课题:由三视图确定几何体

合集下载

第3期利用三视图确定正方体的个数

第3期利用三视图确定正方体的个数

第3期利用三视图确定正方体的个数三规则:主俯长对正、主左高平齐、俯左宽相等即:主视图和俯视图的长要相等主视图和左视图的高要相等左视图和俯视图的宽要相等。

应用如图表示某个由小正方体搭成的几何体的俯视图,俯视图无法表示该几何体的高度,用3代表右上角这个位置有3个立方体。

用2表示左上角这个位置有2个立方体,1表示右下角这个位置有1个立方体,此时,我们不但可以轻易地画出该几何体的其它两个视图,也可以得知该物体一共由1 2 3=6个小正方体组成.借助俯视图的这个功能,我们在确定一个几何体由多少个小正方体组成的时候,可以先画出俯视图,再根据主视图与左视图,确定俯视图各位置上的立方体的个数,从而快速找出正方体的个数.例1 如图是由一些相同的小正方体构成的立体图形的三视图,那么构成这个立体图形的小正方体有_______个解析第一步:从俯视图入手,结合主视图,从正面看过去,也就是从如下图的箭头方向看过去,可以确定的是俯视图最右侧只有一层,标上数字1,左边这列最高有两层,具体数目还不能确定第二步:结合左视图,从箭头方向看过去,右侧有两个一层的,所以马上可以确定如图两个位置的数量.由于左视图的最左侧最高有2个,所以,沿箭头方向看过去最左侧最高有2个,所以,俯视图的空白处应填2,如图,所以,一共有2 1 1 1=5个正方体.点拨:此立体图形的三视图都已知,所以俯视图结合主视图和左视图,容易明确个位置上的正方体的个数.例2 一个几何体由若干个大小相等的小立方体组成,下面分别是此几何体的主视图,和俯视图,该几何体至少是用错少个小立方块搭成的.解析此题已经存在俯视图,还是从俯视图出发考虑,因为主视图已经确定,如蓝色所示,右侧两个位置最高只有一个,所以填写数字1.而最左侧最高有两个,因为是最少是多少个,所以左侧三个位置,只要有一个位置是2个,其余都是1个即可,如图,有下面三种可能总数都为2 2 2=6个.此时顺便还可以求出最多有多少个.如图,只需要左侧最高都是2个即可,所以,最多有2 2 2 1 1=8个.点拨:此题已知主视图与俯视图,可利用主视图在俯视图的基础上填写添加数字,但由于左视图不确定,所以,可能有多种情况.例3 如图,一个几何体是由若干个小正方体堆积而成的,主视、左视图如下,要摆成这样的图形,至少需要多少块小正方形,最多需要多少块小正方体.解析此题没有俯视图,不妨尝试去画出俯视图,主视图和俯视图的长要相等左视图和俯视图的宽要相等.已知俯视图的长和和宽也不一定能完全确定俯视图的形状,但是可以确定俯视图最大可能是什么由题意,俯视图最大可能是首先算出几何体最多可能是多少个,再次基础上,减少正方体的个数,在主视图和左视图不变的前提下,看最少能剩下几个.结合主视图,从前面看俯视图,右侧两个最高是1,所以可以确定右侧两列的最多全是1结合左视图,从左边看俯视图,最上面行和最下面的行最高都是2,如图.最后确定左视图中间的,最高为1 .此时我们得出的小正方体最多可能是2 2 1 1 1 1 1 1 1=11个.如图,减少4个,不影响主视图再减少1个,不影响左视图不能再减少了,所以,此时的数量2 2 1 1=6即是最少需要的正方体个数.点拨:此题已知主视图与左视图,但是不知道俯视图,利用投影的原则,主视图和俯视图的长要相等,左视图和俯视图的宽要相等.尝试画出俯视图的最大可能,首先确定出几何体的最多可能的正方体的个数,在此基础上减少正方体的个数,但不改变主视图与俯视图,到最后不能再减少时,即可确定最少的可能的个数.《义务教育数学课程标准》指出,在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。

怎样由三视图确定正方体个数

怎样由三视图确定正方体个数

怎样由三视图确定正方体个数山东李浩明三视图不仅是新教材的一大亮点,也是近些年各省市中考的热点•学习视图,不仅会画空间几何体的三视图,还应会根据一个空间几何体的三视图,想象出这个简单几何体的形状,若是由小正方体组成的几何体,则要能确定小正方体的个数例1.由一些大小相同的小正方体组成的几何体的三种视图如图所示,那么组成几何(A) 4(B) 5 (C) 6 (D) 7析解:解决这类问题要做到看俯视图,从左至右共有三列,从上到下共三行;看主视图,共有三列两行,第一列和第三列上分别只有一层,第二列上有两层,则俯视图中的一、三列上分别只有一个正方体,分别填 1 (如图1);三看左视图,共三列两行,第一列和第三列上分别只有一层,第二列上有两层,则俯视图中第一行只有一个正方体,填1,第二行有两个正方体,填2,第三行第二列只有一个正方体,填每个小正方体的个数如图1所示,搭成这个几何体的小正方体的个数是本题结果就选(C).相应的几何体如图2 所示.1,所以该俯视图上1+2+1 + 1+1=6,故主视图左视图俯视图图1例2.如图是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是 ___________ 个•主视圉在观图俯視图析解:先看俯视图,从左至右共有两列,从上到下共两行;再看主视图,共有两列两行,第一列上只有一层,第二列上有两层,则俯视图中的第一列的第一行只有一个正方体,填1 (如图3),第二列的第一行、第二行中至少有一行有两个正方体,具体情况再看左视图;左视图共两列两行,第一列有两层,第二列上只有一层,则俯视图中(观察者需站在俯视图的左侧看)第一行的第二列有两个正方体,填2,第二行只有一个正方体,填1,所以该俯视图上每个小正方体的个数如图3所示,搭成这个几何体的小正方体的个数是1+2+仁4,故本题结果就填4.相应的几何体如图4 所示.例3 •一个几何体是由若干个相同正方体组成的,其主视图和左视图如图5所示,则这个几何体最多可由多少个这样的正方体组成()(A) 12 个(B) 13 个(C) 14 个(D) 18 个2121112]_2_正方形,由主视图可知在俯视图第1、3列每个正方形内填2,第2列每个正方形内填1;解析:主视图和左视图都为3列,可知几何体的俯视图有三列三行,最多为又由左视图可知,在俯视图的1、3 行中(观察者需站在俯视图的左侧看)每个小正方形内都填入2,第2行填1,重叠交叉处数字取小,如上图,故最多由13个组成.故选(B).点评:由三视图到确定几何体,应根据主视图和俯视图情况分析,再结合左视图的情况定出几何体,最后便可得出这个几何体组合的小正方体个数.。

由三视图判断几何体或几何体组成的小正方体个数

由三视图判断几何体或几何体组成的小正方体个数

由三视图判断小正方体个数问题通过小正方体组合图形的三视图,确定组合图形中小正方体的个数,在中考或竞赛中经常会遇到。

解决这类问题如果没有掌握正确的方法,仅仅依赖空间想象去解决,不仅思维难度很大,还很容易出错。

通过三视图计算组合图形的小正方体的个数,关键是要弄清楚这个小正方体组合图形共有多少行、多少列、每行每列中各有多少层,理清了这些行、列、层的数量,小正方体的个数就迎刃而解了.在三视图中,通过主视图、俯视图可以确定组合图形的列数;通过俯视图、左视图可以确定组合图形的行数;通过主视图、左视图可以确定行与列中的最高层数.以上方法可简要地概括为:“主俯看列,俯左看行,主左看层,分清行列层,计数不求人.”一、结果唯一的计数例1在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来,如图所示,则这堆正方体货箱共有()。

A.9箱B.10箱C.11箱D.12箱分析:由三视图可知,这堆货箱共有从前到后3行,从左到右3列。

由左视图:第一行均为1层,第二行最高2层,第三行最高3层;由主视图:第一列、第三列均为1层,第二列(中间列)最高为3层。

故第二行、第二列为2层,第三行第二列为3层,其余皆为1层。

各行、各列小正方体的个数如俯视图中所表示.这堆货箱共有3+1+1+2+1+1=9(箱)。

二、结果不唯一的计数例2(“希望杯”数学邀请赛试题)如图2,是由若干个(大于8个)大小相同的正方体组成的一个几何体的主视图和俯视图,则这个几何体的左视图不可能是()。

