b a c ⎧⎧+>>⎪⎪+>+><<<<⎨⎨⎪⎪+>+>⎩⎩三、解答题1.解:1sin 4,2ABC S bc A bc ∆=== 2222cos ,5a b c bc A b c =+-+=,而c b >所以4,1==c b2. 证明:∵△ABC 是锐角三角形,∴,2A B π+>即022A B ππ>>->∴sin sin()2A B π>-,即s i nc o A B >;同理sin cos B C >;sin cos C A >∴sin sin sin sin sin sin cos cos cos ,1cos cos cos A B CA B C A B C A B C>>∴1tan tan tan >⋅⋅C B A3.证明:∵s in s i n22A B A B A B C A B +-++=++ 2sin cos 2sin cos 2222A B A B A B A B +-++=+ 2sin (cos cos )222A B A B A B+-+=+ 2cos 2cos cos 222C A B =⋅4coscos cos 222A B C = ∴2cos 2cos 2cos 4sin sin sin CB AC B A =++ 4.证明:要证1=+++c a b c b a ,只要证2221a ac b bcab bc ac c +++=+++, 即222a b c ab +-= 而∵0120,A B +=∴060C =2222220cos ,2cos602a b c C a b c ab ab ab+-=+-==∴原式成立。