工程力学第11章 压杆稳定

合集下载

第十一章压杆的稳定 - 工程力学

第十一章压杆的稳定 - 工程力学

第十一章压杆的稳定承受轴向压力的杆,称为压杆。

如前所述,直杆在轴向压力的作用下,发生的是沿轴向的缩短,杆的轴线仍然保持为直线,直至压力增大到由于强度不足而发生屈服或破坏。

直杆在轴向压力的作用下,是否发生屈服或破坏,由强度条件确定,这是我们已熟知的。

然而,对于一些受轴向压力作用的细长杆,在满足强度条件的情况下,却会出现弯曲变形。

杆在轴向载荷作用下发生的弯曲,称为屈曲,构件由屈曲引起的失效,称为失稳(丧失稳定性)。

本章研究细长压杆的稳定。

§11.1 稳定的概念物体的平衡存在有稳定与不稳定的问题。

物体的平衡受到外界干扰后,将会偏离平衡状态。

若在外界的微小干扰消除后,物体能恢复原来的平衡状态,则称该平衡是稳定的;若在外界的微小干扰消除后物体仍不能恢复原来的平衡状态,则称该平衡是不稳定。

如图11.1所示,小球在凹弧面中的平衡是稳定的,因为虚箭头所示的干扰(如微小的力或位移)消除后,小球会回到其原来的平衡位置;反之,小球在凸弧面上的平衡,受到干扰后将不能回复,故其平衡是不稳定的。

(a) 稳定平衡图11.1 稳定平衡与不稳定平衡上述小球是作为未完全约束的刚体讨论的。

对于受到完全约束的变形体,平衡状态也有稳定与不稳定的问题。

如二端铰支的受压直杆,如图11.2(a)所示。

当杆受到水平方向的微小扰动(力或位移)时,杆的轴线将偏离铅垂位置而发生微小的弯曲,如图11.2(b)所示。

若轴向压力F较小,横向的微小扰动消除后,杆的轴线可恢复原来的铅垂平衡位置,即图11.2(a),平衡是稳定的;若轴向压力F足够大,即使微小扰动已消除,在力F 作用下,杆轴线的弯曲挠度也仍将越来越大,如图11.2(c)所示,直至完全丧失承载能力。

在F =F cr 的临界状态下,压杆不能恢复原来的铅垂平衡位置,扰动引起的微小弯曲也不继续增大,保持微弯状态的平衡,如图11.2(b)所示,这是不稳定的平衡。

如前所述,直杆在轴向载荷作用下发生的弯曲称为屈曲,发生了屈曲就意味着构件失去稳定(失稳)。

第11章压杆稳定

第11章压杆稳定

材料力学
第29页/共63页
二、折减因数法
s
F A
[s w ]
s cr
nst
scr、nst与压杆柔度有关,[sw]是的 函数。
[sw]=j [s ]
[s ]——强度许用应力 j —— 折减因数 j 1
稳定条件
与柔度有关
s FP j[s ] 工作应力不大于
A
稳定许用应力
注 不必由柔度判断压杆属何种性质的杆,简化计算。 意
强度 条件
sr
[s ]
s0
n
相当应力不大 于许用应力
极限应力
s0
s
{
s
sb
塑性材料 脆性材料
极限应力和安全因数只与材料有关,与实 际应力状态无关,即强度许用应力为常数。
材料力学
第27页/共63页
稳定 条件
s
F A
[s
w
]
s0
nst
s cr
nst
工作应力不大于稳定许用应力。
极限应力(临界应力)和稳定安全因数不仅 与材料有关,而且与实际压杆的长度、约束 条件、横截面尺寸和形状有关,即与实际压 杆的柔度有关,所以稳定许用应力不是常数。
z
ml
iz
1 940 14.43
65.1
第36页/共63页
F A
z
材料力学
l1 z
B l1
y Fx
z
h
b
F x
x-z 面内,两端固定
绕y轴发生失稳
m = 0.5
iy
b 23
20 23
5.77 mm
y
ml
iy
0.5 880 5.77
76.3