分析:由给出的主视图、俯视图可以看出,该几何体共有2行,3列。

第1列均为1层,第2列最高2层,第3列最高3层。

左视图为A时,第1行、第2行最高均为3层。

几何体中,第1列第1行为1层;第2列第1行、第2行均可为1层或2层,,但不能同时为1层;第3列两行均为3层。

此时,小正方体的个数如俯视图A所示,最少为1+2+1+3+3=10(个),最多为1+2+2+3+3=11个.左视图为B时,第一行均为1层,第二行最高为3层。

三视图创新情境,立体几何巧应用

三视图创新情境,立体几何巧应用

学法指导2023年7月上半月㊀㊀㊀三视图创新情境,立体几何巧应用◉江苏省常熟市浒浦高级中学㊀刘健玲㊀㊀横看成岭侧成峰,远近高低各不同 (北宋大文学家㊁大艺术家苏轼 «题西林壁»)很好地刻画了同一物体在不同角度的视觉效果,更是立体几何中的三视图问题在文学层面上的一个很好的概括与诠释.涉及立体几何中的三视图问题,根据三视图的特殊视角与规律,可以很好地创设问题,沟通平面几何与立体几何,链接二维空间与三维空间,因此是历年高考数学试卷的一个基本考点与热点,倍受关注.1视图判定问题通过立体几何问题情境的创设,根据给定的空间几何图形(一般是较复杂的空间几何体)及其对应的条件,判定或作出对应的三个视图或其中的某个确定视图.图1例1㊀(2021年高考数学全国甲卷理科第6题,文科第7题)在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A GE F G后,所得多面体的三视图中,正视图如图1所示,则相应的侧视图是(㊀㊀).分析:根据题目条件还原并作出对应的正方体,结合截去三棱锥A GE F G 后所对应的正视图,摆放好正方体并加以还原对应的截图,得到对应的直观图,进而判定其对应的侧视图.图2解析:根据题意,作出对应的正方体,截去三棱锥A GE F G .根据正视图,可得A GE F G 在正方体左侧面,如图2所示.根据三视图的投影,可得相应的侧视图是选项D 中的平面图形.故选择答案:D .点评:涉及空间几何体中的视图判定问题,往往是通过条件还原相应的直观图,并依靠实物的观察方向确定对应的三视图,其前提条件是正确分析与理清试题中所给实物的确定位置或常见的简单几何体的叙述等,直观想象,数形结合.2表面积求解问题根据空间几何体所对应的三视图加以合理还原,结合三视图中对应的三个视图不同的投影长度来确定立体几何直观图中的长度信息与图形特征,结合空间几何体的表面积公式来分析与求解.例2㊀(2021年高考数学北京卷第4题)某四面体的三视图如图3所示,该四面体的表面积为(㊀㊀).图3A.3+32㊀㊀㊀B .4㊀㊀㊀C .3+3㊀㊀㊀D.2分析:根据题目条件,由三视图还原对应的空间几何体的直观图,确定直观图的几何特征与相应的数据信息,再结合平面几何知识中的面积公式进行分析与求解.图4解析:由三视图还原对应的几何体,如图4所示,其中P A ʅ底面A B C ,A B ʅA C ,P A =A B =A C =1.易知әP B C 是边长为2的等边三角形.所以,该四面体的表面积为S =3ˑ12ˑ1ˑ1+12ˑ2ˑ2ˑ32=3+32.故选择答案:A .点评:在求解涉及三视图中空间几何体的表面积问题时,一般要结合三视图所对应的空间几何体的直观图加以分析,确定空间几何体的图形特征㊁数据信息等,结合对应的表面积公式加以分析与求解.空间几何体的正确还原,以及几何元素长度的确定是破解问05Copyright ©博看网. All Rights Reserved.2023年7月上半月㊀学法指导㊀㊀㊀㊀题的关键.3体积求解问题根据空间几何体所对应的三视图加以合理还原,结合三视图中对应的三个视图不同的投影长度来确定立体几何直观图中的长度信息与图形特征,结合空间几何体的体积公式来分析与求解.例3㊀(2021年高考数学浙江卷第4题)某几何体的三视图如图5所示(单位:c m ),则该几何体的体积(单位:c m 3)是(㊀㊀).A.32B .3C .322D.32图5分析:根据题目条件,由三视图还原对应的空间几何体,确定该几何体为直四棱柱,特别是底面四边形A B C D 为等腰梯形,并结合已知条件中的三视图的数据信息确定空间几何体中对应的数量与关系,利用棱柱的体积公式加以分析与求解.图6解析:根据题意,由三视图还原对应的空间几何体,如图6所示,该空间几何体为直四棱柱,底面四边形A B C D 为等腰梯形,且A B =22,C D =2,A A 1=1,等腰梯形A B C D 的高为22.所以,该几何体的体积为V =12ˑ(2+22)ˑ22ˑ1=32.故选择答案:A .点评:与求解涉及三视图中的表面积一样,在求解对应的体积问题时,关键是由三视图确定对应的空间几何体的直观图以及图形特征㊁数据信息等,再结合对应的体积公式加以分析与求解.破解的关键是需要学生掌握三视图中各个图形边长的数量关系,以及将三视图中特殊线条能够还原到原立体图形中.这需要较强空间想象能力等.4创新应用问题结合空间几何体的形状特征或对应三视图的形状特征,合理融合立体几何的相关知识,探究三个视图间的变化规律与关系㊁立体几何图形的特征规律㊁实际应用以及探究性㊁开放性等创新应用问题.例4㊀(2021年高考数学全国乙卷文㊁理科第16题)以图7中的图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为.(写出符合要求的一组答案即可.)图①㊀图②㊀图③图④㊀㊀㊀图⑤图7分析:通过观察正视图,确定该正视图的长和高,结合长㊁高以及侧视图中的实线㊁虚线来确定俯视图图形,合理 组合搭配 ,实现对不同视图之间的组合与应用.解析:观察正视图,推出正视图的长为2和高为1,②③图形的高也为1,即可能为该三棱锥的侧视图,④⑤图形的长为2,即可能为该三棱锥的俯视图.当②为侧视图时,结合侧视图中的实线,可以确定该三棱锥的俯视图为⑤;当③为侧视图时,结合侧视图中的虚线,虚线所在的位置对应立体图形的轮廓线,可以确定该三棱锥的俯视图为④.故填答案:②⑤或③④.点评:以创新应用形式进行 组合搭配 问题的创设,特别涉及多组正确答案,有多种解题方案与选项可供选择㊁组合㊁搭配,通过知识㊁思想方法和能力之间的巧妙应用,对问题加以合理组合搭配.借助三视图的创新情境来考查逻辑推理㊁直观想象等数学能力与核心素养.涉及三视图的考点与题型,在高考试卷中往往以小题(选择题或填空题)的形式出现,形式多样,变化多端.关键是借助三视图的概念㊁性质与规律,正确识别三视图或相应的直观图所表示的立体几何模型,综合立体几何的概念㊁关系㊁公式以及创新应用等层面来分析,实现数学基本知识㊁数学思想方法和数学能力的综合与应用,培养直观想象㊁逻辑推理㊁数学运算等数学核心素养.Z15Copyright ©博看网. All Rights Reserved.。

九年级数学下册三视图第三课时《由三视图描述几何体》教学设计

九年级数学下册三视图第三课时《由三视图描述几何体》教学设计

29.2 三视图(第3课时)一、内容和内容解析1.内容根据三视图说出立体图形的名称,描述物体的形状,感受“综合”思考的过程。

2.内容解析学生在七年级已经接触过“从不同的方向看物体”的内容,但当时没有明确给出“视图”这个概念;本章是从投影的角度解释三视图的概念,这与从不同的方向看物体所得到的平面图形是一致的。

前一节课学生已经能够画出基本几何体的三视图,体会了从立体图形到平面图形的转化。

本节课是在上一节“由物画图”的基础上“由图想物”,让学生体会从平面图形到立体图形的转化过程,这种从“二维”到“三维”的转化,不仅使学生对投影和视图的认识水平再次提升,更能对培养学生的空间观念起到很好的促进作用。

画三视图是将一个物体从三个方向观察,分别表现这三个方面的分解过程;由三视图想出物体的立体形状,则是把物体的三个方面形状“综合”起来的过程,这两个过程是相反的,也是相互联系的。

基于以上分析,确定本节课的教学重点为:根据三视图描述基本几何体和实物原型。

二、目标和目标解析1.目标(1)能根据三视图描述基本几何体形状和实物原型。

(2)通过观察和动手实践,理解三视图中相关各线条之间的对应关系,通过它们能形成一个整体性认识,并根据这些关系由平面图形得出对应的立体图形。

2.目标解析达成目标(1)的标志是:能通过给出的三视图用语言来描述出立体图形的形状。

达成目标(2)的标志是:通过三视图描述立体图形,体会三视图在转化为立体图形的过程中所起的作用。

三、教学问题诊断分析本节课是在学习了“从不同方向看物体”的内容后,又进一步引入“三视图”的概念,并通过观察能够画出立体图形的三视图,这要准确把握三视图中的相对位置关系和大小关系,并要求学生有较强的空间想象能力,而本节课要求学生能够通过三视图想象并描述出立体图形,这对学生的空间想象能力有了较高的要求,是教学中的一个难点。

基于以上分析,确定本节课的教学难点为:根据三视图观察想象,描述出基本几何体和实物原型。

2021年中考数学专题复习:根据三视图判断几何体

2021年中考数学专题复习:根据三视图判断几何体

2021年中考数学专题复习:根据三视图判断几何体1.如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的体积是()A.3cm3B.14cm3C.5cm3D.7cm32.如图是一个几何体的俯视图,则这个几何体的形状可能是()A.B.C.D.3.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是()A.20πB.18πC.16πD.14π4.如图为一个用正方体积木搭成的几何体的三视图,俯视图中方格上的数字表示该位置上积木累积的个数.若保证正视图和左视图成立,则a+b+c+d的最大值为()A.12B.13C.14D.155.如图是某几何体的三视图,该几何体是()A.长方体B.三棱锥C.三棱柱D.正方体6.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则以下说法正确的是()A.x=1或2,y=3B.x=1或2,y=1或3C.x=1,y=1或3D.x=2,y=1或37.一个立体图形的三视图如图所示,则这个立体图形是()A.B.C.D.8.如图是一个由多个相同小正方体搭成的几何体的俯视图,图中所标数字为该位置小正方体的个数,则这个几何体的主视图是()A.B.C.D.9.如图是一个几何体的三视图,根据图中给出的数据,可得该几何体的表面积为()参考公式:三角形面积S=a•h,其中a为三角形的底边长,h为三角形的高;长方形面积S=a•b,其中a为长方形的长,b为长方形的宽;圆面积S=πr2,其中r为圆的半径;球表面积S=4πr2,其中r为球的半径.A.9πB.10πC.11πD.12π10.由一些大小相同的小正方体搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的小正方体的个数最多是()A.7B.8C.9D.1011.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到的这个几何体的形状图是()A.B.C.D.12.如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为()A.12πB.15πC.12π+6D.15π+1213.一个立体图形的三视图如图所示,这个立体图形的名称是.14.如图是一个由圆柱与圆锥组合而成的几何体的三视图,根据图中所示数据计算这个几何体的侧面积是.15.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需个这样的正方体.16.如图放置的一个圆锥,它的正视图是直角边长为2的等腰直角三角形,则该圆锥侧面展开扇形的面积为.(结果保留π)17.一个几何体的三视图如图所示,则该几何体的表面积为.18.一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面、上面看到的形状图,若该几何体所用小立方块的个数为n,则n的最大值和最小值之和为.19.如图,是某圆锥工件的三视图,则此工件的表面积为.20.如图是一个几何体的三视图,则这个几何体的侧面积是cm2.21.如图所示是若干个大小相同的小正方体搭成的几何体从三个不同方向看到的图形,则搭成这个几何体的小正方体的个数是.22.一个几何体由几个大小相同的小立方块搭成,从上面和从左面看到的这个几何体的形状如图所示,则这个几何体中小正方体的个数最少是个.23.已知如图为一几何体的三视图:主视图和左视图都是长方形,俯视图是等边三角形(1)写出这个几何体的名称;(2)若主视图的高为10cm,俯视图中三角形的边长为4cm,求这个几何体的侧面积.24.如图是某几何体从不同方向看到的图形.(1)写出这个几何体的名称;(2)若从正面看的高为10cm,从上面看的圆的直径为4cm,求这个几何体的侧面积(结果保留π).25.(1)计算:(﹣1)0+(﹣1)2015+()﹣1﹣2sin30°;(2)如图是一个几何体的三视图,根据图示的数据求该几何体的表面积.26.一个长方体的三视图如图所示.若其俯视图为正方形,求这个长方体的表面积.27.某工地的一间仓库的主视图和左视图如图(单位:米),屋顶由两个完全相同的长方形组成,计算屋顶的总面积.参考值:≈1.41,≈1.73,≈2.24.≈3.16.28.双十一购物狂欢节,天猫“某玩具旗舰店”对乐高积木系列玩具将推出买一送一活动.根据积木数量的不同,厂家会订制不同型号的外包装盒.所有外包装盒均为双层上盖的长方体纸箱(上盖纸板面积刚好等于底面面积的2倍,如图1).长方体纸箱的长为a厘米,宽为b厘米,高为c厘米.(1)请用含有a,b,c的代数式表示制作长方体纸箱需要平方厘米纸板;(2)如图2为若干包装好的同一型号玩具堆成几何体的三视图,则组成这个几何体的玩具个数最少为个;(3)由于旗舰店在双十一期间推出买一送一的活动,现要将两个同一型号的乐高积木包装在同一个大长方体的外包装盒内(如图1),已知单个乐高积木的长方体纸盒长和高相等,且宽小于长.如图3所示,现有甲,乙两种摆放方式,请分别计算甲,乙两种摆放方式所需外包装盒的纸板面积(包装盒上盖朝上),并比较哪一种方式所需纸板面积更少,说明理由.参考答案1.解:易得第一层有2个小正方体,第二层有1个小正方体,一共有3个,这个几何体的体积为3cm3故选:A.2.解:图示是一个圆环及这个圆的圆心.A、圆锥的俯视图是一个圆,有圆心,故选项不符合题意;B、圆台的俯视图是一个圆环没有圆心,故选项不符合题意;C、该图的俯视图是一个圆,有圆心,故选项不符合题意;D、该图的俯视图是一个圆环及这个圆的圆心,故选项符合题意;故选:D.3.解:这个几何体的表面积=π•22+π•3•2+2π•2•2=18π,故选:B.4.解:由正视图第1列和左视图第1列可知a最大为3,由正视图第2列和左视图第2列可知b最大为3,由正视图第3列和左视图第1列和第2列可知c最大为4,d最大为3,则a+b+c+d的最大值为3+3+4+3=13.故选:B.5.解:由几何体的正视图和左视图都是宽度相等的长方形,故该几何体是一个柱体,又∵俯视图是一个三角形,故该几何体是一个三棱柱.故选:C.6.解:由俯视图可知,该组合体有两行两列,左边一列前一行有两个正方体,结合主视图可知左边一列叠有2个正方体,故x=1或2;由主视图右边一列可知,右边一列最高可以叠3个正方体,故y=3,故选:A.7.解:从俯视图是圆环,推出几何体的上下是圆,由此利用推出几何体的选项D.故选:D.8.解:由俯视图中的数字可得:主视图有3列,从左到右分别是1,3,2个正方形.故选:C.9.解:由题意该几何体是由球体和圆柱组成.表面积=4π•12+3•2π•1+2×π×12=12π,故选:D.10.解:由俯视图易得最底层有6个小正方体,第二层最多有3个小正方体,那么搭成这个几何体的小正方体最多为3+6=9个.故选:C.11.解:根据所给出的图形和数字可得:主视图有4列,每列小正方形数目分别为1,2,3,2,则符合题意的是故选:C.12.解:由几何体的三视图可得:该几何体的表面是由3个长方形与两个扇形围成,其侧面积为3×(×2π×2+2+2)=9π+12,上下底面面积为2וπ•22=6π,∴这个几何体表面积为9π+12+6π=15π+12,故选:D.13.解:观察三视图可知,原来的几何体是长方体.故答案为长方体.14.解:这个几何体的侧面积是=185πcm2 ;故答案为:185πcm2.15.解:由三视图可知,这个展台前面第一排一个正方体,后面三个,左面竖直两个,右面一个,故答案为:416.解:∵直角边长为2,∴斜边长为2,则底面圆的周长为2π,则这个圆锥的侧面积为:×2×2π=2π.故答案为:2π.17.解:观察该几何体的三视图发现其为半个圆柱,半圆柱的直径为2,高为2,故其表面积为:π×12+(π+2)×2=3π+4,故答案为:3π+4.18.解:根据主视图、俯视图,可以得出最少时、最多时,在俯视图的相应位置上所摆放的个数如下:最少时需要9个,最多时需要13个,因此n=9+13=22,故答案为:22.19.解:由三视图,得:OB=3cm,OA=4cm,由勾股定理,得AB==5cm,圆锥的侧面积×6π×5=15π(cm2),圆锥的底面积π×()2=9π(cm2),圆锥的表面积15π+9π=24π(cm2),故答案为:24πcm220.解:观察三视图知:该几何体为三棱柱,高为3cm,长为4cm,侧面积为:3×4×3=36cm2.则这个几何体的侧面积是36cm2.故答案为:3621.解:在俯视图标出相应位置摆放小立方体的个数,如图所示:因此需要小立方体的个数为7,故答案为:7.22.解:搭这样的几何体最少需要4+1=5个小正方体,最多需要4+2=6个小正方体,故答案为:523.解:(1)这个几何体是三棱柱;(2)三棱柱的侧面展开图形是长方形,长方形的长是等边三角形的周长即C=4×3=12cm,根据题意可知主视图的长方形的长是三棱柱的高,所以三棱柱侧面展开图形的面积为:S=12×10=120cm2.答:这个几何体的侧面面积为120cm2.24.解:(1)这个几何体是圆柱;(2)∵从正面看的高为10cm,从上面看的圆的直径为4cm,∴该圆柱的底面直径为4cm,高为10cm,∴该几何体的侧面积为2πrh=2π×2×10=40π(cm2).25.解:(1)原式=1+(﹣1)+3﹣1=2;(2)该几何体是圆锥,母线长为=13,圆锥的底面积为:π×52=25π,圆锥的侧面积为:×π×10×13=65π,圆锥的表面积为:25π+65π=90π.26.解:如图所示:AB=3,∵AC2+BC2=AB2,∴AC=BC=3,∴正方形ACBD面积为:3×3=9,侧面积为:4AC×CE=3×4×4=48,故这个长方体的表面积为:48+9+9=66.27.解:根据主视图、左视图可知,屋顶的两个完全相同的长方形的长为6.5米,宽为如图所示AB的长,在Rt△ABD中,AD=1,BD=1.5+1+0.5=3,∴AB==≈3.16,∴屋顶的面积为:6.5×3.16×2=41.08平方米,28.解:(1)制作长方体纸箱需要(2ac+2bc+3ab)平方厘米纸板;故答案为:(2ac+2bc+3ab);(2)根据三视图知,则组成这个几何体的玩具个数最少的分布情况如下图所示:所以组成这个几何体的玩具个数最少为9个,故答案为:9;(3)如图3,由题意得:a=c,a>b,甲:2(ac+2bc+2ab)+2ab,乙:2(2ab+2ac+bc)+2ab,∵a>b,∴ac>bc,∴ac﹣bc>0,∵甲所需纸板面积﹣乙所需纸板面积=2(ac+2bc﹣2ac﹣bc)=2(bc﹣ac)<0,∴甲种摆放方式所需外包装盒的纸板面积更少。