工程力学压杆稳定

工程力学压杆稳定
4
MA=MA =0 相当长为2l旳两端简支杆
Fcr
EI 2
(2l ) 2
l
F
0.5l
两端固定 EI 2
Fcr (0.5l) 2
图形比拟:失稳时挠曲线 上拐点处旳弯矩为0,故可设想 此处有一铰,而将压杆在挠曲 线上两个拐点间旳一段看成为 两端铰支旳杆,利用两端铰支 旳临界压力公式,就可得到原 支承条件下旳临界压力公式。
两端铰支
= 1
一端固定,一端自由 = 2
一端固定,一端铰支 = 0.7
两端固定
= 0.5
§11-4中小揉度杆旳临界压力
一、临界应力与柔度
cr
Fcr A
对细长杆
cr
2 EI (l)2 A
2 Ei2 ( l ) 2
2E ( l )2
记 l
i
i
cr
2E 2
––– 欧拉公式
:柔度,长细比
[cr] = [] < 1,称为折减系数
[ cr ] [ ]
根据稳定条件
F Fcr nst
F A
Fcr Anst
cr
nst
[ cr : 工作压力
: 折减系数
A: 横截面面积
[]:材料抗压许用值
解:首先计算该压杆柔度,该丝杆可简化为图示
下端固定,上端自由旳压杆。
=2
F
l=0.375m
i I d A4
l l 2 0.375 75
i d 0.04 / 4 4
查表, = 0.72
F
A
80 103
0.72 0.042
88.5106 88.5MPa [ ] 160MPa
4
故此千斤顶稳定性足够。

第11章 稳定分析与稳定性设计

第11章 稳定分析与稳定性设计

第11章压杆的稳定性分析与稳定性设计工程力学学习指导第11章压杆稳定性分析与稳定设计11.1 教学要求与学习目标1. 掌握有关弹性体稳定的基本概念:1)稳定的平衡构形(位置)与不稳定的平衡构形(位置)。

2) 平衡路径,分叉,分叉点。

3) 屈曲(丧失稳定)。

4)判别压杆平衡稳定性的静力学准则。

5)细长压杆分叉点的平衡稳定性。

特别要掌握弹性体失稳时其直线平衡构形将突然转变为弯曲构形这一物理本质,并用以理解、分析和处理一些理论问题和实际问题。

2. 弄清影响压杆承载能力的因素,正确理解弹性压杆临界力公式推导过程,弄清临界力公式中每一项的意义以及公式的应用条件,正确计算临界力。

3. 正确区分弹性失稳及超过比例极限的失稳问题,区别三类不同长细比杆,分别采用不同的公式进行计算。

11.2 理 论 要 点11.2.1平衡构形的稳定性和不稳定性图11-1 压杆的两种平衡构形结构构件或机器零件在压缩载荷或其他特定载荷作用下发生变形,最终在某一位置保持平衡,这一位置称为平衡位置,又称为平衡构形。