由三视图想象立体图形3

由三视图想象立体图形3

课堂练习: 由三视图想象实物的形状:
由物知图——利用正方体组合提升空间想象力 如图都是由7个小立方体搭成的几何体,从不 同方向看几何体,分别画出它们的主视图、左视 图与俯视图,并在小正方形内填上表示该位置的 小正方体的个数.
(1)
(2)
(3)
(4)
做一做:由几个相同的小立方块搭成的几何体的 俯视图如图所示。方格中的数字表示该位置的小 方块的个数.请画出这个几何体的三视图。
2.锥体——有两个视图是三角形. 3.台体
圆台——有两个视图是等腰梯形
棱台——有两个视图是梯形 4.球——三个视图都是圆
上节课我们讨论了由立体图形(实物)画出三视图, 下面我们讨论由三视图想象出立体图形(实物)。
分析:由三视图想象立体图形时,要分别根据主视图、俯视图 和左视图想象立体图形的前面、上面和左侧面,然后再综合起 来考虑整体图形。
5.一个几何体的主视图和左视图如图所示,它是什么 几何体?请补画这个几何体的俯视图.
(第5题)
直三棱柱
(第6题)
6.一个直棱柱的主视图和俯视图如图所示.描述这 个直棱柱的形状,并补画它的左视图.
直五棱柱,底面是五边形
7、右图是由一些相同的小正方体构成的几何 体的 三视图,则构成这个几何体的小正方体 的个数是【 】 A.5 B.6 C.7 D.8
由三视图想象几何体 下面是一些立体图形的三视图,请根据视 图说出立体图形的名称:
正视图
侧视图
俯视图
四棱柱
由三视图想象几何体 下面是一些立体图形的三视图,请根据视 图说出立体图形的名称:
正视图
左视图
圆锥 俯视图
由三视图想象几何体 一个几何体的三视图如下,你能说出它是 什么立体图形吗?

人教版九年级数学下册第3课时 由三视图确定几何体的表面积或体积

人教版九年级数学下册第3课时 由三视图确定几何体的表面积或体积
6 502 (1 3 ) 2799(0 mm2) 2
2. 如图是一个几何体的三视图,则这个几何体
的A侧.18面cm积2 是( A )
B.20cm2
C. 18 6

3 4


10 2
2


cm
D. 18

75 2
3

解析:由三视图可得,几何体是三棱柱,几何体的侧面积 是三个矩形的面积和,矩形的长为3cm,宽为2cm,∴侧面 积为3×3×2=18cm2.
=

300

240

1 2
=36000(cm2
)
S侧面面积= 300 200=60000(cm2 )
S帐篷表面积=36000 +60000 =96000(cm2)
课堂小结
由三视图确定几何体的表面积或体积,一般步骤为: ① 想象:根据各视图想象从各个方向看到的几何体形状; ② 定形:综合确定几何体(或实物原型)的形状; ③ 展开图:画出展开图,求展开面积。
由三视图描述实物形状,画出物体表面展开图
由三视图确定几何体的表面积或是体积, 首先要确定该几何体的形状。
1.根据下列几何体的三视图,画出它们的展开图。
(1)
(2)
(3)
典例解析
例1 某工厂要加工一批密封罐,设计者给出了密封
罐的三视图,请你按照三视图确定制作每个密封罐所
需钢板的面积.
50
100 50
第3课时 由三视图确定几何体的 表面积或体积
R·九年级下册
复习导入
由三视图描述几何体(或实物原型),一般先根据各视图想象从 各个方向看到的几何体形状, 然后综合起来确定几何体(或实物原 型)的形状, 再根据三视图“长对正、高平齐、宽相等”的关系, 确定轮廓线的位置,以及各个方向的尺寸.

人教版九年级数学下册 29.2 三视图(2) 上课课件

人教版九年级数学下册 29.2 三视图(2) 上课课件
以想象出:整体是 圆锥 ,如图(2)所示.
解:如图
(1)
(2)
新课进行时
活动2 根据物体的三视图描述物体的形状.
思 考 : (1)根据主视图可知该物体的正面与什么图形有关?
(2)请同学们再结合左视图与俯视图,试判 断此立体图形的名称.
分析:(1)由主视图可知, 物体的正面是正五边形。
新课进行时
(2)由俯视图可知,由上向 下看到物 体有两个面的视图是矩形,它们的交线 是一条棱 (中间的实线表示),可见到, 另有两条棱 (虚线表示) 被遮挡;由左视 图可知,物体左侧有两个面是矩形,它 们的交线一条棱 (中间的实线表示),可 见到;综合各视图可知,物体的形状是 正五棱柱.
随堂演练
2. (1) 一个几何体的主视图和左视图如图所示,请补画 这个几何体的俯视图.
主视图 左视图
俯视图
(2) 一个直棱柱的主视图和俯视图如图所示. 描述这 个直棱柱的形状,并补画它的左视图.
主视图 俯视图
左视图
随堂演练
3. 根据物体的三视图描述物体的形状
(1)
随堂演练
(2)
随堂演练
4.由4个小立方体搭成的一个物体, 它的主视图与左视图如图所示:
解:①物体是这样摆放的, 如图所示.
新课进行时 小组讨论:怎样由物体的三视图想象出原物体的 形状?
【反思小结】
由三视图想象立体图形时,先分别根据主视图、 俯视图和左视图想象立体图形的前面、主面和左 侧面的局部形状,然后再综合起来考虑整体图形 .
新课进行时 【变式训练】
1.如下图为一个几何体的三视图,那
新课进行时
(2) 主视图
左视图
俯视图
新课进行时
【变式训练】