承受轴向压缩载荷的细长压杆,有可能存在两种平衡构形-直线的平衡构形与弯曲的平衡构形,分别如图11-1所示。

当载荷小于一定的数值时,微小外界扰动使其偏离平衡构形,外界扰动除去后,构件仍能回复到初始平衡构形,则称初始的平衡构形是稳定的。

扰动除去后,构件不能回复到原来的平衡构形,则称初始的平衡构形是不稳定的。

此即判别弹性平衡稳定性的静力学准则。

不稳定的平衡构形在任意微小的外界扰动下,将转变为其他平衡构形。

例如,不稳定的细长压杆的直线平衡构形,在外界的微小扰动下,将转变为弯曲的平衡构形。

这一过程称为屈曲或失稳。

通常,屈曲将使构件失效,并导致相关的结构发生坍塌。

由于这种失效具有突发性,常常带来灾难性后果。

11.2.2临界状态与临界载荷介于稳定平衡构形与不稳定平衡构形之间的平衡构形称为临界平衡构形,或称为临界状态。

处于临界状态的平衡构形,有的是稳定的,有时是不稳定的,也有的是中性的。

第十一章压杆的稳定_工程力学

第十一章压杆的稳定_工程力学

第十一章 压杆的稳定承受轴向压力的杆,称为压杆。

如前所述,直杆在轴向压力的作用下,发生的是沿轴向的缩短,杆的轴线仍然保持为直线,直至压力增大到由于强度不足而发生屈服或破坏。

直杆在轴向压力的作用下,是否发生屈服或破坏,由强度条件确定,这是我们已熟知的。

然而,对于一些受轴向压力作用的细长杆,在满足强度条件的情况下,却会出现弯曲变形。

杆在轴向载荷作用下发生的弯曲,称为屈曲,构件由屈曲引起的失效,称为失稳(丧失稳定性)。

本章研究细长压杆的稳定。

§11.1 稳定的概念物体的平衡存在有稳定与不稳定的问题。

物体的平衡受到外界干扰后,将会偏离平衡状态。

若在外界的微小干扰消除后,物体能恢复原来的平衡状态,则称该平衡是稳定的;若在外界的微小干扰消除后物体仍不能恢复原来的平衡状态,则称该平衡是不稳定。

如图11.1所示,小球在凹弧面中的平衡是稳定的,因为虚箭头所示的干扰(如微小的力或位移)消除后,小球会回到其原来的平衡位置;反之,小球在凸弧面上的平衡,受到干扰后将不能回复,故其平衡是不稳定的。

上述小球是作为未完全约束的刚体讨论的。

对于受到完全约束的变形体,平衡状态也有稳定与不稳定的问题。

如二端铰支的受压直杆,如图11.2(a )所示。

当杆受到水平方向的微小扰动(力或位移)时,杆的轴线将偏离铅垂位置而发生微小的弯曲,如图11.2(b)所示。

若轴向压力F 较小,横向的微小扰动消除后,杆的轴线可恢复原来的铅垂平衡位置,即图11.2(a ),平衡是稳定的;若轴向压力F 足够大,即使(a ) 稳定平衡 图11.1 稳定平衡与不稳定平衡微小扰动已消除,在力F 作用下,杆轴线的弯曲挠度也仍将越来越大,如图11.2(c)所示,直至完全丧失承载能力。

在F =F cr 的临界状态下,压杆不能恢复原来的铅垂平衡位置,扰动引起的微小弯曲也不继续增大,保持微弯状态的平衡,如图11.2(b)所示,这是不稳定的平衡。

如前所述,直杆在轴向载荷作用下发生的弯曲称为屈曲,发生了屈曲就意味着构件失去稳定(失稳)。

工程力学 第十一章 压杆稳定

工程力学 第十一章 压杆稳定

2
123 kN
200
z
y
(2)计算最小刚度平面内的临界压力 (即绕 z 轴失稳)
z
200
中性轴为z轴:
Iz 200 120 12
3
y
28 . 8 10 mm 28 . 8 10 m
6 4
6
4
120
木柱两端固定,,则得:
Plj
2 EI
l
z
2

第二节
2 EI
l
2
细长压杆的临界力
一、两端铰支细长压杆的临界力
Plj
—两端铰支细长压杆的临界力计算公式(欧拉公式)
二、其他支承情况下细长压杆的临界力
2 EI min Plj 2 (l)
式中: Imin压杆横截面对中性轴的最小惯性矩; μl计算长度;
长度系数,与杆端支承有关。
C
64
;
a
B
1;

l
i

1 1000 7
142 . 9 p 123 ;
大柔度杆;
A
lj
2E
2

2 200000
142 . 9
2
96 . 7 MPa
N CB a N BA P B
Plj lj A 96 .7 615 .75 59 .6 kN N BA ;
lj
nw
— 极限应力法
[ w ] — 折减系数法
n
Plj P
[ n w ] — 安全系数法
φ—折减系数或纵向弯曲系数;一般[σ]>[σw],故φ<1。

工程力学11-压杆的稳定性分析与设计解析

工程力学11-压杆的稳定性分析与设计解析
压杆的稳定性分析与设计
11.1.3 三种类型压杆的临界状态 压杆的分类:
细长杆 ——当F >Fcr时容易发生弹性屈曲 当F≤Fcr时不发生屈曲
中长杆 ——当F >Fcr时发生屈曲,但不再是弹性的
粗短杆 ——不会发生屈曲,失效属于强度破坏
《工程力学》
11.2
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
长细比概念三类不同压杆判断
11.3.2 三类不同压杆的区分
ห้องสมุดไป่ตู้
因,屈曲在弹性范围内导出
故有:
scr =
Fcr A
≤[sp]
在比例极限内有效
稳定平衡构形到屈曲(不稳定平衡构形)是一个 过程。
介于这个过程之间的平衡构形——临界平衡构形
或称:“临界状态” 临界载荷
处于临界状态时,杆件所受的施压载荷
称:“临界载荷”,或临界力,Fcr
《工程力学》
11.1
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
令:当材料达到比例极限时的长细比为“lp” 当材料屈服极限时的长细比为“ls”
细长杆 中长杆 粗短杆
—— l ≥ lp —— lp >l ≥ ls —— l < ls
细长压杆的临界载荷

第11章压杆稳定

第11章压杆稳定

压杆截面如图所示。两端为柱形铰链约束,
若绕 y 轴失稳可视为两端固定,若绕 z 轴失稳可视为 两端铰支。已知,杆长l=1m ,材料的弹性模量
E=200GPa,sp=200MPa。求压杆的临界应力。
解:
iy 1 3 ( 0 . 03 0 . 02 ) Iy 12 0.0058m A 0.03 0.02
3.压杆失稳:
弹性杆件 稳定直线平衡
F Fcr
F Fcr
F Fcr
F Fcr
微小扰动 恢复直线平衡 不稳定直线平衡
F Fcr
弯曲 除去扰动
v
弯曲
微小扰动
新的弯曲平衡 随遇平衡
除去扰动
F Fcr 除直线平衡形式外,无穷小邻域内,可能微弯平衡

压杆从直线平衡形式到弯曲平衡形式的转变,称为失稳
一、两端铰支的细长压杆:
x
Fcr
F M(x)=Fw
l m w B m
m
x
m
B y F
x
y
Fcr
压杆任一 x 截面沿 y 方向的位移 w f ( x ) 该截面的弯矩
M ( x ) Fw
杆的挠曲线近似微分方程
EIw '' M ( x ) Fw
2
( a)
m
F 令k 得 w '' k 2 w 0 (b) EI
16
4.压杆的临界压力: 稳 定 平 衡 临界状态
过 渡
临界压力:Fcr
不 即:使压杆保持在微 稳 弯状态下平衡的最小 定 轴向力。 平 衡
F Fcr —稳定平衡状态 F Fcr —临界平衡状态 F Fcr —不稳定平衡状态

山东建筑大学期末工程力学第11章压杆稳定

山东建筑大学期末工程力学第11章压杆稳定
上的工作应力超过材料的极限应力 ( b 或 S ) 时, 就会因其强度不 足而失去压杆承载能力. 以此建立起 强度条件 .
对于等直杆
F N max [ ] max A
例题:一长为300 mm的钢板尺,横截面尺寸为 20mm 1mm 。钢 的许用应力为[ ]=196 MPa。按强度条件计算得钢板尺所能承受的 轴向压力为
一, 两端为绞支(球形绞支),长为 l 的 细长 压杆。
当 F 达到 FCr 时,压杆的特点是:保持微弯形式的平衡。
x
F cr
x
w
l
l 2

m w m
F cr
M ( x) F cr w
m m
x
o w o
x
w
F cr
FCr
x
w
m
M ( x) F cr w
m
x
o w
FCr
压杆任一 x 截面沿 w 方向的位移为 w = f (x) 该截面的弯矩为