怎样由三视图确定正方体个数

怎样由三视图确定正方体个数

怎样由三视图确定正方体个数三视图不仅是新教材的一大亮点,也是近些年各省市中考的热点. 学习视图,不仅会画空间几何体的三视图,还应会根据一个空间几何体的三视图,想象出这个简单几何体的形状,若是由小正方体组成的几何体,则要能确定小正方体的个数.例1.由一些大小相同的小正方体组成的几何体的三种视图如图所示,那么组成几何体的小正方体有( )个.(A )4 (B )5 (C )6 (D )7析解:解决这类问题要做到,一看俯视图,从左至右共有三列,从上到下共三行;二看主视图,共有三列两行,第一列和第三列上分别只有一层,第二列上有两层,则俯视图中的一、三列上分别只有一个正方体,分别填1(如图1);三看左视图,共三列两行,第一列和第三列上分别只有一层,第二列上有两层,则俯视图中第一行只有一个正方体,填1,第二行有两个正方体,填2,第三行第二列只有一个正方体,填1,所以该俯视图上每个小正方体的个数如图1所示,搭成这个几何体的小正方体的个数是1+2+1+1+1=6,故本题结果就选 (C). 相应的几何体如图2所示.图121111 图2例2. 如图是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是 个.析解:先看俯视图,从左至右共有两列,从上到下共两行;再看主视图,共有两列两行,第一列上只有一层,第二列上有两层,则俯视图中的第一列的第一行只有一个正方体,填1(如图3),第二列的第一行、第二行中至少有一行有两个正方体,具体情况再看左视图;左视图共两列两行,第一列有两层,第二列上只有一层,则俯视图中(观察者需站在俯视图的左侧看)第一行的第二列有两个正方体,填2,第二行只有一个正方体,填1,所以该俯视图上每个小主视图 左视图 俯视图正方体的个数如图3所示,搭成这个几何体的小正方体的个数是1+2+1=4,故本题结果就填4. 相应的几何体如图4所示.图4例3.一个几何体是由若干个相同正方体组成的,其主视图和左视图如图5所示,则这个几何体最多可由多少个这样的正方体组成? ( )(A )12个 (B )13个 (C )14个 (D )18个图6111112222解析:主视图和左视图都为3列,可知几何体的俯视图有三列三行,最多为33 的正方形,由主视图可知在俯视图第1、3列每个正方形内填2,第2列每个正方形内填1;又由左视图可知,在俯视图的1、3行中(观察者需站在俯视图的左侧看)每个小正方形内都填入2,第2行填1,重叠交叉处数字取小,如上图,故最多由13个组成. 故选(B ).点评:由三视图到确定几何体,应根据主视图和俯视图情况分析,再结合左视图的情况定出几何体,最后便可得出这个几何体组合的小正方体个数.名称: U3:由三视图判断几何体描述: (1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法.用三视图确定小正方体的块数的简便方法一、由三个视图确定小正方体的块数例 1 如图所示的是一个由相同的小正方体搭成的几何体的三视图,那么这个几何体是由多少个小正方体搭成的?图5主视图左视图俯视图解析:在三个视图中,俯视图最重要,它可以直接确定底层有几个正方体,再由主视图,左视图确定有几层,每层有几个.一般步骤:1.复制一张俯视图,在俯视图的下方,左方分别标上主视图,左视图所看到的小正方体的最高层数.21 2 12如在横竖方向对应的都是2,则填入2;若方格所对应的横竖方向上的数字不一样,如在横竖方向对应的分别是填入12211 2 1通过上面的两步,我们就能确定每一个方格中的数字(方格中的数字代表所在位置的正方体的块数),从而就能确定这个几何体所需要的小正方体的块数.答案: 2 1 ,这个几何体是由8块小正方体搭成的.1 2 11二、由两个视图确定小正方体的块数根据两个视图一般不能确定一个几何体,但可以确定搭成这样的几何体最多需要多少块?最少需要多少块?1.由主视图,俯视图来确定例2 如图所示的是由一些正方体小木块搭成的几何体的主视图,俯视图.它最多需要多主视图俯视图解析:(1)复制一张俯视图,在俯视图的下方标上主视图所看到的小正方体的最高层数,将这些数字填入所在竖上的每一个方格,则可得到这个几何体所需最多的小正方体的块数.3 2 13 23 23 2 1(2)因为从俯视图可以确定底层有正方体,所以方格中的数字最小为1,那么只要将每列上的数字留一个,其余的均改为1,这样就可以确定最少需要的小正方体的块数.举两种情况如图:3 2 1 1 1 11 1 3 21 1 1 1所以这个几何体最多需要16块,最少需要10块.2.由左视图,俯视图来确定方法跟由主视图,俯视图来确定一样.例3 如图所示的是由一些正方体小木块搭成的几何体的左视图,俯视图,它最多需要多少块?最少需要多少块?左视图俯视图解析:(1)复制一张俯视图,在俯视图的左方标上左视图所看到的小正方体的最高层数,将这些数字填入所在横上的每一个方格,则可得到这个几何体所需最多的小正方体的块数.3 31 1 12 2 2 2(2)因为从俯视图可以确定底层有正方体,所以方格中的数字最小为1,那么只要将每横上的数字留一个,其余的均改为1,这样就可以确定最少需要的小正方体的块数.举两种情况如图:3 3 3 31 1 1 1 1 12 2 1 1 2 1 2 1所以这个几何体最多需要11块,最少需要9块.3.由主视图,左视图来确定由这两个视图来确定小正方体的块数是最难的.例4 如图所示的是由一些正方体小木块搭成的几何体的主视图,左视图,它最多需要多少块?最少需要多少块?主视图左视图解析:(1)取一张3×4的方格纸,在方格纸的下方,左方分别标上主视图,左视图所看到的小正方体的最高层数.然后,在方格纸中填入方格所在横,竖上的较小的数字(如果相同取相同的数字),那么就可确定这个几何体所需最多的小正方体的块数.2 2 1 2 23 2 1 3 21 1 1 1 12 13 2(2)在方格纸中寻找所在横,竖方向上的数字一样的方格,取相同的数字填入方格,这样就可以确定最少需要的小正方体的块数.2 2 23 31 12 13 2所以这个几何体最多需要19块,最少需要8块.通过小正方体组合图形的三视图,确定组合图形中小正方体的个数,在中考或竞赛中经常会遇到.解决这类问题如果没有掌握正确的方法,仅仅依赖空间想象去解决,不仅思维难度很大,还很容易出错.通过三视图确定组合图形的小正方体的个数,关键是要弄清楚这个小正方体组合图形共有多少行、多少列、每行每列中各有多少层,理清了这些行、列、层的数量,再按照上面介绍的方法,小正方体的个数就迎刃而解了.。

5.2.3由三视图确定几何体(教案)

5.2.3由三视图确定几何体(教案)
3.重点难点解析:在讲授过程中,我会特别强调三视图的识别和转换这两个重点。对于难点部分,我会通过实物模型和多媒体演示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三视图相关的实际问题,如如何根据三视图制作一个小木箱。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。学生将使用纸板制作三视图,并尝试根据这些视图构建一个简单的几何体。
其次,在实践活动环节,学生们在分组讨论和实验操作过程中表现出较高的积极性。他们能够将所学知识应用于解决实际问题,这让我感到很欣慰。但同时,我也注意到有些学生在操作过程中遇到了困难,比如在根据三视图构建几何体时,他们不知道如何下手。这说明我在教学中还需要加强对学生动手能力的培养,可以适当增加一些类似的实践活动,让学生在实践中不断积累经验。
5.2.3由三视图确定几何体(教案)
一、教学内容
本节课选自教材第五章第二节第三部分“5.2.3由三视图确定几何体”。教学内容主要包括以下两个方面:
1.掌握三视图的概念:正视图、侧视图、俯视图,以及它们在确定几何体中的作用。
2.学会通过三视图来识别和绘制简单几何体(如立方体、长方体、圆柱体、圆锥体等),并能够根据三视图推测出几何体的实际形状和尺寸。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三视图的基本概念。三视图包括正视图、侧视图、俯视图,它们分别从不同的角度展示几何体的形状和尺寸。三视图是工程图学中的重要组成部分,它帮助我们理解和构建三维空间中的物体。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过三视图来确定一个长方体的实际形状和尺寸,以及它如何帮助我们解决实际问题。
二、核心素养目标

2022年初中数学《由三视图还原几何体》精品教案(公开课)

2022年初中数学《由三视图还原几何体》精品教案(公开课)