E F cr cr A ( l / i )

l
i
称为压杆的柔度(长细比)。集中地反映了压杆的长度,杆端约
束,截面尺寸和形状对临界应力的影响。
2 E 2
cr
cr
E 2
2
越大,相应的 cr 越小,压杆越容易失稳。
F Cr A Cr
x
y
2 EI F cr 2 ( l )
z
2 EI y ( F Cr ) y ( l )2 y
2 EI z ( F Cr ) z ( l )2 z
F Cr {( F Cr ) y,( F Cr ) z}min

11-压杆稳定

11-压杆稳定

3
10
12
4.1710
9
m
4
10 50
z
y
Fcr

2IminE (1l)2

2 4.17 200
(0.7 0.5)2
67.14kN
图(b)
L L
图(a)
(4545 6)
等边角钢
图(b)
IminI z 3.8910 8 m4
Fcr

2Im (2l
i)n2E
l 2l l 0.5l
Pcr
Pcr
Pcr
Pcr
Pcr

稳 时
B
B
B

D

线 形
C
C

A
A
A
C— 挠曲 C、D— 挠
线拐点 曲线拐点
临界力Pcr 欧拉公式
Pcr

2Leabharlann lEI2Pcr

(0.27El)I2Pcr

2EI
(0.5l ) 2
Pcr

2EI
(2l ) 2
长度系数μ μ=1 μ0.7 μ=0.5 μ=2
kL2n
为求最小临界力,“k”应取除零以外的最小值,即取:
kL2
所以,临界力为:
Fcr

4 2EI
L2

2EI
(L / 2)2
= 0.5
11.3 不同约束条件下压杆的欧拉公式
支承情况
两端铰支
一端固定 另端铰支
两端固定
一端固定 两端固定但可沿 另端自由 横向相对移动
l l 0.7 l l 0.5 l

第11章 压杆稳定

第11章 压杆稳定
答案 初弯曲、压力偏心、材料不均匀和支座缺陷
(Buckling of Columns)
3、图示矩形截面细长压杆,两端用圆柱铰连接。其约束在纸平 面内可视为两端铰接,在垂直于纸面的平面内可视为两端固定, 从稳定性考虑,截面合理的长、宽比为h/b= `
压杆在纸平面内的工作柔度为λ=μL/i=1.0L/h/(2×1.732); 在垂直于纸面的平面内的工作柔度为λ’=μL/i=0.5L/b/(2×1.732);
(Buckling of Columns) 1、一受压的圆截面杆件,已知材料的机械性质参数σ p, σ s,σ b,E,杆长L,直径D,长度系数u,并设已知压杆临界应 力的线性经验公式常数a、b为已知。欲计算压杆的临界压力, 写明计算过程,列出有关的公式。 (1)计算工作柔度λ =μ L/i,计算第一特征柔度 λ 1=(π 2E/σ P)1/2 σ
(Buckling of Columns) 7、两根细长压杆a与b的长度、横截面面积、约束状态及材料均 相同,若其横截面形状分别为圆形和正方形,则二压杆的临界压 力Pacr和Pbcr的关系为( )。 C A.Pacr=Pbcr;B.Pacr<Pbcr;C.Pacr>Pbcr;D.不确定 8、材料和柔度都相同的两根压杆( A. B. C. D. )。A 临界应力一定相等,临界压力不一定相等; 临界应力不一定相等,临界压力一定相等; 临界应力和压力都一定相等; 临界应力和压力都不一定相等。
(Buckling of Columns)
1、图示中的桁架结构,两细长杆的长为L,与铅垂线的夹角相 等,均为α。但EI1>EI2,则结构的临界载荷为 。
Fcr=2 cosαπ2EI2/L2
2、在一般情况下,稳定安全系数比强度安全系数要大,这是因 为实际压杆总是不可避免地存在 , ,以及 等不利因素。

建筑力学 第11章 压杆稳定

建筑力学 第11章 压杆稳定

第11章压杆稳定[内容提要]稳定问题是结构设计中的重要问题之一。

本章介绍了压杆稳定的概念、压杆的临界力-欧拉公式,重点讨论了压杆临界应力计算和压杆稳定的实用计算,并介绍了提高压杆稳定性的措施。

11.1 压杆稳定的概念工程中把承受轴向压力的直杆称为压杆。

前面各章中我们从强度的观点出发,认为轴向受压杆,只要其横截面上的正应力不超过材料的极限应力,就不会因其强度不足而失去承载能力。

但实践告诉我们,对于细长的杆件,在轴向压力的作用下,杆内应力并没有达到材料的极限应力,甚至还远低于材料的比例极限σP时,就会引起侧向屈曲而破坏。

杆的破坏,并非抗压强度不足,而是杆件的突然弯曲,改变了它原来的变形性质,即由压缩变形转化为压弯变形(图11-1所示),杆件此时的荷载远小于按抗压强度所确定的荷载。

我们将细长压杆所发生的这种情形称为“丧失稳定”,简称“失稳”,而把这一类性质的问题称为“稳定问题”。

所谓压杆的稳定,就是指受压杆件其平衡状态的稳定性。

为了说明平衡状态的稳定性,我们取细长的受压杆来进行研究。

图11-2(a)为一细长的理想轴心受压杆件,两端铰支且作用压力P,并使杆在微小横向干扰力作用下弯曲。

当P较小时,撤去横向干扰力以后,杆件便来回摆动最后仍恢复到原来的直线位置上保持平衡(图11-2(b))。

因此,我们可以说杆件在轴向压力P的作用下处于稳定平衡状态。

P,杆件受到干扰后,总能回复到它原来的直线增大压力P,只要P小于某个临界值crP时,杆件虽位置上保持平衡。

但如果继续增加荷载,当轴向压力等于某个临界值,即P=cr然暂时还能在原来的位置上维持直线平衡状态,但只要给一轻微干扰,就会立即发生弯曲并停留在某一新的位置上,变成曲线形状的平衡(图11-2(c))。

因此,我们可以认为杆件在P的作用下处在临界平衡状态,这时的压杆实质上是处于不稳定平衡状态。

P=cr(a) (b) (c)图11-1 图11-2继续增大压力P ,当轴向压力P 略大于cr P 时,由于外界不可避免地给予压杆侧向的干扰作用(例如轻微的振动,初偏心存在,材料的不均匀性,杆件制作的误差等),该杆件将立即发生弯曲,甚至折断,从而杆件失去承载能力。

材料力学第11章 压杆稳定

材料力学第11章 压杆稳定

长度系数
一端固定,另一端自由 两端铰支
2 1
一端固定,另一端铰支
2 0.7
3
两端固定
1 0.5
2
第十一章 压杆稳定
§11.3 欧拉公式的使用范围 临界应力总图
一、欧拉临界应力公式及其使用范围 二、中柔度压杆的临界应力 三、小柔度压杆的临界应力 四、临界应力总图
§11.3 欧拉公式的使用范围 临界应力总图
2E 2
O 小 0 中 p 大
柔柔