第2课时由三视图复原几何体1.进一步明确三视图的意义,由三视图想象出原型;(重点)2.由三视图得出实物原型并进行简单计算.(重点)一、情境导入同学们独立完成以下几个问题:1.画三视图的三条规律,即______视图、______视图长对正;______视图、______视图高平齐;______视图、______视图宽相等.2.如下列图,分别是由假设干个完全相同的小正方形组成的一个几何体的主视图和俯视图,那么组成这个几何体的小正方体的个数是多少?二、合作探究探究点一:由三视图描述几何体【类型一】由三视图确定几何体根据图①②的三视图,说出相应的几何体.解析:根据三视图想象几何体的形状,关键要熟练掌握直棱柱、圆锥、球等几何体的根本三视图.解:图①是直三棱柱,图②是圆锥和圆柱的组合体.方法总结:先根据各个视图想象从各个方向看到的几何体形状,再来确定几何体的形状.变式训练:见《》本课时练习“课堂达标训练〞第1题【类型二】由三视图确定正方体的个数一个几何体,是由许多规格相同的小正方体堆积而成的,其主视图、左视图如下列图,要摆成这样的图形,最少需用________个小正方体.解析:根据主视图、左视图是分别从物体正面、左面看,所得到的图形,结合此题进行分析即可.根据三视图可得第二层有2个小正方体,根据主视图和左视图可得第一层最少有4个小正方体,故最少需用7个小正方体.故答案为7.方法总结:由三视图判断几何体由多少个立方体组成时,先由俯视图判断底面的行列组成;再从主视图判断每列的高度(有几个立方体),并在俯视图中按照左、中、右的顺序用数字标出来;然后由左视图判断行的高度,在俯视图中按照上、中、下的顺序用数字标出来;最后把俯视图中的数字加起来.变式训练:见《 》本课时练习“课堂达标训练〞 第5题 探究点二:三视图的相关计算如图是某工件的三视图,其中圆的半径是10cm ,等腰三角形的高是30cm ,那么此工件的体积是( )A .1500πcm 3B .500πcm 3C .1000πcm 3D .2000πcm 3解析:由三视图可知该几何体是圆锥,底面半径和高.解:∵底面半径为10cm ,高为30cm.∴体积V =13π×102×30=1000π(cm 3).应选C.方法总结:依据三视图“长对正,高平齐,宽相等〞的原那么,正确识别几何体,再进行有关计算.变式训练:见《 》本课时练习“课堂达标训练〞第8题 三、板书设计本节课是在学习了简单几何体的三视图的根底上,反过来几何体的三视图想象出几何体,既是对三视图知识的完善,又是三视图知识的简单应用,培养了学生的空间想象能力,使学生初步体会到由平面图形到立体图形的转化也是一种数学方法.1.4 二次函数与一元二次方程的联系1.通过探索,理解二次函数与一元二次方程之间的联系,会用二次函数图象求一元二次方程的近似解;(重点)2.通过研究二次函数与一元二次方程的联系体会数形结合思想的应用.(难点)一、情境导入小唐画y =x 2-6x +c 的图象时,发现其顶点在x 轴上,请你帮小唐确定字母c 的值是多少?二、合作探究探究点一:二次函数与一元二次方程的联系【类型一】 二次函数图象与x 轴交点情况的判断以下函数的图象与x 轴只有一个交点的是( ) A .y =x 2+2x -3 B .y =x 2+2x +3 C .y =x 2-2x +3 D .y =x 2-2x +1解析:选项A 中b 2-4ac =22-4×1×(-3)=16>0,选项B 中b 2-4ac =22-4×1×3=-8<0,选项C 中b 2-4ac =(-2)2-4×1×3=-8<0,选项D 中b 2-4ac =(-2)2-4×1×1=0,所以选项D 的函数图象与x 轴只有一个交点.应选D.变式训练:见《 》本课时练习“课后稳固提升〞第1题【类型二】 利用函数图象与x 轴交点情况确定字母的取值范围(2021·武汉模拟)二次函数y =kx 2-6x +3的图象与x 轴有交点,那么k 的取值范围是( )A .k <3B .k <3且k ≠0C .k ≤3D .k ≤3且k ≠0解析:∵二次函数y =kx 2-6x +3的图象与x 轴有交点,∴方程kx 2-6x +3=0(k ≠0)有实数根,即Δ=36-12k ≥0,k ≤3.由于是二次函数,故k ≠0,那么k 的取值范围是k ≤3且k ≠0.应选D.方法总结:二次函数y =ax 2+bx +c ,当b 2-4ac >0时,图象与x 轴有两个交点;当b 2-4ac =0时,图象与x 轴有一个交点;当b 2-4ac <0时,图象与x 轴没有交点.变式训练:见《 》本课时练习“课堂达标训练〞第4题【类型三】利用抛物线与x 轴交点坐标确定一元二次方程的解(2021·苏州中考)假设二次函数y =x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,那么关于x 的方程x 2+bx =5的解为( )A.⎩⎪⎨⎪⎧x 1=0,x 2=4B.⎩⎪⎨⎪⎧x 1=1,x 2=5C.⎩⎪⎨⎪⎧x 1=1,x 2=-5D.⎩⎪⎨⎪⎧x 1=-1,x 2=5解析:∵对称轴是经过点(2,0)且平行于y 轴的直线,∴-b2=2,解得b =-4.解方程x 2-4x =5,解得x 1=-1,x 2=5.应选D.方法总结:此题容易出错的地方是不知道二次函数的图象与一元二次方程的解的关系导致无法求解.变式训练:见《 》本课时练习“课堂达标训练〞第1题 探究点二:用二次函数的图象求一元二次方程的近似解利用二次函数的图象求一元二次方程-x 2+2x -3=-8的实数根(精确到0.1). 解析:对于y =-x 2+2x -3,当函数值为-8时,对应点的横坐标即为一元二次方程-x 2+2x -3=-8的实数根,故可通过作出函数图象来求方程的实数根.解:在平面直角坐标系内作出函数y =-x 2+2x -3的图象,如图.由图象可知方程-x 2+2x -3=-8的根是抛物线y =-x 2+2x -3与直线y =-8的交点的横坐标,左边的交点横坐标在-1与-2之间,另一个交点的横坐标在3与4之间.(1)先求在-2和-1之间的根,利用计算器进行探索:x - - - - - y-----因此x ≈-是方程的一个实数根. (2)另一个根可以类似地求出:x y-----x ≈是方程的另一个实数根.方法总结:用二次函数的图象求一元二次方程满足精确度的实数根的方法:(1)作出函数的图象,并由图象确定方程解的个数;(2)由图象与y =h 的交点的位置确定交点横坐标的取值范围;(3)利用计算器求方程的实数根.变式训练:见《 》本课时练习“课堂达标训练〞第8题 探究点三:二次函数与一元二次方程在运动轨迹中的应用某学校初三年级的一场篮球比赛中,如图,队员甲正在投篮,球出手时距地面209米,与篮框中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行轨迹为抛物线,篮框距地面3米.(1)建立如下列图的平面直角坐标系,问此球能否准确投中?(2)此时,假设对方队员乙在甲面前1米处跳起盖帽拦截,乙的最大摸高为米,那么他能否获得成功?解析:这是一个有趣的、贴近学生日常生活的应用题,由条件可得到出手点、最高点(顶点)和篮框的坐标,再由出手点、顶点的坐标可求出函数表达式;判断此球能否准确投中的关键就是判断代表篮框的点是否在抛物线上;判断盖帽拦截能否获得成功,就是比较当x =1时函数y 的值与最大摸高米的大小.解:(1)由条件可得到出手点、最高点和篮框的坐标分别为A (0,209),B (4,4),C (7,3),其中B 是抛物线的顶点.设二次函数关系式为y =a (x -h )2+k ,将点A 、B 的坐标代入,可得y =-19(x -4)2+4.将点C 的坐标代入上式,得左边=3,右边=-19(7-4)2+4=3,左边=右边,即点C在抛物线上.所以此球一定能投中;(2)将x =1代入函数关系式,得y =3.因为>3,所以盖帽能获得成功. 变式训练:见《 》本课时练习“课后稳固提升〞第7题 三、板书设计教学过程中,强调学生自主探索和合作交流,通过观察二次函数与x 轴的交点个数,讨论一元二次方程的根的情况,体会知识间的相互转化和相互联系.。

三视图确定的几何体唯一吗?

三视图确定的几何体唯一吗?

从而 ( + )max= 5 .