度度

压压

杆杆

可见:压杆的临界应力随着其柔度的增大而减小
§11.3 欧拉公式的使用范围 临界应力总图
例1 图示用No.28a工字钢制成的立柱,两端固定,
试求立柱的临界压力。
解:1.求
F
查表:i imin iy 2.50 cm, A 55.4 cm2
ymax
欧拉公式适用于小变形情况
§11.2 细长压杆临界压力的欧拉公式
二、其他约束下细长压杆的临界压力
解法:比较变形法
1.一端固定、另一端自由
Fcr
Fcr
2EI
Fcr (2l)2
l
l
l
Fcr
§11.2 细长压杆临界压力的欧拉公式
二、其他约束下细长压杆的临界压力
解法:比较变形法
2.两端固定
b=20
b 2.57 MPa
h=45
cr a b y 289.6 MPa
Fcr cr A 261 kN y
n
Fcr F
4.35
nst
∴ 连杆安全
l 1=800

工程力学压杆稳定

工程力学压杆稳定

第11章 压杆稳定
§11-2 细长压杆的临界压力
实验方法建立临界力的计算公式 1)用材料、截面的形状和尺寸相同 但长度不同的细长压杆实验: 2)用几何尺寸完全相同但材料不同 的细长压杆实验: 3)用材料相同、长度相等但截面尺 寸不同的细长压杆实验: 欧拉 公式
欧拉公式
1 Fcr 2 l
Fcr E Fcr I
解 (1)计算柔度
先计算惯性半径:
F
d 64 d1 I i A 4 d 4 0.032 m 0.008m 4
4 1 2 1
第11章 压杆稳定 为了偏于安全起见,将螺杆看成一端固定,另 一端自由,查表得 = 2。于是柔度为:
2 0.3 75 i 0.008
cr a b
式中a﹑b为与材料有关的常数。对于 b 1.12 MPa 结构钢:a 304 MPa, 铸铁:a 331 .9MPa , b 1.453 MPa
小柔度杆或短杆:对于结构钢,当 60 时,压杆 可以不考虑稳定性,只需进行压缩强度计算。这种 杆称为小柔度杆或短杆。这时其临界应力 cr 等于 屈服点 s 。
cr
2 Fcr EI 2 A ( l ) A
截面惯性矩 I:截面面积 A 与惯性半径 i 平方之积。
引入压杆柔度