对称性得( + ) -n=一兰,所以z+ ∈I一- ,丧I. 1 7r ̄=

又 P在椭 圆上,则有 百?Tt2+ n2: 1,代入得,

n = , 一 1 l2

33
解 法 二 然 而 通 过 观 察 我 们 发
现 ,如 图 3所 示 多 面 体 lB1 BD
了该 题有多个解 .另外又借助 于常用正方体 的组 合体列举实 空 间几 何 体 吗 ?
例,进 一步说 明三 视 图确 定 的几 何体 不唯一 并不是 特例,而
在 河南省洛阳市 2016—-2017学
一 枉瓣
是 在很 多情况 下存 在 的.因此在 通过 三视 图还原 几何体 时, 年 高 中三 年级期 中考试有这 样一道
而在 人教 A 版必修 2教科 书上 1.2.2《空问几何 体 的三 视图 》一节 的课 后练 习 2则是这样 一道题 “观察 下列几何体 的三视 图,想象 并说 m它们 的几何 结构特 征,然后 画出它们 的示意 图”[21_由于此题 中三视 图对应 的空 间几 何体都是 唯 一 的,且课本 中对于三视 图对 应的空间几何体 是否唯一也没
1— 3 1 1 x 1 ×1: 互 1 那 么 这 道 题 的 选 项 D 也 是 正 确
Hale Waihona Puke 丁.的 .
所 以我们不难发现,这道题如 果作 为一道单选 题实际上 是一 道错 题,该 题的错误正是在 于题 目所给 的三视 图对应 的 空 间几何 体并不唯一嚣. 除了正方体截去 四个角后剩 下的三棱 锥 A1一BC1D 三 视图符 合图 1,该正方 体截 去上述 四个角 中的任意三个后 形成 的多 面体 的三视 图也 符合 图 1.这样 的 截法 有四种,也 就意味着至少有 五种几何体可 以对 应图 1中 的三 视 图 .

初二数学由三视图描述几何体试题

初二数学由三视图描述几何体试题

初二数学由三视图描述几何体试题1.如果物体的俯视图是一个圆,该物体可能是 .【答案】圆柱、圆锥【解析】俯视图是从物体的上面看得到的视图,找到俯视图里有圆的几何体即可.本题答案不唯一.圆柱、圆锥的俯视图为一个圆形.【考点】本题考查的是简单几何体的三视图点评:本题考查由俯视图确定几何体的形状,主要考查学生空间想象能力.2.一个立体图形的三视图如图这个立体图形是 .【答案】正六棱柱【解析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.根据主视图和左视图为矩形判断出是柱体,根据俯视图是六边形可判断出这个几何体应该是六棱柱.【考点】本题考查的是由三视图判断几何体点评:本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.3.一个几何体的主视图和左视图如图,该物体的形状是( )A.四棱柱B.五棱柱C.六棱柱D.三棱柱【答案】B【解析】由图分析得出大致轮廓为长方形外的另一视图为几边形就是几棱柱.第一个视图的大致轮廓是长方形,为棱柱的侧面,第二个视图为五边形,为棱柱的底面,∴该物体的形状是五棱柱,故选B.【考点】本题考查的是简单组合体的三视图点评:解答本题的关键是掌握棱柱2个视图的大致轮廓为长方形,另一视图为几边形就是几棱柱.4.由若干个小立方体叠成的几何体的三视图如图,这个几何体共有小立方体( )A.4个B.5个C.6个D.3个【答案】A【解析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图和左视图可得第二层立方体的个数,相加即可.由俯视图易得最底层有3个立方体,第二层有1个立方体,那么共有3+1=4个立方体组成.【考点】本题考查的是由三视图判断几何体点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.解答本题的关键是注意俯视图中有几个正方形,底层就有几个立方体.5.如图,是一个几何体的主视图、左视图和俯视图,则这个几何体是()【答案】C【解析】由俯视图可得最底层正方体的个数及形状,可排除2个选项,由左视图可得第二层有2个正方体,排除第3个选项,可得正确选项.由俯视图可得最底层有3个正方体,排除A;根据正方体的排列的形状可排除D;由左视图可得第二层有2个几何体,排除B.故选C.【考点】本题考查的是由三视图判断几何体点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.解答本题的关键是注意俯视图中有几个正方形,底层就有几个立方体.6.一个物体的三视图如图,请说出它的形状。

课题《三视图》教学设计

课题《三视图》教学设计

课题《三视图》教学设计【教学目标】1、知识目标(1)使学生学会在平面上表示空间图形,能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等)的三视图;(2)了解空间几何体的不同表示形式,能识别并描述三视图所表示的立体模型;(3)通过观察能画出简单组合体的三视图.2、能力目标培养和发展学生分析问题的能力和作图能力,着重培养其空间想象能力;3、情感、态度、价值观目标(1)通过对大量图形的欣赏和感悟,激发学生学习热情,提高其学习立体几何的兴趣;(2)通过简单几何体三视图的作图过程培养学生作图能力及从多角度观察和思考问题的能力.【教学重点与难点】重点:(1)简单几何体的三视图的画法;(2)正确理解正视图、侧视图、俯视图.难点:识别三视图所表示的空间几何体.【教学设计思路】1、创设情境:通过手影图激发学生兴趣,引入中心投影和平行投影,并引导学生观察总结两种投影各自的特征;2、从坦克、汽车的三视图引入,介绍几何体的三视图的作法,并引导学生观察探究正视图、俯视图、侧视图之间的关系;3、在上述基础上,师生共同探究长方体、球、圆柱、圆锥、圆台的三视图的作图方法;4、在学生初步掌握简单几何体的三视图的基础上引导学生探究简单组合体的三视图5、通过练习引导学生探究由三视图识别其所代表的实物模型,为下一节课作铺垫;6、巩固总结: 共同回顾三视图的作图原则;7、课后作业及课外探究.【教学过程与操作设计】创设情境1通过点光源展示三张生动有趣的手影图,吸引学生探究如何通过双手的不同组合投影得到这些栩栩如生的动物.新课教授--平行投影和中心投影:介绍平行投影和中心投影的概念并探究两种投影中实物和投影之间有何关系创设情境2展示坦克、汽车的三视图图片,引导学生从不同角度观察同一个空间几何体教师引导学生分别观察这两组图片,说出每组中三张图片之间的关系,并指出为什么会产生这种结果?新课教授--三视图:1)介绍三视图的形成过程:选取简单的组合体,利用Flash动画结合平行投影的知识介绍三视图的形成过程2)探究三视图的规律特征:观察长方体的三视图,探究实物与三视图之间的联系,从而总结三种视图之间的相互联系,得出三视图的规律特征3)探讨几种常见的简单几何体(长方体、球、圆柱、圆锥、圆台)的三视图的作图方法4)探讨由正方体组成的简单几何体的三视图说明:1、教师引导学生仔细观察三视图的形成过程;引导学生分析正视图、俯视图、侧视图与实物之间的联系,及三者之间的联系,共同总结三视图的规律并给出口诀:长对正,高平齐,宽相等.2、展示长方体、球、圆柱、圆锥、圆台的实物图,引导学生想象并动手试着画出其三视图,以自主探究的形式探索这些实物的三视图并在同学之间进行交流.3、展示由正方体组成的简单几何体,引导学生分组合作画出其三视图.课内练习探究1.随堂练习:由球和圆柱组成的简单组合体的三视图2.课内探究:简单几何体三视图的还原(1)五棱锥的三视图;(2)圆台组合体的三视图;(3)圆台与圆柱组合体的三视图课堂小结及作业(1)课堂小结:①三视图的规律特征②三视图作图的注意事项(2)作业布置课后探究三视图的实物还原:有一个正方体,在它的各个面上分别标上字母A、B、C、D、E、F,甲、乙、丙三位同学从不同的方向去观察其正方体,观察结果各不同,问这个正方体各个面上的字母对面各是什么字母?。

怎样由三视图确定正方体个数

怎样由三视图确定正方体个数

如何由三视图确立正方体个数山东李浩明三视图不单是新教材的一大亮点,也是近些年各省市中考的热门.学习视图,不单会画空间几何体的三视图,还应会依据一个空间几何体的三视图,想象出这个简单几何体的形状,假如由小正方体构成的几何体,则要能确立小正方体的个数.例 1.由一些大小同样的小正方体构成的几何体的三种视图如下图,那么构成几何体的小正方体有()个 .主视图左视图俯视图(A)4(B)5(C)6(D)7析解:解决这种问题要做到,一看俯视图,从左至右共有三列,从上到下共三行;二看主视图,共有三列两行,第一列和第三列上分别只有一层,第二列上有两层,则俯视图中的一、三列上分别只有一个正方体,分别填1(如图 1);三看左视图,共三列两行,第一列和第三列上分别只有一层,第二列上有两层,则俯视图中第一行只有一个正方体,填 1,第二行有两个正方体,填2,第三行第二列只有一个正方体,填1,因此该俯视图上每个小正方体的个数如图 1 所示,搭成这个几何体的小正方体的个数是1+2+1+1+1=6,故此题结果就选(C). 相应的几何体如图2所示.1211 1图1图2例 2.如图是由几个同样的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是个 .析解:先看俯视图,从左至右共有两列,从上到下共两行;再看主视图,共有两列两行,第一列上只有一层,第二列上有两层,则俯视图中的第一列的第一行只有一个正方体,填1(如图3),第二列的第一行、第二行中起码有一行有两个正方体,详细状况再看左视图;左视图共两列两行,第一列有两层,第二列上只有一层,则俯视图中(察看者需站在俯视图的左边看)第一行的第二列有两个正方体,填2,第二行只有一个正方体,填1,因此该俯视图上每个小正方体的个数如图 3 所示,搭成这个几何体的小正方体的个数是1+2+1=4,故此题结果就填 4. 相应的几何体如图4所示.图4例 3.一个几何体是由若干个同样正方体构成的,其主视图和左视图如图 5 所示,则这个几何体最多可由多少个这样的正方体构成()(A)12 个(B)13个(C)14个(D)18个图 5 2 1 21 1 12 1 2图 6分析:主视图和左视图都为 3 列,可知几何体的俯视图有三列三行,最多为3 3 的正方形,由主视图可知在俯视图第1、 3 列每个正方形内填2,第 2 列每个正方形内填1;又由左视图可知,在俯视图的1、 3 行中(察看者需站在俯视图的左边看)每个小正方形内都填入2,第 2 行填 1,重叠交错处数字取小,如上图,故最多由13 个构成 .应选(B).评论:由三视图到确立几何体,应依据主视图和俯视图状况剖析,再联合左视图的情况定出几何体,最后即可得出这个几何体组合的小正方体个数.。

简单几何体的三视图教案(完美版)

简单几何体的三视图教案(完美版)

之间的关系;③会判断简单物体的三视图,发展合情推理能力和数学表达能力;④结合具体实例,初步体会视图在现实生活中的应用,感受数学与现实生活的密切联系,增强学生的数学应用意识。

三、教学过程分析第一环节:情境问题引入活动内容:1“横看成岭侧成峰,远近高低各不同。

”一句中蕴含着怎样的数学道理?2小明昨天买了一本字典,假如有一束平行光线从正面、左面、上面照射这本字典,得到正投影图形是什么?第二环节:活动探究(获取信息,体会特点)活动内容:1如图,这个物体可以看做是由什么几何体组成的?2假如一束平行光线从正面、左面、上面投射到物体上,你能想象出它的正投影吗?试着画出来。

附答案活动目的:这一部分是对情境引入的深化,让学生经历实物抽象成几何体的,在前面的基础上将长方体增加到大小不一的两个,培养培养学生的抽象能力和想象能力,并在情境引入的基础上,清楚长方体三视图的特点,灵活运用所学得到两个长方体组合的三视图,培养学生举一反三的能力。

实际效果:学生在情境引入的铺垫下,通过自己的探究,从中获取了大量的信息和体验,亲身体会和经历了两个长方体组合的三视图的抽象过程。

而且小组之间互相补充、互相竞争,气氛热烈,使三视图知识信息的获取更加全面。

事实上,通过长方体三视图特点的一个自然感知的过程,学生都能用自己的语言归纳总结出三种视图的特点,这就为下一课时画棱柱三视图打好了基础。

第三环节:合作学习参照教材提供的几何体,提出问题:下图中物体的形状分别可以看成什么样的几何体?(2)你能在下列图形中找出上面几何体对应的主视图吗?(3)你能想象出它们的左视图和俯视图吗?与同伴交流,请你试着画出来。

(4)你能说出常见几何体的三种视图的特点吗?活动目的:以问题串的形式引导学生逐步深入的思考画出三种视图的特点。

第一个问题的设置帮助学生让学生经历将实物抽象成几何体的过程,培养学生的抽象学生经过前一环节对三视图的特点有了全面的认识,通过问题串的回答,使学生经历由圆柱、圆锥和球三种视图的转化过程,发展了学生的空间观念;进一步完善了学生对三视图的把握,对三视图的学习又迈出了一大步。

《三视图》PPT教学课文课件

《三视图》PPT教学课文课件

【例题1】一个几何体的三视图如图所示,其中主视图和左视图都是边长
为4的等边三角形,则这个几何体的侧面积为_________.

分析: 该几何体是底面直径和母线长都是4的圆锥.
圆锥侧面展开图
∴ 侧= 扇=
扇形
1
×
2
弧长
圆锥底面圆周长
半径
圆锥母线长
4 × 4 = 8.
4
4
【例题2】如图是某几何体的三视图,根据图中所标的数据,该几何体的
主视图
图和俯视图宽相等,知俯视图是长和宽分别为
4cm和3的矩形(如图).
所以俯视图的面积为:4 × 3 = 12(2).
俯视图
左视图
1.如图,是一个工件的三视图,则此工件的全面积
是( )
A. 85πcm2
B. 90πcm2 C. 155πcm2
D. 165πcm2
2.长方体的主视图、俯视图如图所示(单位:m),则其左视图面积是( )
三视图
由三视图确定几何体的形状以后,根据尺寸就可以进行有关的计算.
根据三视图的有关计算
根据三视图的有关计算
1. 根据三视图求与几何体有关的面积、体积:
(1)根据三视图还原出几何体;
(2)根据三视图“长对正,高平齐,宽相等”的关系确定几何体的尺寸;
(3)根据几何体的面积、体积等公式进行有关的计算.
体积为__________.
136
分析:由三视图知道,该几何体
是两个圆柱的组合体(如图).
∴ 体= 22 × 2 + 42 × 8
= 136.
8
2
4
8
根据三视图的有关计算
2. 求组合体的表面积:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:由三视图确定几何体
【学习目标】
1.学会根据物体的三视图描述出几何体形状或实物原型.
2.经历探索简单几何体三视图来描述几何体的形状的过程,进一步发展空间想象能力.
【学习重点】
根据物体的三视图想象出几何体的形状或实物原型.
【学习难点】
由物体的三视图得到它的平面展开图的转化.
情景导入生成问题
前面我们学习了由立体图形(或实物)画出它的三视图,反过来我们能否通过观察分析几何体(或实物)的三视
图,想象出这个立体图形(
或实物)的大致形状呢?
自学互研生成能力知识模块一由三视图说出立体图形的名称
【自主探究】
阅读教材
P98例3,完成下列内容:
1.由三视图想象立体图形时,要分别根据主视图、俯视图、左视图想象立体图形正面、上面、左面,然后再结合起来考虑整体图形.
2.一个立体图形的俯视图是圆,则这个图形可能是圆锥、圆柱.
3.其主视图、左视图与俯视图均相同的是正方体.
【合作探究】
1.一个立体图形的三视图是一个正方形和两个长方形,则这个图形是(B)
A.正方体B.长方体C.四面体D.四棱锥
2.如图,三视图所表示的物体是五棱锥.
3.根据下列物体的三视图,判断该几何体是圆台.
方法归纳:先看主视图和俯视图(或左视图),再综合左视图(或俯视图),根据几何体从三个角度观察得到的图形,综合得出几何体原形.
知识模块二根据物体的三视图描述物体的形状
【自主探究】
阅读教材P98例4,完成下面的内容:
如图所示是一个几何体的三视图,描述其结构特征,最准确的是(C)
A.底面是正六边形
B.底面是六边形,侧面是等腰梯形的棱台
C.上、下底面是正六边形,侧面是等腰梯形的棱台
D.底面是正六边形,侧面是等腰三角形的棱锥
【合作探究】
已知一个几何体的三视图如图所示,想象出这个几何体.
解:根据三视图想象出的几何体是一个长方体上面正中部竖立一个小圆柱体,如图:
交流展示生成新知
【交流预展】
1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】
知识模块一根据三视图说出立体图形的名称
知识模块二根据物体的三视图描述物体的形状
检测反馈达成目标
【当堂检测】
1.一张桌子摆放若干碟子,从三个方向上看,三种视图如图所示,则这张桌子上碟子共有(C)
A.9个B.10个C.12个D .13个
2.根据几何体的三视图描述物体的形状.
解:从三视图可以得知,几何体是一个半球体,并且口部朝下.
(第2题图)(第3题图) 3.用小立方块搭建一个几何体,它的主视图和俯视图如图所示,那么搭成这样的几何体至少需要多少个小立方块,最多需要多少个小立方块?
解:12,19.
【课后检测】见学生用书
课后反思查漏补缺
1.这节课的学习,你的收获是:
________________________________________________________________________
2.存在困惑:________________________________________________________________________。

相关文档
最新文档