l
i
2 E cr 2
第11章 压杆稳定
欧拉公式的适用范围
由于实验时杆内的压应力不超过比例极限p,因此 只有当cr p 时欧拉公式才适用,即
E cr 2 p
2
大柔度杆或细长杆:对于结构钢的 p 2 10 Pa、 11 E 2 10 Pa,则由上式可算得欧拉公式的适用 范围为 100;同理对于铸铁,欧拉公式的适用 范围为 80 。这类杆称为大柔度杆或细长杆。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定性的措施 1.合理选择截面形状
2.加强压杆的约束 3.减小压杆的长度 4.合理选择材料
21
思考题 11.1 一张硬纸片,用图11.13所示3种方式竖放在桌 面上,试比较三者的稳定性,并说明理由。
22
11.2 对于理想细长压杆,稳定的平衡、临界平衡及 不稳定的平衡如何区分?其特点分别是什么? 11.3 欧拉公式的推导过程中(11.2节),使用了梁 挠曲线的近似微分方程,即 EIy″=-M(x),试问这一 方法和求梁变形的二次积分法有何区别? 11.4 欧拉公式 中,I的含义是什么?I如何取 值?对于两端球铰约束的细长压杆,截面分别为图11.14 所示3种情况,则I如何取值? 11.5 一中心压杆的横截面为等腰三角形,如图11.15 所示,试分析压杆失稳时将绕何轴弯曲?图中C为截面 形心。
6
7
11.2 两端铰支细长压杆的临界力
对于理想细长压杆而言,当轴向力F小于临界力Fcr 时,其直线状态的平衡是稳定的。所以,确定其临界力 Fcr是至关重要的。本节研究的压杆模型是:理想细长压 杆,两端球铰支承,临界力Fcr作用,横向干扰力FQ去除 后保持微弯平衡状态,失稳后材料仍保持线弹性状态, 见图11.3(a)。
15
16
17
18
11.5 压杆的稳定计算
11.5.1 安全系数法 前几节中我们学习了理想压杆的临界力 Fcr及临界应力 σcr的求解方法,但是对于实际压杆,如以Fcr作为轴向外 力的控制值,这显然是不安全的。所以,为安全起见, 使实际压杆具有足够的稳定性,应该考虑一定的安全储 备,稳定条件(stabilitycondition)为:
2
当F较大时,FQ去除后压杆继续弯曲到一个变形更 显著的位置而平衡,则压杆在直线状态的平衡是不稳定 的(unstable)。理想压杆由稳定的平衡状态过渡到不稳 定的平衡状态过程中,有一临界状态:当轴向外力F达 到一定数值时,施加干扰力FQ后压杆将在一个微弯状态 保持平衡,而FQ去除后压杆既不能回到原来的直线平衡 状态,弯曲变形也不增大。则压杆在直线状态的平衡是 临界平衡或中性平衡,此时压杆上所作用的外力称为压 杆的临界力或临界荷载(criticalload),用Fcr表示。显 然,临界平衡状态也是不稳定的平衡状态。
3
4
11.1.2 分叉点失稳和极值点失稳 1.分叉点失稳 设图11.1(b)所示理想压杆的轴向压力为F,干扰 力FQ去除后中点挠度为y0,在y0OF坐标系下,F-y0关系曲 线如图11.2(a)所示。可见,当F < Fcr时,y0=0;当F = Fcr时,y0取值视干扰力大小而定,在AB间变化,但AB 是微量。图中AB′代表反向干扰时的情况。当F≥Fcr时, F-yo关系曲线如图11.2(b)中OAC所示,其中AC曲线是 根据大挠度理论计算出的。曲线AC表示F > Fcr而失稳时 理想压杆不能在微弯状态平衡,如F=FD时,中点挠度y0 为AC曲线上E点对应的横坐标。
8
9
10
11.3 杆端约束的影响
由上一节欧拉临界力的推导过程可以看出,当理想 压杆的杆端约束不同时,其临界力一般也不同。与两端 铰支细长压杆的临界力推导过程相似,可以求出几种常 见杆端约束下压杆的临界力,如图11.5所示,并用统一 形式表达为
11
12
13
14
11.4 临界应力曲线
当中心压杆所受压力等于临界力而仍旧直立时,其 横截面上的压应力称为临界应力(criticalstress),以记 号σcr表示,设横截面面积为A,则
5
2.极值点失稳 与理想压杆相比,实际压杆总是有缺陷的,如初始 曲率、初始应力、荷载偏心等,其 F-yo曲线如图11.2(b) 中 GJK 所示(其中,δ 为实际压杆的初始挠度)。该曲 线的特点是外力F达到FJ后,曲线出现了下降段JK,其 含义是:压杆急剧弯曲而它能承担的外力F不断降低。 这实际上代表了压杆的“压溃”现象。曲线 GJK 所描写 的失稳模型称为极值点失稳(limitedpointbuckling), 而将曲线顶点所对应的荷载FJ称为极值点荷载。
第11章 压杆稳定
压杆的强度计算已在第 7章做了讨论,但是对于比 较细长的压杆,其失效往往不是强度问题,而是稳定问 题。本章将专门研究压杆稳定问题。
1
11.1 压杆稳定的概念
11.1.1 理想压杆的稳定性 理想压杆是理论研究中一种抽象化的理想模型,满 足“轴心受压、均质、等截面直杆”的假定。在无扰动 (如微小横向干扰力)时,理想压杆将只产生轴向压缩 变形,而且保持直线状态的平衡。但是其平衡状态有稳 定和不稳定之分。如图11.1(a)所示两端球铰支承的理 想压杆,在微小的横向干扰力 FQ作用后,压杆将产生 弯曲变形。当轴向压力F较小时,干扰力FQ去除后压杆 将恢复到原来的直线平衡状态,这说明压杆在直线状态 的平衡是稳定的(stable)。
23
24
相关文档
最新文档